JP3020374B2 - Method for producing cobalt-containing magnetic iron oxide powder - Google Patents

Method for producing cobalt-containing magnetic iron oxide powder

Info

Publication number
JP3020374B2
JP3020374B2 JP5052843A JP5284393A JP3020374B2 JP 3020374 B2 JP3020374 B2 JP 3020374B2 JP 5052843 A JP5052843 A JP 5052843A JP 5284393 A JP5284393 A JP 5284393A JP 3020374 B2 JP3020374 B2 JP 3020374B2
Authority
JP
Japan
Prior art keywords
cobalt
iron oxide
feooh
oxide powder
magnetic iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP5052843A
Other languages
Japanese (ja)
Other versions
JPH06231928A (en
Inventor
清 浅野
新 小山
伸祐 匠
滋 鷹取
浩一 田村
徳雄 吹田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ishihara Sangyo Kaisha Ltd
Original Assignee
Ishihara Sangyo Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ishihara Sangyo Kaisha Ltd filed Critical Ishihara Sangyo Kaisha Ltd
Priority to JP5052843A priority Critical patent/JP3020374B2/en
Priority to EP93120343A priority patent/EP0604849B1/en
Priority to DE69305487T priority patent/DE69305487T2/en
Priority to CN93115693A priority patent/CN1069779C/en
Priority to KR1019930030356A priority patent/KR100249538B1/en
Publication of JPH06231928A publication Critical patent/JPH06231928A/en
Priority to US08/635,540 priority patent/US5609789A/en
Application granted granted Critical
Publication of JP3020374B2 publication Critical patent/JP3020374B2/en
Priority to JP2000138477A priority patent/JP3482177B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、磁気記録媒体の記録素
子、特に画像記録素子として有用なコバルト含有磁性酸
化鉄粉末およびその製造方法に関し、さらに詳しくは、
優れたビデオノイズ特性を有する磁気記録媒体を製造す
る上で極めて好適なコバルト含有磁性酸化鉄粉末および
その製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cobalt-containing magnetic iron oxide powder useful as a recording element of a magnetic recording medium, particularly an image recording element, and a method for producing the same.
The present invention relates to a cobalt-containing magnetic iron oxide powder which is extremely suitable for producing a magnetic recording medium having excellent video noise characteristics, and a method for producing the same.

【0002】[0002]

【発明の技術的背景とその問題点】オーディオテープ、
ビデオテープ、磁気ディスク、磁気カード等の磁気記録
媒体に用いられる磁性酸化鉄粉末は、種々の方法によっ
て製造し得るが、硫酸鉄、塩化鉄等の各種鉄塩溶液をア
ルカリで中和し、さらに酸化して針状のゲーサイト(α
−FeOOH)やレピドクロサイト(γ−FeOOH)
等の含水酸化鉄とし、次いで、これらの前駆物質に焼成
(脱水、緻密化)、還元、酸化等の熱処理を順次施し
て、針状のマグネタイト(Fe)やマグヘマイト
(γ−Fe)とし、主に音声記録媒体に適した磁
性酸化鉄粉末を製造する方法、あるいは、前記磁性酸化
鉄粉末にさらにコバルト化合物を被着処理してCo−F
やCo−γ−Feとし、主に画像記録媒
体に適した高保磁力のコバルト含有磁性酸化鉄粉末を製
造する方法が最も一般的である。
[Technical background of the invention and its problems] Audio tape,
Magnetic iron oxide powder used for magnetic recording media such as video tapes, magnetic disks, and magnetic cards can be produced by various methods.However, iron sulfate solutions, various iron salt solutions such as iron chloride are neutralized with alkali, Oxidized needle-like goethite (α
-FeOOH) and lepidocrocite (γ-FeOOH)
Then, these precursors are sequentially subjected to heat treatment such as calcination (dehydration, densification), reduction, and oxidation to obtain acicular magnetite (Fe 3 O 4 ) or maghemite (γ-Fe 2). O 3 ), a method for producing a magnetic iron oxide powder mainly suitable for an audio recording medium, or a method for applying a cobalt compound to the magnetic iron oxide powder to further form a Co-F
The most common method is to use e 3 O 4 or Co-γ-Fe 2 O 3 to produce a cobalt-containing magnetic iron oxide powder having a high coercive force and suitable mainly for an image recording medium.

【0003】しかして、ゲーサイト(α−FeOOH)
やレピドクロサイト(γ−FeOOH)を前駆物質とし
てコバルト含有磁性酸化鉄を製造するにあたり、例えば
α−FeOOHの場合、250℃〜800℃で脱水して
α−Feに変換し、その後300℃〜500℃で
還元してFeを製造するか、もしくはさらに20
0℃〜300℃で酸化してγ−Feを製造し、次
いでそれらの表面にコバルトを含む金属化合物を被着し
てコバルト含有磁性酸化鉄を製造する。なお、α−Fe
OOHの脱水反応は250℃〜300℃で完了してα−
Feに変換されるが、さらに比較的高温の600
℃〜800℃で加熱処理して該α−Feの結晶を
成長させると共に、脱水反応によって生じる空孔を減少
させて、これから誘導されるコバルト含有磁性酸化鉄の
磁気特性を向上させることが一般的に行われている。
[0003] Thus, goethite (α-FeOOH)
In producing cobalt-containing magnetic iron oxides using as a precursor or lepidocrocite (γ-FeOOH), for example, in the case of α-FeOOH, it is dehydrated at 250 ° C. to 800 ° C. to convert into α-Fe 2 O 3 , and then Reducing at 300-500 ° C. to produce Fe 3 O 4 , or
Oxidation is performed at 0 ° C. to 300 ° C. to produce γ-Fe 2 O 3 , and then a cobalt-containing metal compound is deposited on their surface to produce cobalt-containing magnetic iron oxide. Note that α-Fe
The dehydration reaction of OOH is completed at 250 ° C to 300 ° C and α-
It is converted to Fe 2 O 3 , but at a relatively high temperature of 600
A heat treatment at a temperature of from 800 ° C. to 800 ° C. to grow the α-Fe 2 O 3 crystal, reduce vacancies generated by a dehydration reaction, and improve the magnetic properties of the cobalt-containing magnetic iron oxide derived therefrom. Is commonly done.

【0004】一方、γ−FeOOHは、α−FeOOH
に比べてその析出過程でほとんど双晶の発生をみない特
徴を有する。それゆえ、γ−FeOOHを前駆物質とし
て最終的に得られる磁性粉末は、枝別れのない素直な形
の針状粒子となり、このため、磁気テープに加工する際
の合成樹脂媒体への分散性がよく、また配向性に優れ、
保磁力が大きいなど一層良好な製品が得られ易いと言わ
れている。γ−FeOOHは、250℃〜300℃の比
較的低温で加熱脱水するとγ−Feが直接得られ
るが、このγ−Feは結晶性に劣り、それに起因
して磁気特性が十分でなく、そのため、γ−FeOOH
を還元した後酸化したり(特開昭47−40097号、
同57−12988号、同58−84127号等)、ま
たγ−FeOOHを脱水し、その後還元、酸化したりし
て(特公昭39−20939号、特開昭54−2829
9号、同58−84407号等)音声記録媒体用途のγ
−Feを製造する方法が提案されている。その
際、α−FeOOHの場合と同様に、500℃以上の温
度で加熱脱水して、一旦緻密な結晶からなるα−Fe
に変換した後、還元および酸化することも試みられ
ている。また、さらにγ−Feを製造する方法に
おいて加熱処理時の粒子間焼結や粒子形状の崩れを防止
する方法としてγ−FeOOH粒子にTi、B、Si、
P等の有機化合物を処理することも提案されている(特
開昭57−129828号、同58−74529号、同
58−84407号、同63−69714号、同63−
69715号等)。しかしながらγ−FeOOHはα−
FeOOHに比べて、これらの加熱処理時に粒子間の焼
結や粒子形状の崩れが起こり易く、得られるγ−Fe
の諸特性はα−FeOOHを前駆物質とした場合に
比べて一般的に劣る場合が多い。
On the other hand, γ-FeOOH is α-FeOOH
It has the characteristic that almost no twins are generated during the precipitation process. Therefore, the magnetic powder finally obtained by using γ-FeOOH as a precursor is straight needle-like particles without branching, and thus has a low dispersibility in a synthetic resin medium when processed into a magnetic tape. Good and excellent orientation,
It is said that it is easy to obtain a better product such as a large coercive force. When γ-FeOOH is heated and dehydrated at a relatively low temperature of 250 ° C. to 300 ° C., γ-Fe 2 O 3 is directly obtained. However, γ-Fe 2 O 3 is inferior in crystallinity. Not enough, so that γ-FeOOH
And then oxidized (JP-A-47-40097,
Nos. 57-12988 and 58-84127), and γ-FeOOH is dehydrated, then reduced and oxidized (JP-B-39-20939, JP-A-54-2829).
No. 9, No. 58-84407 etc.) γ for use in audio recording media
Method for producing -fe 2 O 3 has been proposed. At this time, as in the case of α-FeOOH, the material is heated and dehydrated at a temperature of 500 ° C. or more, and α-Fe 2 once formed of dense crystals.
After converting into O 3, attempts have been made to reduction and oxidation. Further, in the method for producing γ-Fe 2 O 3 , γ-FeOOH particles may be formed by adding Ti, B, Si,
It has also been proposed to treat organic compounds such as P (JP-A-57-129828, JP-A-58-74529, JP-A-58-84407, JP-A-63-69714, and JP-A-63-69714.
69715). However, γ-FeOOH is
Compared to FeOOH, sintering between particles and collapse of the particle shape are more likely to occur during these heat treatments, and the resulting γ-Fe 2
In general, the properties of O 3 are generally inferior to those using α-FeOOH as a precursor in many cases.

【0005】ところで、音声記録に比べて一層高記録密
度化が必要とされる画像記録においては、それに使用さ
れる記録媒体素子は、その保磁力等の磁気特性の改善と
共に、特にノイズ特性に優れたものが求められている。
このノイズ特性は、記録媒体素子である磁性粉の粒子体
積と密接に相関し、粒子体積が小さい程ノイズ特性が良
いこと、また、一般に粒子体積を表す指標として、簡便
的にBET比表面積が用いられ、該BET比表面積の値
が大きい程ノイズ特性が良くなることも知られている。
従って、記録媒体素子をより微粒子化すれば、前記ノイ
ズ特性は改善される方向になるものの、一方において
は、記録媒体素子の微粒子化に伴う粒子表面活性の増加
によって、磁気記録媒体を製造するに際しての塗料化時
に、それらが凝集を起こし易く、その結果良好な分散性
を得ることが出来ず、所望のノイズ特性の改善がもたら
され難い。
In the case of image recording which requires a higher recording density than that of audio recording, the recording medium element used for the recording is improved in magnetic characteristics such as coercive force and the like, and is particularly excellent in noise characteristics. Is required.
This noise characteristic is closely correlated with the particle volume of the magnetic powder that is the recording medium element. The smaller the particle volume, the better the noise characteristic. In general, the BET specific surface area is simply used as an index representing the particle volume. It is also known that the noise characteristic improves as the value of the BET specific surface area increases.
Therefore, if the recording medium element is made finer, the noise characteristic tends to be improved, but on the other hand, when the magnetic recording medium is manufactured due to the increase in particle surface activity accompanying the finer recording medium element. When they are made into paints, they are liable to agglomerate, so that good dispersibility cannot be obtained, and it is difficult to achieve desired noise characteristic improvement.

【0006】前駆物質としてγ−FeOOHを使用する
場合には、α−FeOOHの場合に比べて粒子の微粒子
化に伴い脱水時やとりわけ還元時の加熱処理過程での粒
子間の焼結や粒子形状の崩れが一層進行し易く、その結
果、前駆物質としてのγ−FeOOHの長所を十分生か
し得るまでには至っていない。このようなことから、画
像記録媒体素子としては一般的にα−FeOOHを前駆
物質として用いる場合が多く、γ−FeOOHを前駆物
質として画像記録媒体素子に適したコバルト含有磁性酸
化鉄を製造する上でも未だ解決を要する問題点が少なく
ない。
When γ-FeOOH is used as a precursor, sintering between particles and particle shape during the heat treatment process during dehydration and especially during reduction are accompanied by the reduction in the size of particles compared to the case of α-FeOOH. Collapse is more likely to occur, and as a result, the advantages of γ-FeOOH as a precursor have not been fully exploited. For this reason, in general, α-FeOOH is often used as a precursor as an image recording medium element, and γ-FeOOH is used as a precursor to produce a cobalt-containing magnetic iron oxide suitable for an image recording medium element. However, there are still many problems that need to be resolved.

【0007】なお、近時、前記磁気記録媒体のノイズ特
性の要因となる磁性粉の粒子サイズを表す特性値とし
て、最も一般的に用いられる粒子比表面積(BET法に
よる比表面積値)を指標とすることが、必ずしも適当で
ないことが指摘され、その対応の一つとして磁化反転体
積(magnetic switching uni
t)なる物理量を用いることが提案されている。
In recent years, the most commonly used particle specific surface area (specific surface area value by the BET method) is used as an index as a characteristic value representing the particle size of magnetic powder which causes noise characteristics of the magnetic recording medium. It is pointed out that it is not always appropriate to perform the above operation, and as one of the measures, a magnetic switching unit (magnetic switching unit) is used.
It has been proposed to use the physical quantity t).

【0008】本発明者らは、前記ノイズ特性などを満足
し得る最適な磁化反転体積を有するコバルト含有磁性酸
化鉄を開発することを目的とし、かつ該コバルト含有磁
性酸化鉄を製造する上において、枝分かれのない針状性
の良好な磁性粒子が得られ易いγ−FeOOHを前駆物
質として使用することによって、とりわけ画像記録用に
好適なコバルト含有磁性酸化鉄を製造すべく検討を進め
た。
The present inventors have aimed at developing a cobalt-containing magnetic iron oxide having an optimum magnetization reversal volume capable of satisfying the noise characteristics and the like. Investigations have been made to produce a cobalt-containing magnetic iron oxide particularly suitable for image recording by using γ-FeOOH as a precursor, from which magnetic particles having good branch-like needle-like properties are easily obtained.

【0009】その結果γ−FeOOHを前駆物質とし
て、特定の加熱処理を施して得た酸化鉄粉末にコバルト
化合物を被着処理して得た特定範囲の比表面積を有する
コバルト含有の磁性酸化鉄粉末の磁化反転体積が、BE
T比表面積との関係において、α−FeOOHを前駆物
質としたり、γ−FeOOHを高温脱水したりして一旦
α−Feを経由させて製造した前記コバルト含有
磁性酸化鉄粉末の磁化反転体積に比べて極めて小さく、
磁化反転体積(V)とBET比表面積(SSA)との関
係において、log〔V〕≦−3.05log〔SS
A〕−11.35の式によって明確に差があることを見
出した。
As a result, a cobalt-containing magnetic iron oxide powder having a specific range of a specific surface area obtained by applying a cobalt compound to an iron oxide powder obtained by performing a specific heat treatment using γ-FeOOH as a precursor. The magnetization reversal volume of BE is
In relation to the T specific surface area, the magnetization reversal of the cobalt-containing magnetic iron oxide powder once produced through α-Fe 2 O 3 by using α-FeOOH as a precursor or γ-FeOOH at a high temperature. Extremely small compared to the volume,
In relation to the magnetization reversal volume (V) and the BET specific surface area (SSA), log [V] ≦ −3.05 log [SS
A] It was found that there was a clear difference according to the formula of -11.35.

【0010】すなわち、γ−FeOOHを、直接還元す
るかもしくはα−Feに転移する温度よりも低い
温度で加熱脱水した後還元することにより生成する主に
マグネタイトからなる酸化鉄粉末は、その粒子の形状が
良く保持され、かつそれを構成するマグネタイト結晶は
成長が抑制された小さなものとなり、その結果、磁化反
転体積が小さくなる。さらにこの主にマグネタイトから
なる酸化鉄粉末を、次いで酸化してベルトライドやマグ
ヘマイトからなる酸化鉄粉末とする際、結晶成長は極め
て小さく、その結果、磁化反転体積の変化もきわめて小
さいこと、さらにこれらの酸化鉄粉末に少なくともコバ
ルト化合物を被着処理して該酸化鉄粉末の表面をコバル
ト変成した際の磁化反転体積の変化も極めて小さいこと
を見出した。そして、輝度信号のノイズ特性(Y−S/
N)は、コバルト含有磁性酸化鉄粉末の粒子体積よりも
磁化反転体積と強く相関することを見出した。
That is, iron oxide powder mainly composed of magnetite, which is produced by directly reducing γ-FeOOH or by heating and dehydrating at a temperature lower than the temperature at which α-Fe 2 O 3 is transformed into α-Fe 2 O 3 , is obtained by: The shape of the particles is well maintained, and the magnetite crystals constituting the particles are small with growth suppressed, and as a result, the magnetization reversal volume is reduced. Further, when the iron oxide powder mainly composed of magnetite is then oxidized into an iron oxide powder composed of beltride or maghemite, the crystal growth is extremely small, and as a result, the change in magnetization reversal volume is extremely small. It has been found that the change in magnetization reversal volume when the surface of the iron oxide powder is subjected to cobalt transformation by applying at least a cobalt compound to the iron oxide powder is extremely small. Then, the noise characteristic of the luminance signal (Y−S /
N) was found to correlate more strongly with the magnetization reversal volume than with the particle volume of the cobalt-containing magnetic iron oxide powder.

【0011】しかして本発明者らは、前記知見に基づく
コバルト含有磁性酸化鉄粉末を画像記録媒体として用い
たときの色信号のノイズ特性(C−S/N)の改善につ
いてさらに検討を進めた。C−S/Nは磁気記録媒体表
面の比較的長周期の平滑性に起因しており、該記録媒体
の表面性は記録媒体製造時の塗布技術との関係が深く、
C−S/Nを改善するためにはとりわけ磁性粉の分散性
及び配向性の影響がきわめて大きく、その改善が強く望
まれていることがわかった。ところで、前記分散性及び
配向性の改善をはかるには、前駆体とするγ−FeOO
H粒子の加熱還元処理やさらには加熱酸化処理過程での
形状崩れや粒子間焼結および磁化反転体積の増大をでき
る限り抑制することがきわめて重要であり、かかる課題
を解決すべく加熱処理前のγ−FeOOHへの種々の金
属化合物の被着処理による効果について検討を進めた。
その結果、Al化合物を被着処理したγ−FeOOHを
上記の加熱処理及びコバルト化合物を被着処理して得ら
れるコバルト含有磁性酸化鉄はAl化合物を被着処理し
ない場合に比較して、分散性や配向性が大巾に改善さ
れ、このものを画像記録媒体としたときのテープのS
Q、OR及びSFDなどの磁気特性が優れたものである
とともに、C−S/Nがきわめて優れたものであること
の知見を得、本発明を完成したものである。なお、本発
明の製造方法は、γ−Fe系コバルト磁性酸化鉄
に比べて飽和磁化などの磁気特性に優れ、かつ磁気記録
媒体の光透過性を小さくし得ることから、近時実用化が
急速に進みつつあるマグネタイト系やベルトライド系の
コバルト含有磁性酸化鉄を製造する上で、一層望ましい
ものである。
The present inventors have further studied on the improvement of the noise characteristics (CS / N) of the color signal when the cobalt-containing magnetic iron oxide powder is used as an image recording medium based on the above findings. . CS / N is caused by the relatively long-period smoothness of the surface of the magnetic recording medium, and the surface property of the recording medium is closely related to the coating technique at the time of manufacturing the recording medium.
In order to improve CS / N, the influence of the dispersibility and orientation of the magnetic powder is extremely large, and it has been found that the improvement is strongly desired. By the way, in order to improve the dispersibility and orientation, γ-FeOO as a precursor is used.
It is very important to suppress as much as possible the shape collapse, inter-particle sintering, and increase of the magnetization reversal volume during the heat reduction treatment and further the heat oxidation treatment process of the H particles. The effect of the deposition treatment of various metal compounds on γ-FeOOH was studied.
As a result, the cobalt-containing magnetic iron oxide obtained by subjecting the γ-FeOOH treated with the Al compound to the above-mentioned heat treatment and the treatment of depositing the cobalt compound is more dispersible than the case where the Al compound is not treated. And orientation are greatly improved, and when this is used as an image recording medium, the S
The inventors have found that the magnetic properties such as Q, OR, and SFD are excellent, and that the CS / N is extremely excellent, thereby completing the present invention. Incidentally, the production method of the present invention has excellent magnetic properties such as saturation magnetization and can reduce the light transmittance of a magnetic recording medium as compared with γ-Fe 2 O 3 -based cobalt magnetic iron oxide. This is more desirable for producing a magnetite-based or belt-ride-based cobalt-containing magnetic iron oxide, which is rapidly progressing.

【0012】[0012]

【発明の開示】すなわち、本発明は、 1.レピドクロサイト粒子の表面にアルミニウム化合物
を被着処理した後、これを直接還元するか、もしくはこ
れをヘマタイトに転移する温度よりも低い温度で加熱脱
水した後還元するか、または前記還元後、さらに酸化し
て、酸化鉄粉末を得、その表面にコバルト化合物または
コバルト化合物および他の金属化合物を被着することか
ら成る、下記の式(1)および(2)を満たすコバルト
含有磁性酸化鉄粉末の製造方法 式(1) 20≦SSA≦50 式(2) −16.70≦log〔V〕≦−3.05l
og〔SSA〕−11.35 〔式中、SSAはBET比表面積(m/g)であり、
Vは磁化反転体積(cm)である。〕および、
DISCLOSURE OF THE INVENTION That is, the present invention provides: After applying an aluminum compound to the surface of the lepidocrocyte particles, the aluminum compound is directly reduced, or reduced after heating and dehydration at a temperature lower than the temperature at which it is transformed into hematite, or after the reduction, A cobalt-containing magnetic iron oxide powder satisfying the following formulas (1) and (2), comprising oxidizing to obtain an iron oxide powder, and applying a cobalt compound or a cobalt compound and another metal compound to the surface thereof. Manufacturing method Formula (1) 20 ≦ SSA ≦ 50 Formula (2) −16.70 ≦ log [V] ≦ −3.05 l
og [SSA] -11.35 [wherein SSA is a BET specific surface area (m 2 / g),
V is the magnetization reversal volume (cm 3 ). 〕and,

【0013】2.アルミニウム化合物の被着量がレピド
クロサイトの重量に対してAlとして0.05〜3.0
重量%である前記第1.項記載のコバルト含有磁性酸化
鉄粉末の製造方法である。
2. The amount of the aluminum compound to be deposited is 0.05 to 3.0 as Al with respect to the weight of lepidocrocite.
%. 12. A method for producing a cobalt-containing magnetic iron oxide powder as described in the above item.

【0014】本明細書において、磁化反転体積(V)
は、エム.ピー.シャーロック(M.P.Sharro
ck)らによって報告されている文献(IEEE Tr
ansactions on Magnetics,v
ol. MAG−17,No.6,Nov.1981
pp.3020−3022)を参考にして、次のように
して各試料の磁化反転体積(V)を求めた。
In this specification, the magnetization reversal volume (V)
Is M. P. Sherlock (MP Sharo)
ck) et al. (IEEE Tr
actions on Magnetics, v
ol. MAG-17, No. 6, Nov. 1981
pp. 3020-3022), the magnetization reversal volume (V) of each sample was determined as follows.

【0015】試料粉末を容器に詰め、これを振動試料型
磁力計(VSM−P7、東英工業製)にセットし、最大
印加磁界を10kOeに設定し、磁界掃引速度10kO
e/x分を、(1)20分、(2)100分、(3)2
00分と変えて各々の保磁力Hc(i)(i=1,2,
3)と飽和磁化Ms(Gauss)を測定した。
The sample powder is packed in a container, and set in a vibrating sample magnetometer (VSM-P7, manufactured by Toei Kogyo), the maximum applied magnetic field is set to 10 kOe, and the magnetic field sweep speed is 10 kOe.
e / x minutes, (1) 20 minutes, (2) 100 minutes, (3) 2
00 minutes and each coercive force Hc (i) (i = 1, 2, 2,
3) and saturation magnetization Ms (Gauss) were measured.

【0016】次に磁化反転時間t(i)を次式より求め
た。
Next, the magnetization reversal time t (i) was determined by the following equation.

【数1】 (Equation 1)

【0017】得られた3組の(t(i),Hc(i))
を用いて次式の回帰式を求め、HaおよびK・Vを求め
た。
The obtained three sets of (t (i), Hc (i))
Was used to determine the following regression equation, and Ha and K · V were determined.

【0018】[0018]

【数2】 Ha:異方性磁界(Oe) k:ボルツマン定数(1.38×10−16erg/d
eg) T:測定温度(300Kで測定した。) K:異方性定数(erg/cm) V:磁化反転体積(cm) A:スピン歳差周波数(2×10sec−1
(Equation 2) Ha: anisotropic magnetic field (Oe) k: Boltzmann constant (1.38 × 10 −16 erg / d)
eg) T: measurement temperature (measured at 300 K) K: anisotropy constant (erg / cm 3 ) V: magnetization reversal volume (cm 3 ) A: spin precession frequency (2 × 10 9 sec −1 )

【0019】最後に関係式 Ha=2K/Ms を用いて、 V=(K・V)/(Ha・Ms/2) より磁化反転体積Vを求めた。Finally, using the relational expression Ha = 2K / Ms, the magnetization reversal volume V was obtained from V = (K · V) / (Ha · Ms / 2).

【0020】本発明において前駆物質として用いるレピ
ドクロサイト(γ−FeOOH)は、公知の方法で製造
したものを用いることが出来る。特に、塩化第一鉄水溶
液を湿式で中和・酸化して製造した針状のγ−FeOO
Hの使用が好ましい。なお、γ−FeOOHの製造の際
にγ−FeOOHの形状制御を目的として少量のP、S
i、Alなどの金属化合物を含有させることもできる。
γ−FeOOH粒子の表面に被着処理するAl化合物と
しては塩化アルミニウム、硫酸アルミニウム、硝酸アル
ミニウム、アルミン酸ナトリウムなどが使用される。こ
れらのAl化合物の処理量は、γ−FeOOHの重量を
基準にして、Alとして0.05〜3.0重量%であ
り、好ましくは0.05〜1.0重量%である。処理量
がこの範囲より少ない場合は満足すべき処理効果が得ら
れず、また多い場合には目的とするコバルト含有磁性酸
化鉄粉末の飽和磁化の減少をもたらし好ましくない。A
l化合物のγ−FeOOH粒子表面への被着処理は種々
の方法によって行えるが、例えば、塩化第一鉄水溶液を
湿式で中和・酸化して得られたγ−FeOOH反応スラ
リーに上記Al化合物の適宜の濃度を有する水溶液とア
ルカリ水溶液とを添加して中和被着したり、γ−FeO
OH粉末を水に分散させたスラリーにAl化合物の水溶
液とアルカリ水溶液とを添加して中和被着する。なお、
Al化合物の被着処理において、さらにSi、P、B等
の化合物を併せて処理する事もできる。Al化合物の被
着処理の後、通常のろ過、水洗、乾燥工程を経て、表面
にAlを含有するγ−FeOOH粉末を得ることができ
る。
The lepidocrocite (γ-FeOOH) used as a precursor in the present invention may be one produced by a known method. In particular, acicular γ-FeOO produced by neutralizing and oxidizing an aqueous ferrous chloride solution in a wet manner.
The use of H is preferred. In the production of γ-FeOOH, a small amount of P, S is used for the purpose of controlling the shape of γ-FeOOH.
Metal compounds such as i and Al can be contained.
Aluminum chloride, aluminum sulfate, aluminum nitrate, sodium aluminate and the like are used as the Al compound to be applied to the surface of the γ-FeOOH particles. The treatment amount of these Al compounds is 0.05 to 3.0% by weight, preferably 0.05 to 1.0% by weight as Al, based on the weight of γ-FeOOH. If the treatment amount is less than this range, a satisfactory treatment effect cannot be obtained, and if it is too large, the desired saturation magnetization of the cobalt-containing magnetic iron oxide powder is decreased, which is not preferable. A
The l compound can be applied to the surface of the γ-FeOOH particles by various methods. For example, the γ-FeOOH reaction slurry obtained by wet-neutralizing and oxidizing an aqueous ferrous chloride solution is used to add the Al compound to the slurry. An aqueous solution having an appropriate concentration and an alkaline aqueous solution are added to neutralize and adhere, or γ-FeO
An aqueous solution of an Al compound and an aqueous alkali solution are added to a slurry in which OH powder is dispersed in water, and the slurry is neutralized and adhered. In addition,
In the deposition treatment of the Al compound, a compound such as Si, P, or B can be further treated. After the Al compound deposition treatment, a normal filtration, water washing, and drying steps can be performed to obtain a γ-FeOOH powder containing Al on the surface.

【0021】本発明においては、Al化合物を被着処理
したγ−FeOOHの脱水工程は特に必要としないが、
還元工程での反応速度の促進や、還元剤としてHガス
を利用する場合のH利用率を向上させる面から、脱水
することが好ましい。脱水温度はγ−FeOOHがα−
Feに転移するよりも低い温度であることが必須
であり、約450℃以下、好ましくは250℃〜350
℃である。上記温度より高い温度で脱水した場合には、
γ−FeOOHがα−Feに転移し、該α−Fe
結晶は成長し易く、これらのα−Feを還
元して得られるマグネタイトやさらに酸化して得られる
ベルトライドやマグヘマイトなどの酸化鉄粉末および、
さらにこれらにコバルト化合物等を被着処理して得られ
るコバルト含有磁性酸化鉄粉末は、目的とする磁化反転
体積の小さなものが得られない。またさらに、γ−Fe
OOHから転移したα−Feは、α−FeOOH
から転移したα−Feに比べて粒子間焼結が起こ
り易く、これらのα−Feを還元して得られるマ
グネタイトやさらに酸化して得られるベルトライドやマ
グヘマイトなどの酸化鉄粉末および、さらにこれらにコ
バルト化合物等を被着処理して得られるコバルト含有磁
性酸化鉄は、磁気特性や、これを用いて磁気記録媒体を
製造する際の塗料化時の分散性が劣るものとなる。脱水
処理時の雰囲気は酸化性もしくは不活性ガス雰囲気下で
行えばよいが、γ−FeOOHはNガスなどの不活性
ガス雰囲気下で脱水すると、若干粒子間焼結や粒子形状
の崩れを生じやすい傾向が見られ、空気などの酸化性ガ
ス雰囲気が好ましい。
In the present invention, the step of dehydrating γ-FeOOH coated with an Al compound is not particularly required,
Dehydration is preferred in terms of accelerating the reaction rate in the reduction step and improving the H 2 utilization when H 2 gas is used as the reducing agent. Dehydration temperature is α-FeOOH is α-
It is essential that the temperature is lower than the transition to Fe 2 O 3, and it is not more than about 450 ° C., preferably 250 ° C. to 350 ° C.
° C. When dehydrating at a temperature higher than the above temperature,
γ-FeOOH is transferred to α-Fe 2 O 3 and the α-Fe
2 O 3 crystals are easy to grow, and iron oxide powders such as magnetite obtained by reducing these α-Fe 2 O 3 , beltride and maghemite obtained by further oxidation, and
Furthermore, a cobalt-containing magnetic iron oxide powder obtained by applying a cobalt compound or the like to these materials cannot obtain a target having a small magnetization reversal volume. Furthermore, γ-Fe
Α-Fe 2 O 3 transferred from OOH is α-FeOOH
Interparticle sintering is more likely to occur than α-Fe 2 O 3 transferred from iron oxide, and iron oxides such as magnetite obtained by reducing these α-Fe 2 O 3 , and beltride or maghemite obtained by further oxidization Powders, and cobalt-containing magnetic iron oxides obtained by further applying a cobalt compound or the like thereto, have inferior magnetic properties and dispersibility during coating when manufacturing a magnetic recording medium using the same. Become. The atmosphere during the dehydration treatment may be performed in an oxidizing or inert gas atmosphere. However, when γ-FeOOH is dehydrated in an inert gas atmosphere such as N 2 gas, sintering between particles and deformation of the particle shape may occur. This tends to be easy, and an oxidizing gas atmosphere such as air is preferable.

【0022】還元は、通常の方法で行えばよい。例えば
水素もしくは水蒸気を含む水素ガスの流通下に250℃
〜400℃の温度で還元したり、また、大豆油、椰子
油、オレイン酸、ステアリン酸などの脂肪酸の分解ガス
を用いて250℃〜500℃の温度で有機物還元する方
法がある。還元においても処理温度が高くなるに従って
若干生成マグネタイトの磁化反転体積は大きくなる傾向
が見られ、実質的に還元が進む温度であれば上記温度の
範囲においてもできるだけ低い温度で還元することが好
ましい。この還元して得た主にマグネタイトからなる酸
化鉄粉末及びこの主にマグネタイトから成る酸化鉄粉末
を、さらに酸化することにより得られる酸化鉄粉末の磁
化反転体積は、磁化反転体積(V)とBET比表面積
(SSA)との関係において、log〔V〕≦−3.0
5log〔SSA〕−11.35の式を満たすことが好
ましい。
The reduction may be performed by a usual method. For example, 250 ° C. under the flow of hydrogen gas containing hydrogen or steam
There is a method of reducing at a temperature of 250 to 500 ° C. using a decomposition gas of fatty acids such as soybean oil, coconut oil, oleic acid, and stearic acid at a temperature of 250 to 500 ° C. Also in the reduction, the magnetization reversal volume of the generated magnetite tends to slightly increase as the processing temperature increases, and it is preferable that the reduction is performed at a temperature as low as possible even in the above-mentioned temperature range as long as the reduction proceeds substantially. The magnetized reversal volume (V) and the BET of the magnetized reversal volume (V) of the iron oxide powder mainly composed of magnetite and the iron oxide powder obtained by further oxidizing the iron oxide powder mainly composed of magnetite obtained by the reduction are obtained. In relation to the specific surface area (SSA), log [V] ≦ −3.0
It is preferable to satisfy the formula of 5 log [SSA] -11.35.

【0023】以上のようにして得られた酸化鉄粉末の表
面に、コバルト化合物またはコバルト化合物とその他の
金属化合物を被着して、本発明の下記の式(1)および
(2)を満たすコバルト含有磁性酸化鉄粉末とすること
ができる。 式(1) 20≦SSA≦50 式(2) −16.70≦log〔V〕≦−3.05l
og〔SSA〕−11.35 〔式中、SSAはBET比表面積(m/g)であり、
Vは磁化反転体積(cm)である。〕
The surface of the iron oxide powder obtained as described above is coated with a cobalt compound or a cobalt compound and another metal compound to obtain a cobalt compound satisfying the following formulas (1) and (2) of the present invention. Containing magnetic iron oxide powder. Formula (1) 20 ≦ SSA ≦ 50 Formula (2) −16.70 ≦ log [V] ≦ −3.05 l
og [SSA] -11.35 [wherein SSA is a BET specific surface area (m 2 / g),
V is the magnetization reversal volume (cm 3 ). ]

【0024】なお、本発明において、前記式(1)〜式
(2)で表される条件は、同時に満足されることが必要
であり、比表面積が前記範囲より小さきに過ぎると画像
記録媒体としての高記録密度化が得られず、さらには前
記範囲より大きに過ぎると磁気記録媒体中への磁性粉の
所望の分散が難しくなる。さらには、磁化反転体積が前
記範囲より小さきに過ぎると強磁性体としての特性の発
現が難しかったり、また前記範囲より大きに過ぎると所
望の優れたノイズ特性が得られなかったりする。
In the present invention, the conditions represented by the above formulas (1) and (2) need to be satisfied at the same time, and if the specific surface area is smaller than the above range, the image recording medium may not be used. However, if the recording density is too high, it is difficult to achieve a desired dispersion of the magnetic powder in the magnetic recording medium. Furthermore, if the magnetization reversal volume is smaller than the above range, it is difficult to exhibit characteristics as a ferromagnetic material, and if it is larger than the above range, desired excellent noise characteristics cannot be obtained.

【0025】コバルト化合物と共に用いるその他の金属
化合物としてはFe、Mn、Zn、Ni、Cr等の金属
化合物があり、コバルト含有磁性酸化鉄粉末の諸特性の
改良を目的として適宜用いることが出来る。
Other metal compounds used together with the cobalt compound include metal compounds such as Fe, Mn, Zn, Ni, and Cr, which can be used as appropriate for the purpose of improving various properties of the cobalt-containing magnetic iron oxide powder.

【0026】コバルト化合物またはコバルト化合物とそ
の他の金属化合物を被着する方法としては酸化鉄粉末
をコバルトまたはコバルトと他の金属塩水溶液に分散さ
せ、これにアルカリ水溶液を加える。酸化鉄粉末をア
ルカリ水溶液に分散させ、これにコバルトまたはコバル
トと他の金属塩水溶液を加える方法等がある。被着する
ときの雰囲気は、酸化性、不活性のいずれでもよく、ま
た反応温度は室温から沸点、沸点以上のいずれでもよ
く、被着する化合物の化学的性質や目的に応じて適宜行
うことが出来る。
As a method of depositing a cobalt compound or a cobalt compound and another metal compound, iron oxide powder is dispersed in an aqueous solution of cobalt or cobalt and another metal salt, and an alkali aqueous solution is added thereto. There is a method in which iron oxide powder is dispersed in an aqueous alkaline solution, and cobalt or an aqueous solution of cobalt and another metal salt is added thereto. The atmosphere at the time of deposition may be any of oxidizing and inert, and the reaction temperature may be from room temperature to the boiling point or above the boiling point, and may be appropriately performed according to the chemical properties and purpose of the compound to be deposited. I can do it.

【0027】さらに、得られるコバルト含有磁性酸化鉄
粉末を塗料とする時の分散性を改良する目的として、コ
バルト化合物などを被着処理した後、さらにSi、Al
等の化合物を表面処理することもできる。以下実施例に
よってさらに詳細に説明する。
Further, in order to improve the dispersibility of the obtained cobalt-containing magnetic iron oxide powder as a coating material, a cobalt compound or the like is coated thereon, and then Si, Al
Can be surface-treated. Hereinafter, the present invention will be described in more detail with reference to examples.

【0028】[0028]

【実施例】【Example】

実施例1 空気吹き込み管と攪拌機とを備えた内容積30リットル
の反応器にFe2+として25g/リットルの塩化第一
鉄水溶液22リットルを入れ攪拌下に液温を21℃に保
持しながら400g/リットルのNaOH水溶液1.4
8リットルを加えた後、6リットル/分の速度で空気を
吹き込みながら21℃で2時間保持してγ−FeOOH
の核晶を生成させた。次いで、液温を41℃に昇温した
後、空気を吹き込みながら400g/リットルのNaO
H水溶液0.49リットルを2.5時間かけて加えて核
晶を成長させてBET比表面積約71m/gの針状γ
−FeOOHの生成反応を終えた。次いで、空気の吹き
込みを停止した後、攪拌下に1モル/リットルの塩化ア
ルミニウム水溶液162mlを加えた後、1N−NaO
H水溶液486mlを30分かけて添加し、さらに1N
−NaOH水溶液を滴下しながらスラリーのpHを8に
保持して30分間攪拌を続けてγ−FeOOHへのAl
被着処理を終えた。得られたα−FeOOHスラリーを
ろ過、洗浄し乾燥して、Alを0.5重量%含有する針
状γ−FeOOH粉末を得た。この針状γ−FeOOH
粉末500gを小型回転キルンに投入し、3リットル/
分の空気の流通下に280℃で1時間加熱脱水処理し
た。Nガスでキルン内の空気を置換した後、3リット
ル/分の水素ガス流通下に350℃で1時間加熱還元し
た。冷却後、還元粉末を3リットルの水中に投入して回
収した。この還元粉は化学分析した結果、Fe2+/全
Fe=0.340であった。なお、少量をサンプリング
してN雰囲気下60℃で乾燥して得た乾燥品の諸特性
を測定した結果、SSA=33.8m/g、Hc=2
960e、V=0.38×10−16cmであった。
回収したスラリーをミキサーで20分間分散処理した
後、水で希釈して固形分濃度を100g/リットルに調
整した。このスラリー2リットルを4つ口フラスコに仕
込み、次いで10N−NaOH水溶液368mlを添加
した。次いで攪拌下に1モル/リットルの塩化第一鉄水
溶液336mlを45分かけて添加した後1モル/リッ
トルの硫酸コバルト水溶液98mlを60分かけて添加
した。その後45℃に昇温して5時間攪拌を続けてコバ
ルト被着処理を終え、該スラリーを濾過、洗浄し、N
ガス雰囲気下120℃で乾燥して目的とするコバルト含
有磁性酸化鉄粉末を得た。(試料A)
Example 1 A reactor having an internal volume of 30 liters equipped with an air blowing tube and a stirrer was charged with 22 liters of a 25 g / liter ferrous chloride aqueous solution as Fe 2+ and 400 g / liter while maintaining the liquid temperature at 21 ° C. with stirring. 1.4 liter of aqueous NaOH solution
After adding 8 liters, the mixture was kept at 21 ° C. for 2 hours while blowing air at a rate of 6 liters / minute, and γ-FeOOH
Of nuclei. Then, after raising the liquid temperature to 41 ° C., 400 g / liter of NaO
An aqueous H solution (0.49 liters) was added over 2.5 hours to grow nuclei, and a needle-like γ having a BET specific surface area of about 71 m 2 / g.
-The reaction for producing FeOOH was completed. Next, after stopping the blowing of air, 162 ml of a 1 mol / L aluminum chloride aqueous solution was added with stirring, and then 1N-NaO was added.
486 ml of an aqueous H solution was added over 30 minutes, and 1N
While maintaining the pH of the slurry at 8 while adding an aqueous solution of NaOH, stirring was continued for 30 minutes, and Al to γ-FeOOH was added.
The deposition process has been completed. The obtained α-FeOOH slurry was filtered, washed and dried to obtain acicular γ-FeOOH powder containing 0.5% by weight of Al. This acicular γ-FeOOH
500 g of powder is put into a small rotary kiln and 3 liters /
For 1 hour at 280 ° C. under the flow of air for one minute. After replacing the air in the kiln with N 2 gas, the mixture was heated and reduced at 350 ° C. for 1 hour under a hydrogen gas flow of 3 L / min. After cooling, the reduced powder was put into 3 liters of water and collected. This reduced powder was analyzed by chemical analysis to find that Fe 2+ / total Fe = 0.340. As a result of measuring various characteristics of a dried product obtained by sampling a small amount and drying at 60 ° C. under an N 2 atmosphere, SSA = 33.8 m 2 / g and Hc = 2
960 e, V = 0.38 × 10 −16 cm 3 .
The collected slurry was subjected to a dispersion treatment with a mixer for 20 minutes, and then diluted with water to adjust the solid concentration to 100 g / liter. Two liters of this slurry was charged into a four-necked flask, and then 368 ml of a 10N-NaOH aqueous solution was added. Next, 336 ml of a 1 mol / l ferrous chloride aqueous solution was added over 45 minutes with stirring, and 98 ml of a 1 mol / l cobalt sulfate aqueous solution was added over 60 minutes. Thereafter, the temperature was raised to 45 ° C., and stirring was continued for 5 hours to complete the cobalt deposition treatment. The slurry was filtered and washed, and N 2 was added.
Drying at 120 ° C. in a gas atmosphere gave the desired cobalt-containing magnetic iron oxide powder. (Sample A)

【0029】実施例2 実施例1の場合と同様にしてγ−FeOOHを生成させ
た。次いで、添加する1モル/リットルの塩化アルミニ
ウム水溶液及び1N−NaOH水溶液の量を各々97m
l及び292mlに変えた以外は実施例1の場合と同様
にしてAl被着処理した。得られたγ−FeOOHスラ
リーをろ過、洗浄し乾燥して、Alを0.3重量%含有
する針状γ−FeOOH粉末を得た。この針状γ−Fe
OOH粉末500gを小型回転キルンに投入し、実施例
1の場合と同様にして加熱脱水及び還元し、得られた還
元粉末を水中に投入して回収した。なお、前記実施例1
の場合と同様にして測定した還元粉の諸特性は、Fe
2+/全Fe=0.332、SSA=30.9m
g、Hc=327Oe、V=0.50×10−16cm
であった。以下、回収したスラリーを、前記実施例1
と同様に分散処理および同様にコバルト被着処理して、
目的とするコバルト含有磁性酸化鉄粉末を得た。(試料
B)
Example 2 γ-FeOOH was produced in the same manner as in Example 1. Next, the amounts of the added 1 mol / liter aluminum chloride aqueous solution and 1N-NaOH aqueous solution were 97 m each.
The Al coating treatment was performed in the same manner as in Example 1 except that the amounts were changed to 1 and 292 ml. The obtained γ-FeOOH slurry was filtered, washed and dried to obtain an acicular γ-FeOOH powder containing 0.3% by weight of Al. This acicular γ-Fe
500 g of the OOH powder was put into a small rotary kiln, heated and dehydrated and reduced in the same manner as in Example 1, and the obtained reduced powder was put into water and collected. The first embodiment
Various characteristics of the reduced powder measured in the same manner as in the case of
2+ / total Fe = 0.332, SSA = 30.9 m 2 /
g, Hc = 327 Oe, V = 0.50 × 10 −16 cm
It was 3 . Hereinafter, the recovered slurry was used in Example 1 described above.
Dispersion treatment and cobalt deposition treatment as well as
The desired cobalt-containing magnetic iron oxide powder was obtained. (Sample B)

【0030】実施例3 実施例1の場合と同様にしてγ−FeOOHを生成させ
た。次いで、添加する1モル/リットルの塩化アルミニ
ウム水溶液及び1N−NaOH水溶液の量を各々32m
l及び97mlに変えた以外は実施例1の場合と同様に
してAl被着処理した。得られたγ−FeOOHスラリ
ーをろ過、洗浄し乾燥して、Alを0.1重量%含有す
る針状γ−FeOOH粉末を得た。この針状γ−FeO
OH粉末500gを小型回転キルンに投入し、3リット
ル/分の空気の流通下に280℃で1時間加熱脱水処理
した。Nガスでキルン内の空気を置換した後、3リッ
トル/分の水素ガス流通下に280℃で2時間加熱還元
した。冷却後、還元粉末を3リットルの水中に投入して
回収した。なお、前記実施例1の場合と同様にして測定
した還元粉の諸特性は、Fe2+/全Fe=0.31
1、SSA=32.9m/g、Hc=318Oe、V
=0.61×10−16cmを示した。以下、回収し
たスラリーを、前記実施例1と同様に分散処理および同
様にコバルト被着処理して、目的とするコバルト含有磁
性酸化鉄粉末を得た。(試料C)
Example 3 γ-FeOOH was produced in the same manner as in Example 1. Next, the amounts of the added 1 mol / liter aluminum chloride aqueous solution and 1N-NaOH aqueous solution were each 32 m.
The Al coating treatment was performed in the same manner as in Example 1 except that the amount was changed to 1 and 97 ml. The obtained γ-FeOOH slurry was filtered, washed and dried to obtain an acicular γ-FeOOH powder containing 0.1% by weight of Al. This acicular γ-FeO
500 g of OH powder was put into a small rotary kiln, and was heated and dehydrated at 280 ° C. for 1 hour under a flow of air of 3 L / min. After replacing the air in the kiln with N 2 gas, the mixture was heated and reduced at 280 ° C. for 2 hours under a hydrogen gas flow of 3 L / min. After cooling, the reduced powder was put into 3 liters of water and collected. The properties of the reduced powder measured in the same manner as in Example 1 were Fe 2+ / total Fe = 0.31.
1, SSA = 32.9 m 2 / g, Hc = 318 Oe, V
= 0.61 × 10 −16 cm 3 . Hereinafter, the recovered slurry was subjected to a dispersion treatment and a cobalt deposition treatment in the same manner as in Example 1 to obtain a target cobalt-containing magnetic iron oxide powder. (Sample C)

【0031】実施例4 実施例1の場合と同様にしてγ−FeOOHを生成さ
せ、ついでAl被着処理してAlを0.5重量%含有す
る針状γ−FeOOH粉末を得た。この針状γ−OOH
粉末500gを小型回転キルンに投入し、3リットル/
分の空気の流通下に280℃で1時間加熱脱水処理し
た。Nガスでキルン内の空気を置換した後、3リット
ル/分の水素ガス流通下に350℃で1時間加熱還元し
た。次いで、Nガスでキルン内の水素ガスを置換しな
がら放冷した後、3リットル/分の空気とNガスの混
合気流中(空気/N=1/1:体積比)において、1
50℃で1.5時間酸化処理してベルトライド粉末とし
た。放冷後回収したベルトライド粉末の諸特性は、Fe
2+/全Fe=0.105、SSA=32.9m
g、Hc=340Oe、V=0.90×10−16cm
であった。この、ベルトライド粉末200gと水2リ
ットルをミキサーに投入し、20分間分散処理してスラ
リーとした。このスラリーを4つ口フラスコに仕込み、
10N−NaOH水溶液384mlを添加した。次いで
攪拌下に1モル/リットルの塩化第一鉄水溶液376m
lを45分かけて添加した後1モル/リットルの硫酸コ
バルト水溶液106mlを60分かけて添加した。その
後45℃に昇温して5時間攪拌を続けてコバルト被着処
理を終え、該スラリーを濾過、洗浄し、Nガス雰囲気
下120℃で乾燥して目的とするコバルト含有磁性酸化
鉄粉末を得た。(試料D)
Example 4 γ-FeOOH was produced in the same manner as in Example 1, and then Al was applied to obtain a needle-like γ-FeOOH powder containing 0.5% by weight of Al. This acicular γ-OOH
500 g of powder is put into a small rotary kiln and 3 liters /
For 1 hour at 280 ° C. under the flow of air for one minute. After replacing the air in the kiln with N 2 gas, the mixture was heated and reduced at 350 ° C. for 1 hour under a hydrogen gas flow of 3 L / min. Then, the mixture is allowed to cool while replacing the hydrogen gas in the kiln with N 2 gas, and then, in a mixed gas flow of air and N 2 gas at 3 L / min (air / N 2 = 1/1: volume ratio), 1
Oxidation treatment was performed at 50 ° C. for 1.5 hours to obtain a beltride powder. Various properties of the beltride powder collected after cooling are Fe
2 + / total Fe = 0.105, SSA = 32.9 m 2 /
g, Hc = 340 Oe, V = 0.90 × 10 −16 cm
It was 3 . 200 g of this beltride powder and 2 liters of water were charged into a mixer and dispersed for 20 minutes to form a slurry. This slurry is charged into a four-necked flask,
384 ml of a 10N-NaOH aqueous solution was added. Then, 376 m of 1 mol / l ferrous chloride aqueous solution was stirred.
was added over 45 minutes, and then 106 ml of a 1 mol / liter aqueous solution of cobalt sulfate was added over 60 minutes. Thereafter, the temperature was raised to 45 ° C., and stirring was continued for 5 hours to complete the cobalt deposition treatment. The slurry was filtered, washed, and dried at 120 ° C. in an N 2 gas atmosphere to obtain the desired cobalt-containing magnetic iron oxide powder. Obtained. (Sample D)

【0032】実施例5 比表面積約56m/gの針状γ−FeOOH粉末50
0gを10リットルの水に懸濁させた後、攪拌下に1モ
ル/リットルの塩化アルミニウム水溶液93mlを加え
た後、1N−NaOH水溶液278mlを30分かけて
添加し、さらに1N−NaOH水溶液を滴下しながらス
ラリーのpHを8に保持して30分間攪拌を続けてγ−
FeOOHへのAl被着処理を終えた。得られたγ−F
eOOHスラリーをろ過、洗浄し乾燥して、Alを0.
5重量%含有する針状γ−FeOOH粉末を得た。この
針状γ−FeOOH粉末500gを小型回転キルンに投
入し、3リットル/分の空気の流通下に280℃で1時
間加熱脱水処理した。Nガスでキルン内の空気を置換
した後、3リットル/分の水素ガス流通下に360℃で
1時間加熱還元した。次いで、Nガスでキルン内の水
素ガスを置換しながら放冷した後、3リットル/分の空
気とNガスの混合気流中(空気/N=1/1:体積
比)において、280℃で1.5時間酸化処理してγ−
Fe粉末とした。放冷後回収したγ−Fe
粉末の諸特性は、SSA=24.0m/g、Hc=3
78Oe、V=3.02×10−16cmであった。
この、γ−Fe粉末を実施例4と同様にして分
散処理した後、10N−NaOH水溶液、1モル/リッ
トルの塩化第一鉄水溶液及び1モル/リットルの硫酸コ
バルト水溶液の添加量を各々、342ml、276ml
及び84mlに変更した以外は実施例4と同様の手順で
コバルト被着処理して、目的とするコバルト含有磁性酸
化鉄粉末を得た。(試料E)
Example 5 Acicular γ-FeOOH powder 50 having a specific surface area of about 56 m 2 / g
After suspending 0 g in 10 liters of water, 93 ml of a 1 mol / l aqueous solution of aluminum chloride was added with stirring, 278 ml of a 1N aqueous solution of NaOH was added over 30 minutes, and a 1 aqueous solution of NaOH was added dropwise. While maintaining the pH of the slurry at 8, while stirring for 30 minutes, the γ-
The Al deposition on FeOOH was completed. The obtained γ-F
The eOOH slurry was filtered, washed, and dried to remove Al to 0.1.
Acicular γ-FeOOH powder containing 5% by weight was obtained. 500 g of this needle-like γ-FeOOH powder was put into a small rotary kiln, and was heated and dehydrated at 280 ° C. for 1 hour under a flow of air of 3 L / min. After replacing the air in the kiln with N 2 gas, the mixture was heated and reduced at 360 ° C. for 1 hour under a hydrogen gas flow of 3 L / min. Then, after cooling while replacing the hydrogen gas in the kiln with N 2 gas for 3 l / mixed airflow min air and N 2 gas (air / N 2 = 1/1: volume ratio) at 280 Oxidized at ℃ for 1.5 hours
Fe 2 O 3 powder was used. Γ-Fe 2 O 3 recovered after cooling
Various properties of the powder were as follows: SSA = 24.0 m 2 / g, Hc = 3
78 Oe, V = 3.02 × 10 −16 cm 3 .
After the γ-Fe 2 O 3 powder was subjected to dispersion treatment in the same manner as in Example 4, the amounts of the 10 N-NaOH aqueous solution, 1 mol / l ferrous chloride aqueous solution, and 1 mol / l cobalt sulfate aqueous solution were added. 342ml, 276ml respectively
Cobalt deposition treatment was performed in the same manner as in Example 4 except that the amount was changed to 84 ml, and the desired cobalt-containing magnetic iron oxide powder was obtained. (Sample E)

【0033】比較例 実施例3においてAl被着処理工程を省略した以外は同
例と同様に処理して比較試料のコバルト含有磁性酸化鉄
粉末を得た。(試料F)なお、還元粉の諸特性は、Fe
2+/全Fe=0.358、SSA=27.7m
g、Hc=335Oe、V=0.60×10−16cm
を示した。
Comparative Example A cobalt-containing magnetic iron oxide powder of a comparative sample was obtained in the same manner as in Example 3, except that the Al deposition step was omitted. (Sample F) The characteristics of the reduced powder were Fe
2 + / total Fe = 0.358, SSA = 27.7 m 2 /
g, Hc = 335 Oe, V = 0.60 × 10 −16 cm
3 was shown.

【0034】上記、実施例および比較例で得られたコバ
ルト含有磁性酸化鉄〔試料A〜F〕のBET比表面積、
保磁力、Fe2+/全Fe、磁化反転体積の測定結果を
表1に、および下記要領でビデオテープを製造し、測定
したテープ特性及びノイズ特性(Y−S/N、C−S/
N)を表2に示す。これらから本発明のコバルト含有磁
性酸化鉄粉末は、分散性、配向性に優れ、これを用いて
製造したビデオテープの表面性が優れることに起因して
色信号のノイズ特性(C−S/N)が優れていることが
分かる。さらにはBET比表面積と磁化反転体積との関
係において、磁化反転体積が小さく、log〔V〕≦−
3.05log〔SSA〕−11.35の式で明確な特
徴を有し、さらに磁化反転体積が小さいことに起因して
輝度信号のノイズ特性(Y−S/N)も優れていること
が分かる。
The BET specific surface areas of the cobalt-containing magnetic iron oxides [Samples A to F] obtained in the above Examples and Comparative Examples,
Table 1 shows the measurement results of coercive force, Fe 2+ / total Fe, and magnetization reversal volume. A video tape was manufactured in the following manner, and the measured tape characteristics and noise characteristics (YS / N, CS /
N) is shown in Table 2. From these, the cobalt-containing magnetic iron oxide powder of the present invention is excellent in dispersibility and orientation, and the noise characteristics (CS / N) of the color signal due to the excellent surface properties of the video tape manufactured using the same. ) Is excellent. Further, in the relationship between the BET specific surface area and the magnetization reversal volume, the magnetization reversal volume is small and log [V] ≦ −
It can be seen that the equation (3.05 log [SSA] -11.35) has a clear characteristic, and that the noise characteristic (YS / N) of the luminance signal is excellent due to the small magnetization reversal volume. .

【0035】〔ビデオテープの製造およびノイズ特性の
測定〕塗料化は下記の組成で行なった。 コバルト含有磁性酸化鉄粉末 100重量部 塩化ビニル・酢酸ビニル共重合体 6.0 〃 ポリウレタン樹脂 14.2 〃 分散剤 3.6 〃 導電剤 3.2 〃 研磨剤 2.0 〃 潤滑剤 1.2 〃 硬化剤 2.4 〃 溶剤 249 〃 上記組成物より成る磁性塗料をポリエステルベースフィ
ルム上に5μm厚で塗布し、乾燥、カレンダー処理後、
60℃で16時間キュアリングした。その後スリッター
で0.5インチ幅に切断し、VHSカセットハーフに組
み込んだ。ビデオノイズ特性(Y−S/N、C−S/
N)の測定は、ビデオノイズ測定器(925D/1、シ
バソク(株)製)を用いて測定した。
[Manufacture of Video Tape and Measurement of Noise Characteristics] A paint was prepared with the following composition. Cobalt-containing magnetic iron oxide powder 100 parts by weight Vinyl chloride / vinyl acetate copolymer 6.0 {Polyurethane resin 14.2} Dispersant 3.6 << Conductive agent 3.2 >> Abrasive 2.0 >> Lubricant 1.2 〃 Curing agent 2.4 溶 剤 Solvent 249 磁性 A magnetic paint composed of the above composition is applied on a polyester base film in a thickness of 5 μm, dried, calendered,
Curing was performed at 60 ° C. for 16 hours. Then, it was cut into a 0.5-inch width with a slitter and assembled into a VHS cassette half. Video noise characteristics (YS / N, CS /
N) was measured using a video noise meter (925D / 1, manufactured by Shibasoku Co., Ltd.).

【0036】[0036]

【表1】 [Table 1]

【0037】[0037]

【表2】 [Table 2]

【0038】[0038]

【発明の効果】本発明方法で得られるコバルト含有磁性
酸化鉄粉末は、磁気記録媒体用素子として好適なもので
あって、媒体への分散性も良好なものであり、特にノイ
ズ特性(Y−S/N、C−S/N)に優れたものである
ので、画像記録媒体に極めて好適なものである。また本
発明方法は、磁気記録媒体用素子に好適なコバルト含有
磁性酸化鉄粉末を、γ−FeOOHを前駆物質として操
作容易にして極めて効率よく製造し得る方法であり、工
業的に甚だ有用なものである。
The cobalt-containing magnetic iron oxide powder obtained by the method of the present invention is suitable as an element for a magnetic recording medium, has a good dispersibility in a medium, and has particularly good noise characteristics (Y- (S / N, C-S / N), it is extremely suitable for an image recording medium. Further, the method of the present invention is a method capable of extremely easily producing a cobalt-containing magnetic iron oxide powder suitable for an element for a magnetic recording medium by using γ-FeOOH as a precursor and making it extremely efficient. It is.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 田村 浩一 三重県四日市市石原町1番地 石原産業 株式会社 四日市事業所内 (72)発明者 吹田 徳雄 三重県四日市市石原町1番地 石原産業 株式会社 四日市事業所内 審査官 平塚 義三 (58)調査した分野(Int.Cl.7,DB名) H01F 1/11 C01G 49/00 ──────────────────────────────────────────────────の Continuing on the front page (72) Inventor Koichi Tamura 1 Ishiharacho, Yokkaichi-shi, Mie Ishihara Sangyo Co., Ltd. (72) Inventor Tokuo Suita 1 Ishiharacho, Yokkaichi-shi, Mie Ishihara Sangyo Co., Ltd. Examiner Yoshizo Hiratsuka (58) Field surveyed (Int.Cl. 7 , DB name) H01F 1/11 C01G 49/00

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 レピドクロサイト粒子の表面にアルミニ
ウム化合物を被着処理した後、これを直接還元するか、
もしくはこれをヘマタイトに転移する温度よりも低い温
度で加熱脱水した後還元するか、または前記還元後、さ
らに酸化して、酸化鉄粉末を得、その表面にコバルト化
合物またはコバルト化合物および他の金属化合物を被着
することから成る、下記の式(1)および(2)を満た
すコバルト含有磁性酸化鉄粉末の製造方法。 式(1) 20≦SSA≦50 式(2) −16.70≦log〔V〕≦−3.05l
og〔SSA〕−11.35 〔式中、SSAはBET比表面積(m/g)であり、
Vは磁化反転体積(cm)である。〕
The present invention relates to a method for applying an aluminum compound to the surface of lepidocrocite particles, and then directly reducing the aluminum compound.
Alternatively, it is heated and dehydrated at a temperature lower than the temperature at which hematite is transformed, and then reduced, or after the reduction, further oxidized to obtain an iron oxide powder, and a cobalt compound or a cobalt compound and another metal compound on the surface thereof. And producing a cobalt-containing magnetic iron oxide powder satisfying the following formulas (1) and (2). Formula (1) 20 ≦ SSA ≦ 50 Formula (2) −16.70 ≦ log [V] ≦ −3.05 l
og [SSA] -11.35 [wherein SSA is a BET specific surface area (m 2 / g),
V is the magnetization reversal volume (cm 3 ). ]
【請求項2】 アルミニウム化合物の被着量がレピドク
ロサイトの重量に対してAlとして0.05〜3.0重
量%である請求項1記載のコバルト含有磁性酸化鉄粉末
の製造方法。
2. The method for producing a cobalt-containing magnetic iron oxide powder according to claim 1, wherein the amount of the aluminum compound deposited is 0.05 to 3.0% by weight as Al with respect to the weight of lepidocrocite.
JP5052843A 1992-12-29 1993-02-02 Method for producing cobalt-containing magnetic iron oxide powder Expired - Fee Related JP3020374B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP5052843A JP3020374B2 (en) 1993-02-02 1993-02-02 Method for producing cobalt-containing magnetic iron oxide powder
DE69305487T DE69305487T2 (en) 1992-12-29 1993-12-16 Magnetic cobalt-containing iron oxide and process for its production
EP93120343A EP0604849B1 (en) 1992-12-29 1993-12-16 Cobalt-containing magnetic iron oxide and process for producing the same
KR1019930030356A KR100249538B1 (en) 1992-12-29 1993-12-28 Cobalt-contained magnetic oxidized iron and preparing method therefor
CN93115693A CN1069779C (en) 1992-12-29 1993-12-28 Cobalt-containing magnetic iron oxide and process for producing the same
US08/635,540 US5609789A (en) 1992-12-29 1996-04-22 Cobalt-containing magnetic iron oxide and process for producing the same
JP2000138477A JP3482177B2 (en) 1992-12-29 2000-05-11 Cobalt-containing magnetic iron oxide powder and magnetic recording medium using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5052843A JP3020374B2 (en) 1993-02-02 1993-02-02 Method for producing cobalt-containing magnetic iron oxide powder

Publications (2)

Publication Number Publication Date
JPH06231928A JPH06231928A (en) 1994-08-19
JP3020374B2 true JP3020374B2 (en) 2000-03-15

Family

ID=12926131

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5052843A Expired - Fee Related JP3020374B2 (en) 1992-12-29 1993-02-02 Method for producing cobalt-containing magnetic iron oxide powder

Country Status (1)

Country Link
JP (1) JP3020374B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1025115A (en) 1996-07-04 1998-01-27 Sony Corp Iron oxide-base magnetic powder and magnetic recording medium using the same

Also Published As

Publication number Publication date
JPH06231928A (en) 1994-08-19

Similar Documents

Publication Publication Date Title
JP3020374B2 (en) Method for producing cobalt-containing magnetic iron oxide powder
US5609789A (en) Cobalt-containing magnetic iron oxide and process for producing the same
JP2937211B2 (en) Method for producing acicular magnetic iron oxide particles
JP3482177B2 (en) Cobalt-containing magnetic iron oxide powder and magnetic recording medium using the same
KR100445590B1 (en) Cobalt-coated needle iron magnetic iron oxide particles
JP3244830B2 (en) Cobalt-containing magnetic iron oxide powder and method for producing the same
JP2924941B2 (en) Underlayer for magnetic recording media
JPH1025115A (en) Iron oxide-base magnetic powder and magnetic recording medium using the same
EP0371384B1 (en) Process for producing magnetic iron oxide particles for magnetic recording
JP2897794B2 (en) Method for producing cobalt-coated magnetic iron oxide particles
JP2945458B2 (en) Acicular ferromagnetic iron oxide powder and method for producing the same
US5531977A (en) Process for producing acicular γ-FeOOH particles
JP2965606B2 (en) Method for producing metal magnetic powder
JP3303896B2 (en) Spindle-shaped iron-based metal magnetic particle powder and method for producing the same
JP2910813B2 (en) Nonmagnetic black-brown hydrated iron hydroxide particles, method for producing the same, and underlayer for magnetic recording media using the powder
JP2945457B2 (en) Acicular magnetic iron oxide powder and method for producing the same
JPH0647681B2 (en) Spindle-shaped iron-based metallic magnetic particle powder and method for producing the same
JPH0120201B2 (en)
JP2827190B2 (en) Method for producing acicular iron alloy magnetic particles for magnetic recording
JP3242102B2 (en) Magnetic powder and method for producing the same
JP3055308B2 (en) Method for producing acicular magnetic iron oxide particles
JP3166809B2 (en) Method for producing acicular magnetic iron oxide particles
JP2935292B2 (en) Method for producing acicular magnetic iron oxide particles
EP0131223B1 (en) Process for producing cobalt-modified ferromagnetic iron oxide
JPS638224A (en) Production of ferro magnetic powder for magnetic recording

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees