JPH0351660B2 - - Google Patents

Info

Publication number
JPH0351660B2
JPH0351660B2 JP61150732A JP15073286A JPH0351660B2 JP H0351660 B2 JPH0351660 B2 JP H0351660B2 JP 61150732 A JP61150732 A JP 61150732A JP 15073286 A JP15073286 A JP 15073286A JP H0351660 B2 JPH0351660 B2 JP H0351660B2
Authority
JP
Japan
Prior art keywords
cobalt
coercive force
iron oxide
aqueous solution
add
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61150732A
Other languages
Japanese (ja)
Other versions
JPS638223A (en
Inventor
Kunio Takahashi
Takahito Tsugaru
Takahiko Goto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP61150732A priority Critical patent/JPS638223A/en
Publication of JPS638223A publication Critical patent/JPS638223A/en
Publication of JPH0351660B2 publication Critical patent/JPH0351660B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compounds Of Iron (AREA)
  • Hard Magnetic Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は酸化鉄強磁性粉末の製造に係り、より
詳細には、高記録密度が可能なコバルト含有酸化
鉄強磁性粉末の製造方法に関する。 (従来の技術及び解決しようとする問題点) 従来より、磁気記録用磁性粉としては、形状異
方性により高保磁力を有する針状γ−Fe2O3粒子
が用いられていたが、近年、更に高記録密度が可
能な高保磁力の磁気記録用磁性粉が要求されるよ
うになり、コバルトを含有する酸化鉄磁性粉末の
研究が盛んに行われている。 ところで、従来、コバルト含有γ−Fe2O3粒子
の製造方法としてはこれまで種々提案されている
が、その中でも有用なものの一つとしては、アル
カリ溶液中に針状γ−Fe2O3粒子を分散させ、こ
れにストロンチウム塩などのアルカリ土類金属塩
及びコバルト塩と第1鉄塩を加え、コバルト含有
γ−Fe2O3粒子とする方法がある。 この方法によつて得られるコバルト含有γ−
Fe2O3粒子は、粒子表面にコバルトを含有する酸
化鉄層が形成されているため、保磁力や単位重量
当たりの飽和磁化が増加するものの、分散性が悪
く、保磁力分布に劣り、また保磁力の経時変化も
大きいという欠点があつた。 本発明の目的は、上記従来技術の欠点を解消
し、高保磁力、高飽和磁化で、かつ、その保磁力
分布が均一で、分散性に優れ、しかも保磁力の経
時変化が殆どないコバルト含有酸化鉄強磁性粉末
を製造できる方法を提供することにある。 (問題点を解決するための手段) 上記目的を達成するため、本発明者は、コバル
ト含有酸化鉄磁性粉末の製造に関する従来の方法
についてその欠点をもたらす原因を検討分析した
ところ、従来法では、針状γ−Fe2O3粒子をまず
アルカリ溶液中に分散させた後、これにアルカリ
土類金属塩とコバルト塩と第1鉄塩を添加して、
コバルト含有γ−Fe2O3粒子の表面に第1鉄イオ
ン(Fe2+)を含む酸化鉄層を形成し、単位重量
当たりの飽和磁化σsの減少を抑制せんとしたもの
であると考えられるが、第1鉄イオンの添加量を
増やせばコバルト含有γ−Fe2O3の上記σsが増大
するものの、第1鉄イオン添加前に比べて保磁力
がかなり低下し、その保磁力の経時変化も大きく
なつてしまい、このように特に第1鉄塩の添加態
様に問題があるため、目的とする高保磁力強磁性
粉末が得られにくく、その保磁力分布が悪く、分
散性に劣り、保磁力の経時変化が大きくなつてし
まうことが判明した。 そこで、本発明者は、高保磁力、高飽和磁化
で、かつ、その保磁力分布が均一で分散性に優れ
た磁性粉を開発すべく鋭意研究の結果、針状γ−
Fe2O3粒子にまず添加量の1/2量の第1鉄塩を加
えた後、アルカリ土類金属塩、コバルト塩、次い
で残量の第1鉄塩を添加することで、保磁力の低
下を抑えると共に保磁力分布を均一にすることが
でき、目的の磁性粉を得ることが可能であること
を知見するに至り、本発明をなしたものである。 すなわち、本発明は、針状γ−Fe2O3粒子を
OH-イオン濃度が1.6〜3.0モル/になるような
量のアルカリを含有する水溶液中に分散させ、こ
れにまず添加量の1/2量の鉄塩を含む水溶液を加
え、次いでアルカリ土類金属塩水溶液、コバルト
塩水溶液を加えた後、残量の第1鉄塩を含む水溶
液を加え、非酸化性雰囲気中で該分散液の沸点以
下の温度で処理することにより、針状γ−Fe2O3
粒子表面に第1鉄イオンを含む酸化鉄層とコバル
ト及びアルカリ土類金属を含有する酸化鉄層の2
層を形成せしめることを特徴とする磁気記録用強
磁性粉末の製造方法を要旨とするものである。 以下に本発明を実施例に基づいて詳細に説明す
る。 前述の如く、要するに、本発明の最大の特徴
は、アルカリ土類金属塩を添加し、第1鉄塩を2
回に分けて添加することにあり、これによつて従
来法に比べ少量のコバルト添加量で特に保磁力が
高められたコバルト含有酸化鉄磁性粉末が得られ
るものである。これらの処理は沸点以下の温度で
行うが、処理温度が低くなるにつれて長時間の処
理が必要となるので、沸点近くのできるだけ高い
温度で処理することが好ましい。 本発明では、まず、核となる針状γ−Fe2O3
子をアルカリを含有する水溶液中に充分に分散さ
せるが、その際、アルカリ量はOH-イオン濃度
が1.6〜3.0モル/になるような量を添加する必
要がある。アルカリとしては水酸化ナトリウム、
水酸化カリウム、水酸化リチウムなどを使用する
ことができる。アルカリ添加量が上記範囲外で
は、次工程で所要量の第1鉄塩を添加しても核晶
表面に狙いとする第1鉄イオンを含む酸化鉄層を
効果的に形成することがむずかしくなる。 次に、上記分散液を適宜温度(例、90℃)まで
上昇した後、添加量の1/2量の第1鉄塩を添加し
て所要時間(例、30分間)撹拌し、アルカリ土類
金属塩を含む水溶液を添加し、更に昇温(例、
100℃)してコバルト塩を含む水溶液を添加し、
所要時間(例、7時間)充分撹拌する。第1鉄塩
としては塩化第1鉄、硫酸第1鉄などを使用する
ことができ、アルカリ土類金属塩としては塩化ス
トロンチウムのほか、塩化バリウム、塩化カルシ
ウムなどを、またコバルト塩としては塩化コバル
ト、硫酸コバルトなどを使用することができる。 その後、残量の第1鉄塩を含む水溶液を加え、
所要時間(例、1時間)撹拌する。 なお、これらの処理、特に残量の第1鉄塩を添
加する前後では、空気の混入を防止する必要があ
ることから、非酸化性雰囲気中で行う。 このような工程によれば、針状γ−Fe2O3の核
晶の表面に第1鉄イオンを含有する酸化鉄層とコ
バルト及びアルカリ土類金属を含有する酸化鉄層
の2層が形成されるので、高い飽和磁化を有し、
高保磁力で、その保磁力分布が均一で、しかも保
磁力の経時変化が殆どなく、分散性にも優れたコ
バルト含有酸化鉄磁性粉末が得られる。 次に本発明の一実施例を示す。なお、本発明は
本実施例に限定されるものではないことは云うま
でもない。 (実施例) 常法により製造した針状γ−Fe2O3粉末(保磁
力:370Oe、飽和磁化:74emu/g)1300gを、
9の水に1200gのNaOHを溶解させた苛性ソ
ーダ水溶液に加え、充分に分散させた後、この分
散液の温度を90℃まで昇温して塩化第1鉄100g
を含む水溶液500mlを加えて30分間撹拌し、塩化
ストロンチウム20gを含む水溶液100ml添加して
更に昇温し、100℃で塩化コバルト105gを含む水
溶液900mlを添加し、可及的に空気の混入を防止
しながら、この温度を保持したまま撹拌を続け、
1時間後、3時間後、5時間後及び7時間後にそ
れぞれ約30mlの試料を採取した。7時間後の試料
採取後、塩化第1鉄100gを含む水溶液500mlを添
加し、更に1時間撹拌して反応を終了した。採取
した各試料及び反応終了後のスラリーを充分に水
洗し、脱水、乾燥した。得られた試料を振動試料
型磁力計(VSM−3S型、東英工業製)により外
部磁界10KOeで磁気特性を測定した。その結果
を第1表及び第1図に示す。 このように8時間反応処理後に得られたコバル
ト含有酸化鉄磁性粉末は、保磁力Hcが673Oe、
飽和磁化σsが77emu/gであつた。また、この磁
性粉を温度70℃で400時間保存した後の保磁力Hc
は682Oeであつた。 (比較例) 上記実施例と同様の針状γ−Fe2O3粉末1300g
を、9の水に1200gのNaOHを溶解させた苛
性ソーダ水溶液に加え、充分に分散させた後、こ
の分散液の温度を90℃まで昇温して塩化ストロン
チウム20gを含む水溶液100ml添加し、100℃で塩
化コバルト105gを含む水溶液900mlを添加し、可
級的に空気の混入を防止しながら、この温度を保
持したまま撹拌を続け、1時間後、3時間後、5
時間後及び7時間後にそれぞれ約30mlの試料を採
取した。7時間後の試料採取後、塩化第1鉄200
gを含む水溶液1を添加し、更に1時間撹拌し
て反応を終了した。採取した各試料及び反応終了
後のスラリーを充分に水洗し、脱水、乾燥した。
得られた試料を上記実施例と同様の磁力計により
外部磁界10KOeで磁気特性を測定した。その結
果を第1表及び第1図に併記する。 このように8時間反応処理後に得られたコバル
ト含有酸化鉄磁性粉末は、保磁力Hcが659Oe、
飽和磁気σsが77emu/gであつた。また、この磁
性粉を温度70℃で400時間保存した後の保磁力Hc
は685Oeであつた。
(Industrial Field of Application) The present invention relates to the production of iron oxide ferromagnetic powder, and more particularly to a method of producing cobalt-containing iron oxide ferromagnetic powder that enables high recording density. (Prior art and problems to be solved) Acicular γ-Fe 2 O 3 particles, which have a high coercive force due to shape anisotropy, have traditionally been used as magnetic powder for magnetic recording, but in recent years, Furthermore, magnetic powder for magnetic recording with high coercive force capable of high recording density is required, and research on iron oxide magnetic powder containing cobalt is being actively conducted. By the way, various methods for producing cobalt-containing γ-Fe 2 O 3 particles have been proposed so far, but one of the most useful methods is to produce acicular γ-Fe 2 O 3 particles in an alkaline solution. There is a method of dispersing and adding an alkaline earth metal salt such as a strontium salt, a cobalt salt, and a ferrous salt to obtain cobalt-containing γ-Fe 2 O 3 particles. Cobalt-containing γ- obtained by this method
Fe 2 O 3 particles have an iron oxide layer containing cobalt formed on the particle surface, so although the coercive force and saturation magnetization per unit weight increase, they have poor dispersibility, poor coercive force distribution, and The drawback was that the coercive force changed significantly over time. The purpose of the present invention is to solve the above-mentioned drawbacks of the prior art, and to provide a cobalt-containing oxide that has high coercive force, high saturation magnetization, uniform coercive force distribution, excellent dispersibility, and almost no change in coercive force over time. The object of the present invention is to provide a method for producing iron ferromagnetic powder. (Means for Solving the Problems) In order to achieve the above object, the present inventor investigated and analyzed the causes of the drawbacks of the conventional method for producing cobalt-containing iron oxide magnetic powder, and found that the conventional method: Acicular γ-Fe 2 O 3 particles are first dispersed in an alkaline solution, and then an alkaline earth metal salt, a cobalt salt, and a ferrous salt are added thereto.
It is thought that an iron oxide layer containing ferrous ions (Fe 2+ ) was formed on the surface of cobalt-containing γ-Fe 2 O 3 particles to suppress the decrease in saturation magnetization σs per unit weight. However, if the amount of ferrous ions added increases, the above σs of cobalt-containing γ-Fe 2 O 3 increases, but the coercive force decreases considerably compared to before adding ferrous ions, and the coercive force changes over time. Because of this problem, especially in the manner in which the ferrous salt is added, it is difficult to obtain the desired high coercive force ferromagnetic powder, and the coercive force distribution is poor, the dispersibility is poor, and the coercive force It was found that the change over time becomes large. Therefore, as a result of intensive research to develop magnetic powder with high coercive force, high saturation magnetization, uniform coercive force distribution, and excellent dispersibility, the present inventors found that acicular γ-
By first adding 1/2 the amount of ferrous salt to Fe 2 O 3 particles, then adding alkaline earth metal salt, cobalt salt, and then the remaining amount of ferrous salt, the coercive force can be increased. The present invention was made based on the discovery that it is possible to suppress the decrease and to make the coercive force distribution uniform, thereby obtaining the desired magnetic powder. That is, the present invention uses acicular γ-Fe 2 O 3 particles.
It is dispersed in an aqueous solution containing an amount of alkali such that the OH - ion concentration is 1.6 to 3.0 mol/h, an aqueous solution containing an iron salt in an amount of 1/2 of the added amount is added, and then an alkaline earth metal After adding the aqueous salt solution and the aqueous cobalt salt solution, an aqueous solution containing the remaining amount of ferrous salt is added and treated in a non-oxidizing atmosphere at a temperature below the boiling point of the dispersion to form acicular γ-Fe 2 O 3
An iron oxide layer containing ferrous ions on the particle surface and an iron oxide layer containing cobalt and alkaline earth metals.
The gist of the present invention is a method for producing ferromagnetic powder for magnetic recording, which is characterized by forming a layer. The present invention will be explained in detail below based on examples. As mentioned above, in short, the greatest feature of the present invention is that the alkaline earth metal salt is added and the ferrous salt is
This method allows cobalt-containing iron oxide magnetic powder with particularly high coercive force to be obtained with a smaller amount of cobalt added than in conventional methods. These treatments are performed at a temperature below the boiling point, but as the treatment temperature becomes lower, a longer treatment time becomes necessary, so it is preferable to perform the treatment at a temperature as high as possible near the boiling point. In the present invention, first, the acicular γ-Fe 2 O 3 particles serving as the core are sufficiently dispersed in an aqueous solution containing an alkali, and at that time, the amount of alkali is such that the OH - ion concentration is 1.6 to 3.0 mol/ It is necessary to add such amount. As an alkali, sodium hydroxide,
Potassium hydroxide, lithium hydroxide, etc. can be used. If the amount of alkali added is outside the above range, it will be difficult to effectively form the desired iron oxide layer containing ferrous ions on the surface of the nucleic crystal even if the required amount of ferrous salt is added in the next step. . Next, after raising the above dispersion to an appropriate temperature (e.g. 90°C), 1/2 of the amount of ferrous salt added and stirring for the required time (e.g. 30 minutes), alkaline earth Add an aqueous solution containing a metal salt and further raise the temperature (e.g.
100℃) and add an aqueous solution containing cobalt salt,
Stir thoroughly for the required time (eg, 7 hours). Ferrous salts include ferrous chloride and ferrous sulfate, alkaline earth metal salts include strontium chloride, barium chloride, calcium chloride, and cobalt salts such as cobalt chloride. , cobalt sulfate, etc. can be used. Then, add an aqueous solution containing the remaining amount of ferrous salt,
Stir for the required time (eg, 1 hour). These treatments, especially before and after adding the remaining amount of ferrous salt, are performed in a non-oxidizing atmosphere because it is necessary to prevent air from entering. According to such a process, two layers are formed on the surface of the acicular γ-Fe 2 O 3 nucleus crystal: an iron oxide layer containing ferrous ions and an iron oxide layer containing cobalt and alkaline earth metals. Therefore, it has a high saturation magnetization,
A cobalt-containing iron oxide magnetic powder with high coercive force, uniform coercive force distribution, almost no change in coercive force over time, and excellent dispersibility can be obtained. Next, an embodiment of the present invention will be described. It goes without saying that the present invention is not limited to this embodiment. (Example) 1300 g of acicular γ-Fe 2 O 3 powder (coercive force: 370 Oe, saturation magnetization: 74 emu/g) produced by a conventional method,
Add 1200g of NaOH to the aqueous solution of caustic soda dissolved in water from Step 9 and thoroughly disperse it, then raise the temperature of this dispersion to 90°C to dissolve 100g of ferrous chloride.
Add 500 ml of an aqueous solution containing cobalt chloride, stir for 30 minutes, add 100 ml of an aqueous solution containing 20 g of strontium chloride, further raise the temperature, and add 900 ml of an aqueous solution containing 105 g of cobalt chloride at 100°C to prevent air incorporation as much as possible. While maintaining this temperature, continue stirring.
Approximately 30 ml samples were taken each after 1 hour, 3 hours, 5 hours, and 7 hours. After collecting the sample after 7 hours, 500 ml of an aqueous solution containing 100 g of ferrous chloride was added, and the reaction was further stirred for 1 hour to complete the reaction. Each sample collected and the slurry after completion of the reaction were thoroughly washed with water, dehydrated, and dried. The magnetic properties of the obtained sample were measured using a vibrating sample magnetometer (Model VSM-3S, manufactured by Toei Kogyo) with an external magnetic field of 10 KOe. The results are shown in Table 1 and Figure 1. The cobalt-containing iron oxide magnetic powder obtained after 8 hours of reaction treatment had a coercive force Hc of 673 Oe,
The saturation magnetization σs was 77 emu/g. In addition, the coercive force Hc after storing this magnetic powder at a temperature of 70℃ for 400 hours is
was 682 Oe. (Comparative example) 1300 g of acicular γ-Fe 2 O 3 powder similar to the above example
was added to a caustic soda aqueous solution prepared by dissolving 1200 g of NaOH in water from Step 9 and thoroughly dispersed.Then, the temperature of this dispersion was raised to 90°C, 100ml of an aqueous solution containing 20g of strontium chloride was added, and the mixture was heated to 100°C. 900 ml of an aqueous solution containing 105 g of cobalt chloride was added, and stirring was continued while maintaining this temperature while preventing air from entering. After 1 hour, 3 hours, and 5 hours.
Approximately 30 ml samples were taken each time and after 7 hours. After 7 hours of sample collection, ferrous chloride 200
Aqueous solution 1 containing g was added thereto and stirred for an additional 1 hour to complete the reaction. Each sample collected and the slurry after completion of the reaction were thoroughly washed with water, dehydrated, and dried.
The magnetic properties of the obtained sample were measured using the same magnetometer as in the above example with an external magnetic field of 10 KOe. The results are also shown in Table 1 and Figure 1. The cobalt-containing iron oxide magnetic powder obtained after 8 hours of reaction treatment had a coercive force Hc of 659 Oe,
The saturation magnetism σs was 77 emu/g. In addition, the coercive force Hc after storing this magnetic powder at a temperature of 70℃ for 400 hours is
was 685 Oe.

【表】 上記実施例及び比較例で得られたコバルト含有
酸化鉄磁性粉末を用い、これに下記組成の成分を
添加して約48時間ボールミルで混練して磁性塗料
を調整した。 コバルト含有酸化鉄磁性粉 …75重量部 塩化ビニル−酢酸ビニル共重合体 …19 〃 ジオクチルフタレート …4 〃 レシチン …2 〃 トルエン …100 〃 メチルイソブチルケトン …100 〃 この磁性塗料を厚さ12μのポリエステルフイル
ム上に乾燥厚が約6μとなるように塗布し、磁場
配向を行いながら乾燥して磁気テープを製造し
た。得られた各磁気テープの角形比(Br/Bm)、
反転磁界分布(SFD)を測定したところ、第2
表に示す結果が得られた。
[Table] Using the cobalt-containing iron oxide magnetic powder obtained in the above Examples and Comparative Examples, the following components were added and kneaded in a ball mill for about 48 hours to prepare a magnetic paint. Cobalt-containing iron oxide magnetic powder...75 parts by weight Vinyl chloride-vinyl acetate copolymer...19 Dioctyl phthalate...4 Lecithin...2 Toluene...100 Methyl isobutyl ketone...100 Apply this magnetic paint to a 12μ thick polyester film A magnetic tape was manufactured by coating the film on the surface to a dry thickness of about 6 μm and drying it while applying magnetic field orientation. The squareness ratio (Br/Bm) of each magnetic tape obtained,
When we measured the switching field distribution (SFD), we found that the second
The results shown in the table were obtained.

【表】 第2表により明らかなように、本発明法により
得られたコバルト含有酸化鉄磁性粉末を用いて製
造した磁気テープは、比較例による場合に比べ、
角形比及び反転磁界分布のいずれも優れており、
保磁力分布が均一で分散性も優れているほか、経
時変化も少ないことがわかる。 (発明の効果) 以上詳述したように、本発明によれば、針状γ
−Fe2O3の核晶表面に第1鉄イオンを含む酸化鉄
層とコバルトを含有する酸化鉄層の2層が形成さ
れるので、高保磁力、高飽和磁化で、かつ、その
保磁力分布が均一であると共に分散性に優れたコ
バルト含有酸化鉄磁性粉末を容易に、しかも少量
のコバルト添加量で経済的に製造することができ
る。したがつて、高品質の磁気記録用媒体の製造
を可能にするものである。
[Table] As is clear from Table 2, the magnetic tape manufactured using the cobalt-containing iron oxide magnetic powder obtained by the method of the present invention has
Both the squareness ratio and reversal magnetic field distribution are excellent,
It can be seen that the coercive force distribution is uniform, the dispersibility is excellent, and there is little change over time. (Effects of the Invention) As detailed above, according to the present invention, the acicular γ
-Two layers are formed on the surface of the Fe 2 O 3 nucleus: an iron oxide layer containing ferrous ions and an iron oxide layer containing cobalt, resulting in high coercive force, high saturation magnetization, and a high coercive force distribution. A cobalt-containing iron oxide magnetic powder that is uniform and has excellent dispersibility can be easily and economically produced with a small amount of cobalt added. Therefore, it is possible to manufacture a high quality magnetic recording medium.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はコバルト含有酸化鉄磁性粉末の保磁力
Hcと反応処理時間の関係を示す特性図である。
Figure 1 shows the coercive force of cobalt-containing iron oxide magnetic powder.
FIG. 3 is a characteristic diagram showing the relationship between Hc and reaction treatment time.

Claims (1)

【特許請求の範囲】[Claims] 1 針状γ−Fe2O3粒子のOH-イオン濃度が1.6
〜3.0モル/になるような量のアルカリを含有
する水溶液中に分散させ、これにまず添加量の1/
2量の第1鉄塩を含む水溶液を加え、次いでアル
カリ土類金属塩水溶液、コバルト塩水溶液を加え
た後、残量の第1鉄塩を含む水溶液を加え、非酸
化性雰囲気中で該分散液の沸点以下の温度で処理
することにより、針状γ−Fe2O3粒子表面に第1
鉄イオンを含む酸化鉄層とコバルト及びアルカリ
土類金属を含有する酸化鉄層の2層を形成せしめ
ることを特徴とする磁気記録用強磁性粉末の製造
方法。
1 OH - ion concentration of acicular γ-Fe 2 O 3 particles is 1.6
Disperse the alkali in an aqueous solution containing an amount of ~3.0 mol/ml, and then add 1/1/2 of the amount added.
Add an aqueous solution containing two amounts of ferrous salt, then add an aqueous alkaline earth metal salt solution and an aqueous cobalt salt solution, then add the remaining amount of an aqueous solution containing ferrous salt, and disperse in a non-oxidizing atmosphere. By treating at a temperature below the boiling point of the liquid, a first layer is formed on the surface of the acicular γ-Fe 2 O 3 particles.
A method for producing ferromagnetic powder for magnetic recording, comprising forming two layers: an iron oxide layer containing iron ions and an iron oxide layer containing cobalt and an alkaline earth metal.
JP61150732A 1986-06-27 1986-06-27 Production of ferromagnetic powder for magnetic recording Granted JPS638223A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61150732A JPS638223A (en) 1986-06-27 1986-06-27 Production of ferromagnetic powder for magnetic recording

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61150732A JPS638223A (en) 1986-06-27 1986-06-27 Production of ferromagnetic powder for magnetic recording

Publications (2)

Publication Number Publication Date
JPS638223A JPS638223A (en) 1988-01-14
JPH0351660B2 true JPH0351660B2 (en) 1991-08-07

Family

ID=15503202

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61150732A Granted JPS638223A (en) 1986-06-27 1986-06-27 Production of ferromagnetic powder for magnetic recording

Country Status (1)

Country Link
JP (1) JPS638223A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014027047A (en) * 2012-07-25 2014-02-06 Ricoh Co Ltd Magnetic structure and method for manufacturing the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5939730A (en) * 1982-08-30 1984-03-05 Ishihara Sangyo Kaisha Ltd Manufacture of ferromagnetic iron oxide
JPS59107924A (en) * 1982-12-08 1984-06-22 Ishihara Sangyo Kaisha Ltd Manufacture of magnetic iron oxide powder containing cobalt
JPS59138312A (en) * 1983-01-28 1984-08-08 Ishihara Sangyo Kaisha Ltd Manufacture of magnetic ferrous oxide powder containing cobalt
JPS6051242A (en) * 1983-08-29 1985-03-22 三協アルミニウム工業株式会社 Curtain wall
JPS61111508A (en) * 1984-11-06 1986-05-29 Showa Denko Kk Manufacturing method for magnetic powder used in magnetic recording

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59500739A (en) * 1983-04-12 1984-04-26 メモレックス・コーポレーション ferromagnetic recording material

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5939730A (en) * 1982-08-30 1984-03-05 Ishihara Sangyo Kaisha Ltd Manufacture of ferromagnetic iron oxide
JPS59107924A (en) * 1982-12-08 1984-06-22 Ishihara Sangyo Kaisha Ltd Manufacture of magnetic iron oxide powder containing cobalt
JPS59138312A (en) * 1983-01-28 1984-08-08 Ishihara Sangyo Kaisha Ltd Manufacture of magnetic ferrous oxide powder containing cobalt
JPS6051242A (en) * 1983-08-29 1985-03-22 三協アルミニウム工業株式会社 Curtain wall
JPS61111508A (en) * 1984-11-06 1986-05-29 Showa Denko Kk Manufacturing method for magnetic powder used in magnetic recording

Also Published As

Publication number Publication date
JPS638223A (en) 1988-01-14

Similar Documents

Publication Publication Date Title
JPH0351660B2 (en)
JP2937211B2 (en) Method for producing acicular magnetic iron oxide particles
JPS6114642B2 (en)
JPH0545529B2 (en)
US4495164A (en) Process for producing acicular magnetite or acicular maghemite
JPS6135135B2 (en)
EP0604849B1 (en) Cobalt-containing magnetic iron oxide and process for producing the same
JPS6242858B2 (en)
KR0169491B1 (en) Acicular ferromagnetic iron oxide particles and process for producing the same
JP2970706B2 (en) Method for producing acicular magnetic iron oxide particles
JPS638222A (en) Production of magnetic powder for magnetic recording
KR870001378B1 (en) Process for producing cohalt-containing magnetic iron oxide powder
JP3582578B2 (en) Needle-like alloy magnetic particle powder mainly composed of iron
JPS6018609B2 (en) Ferromagnetic powder and its manufacturing method
JP3020374B2 (en) Method for producing cobalt-containing magnetic iron oxide powder
JPS6132259B2 (en)
JP3087808B2 (en) Manufacturing method of magnetic particle powder for magnetic recording
JP2935292B2 (en) Method for producing acicular magnetic iron oxide particles
JPH038083B2 (en)
JP2970699B2 (en) Method for producing acicular magnetic iron oxide particles
JPS59169937A (en) Production of magnetic powder
JPS58161703A (en) Production of ferromagnetic powder
JPS6187302A (en) Manufacture of magnetic recording medium
JP3055308B2 (en) Method for producing acicular magnetic iron oxide particles
JPS6242857B2 (en)