JPH0545529B2 - - Google Patents

Info

Publication number
JPH0545529B2
JPH0545529B2 JP61150733A JP15073386A JPH0545529B2 JP H0545529 B2 JPH0545529 B2 JP H0545529B2 JP 61150733 A JP61150733 A JP 61150733A JP 15073386 A JP15073386 A JP 15073386A JP H0545529 B2 JPH0545529 B2 JP H0545529B2
Authority
JP
Japan
Prior art keywords
cobalt
iron oxide
coercive force
acicular
surface area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61150733A
Other languages
Japanese (ja)
Other versions
JPS638224A (en
Inventor
Kunio Takahashi
Takahito Tsugaru
Koji Shibuya
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP61150733A priority Critical patent/JPS638224A/en
Publication of JPS638224A publication Critical patent/JPS638224A/en
Publication of JPH0545529B2 publication Critical patent/JPH0545529B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は酸化鉄強磁性粉末の製造に係り、より
詳細には、高記録密度が可能なコバルト含有酸化
鉄強磁性粉末の製造方法に関する。 (従来の技術及び解決しようとする問題点) 従来より、磁気記録用磁性粉としては、形状異
方性により高保磁力を有する針状γ−Fe2O3粒子
が用いられていたが、近年、更に高記録密度が可
能な高保磁力の磁気記録用磁性粉が要求されるよ
うになり、コバルトを含有する酸化鉄磁性粉末の
研究が盛んに行われている。 ところで、従来、コバルト含有γ−Fe2O3粒子
の製造方法としてはこれまで種々提案されている
が、その中でも有用なものの一つとしては、アル
カリ溶液中に針状γ−Fe2O3粒子を分散させ、こ
れにストロンチウム塩などのアルカリ土類金属塩
及びコバルト塩と第1鉄塩を加え、コバルト含有
γ−Fe2O3粒子とする方法がある。 この方法によつて得られるコバルト含有γ−
Fe2O3粒子は、粒子表面にコバルトを含有する酸
化鉄層が形成されているため、保磁力や単位重量
当たりの飽和磁化が増加するものの、分散性が悪
く、保磁力分布に劣り、また比表面積が大きく減
少するという欠点があつた。 本発明の目的は、上記従来技術の欠点を解消
し、高保磁力、高飽和磁化で、かつ、核晶とした
針状γ−Fe2O3に比べて比表面積の減少が少な
く、その保磁力分布が均一で、分散性に優れたコ
バルト含有酸化鉄強磁性粉末を製造できる方法を
提供することにある。 (問題点を解決するための手段) 上記目的を達成するため、本発明者は、コバル
ト含有酸化鉄磁性粉末の製造に関する従来の方法
についてその欠点をもたらす原因を検討分析した
ところ、従来法では、針状γ−Fe2O3粒子をまず
アルカリ溶液中に分散させた後、これにアルカリ
土類金属塩とコバルト塩と第1鉄塩を添加して、
コバルト含有γ−Fe2O3粒子の表面に第1鉄イオ
ン(Fe2+)を含む酸化鉄層を形成し、単位重量
当たりの飽和磁化σsの減少を抑制せんとしたもの
であると考えられるが、第1鉄イオンの添加量を
増やせばコバルト含有γ−Fe2O3の上記σsが増大
するものの、第1鉄イオン添加前に比べて保磁力
がかなり低下し、また比表面積も出発物のγ−
Fe2O3に比べてかなり減少してしまい、目的とす
る高保磁力強磁性粉末が得られにくいことが判明
した。 そこで、本発明者は、高保磁力、高飽和磁化
で、かつ、核晶とした針状γ−Fe2O3に比べ比表
面積の減少が少なく、その保磁力分布が均一で分
散性で優れた磁性粉を開発すべく鋭意研究の結
果、針状γ−Fe2O3粒子にクエン酸化ナトリウム
とアルカリ土類金属塩を添加した後、コバルト塩
と第1鉄塩を添加することで、第1鉄イオン添加
による保磁力、比表面積の低下を抑制し、目的の
磁性粉を得ることが可能であることを知見するに
至り、本発明をなしたものである。 すなわち、本発明は、針状γ−Fe2O3粒子を
OH-イオン濃度が1.6〜3.0モル/になるような
量のアルカリを含有する水溶液中に分散させ、こ
れにクエン酸ナトリウム及びアルカリ土類金属塩
を添加し、次いでコバルト塩及び第1鉄塩を含む
水溶液を加え、非酸化性雰囲気中で該分散液の沸
点以下の温度で処理することにより、針状γ−
Fe2O3粒子表面にコバルトを含有する酸化鉄層を
形成せしめることを特徴とする磁気記録用強磁性
粉末の製造方法を要旨とするものである。 以下に本発明を実施例に基づいて詳細に説明す
る。 前述の如く、要するに、本発明の最大の特徴
は、クエン酸ナトリウムとアルカリ土類金属塩を
添加することにより、保磁力及び比表面積の低下
を抑制することにあり、これによつて従来法に比
べ少量のコバルト添加量で特に保磁力が高められ
たコバルト含有酸化鉄磁性粉末が得られるもので
ある。これらの処理は沸点以下の温度で行うが、
処理温度が低くなるにつれて長時間の処理が必要
となるので、沸点近くのできるだけ高い温度で処
理することが好ましい。 本発明では、まず、核となる針状γ−Fe2O3
子をアルカリを含有する水溶液中に充分に分散さ
せるが、その際、アルカリ量はOH-イオン濃度
が1.6〜3.0モル/になるような量を添加する必
要がある。アルカリとして水酸化ナトリウム、水
酸化カリウム、水酸化リチウムなどを使用するこ
とができる。アルカリ添加量が上記範囲外では、
上記効果を期待することがむずかしくなる。 次に、上記分散液を適宜温度(例、80℃)まで
昇温した後、クエン酸ナトリウムを加え、更に昇
温(例、90℃)してアルカリ土類金属塩を含む水
溶液を添加し、更に昇温(例、100℃)してコバ
ルト塩を含む水溶液を添加し、所要時間(例、7
時間)充分撹拌する。アルカリ土類金属塩として
は塩化ストロンチウムのほか、塩化バリウム、塩
化カルシウムなどを使用することができ、またコ
バルト塩としては塩化コバルト、硫酸コバルトな
どを使用することができる。 その後、第1鉄塩を含む水溶液を加え、所要時
間(例、1時間)撹拌する。なお、第1鉄塩とし
ては塩化第1鉄、硫酸第1鉄などを使用すること
ができる。 なお、これらの処理、特に第1鉄塩を添加する
前後では、空気の混入を防止する必要があること
から、非酸化性雰囲気中で行う。 このような工程によれば、針状γ−Fe2O3の核
晶の表面にコバルトを含有する酸化鉄層が形成さ
れ、高い飽和磁化を有し、高保磁力で、その保磁
力分布が均一で、しかも比表面積の低下が少な
く、分散性にも優れたコバルト含有酸化鉄磁性粉
末が得られる。 次に本発明の一実施例を示す。なお、本発明は
本実施例に限定されるものではないことは云うま
でもない。 (実施例) 常法により製造した針状γ−Fe2O3粉末(保磁
力:360Oe、飽和磁化:74emu/g、比表面積:
34m2/g)4000gを、24の水に3200gのNaOH
を溶解させた苛性ソーダ水溶液に加え、充分に分
散させた後、この分散液の温度を80℃まで昇温し
て100gのクエン酸ナトリウムを加え、更に90℃
まで昇温して塩化ストロンチウム60.8gを含む水
溶液660ml添加し、100℃で塩化コバルト333gを
含む水溶液2を添加し、可及的に空気の混入を
防止しながら、この温度で撹拌を続け、1時間
後、3時間後、5時間後及び7時間後にそれぞれ
約30mlの試料を採取した。7時間後の試料採取
後、塩化第1鉄塩569gを含む水溶液2を添加
し、1時間撹拌して反応を終了した。採取した各
試料及び反応終了後のスラリーを充分に水洗し、
脱水、乾燥した。得られた試料を振動試料型磁力
計(VSM−3S型、東英工業製)により外部磁界
10KOeで磁気特性を測定し、比表面積自動測定
装置(2200型、マイクロメリテイツクス社製)に
より比表面積を測定した。その結果を第1表、第
2表、第1図及び第2図に示す。 このように8時間反応処理後に得られたコバル
ト含有酸化鉄磁性粉末は、保磁力Hcが667Oe、
飽和磁化σsが78emu/g、比表面積が32m2/gで
あつた。 (比較例 1) 比較例として、上記実施例で用いたクエン酸ナ
トリウムを添加することなく処理した以外は上記
実施例と全く同様にしてコバルト含有酸化鉄磁性
粉末を製造し、同様にサンプリングして得られた
各試料の磁気特性及び比表面積を測定した。その
結果を第1表、第2表、第1図及び第2図に併記
する。 このように8時間反応処理後に得られたコバル
ト含有酸化鉄磁性粉末は、保磁力Hcが653Oe、
飽和磁気σsが77emu/g、比表面積が29m2/gで
あつた。 (比較例) 上記実施例で塩化ストロンチウムを添加するこ
となく処理した以外は、上記実施例と全く同様に
してコバルト含有酸化鉄磁性粉末を製造し、同様
にサンプリングして得られた各試料の磁気特性及
び比表面積を測定した。その結果を第1表、第2
表、第1図及び第2図に併記する。このように8
時間反応処理後に得られたコバルト含有酸化鉄磁
性粉末は、保磁力Hcが605Oe、飽和磁化σsが
76.8emu/g、比表面積が32.7m2/gであつた。
(Industrial Field of Application) The present invention relates to the production of iron oxide ferromagnetic powder, and more particularly to a method of producing cobalt-containing iron oxide ferromagnetic powder that enables high recording density. (Prior art and problems to be solved) Acicular γ-Fe 2 O 3 particles, which have a high coercive force due to shape anisotropy, have traditionally been used as magnetic powder for magnetic recording, but in recent years, Furthermore, magnetic powder for magnetic recording with high coercive force capable of high recording density is required, and research on iron oxide magnetic powder containing cobalt is being actively conducted. By the way, various methods for producing cobalt-containing γ-Fe 2 O 3 particles have been proposed so far, but one of the most useful methods is to produce acicular γ-Fe 2 O 3 particles in an alkaline solution. There is a method of dispersing and adding an alkaline earth metal salt such as a strontium salt, a cobalt salt, and a ferrous salt to obtain cobalt-containing γ-Fe 2 O 3 particles. Cobalt-containing γ- obtained by this method
Fe 2 O 3 particles have an iron oxide layer containing cobalt formed on the particle surface, so although the coercive force and saturation magnetization per unit weight increase, they have poor dispersibility, poor coercive force distribution, and The drawback was that the specific surface area was greatly reduced. The purpose of the present invention is to eliminate the drawbacks of the above-mentioned prior art, to have high coercive force and high saturation magnetization, and to reduce the specific surface area less than nucleated acicular γ-Fe 2 O 3 . The object of the present invention is to provide a method for producing cobalt-containing iron oxide ferromagnetic powder with uniform distribution and excellent dispersibility. (Means for Solving the Problems) In order to achieve the above object, the present inventor investigated and analyzed the causes of the drawbacks of the conventional method for producing cobalt-containing iron oxide magnetic powder, and found that the conventional method: Acicular γ-Fe 2 O 3 particles are first dispersed in an alkaline solution, and then an alkaline earth metal salt, a cobalt salt, and a ferrous salt are added thereto.
It is thought that an iron oxide layer containing ferrous ions (Fe 2 +) was formed on the surface of cobalt-containing γ-Fe 2 O 3 particles to suppress the decrease in saturation magnetization σs per unit weight. However, if the amount of ferrous ions added increases, the above σs of cobalt-containing γ-Fe 2 O 3 increases, but the coercive force decreases considerably compared to before the addition of ferrous ions, and the specific surface area also decreases compared to that of the starting material. γ−
It was found that the amount decreased considerably compared to Fe 2 O 3 , making it difficult to obtain the desired high coercive force ferromagnetic powder. Therefore, the present inventor has developed a material that has high coercive force and high saturation magnetization, has less decrease in specific surface area than nucleated acicular γ-Fe 2 O 3 , has a uniform coercive force distribution, and has excellent dispersibility. As a result of intensive research to develop magnetic powder, we discovered that by adding sodium citric oxide and alkaline earth metal salts to acicular γ-Fe 2 O 3 particles, and then adding cobalt salts and ferrous salts, the first The present invention was made based on the discovery that it is possible to suppress the decrease in coercive force and specific surface area due to the addition of iron ions and obtain the desired magnetic powder. That is, the present invention uses acicular γ-Fe 2 O 3 particles.
It is dispersed in an aqueous solution containing an alkali in an amount such that the OH - ion concentration is 1.6 to 3.0 mol/, to which sodium citrate and alkaline earth metal salts are added, and then cobalt salts and ferrous salts are added. Acicular γ-
The gist of the present invention is a method for producing a ferromagnetic powder for magnetic recording, which is characterized by forming an iron oxide layer containing cobalt on the surface of Fe 2 O 3 particles. The present invention will be explained in detail below based on examples. As mentioned above, the greatest feature of the present invention is that by adding sodium citrate and alkaline earth metal salts, the reduction in coercive force and specific surface area is suppressed, and this makes it possible to suppress the decrease in coercive force and specific surface area. A cobalt-containing iron oxide magnetic powder with particularly high coercive force can be obtained with a relatively small amount of cobalt added. These treatments are carried out at temperatures below the boiling point,
Since a longer treatment time becomes necessary as the treatment temperature becomes lower, it is preferable to conduct the treatment at a temperature as high as possible, close to the boiling point. In the present invention, first, the acicular γ-Fe 2 O 3 particles serving as the core are sufficiently dispersed in an aqueous solution containing an alkali, and at that time, the amount of alkali is such that the OH - ion concentration is 1.6 to 3.0 mol/ It is necessary to add such amount. Sodium hydroxide, potassium hydroxide, lithium hydroxide, etc. can be used as the alkali. If the amount of alkali added is outside the above range,
It becomes difficult to expect the above effects. Next, after heating the dispersion to an appropriate temperature (e.g., 80°C), sodium citrate is added, the temperature is further raised (e.g., 90°C), and an aqueous solution containing an alkaline earth metal salt is added. The temperature is further increased (e.g., 100°C), an aqueous solution containing cobalt salt is added, and the temperature is increased for the required time (e.g., 70°C).
time) Stir thoroughly. As the alkaline earth metal salt, in addition to strontium chloride, barium chloride, calcium chloride, etc. can be used, and as the cobalt salt, cobalt chloride, cobalt sulfate, etc. can be used. Thereafter, an aqueous solution containing a ferrous salt is added and stirred for the required time (eg, 1 hour). Note that as the ferrous salt, ferrous chloride, ferrous sulfate, etc. can be used. Note that these treatments, especially before and after adding the ferrous salt, are performed in a non-oxidizing atmosphere because it is necessary to prevent air from entering. According to this process, a cobalt-containing iron oxide layer is formed on the surface of the acicular γ-Fe 2 O 3 nucleus crystal, which has high saturation magnetization, high coercive force, and uniform coercive force distribution. Moreover, a cobalt-containing iron oxide magnetic powder with less decrease in specific surface area and excellent dispersibility can be obtained. Next, an embodiment of the present invention will be described. It goes without saying that the present invention is not limited to this embodiment. (Example) Acicular γ-Fe 2 O 3 powder produced by a conventional method (coercive force: 360 Oe, saturation magnetization: 74 emu/g, specific surface area:
34m 2 /g) 4000g, 3200g NaOH in 24ml water
was added to an aqueous solution of caustic soda and sufficiently dispersed, the temperature of this dispersion was raised to 80°C, 100g of sodium citrate was added, and the temperature was further increased to 90°C.
Add 660 ml of an aqueous solution containing 60.8 g of strontium chloride to 100°C, add aqueous solution 2 containing 333 g of cobalt chloride at 100°C, and continue stirring at this temperature while preventing air incorporation as much as possible. Approximately 30 ml samples were taken after 3 hours, 5 hours, and 7 hours. After sampling after 7 hours, aqueous solution 2 containing 569 g of ferrous chloride was added and stirred for 1 hour to complete the reaction. Thoroughly wash each sample collected and the slurry after the reaction,
Dehydrated and dried. The obtained sample was subjected to an external magnetic field using a vibrating sample magnetometer (Model VSM-3S, manufactured by Toei Kogyo).
The magnetic properties were measured using 10KOe, and the specific surface area was measured using an automatic specific surface area measuring device (Model 2200, manufactured by Micromeritics). The results are shown in Table 1, Table 2, and Figures 1 and 2. The cobalt-containing iron oxide magnetic powder obtained after 8 hours of reaction treatment had a coercive force Hc of 667 Oe,
The saturation magnetization σs was 78 emu/g and the specific surface area was 32 m 2 /g. (Comparative Example 1) As a comparative example, cobalt-containing iron oxide magnetic powder was produced in exactly the same manner as in the above example except that it was treated without adding the sodium citrate used in the above example, and sampled in the same manner. The magnetic properties and specific surface area of each sample obtained were measured. The results are also shown in Table 1, Table 2, and Figures 1 and 2. The cobalt-containing iron oxide magnetic powder obtained after 8 hours of reaction treatment had a coercive force Hc of 653 Oe,
The saturation magnetism σs was 77 emu/g and the specific surface area was 29 m 2 /g. (Comparative Example) A cobalt-containing iron oxide magnetic powder was produced in exactly the same manner as in the above example except that the treatment was performed without adding strontium chloride, and the magnetic properties of each sample obtained by sampling in the same manner were The properties and specific surface area were measured. The results are shown in Tables 1 and 2.
It is also shown in the table, Figures 1 and 2. Like this 8
The cobalt-containing iron oxide magnetic powder obtained after the time reaction treatment has a coercive force Hc of 605 Oe and a saturation magnetization σs.
The specific surface area was 76.8 emu/g and 32.7 m 2 /g.

【表】【table】

【表】 上記実施例及び比較例で得られたコバルト含有
酸化鉄磁性粉末を用い、これに下記組成の成分を
添加して約48時間ボールミルで混練して磁性塗料
を調整した。 コバルト含有酸化鉄磁性粉 ……75重量部 塩化ビニル−酢酸ビニル共重合体……19 〃 ジオクチルフタレート ……4 〃 レシチン ……2 〃 トルエン ……100 〃 メチルイソブチルケトン ……100 〃 この磁性塗料を厚さ12μのポリエステルフイル
ム上に乾燥厚が約6μとなるように塗布し、磁場
配向を行いながら乾燥して磁気テープを製造し
た。得られた各磁気テープの角形比(Br/Bm)、
反転磁界分布(SFD)を測定したところ、第3
表に示す結果が得られた。
[Table] Using the cobalt-containing iron oxide magnetic powder obtained in the above Examples and Comparative Examples, the following components were added and kneaded in a ball mill for about 48 hours to prepare a magnetic paint. Cobalt-containing iron oxide magnetic powder...75 parts by weight Vinyl chloride-vinyl acetate copolymer...19 Dioctyl phthalate...4 Lecithin...2 Toluene...100 Methyl isobutyl ketone...100 This magnetic paint A magnetic tape was manufactured by applying the mixture to a polyester film with a thickness of 12 μm to a dry thickness of approximately 6 μm, and drying while applying magnetic field orientation. The squareness ratio (Br/Bm) of each magnetic tape obtained,
When the switching field distribution (SFD) was measured, the third
The results shown in the table were obtained.

【表】 第3表より明らかなように、本発明法により得
られたコバルト含有酸化鉄磁性粉末を用いて製造
した磁気テープは、比較例による場合に比べ、角
形比及び反転磁界分布のいずれも優れている。ま
た保磁力分布が均一で分散性も優れているほか、
比表面積の減少も少ないことがわかる。 (発明の効果) 以上詳述したように、本発明によれば、高保磁
力、高飽和磁気で、かつ、核晶とした針状γ−
Fe2O3に比べて比表面積の減少が少なく、その保
磁力分布が均一であると共に分散性に優れたコバ
ルト含有酸化鉄磁性粉末を容易に、しかも少量の
コバルト添加量で経済的に製造することができ
る。したがつて、高品質の磁気記録用媒体の製造
を可能にするものである。
[Table] As is clear from Table 3, the magnetic tape manufactured using the cobalt-containing iron oxide magnetic powder obtained by the method of the present invention has lower squareness ratio and reversal magnetic field distribution than the comparative example. Are better. In addition, the coercive force distribution is uniform and the dispersibility is excellent.
It can be seen that the decrease in specific surface area is also small. (Effects of the Invention) As detailed above, according to the present invention, the acicular γ-
To easily and economically produce a cobalt-containing iron oxide magnetic powder that has a smaller specific surface area reduction than Fe 2 O 3 , has a uniform coercive force distribution, and has excellent dispersibility, and moreover, with a small amount of cobalt added. be able to. Therefore, it is possible to manufacture a high quality magnetic recording medium.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はコバルト含有酸化鉄磁性粉末の保磁力
Hcと反応処理時間の関係を示す特性図、第2図
は上記磁性粉末の比表面積と反応処理時間の関係
を示す特性図である。
Figure 1 shows the coercive force of cobalt-containing iron oxide magnetic powder.
FIG. 2 is a characteristic diagram showing the relationship between Hc and reaction treatment time, and FIG. 2 is a characteristic diagram showing the relationship between the specific surface area of the magnetic powder and reaction treatment time.

Claims (1)

【特許請求の範囲】[Claims] 1 針状γ−Fe2O3粒子をOH-イオン濃度が1.6
〜3.0モル/になるような量のアルカリを含有
する水溶液中に分散させ、これにクエン酸ナトリ
ウム及びアルカリ土類金属塩を添加し、次いで、
コバルト塩及び第1鉄塩を含む水溶液を加え、非
酸化性雰囲気中で該分散液の沸点以下の温度で処
理することにより、針状γ−Fe2O3粒子表面にコ
バルトを含有する酸化鉄層を形成せしめることを
特徴とする磁気記録用強磁性粉末の製造方法。
1 Acicular γ-Fe 2 O 3 particles with an OH - ion concentration of 1.6
Disperse in an aqueous solution containing an alkali in an amount of ~3.0 mol/s, add sodium citrate and an alkaline earth metal salt, and then
By adding an aqueous solution containing a cobalt salt and a ferrous salt and treating it at a temperature below the boiling point of the dispersion in a non-oxidizing atmosphere, iron oxide containing cobalt is formed on the surface of the acicular γ-Fe 2 O 3 particles. A method for producing ferromagnetic powder for magnetic recording, which comprises forming a layer.
JP61150733A 1986-06-27 1986-06-27 Production of ferro magnetic powder for magnetic recording Granted JPS638224A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61150733A JPS638224A (en) 1986-06-27 1986-06-27 Production of ferro magnetic powder for magnetic recording

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61150733A JPS638224A (en) 1986-06-27 1986-06-27 Production of ferro magnetic powder for magnetic recording

Publications (2)

Publication Number Publication Date
JPS638224A JPS638224A (en) 1988-01-14
JPH0545529B2 true JPH0545529B2 (en) 1993-07-09

Family

ID=15503224

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61150733A Granted JPS638224A (en) 1986-06-27 1986-06-27 Production of ferro magnetic powder for magnetic recording

Country Status (1)

Country Link
JP (1) JPS638224A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4680396B2 (en) * 2001-01-25 2011-05-11 本田技研工業株式会社 Rail cleaning device for overhead conveyor
KR100490668B1 (en) * 2002-11-29 2005-05-24 (주)창성 Method for manufacturing nano-scale silver powders by wet reducing process

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5324638A (en) * 1976-08-20 1978-03-07 Mitsubishi Heavy Ind Ltd Stablilizing burner

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5324638A (en) * 1976-08-20 1978-03-07 Mitsubishi Heavy Ind Ltd Stablilizing burner

Also Published As

Publication number Publication date
JPS638224A (en) 1988-01-14

Similar Documents

Publication Publication Date Title
US4296149A (en) Manufacture of acicular cobalt-containing magnetic iron oxide
JPS62183025A (en) Tape for magnetic signal recording
US4741921A (en) Method for preparing cobalt-containing iron oxide magnetic particles
JPS6311763B2 (en)
US4059716A (en) Manufacture of gamma-iron(III) oxide
JPH0545529B2 (en)
JPH0317774B2 (en)
JPS6114642B2 (en)
KR890003881B1 (en) Process for production of cobalt-and-ferrous iron comtaining ferromagnetic iron oxide
US4495164A (en) Process for producing acicular magnetite or acicular maghemite
JPH0351660B2 (en)
KR0169491B1 (en) Acicular ferromagnetic iron oxide particles and process for producing the same
JPS6135135B2 (en)
EP0604849B1 (en) Cobalt-containing magnetic iron oxide and process for producing the same
JPS6242858B2 (en)
JPS638222A (en) Production of magnetic powder for magnetic recording
JP3020374B2 (en) Method for producing cobalt-containing magnetic iron oxide powder
JPH0471012B2 (en)
JP2945458B2 (en) Acicular ferromagnetic iron oxide powder and method for producing the same
JP3087808B2 (en) Manufacturing method of magnetic particle powder for magnetic recording
JPS59169937A (en) Production of magnetic powder
JPS6187302A (en) Manufacture of magnetic recording medium
JPS58161703A (en) Production of ferromagnetic powder
JP2970699B2 (en) Method for producing acicular magnetic iron oxide particles
JPH11106218A (en) Metallic magnetic powder for magnetic recording medium