JP2965606B2 - Method for producing metal magnetic powder - Google Patents

Method for producing metal magnetic powder

Info

Publication number
JP2965606B2
JP2965606B2 JP2056135A JP5613590A JP2965606B2 JP 2965606 B2 JP2965606 B2 JP 2965606B2 JP 2056135 A JP2056135 A JP 2056135A JP 5613590 A JP5613590 A JP 5613590A JP 2965606 B2 JP2965606 B2 JP 2965606B2
Authority
JP
Japan
Prior art keywords
compound
barium
feooh
needle
magnetic powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2056135A
Other languages
Japanese (ja)
Other versions
JPH03257105A (en
Inventor
功 吉田
尚史 須貝
好美 守谷
盈 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanto Denka Kogyo Co Ltd
Original Assignee
Kanto Denka Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanto Denka Kogyo Co Ltd filed Critical Kanto Denka Kogyo Co Ltd
Priority to JP2056135A priority Critical patent/JP2965606B2/en
Publication of JPH03257105A publication Critical patent/JPH03257105A/en
Application granted granted Critical
Publication of JP2965606B2 publication Critical patent/JP2965606B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)
  • Hard Magnetic Materials (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、高密度磁気記録媒体用磁材の製造法に関
し、さらに詳しくは、8mmビデオテープ、業務用メタル
テープ等、高密度磁気記録媒体用の磁性材料として最適
な保磁力を持ち、媒体にした時の分散性、配向性に優
れ、高角型比の得られる金属磁性粉末の製造法に関す
る。
The present invention relates to a method for producing a magnetic material for a high-density magnetic recording medium, and more particularly, to a high-density magnetic recording medium such as an 8 mm video tape or a commercial metal tape. The present invention relates to a method for producing a metal magnetic powder having an optimum coercive force as a magnetic material for use, excellent dispersibility and orientation in a medium, and a high squareness ratio.

〔従来の技術及びその課題〕[Conventional technology and its problems]

従来、磁気記録用媒体の磁性粉として、γ−Fe2O3、C
o含有γ−Fe2O3、CrO2等が使用されてきたが、近年の磁
気記録用機器の小型軽量化の進歩につれて、磁気テー
プ、磁気ディスク等の磁気記録媒体への高性能化の要望
も大きくなってきている。
Conventionally, γ-Fe 2 O 3 , C
o-containing γ-Fe 2 O 3 , CrO 2, etc. have been used, but with the recent advances in the size and weight of magnetic recording devices, there is a demand for higher performance in magnetic recording media such as magnetic tapes and magnetic disks. Is also getting bigger.

この要望に沿う磁性材料として、鉄を主体とする金属
磁性粉末が開発され、オーディオ用メタルテープ、8mm
ビデオ用メタルテープ、ビデオ用フロッピーディスク等
に使用されているが、最近のオーディオのディジタル
化、ハイバンド8mmビデオの開発、高密度メモリー用フ
ロッピー等の開発に伴い、さらに高性能の磁気記録媒体
用の磁性粉の開発が強く望まれている。
As a magnetic material that meets this demand, a metal magnetic powder mainly composed of iron has been developed.
Used for metal tape for video, floppy disk for video, etc., with the recent digitization of audio, development of high-band 8mm video, development of floppy for high density memory, etc. The development of magnetic powders is strongly desired.

一般的な、鉄を主体とする金属磁性粉末の製造法は、
針状のオキシ水酸化鉄、あるいはこれらに他の金属(例
えば、Ni、Co、Mn、Zn、Cr、Al、Si、B、P、Ca、Mg、
Ba、Ti、Zr等)を、磁気特性のコントロール、還元時の
粒子の熱による形状変化を防止するためにドープあるい
は被着したものを原料とし、このものを還元性気体で還
元する方法である。この製造方法については多くの提案
がなされているが、最近の高密度磁気記録媒体の要望す
る特性を満足するものはなく、更なる改良が望まれてい
る。
A general method for producing metal magnetic powder mainly composed of iron is as follows.
Acicular iron oxyhydroxide or other metals (eg, Ni, Co, Mn, Zn, Cr, Al, Si, B, P, Ca, Mg,
Ba, Ti, Zr, etc.) is a method in which doping or deposition is used as a raw material to control magnetic properties and prevent shape change due to heat of particles during reduction, and reduce this with a reducing gas. . Many proposals have been made for this manufacturing method, but none of them satisfy the characteristics required of recent high-density magnetic recording media, and further improvements are desired.

磁気記録媒体の高密度化は、高出力特性及びノイズレ
ベルの低下により達成される。磁気記録媒体のこれらの
諸特性は、磁気記録媒体に使用する磁性材料の特性と密
接な関係があり、高密度磁気記録媒体用の磁性粉の具備
すべき特性として次の項目があげられる。
Densification of a magnetic recording medium is achieved by high output characteristics and a reduction in noise level. These various characteristics of the magnetic recording medium are closely related to the characteristics of the magnetic material used for the magnetic recording medium, and the following items can be mentioned as the characteristics that the magnetic powder for the high-density magnetic recording medium should have.

a.適切な保磁力(Hc)をもつこと。a. Have an appropriate coercive force (Hc).

b.飽和磁束密度(σs)が大きいこと。b. High saturation magnetic flux density (σs).

c.角型比(σr/σs)が大きいこと。c. The squareness ratio (σr / σs) is large.

d.粒子サイズは小さく、且つ揃っていること。d. The particle size must be small and uniform.

e.緻密な構造をもち、分散が容易であること。e. It must have a dense structure and be easily dispersed.

f.媒体にした後、耐候性に富むこと。f. After being made into a medium, it should be rich in weather resistance.

磁気記録媒体として高出力特性を得るためには、磁性
材料に対してa、b、c、eの項目が特に求められる。
In order to obtain high output characteristics as a magnetic recording medium, items a, b, c, and e are particularly required for magnetic materials.

項目aの保磁力は磁気記録媒体の使用目的にあった数
値にコントロールする必要があり、その方法としては出
発原料であるオキシ水酸化鉄の粒子サイズをコントロー
ルすることが主に行われる。
It is necessary to control the coercive force of item a to a value suitable for the purpose of use of the magnetic recording medium. As a method for controlling the coercive force, the particle size of iron oxyhydroxide as a starting material is mainly controlled.

bの飽和磁束密度は、その数値が大きいことが金属磁
性粉末の特徴であるが、還元したままでの金属磁性粉末
は活性が大きく、大気中に取り出すと酸素と急激な反応
を起こして、磁性のないα酸化鉄に変化してしまう。そ
のため、還元後の金属磁性粉末は大気に触れる前に、粒
子の表面に緻密な酸化被膜を形成させる処理をして、大
気中で安全に取り扱えるようにしている。しかし、この
酸化被膜の磁性は小さく、単位粒子当たりに占める割合
が多くなると、飽和磁束密度は小さくなってしまう。特
に、磁気記録媒体の低ノイズ化を目的として金属磁性粉
末の粒子の微細化を進めると顕著に飽和磁束密度は低下
する。
The characteristic of metal magnetic powder is that the saturation magnetic flux density of b is large, but metal magnetic powder as it is reduced has a large activity, and when it is taken out to the atmosphere, it reacts rapidly with oxygen, It changes to α-iron oxide without any. Therefore, before contacting the atmosphere, the reduced metal magnetic powder is treated to form a dense oxide film on the surface of the particles so that the particles can be safely handled in the atmosphere. However, the magnetism of the oxide film is small, and when the ratio of the oxide film per unit particle increases, the saturation magnetic flux density decreases. In particular, when the size of the metal magnetic powder is reduced for the purpose of reducing the noise of the magnetic recording medium, the saturation magnetic flux density is remarkably reduced.

項目cの角型比を大きくするためには、原料オキシ水
酸化鉄の針状比(長さl/太さd)を大きくし、粒子サイ
ズを揃えることが重要であるが、針状比については項目
aの保磁力との関係も考慮してコントロールされる。さ
らに角型比の向上は、還元時の粒子形状の崩れ、粒子の
切断、焼結をどのように防ぐかが重要である。
In order to increase the squareness ratio of item c, it is important to increase the needle ratio (length 1 / thickness d) of the raw material iron oxyhydroxide and make the particle size uniform. Is controlled in consideration of the relationship with the coercive force of item a. Further, to improve the squareness ratio, it is important how to prevent collapse of the particle shape, particle cutting and sintering during reduction.

項目eは金属磁性粉末粒子中に空孔がなく緻密で、表
面平滑性の良いものが望まれている。
Item e is desired to be a metal magnetic powder particle which is dense without voids and has good surface smoothness.

磁気記録媒体の低ノイズ化を達成するためには、金属
磁性粉を微細化して、磁気記録媒体の単位体積当たりの
粒子数を多くすることが重要である。即ち、「玉川、中
鉢 日本応用磁気学会誌Vol.7,No.3,1983 P 204」には
「一般にテープのS/Nは、塗布される磁性粉の粒子サイ
ズ、分散性、充填性、及びテープの表面の平滑性によっ
て左右される。表面性、分散性が一定である場合、S/N
は単位体積当たりの平均粒子数の平方根に比例すること
が知られている。したがって、粒子サイズはできるだけ
小さく、しかも高充填性の磁性粉ほど有利といえる。」
と記載されている。
In order to reduce the noise of the magnetic recording medium, it is important to reduce the size of the metal magnetic powder to increase the number of particles per unit volume of the magnetic recording medium. That is, `` Tamakawa, Nakabachi Journal of the Japan Society of Applied Magnetics Vol.7, No.3, 1983 P 204 '' states that `` Generally, the S / N of the tape is the particle size, dispersibility, filling property, and It depends on the smoothness of the tape surface.If the surface property and dispersibility are constant, S / N
Is known to be proportional to the square root of the average number of particles per unit volume. Therefore, it can be said that the magnetic powder having the smallest possible particle size and having higher filling properties is more advantageous. "
It is described.

しかし、金属磁性粉粒子の微細化は、比表面積の増大
により、粒子の凝集性が高まり分散及び配向が難しくな
る方向であり、媒体にした時の角型化が低下するという
問題がある。
However, the miniaturization of the metal magnetic powder particles tends to increase the cohesiveness of the particles due to the increase in the specific surface area, making it difficult to disperse and orient the particles.

このように、磁気記録媒体の高密度化を達成するため
に、金属磁性粉末を微細化し、分散性に優れ、高角型比
を有し、且つ飽和磁束密度の大きい金属磁性粉末が要望
されているが、これらの多くの要求を満たす金属磁性粉
末は現在までのところ製造されていない。
As described above, in order to achieve a higher density of the magnetic recording medium, there is a demand for a metal magnetic powder which is finer, has excellent dispersibility, has a high squareness ratio, and has a large saturation magnetic flux density, in order to achieve a higher density of the magnetic recording medium. However, a magnetic metal powder satisfying these many requirements has not been manufactured so far.

〔発明の目的〕[Object of the invention]

本発明は以上のような従来技術の問題点を解決するた
めに成されたもので、磁気記録媒体の種類に応じた最適
な保磁力と、微細でありながら分散性に優れ、媒体にし
た時に高角型比を有する金属磁性粉末を製造することを
目的とするものである。
The present invention has been made in order to solve the problems of the conventional technology as described above, and has an optimal coercive force according to the type of magnetic recording medium and a fine but excellent dispersibility, and when the medium is used. It is intended to produce a metal magnetic powder having a high squareness ratio.

〔課題を解決するための手段〕[Means for solving the problem]

本発明は、塩化第一鉄水溶液をアルカリで中和してpH
=10以上のアルカリ性懸濁液とし、該懸濁液に酸素含有
ガスを通気して酸化することにより針状晶α−FeOOH粒
子を生成させる金属磁性粉末の製造方法において、前記
塩化第一鉄水溶液、あるいは酸素含有ガスを通気する前
のアルカリ性懸濁液中に水溶性バリウム塩を添加してお
き、次いで酸素含有ガスを通気してバリウムを含有する
針状性に優れるα−FeOOHを生成させ、次に、該バリウ
ム化合物を含有する針状晶α−FeOOH粒子表面にニッケ
ル化合物及び/又はコバルト化合物を被着させるか、あ
るいはさせないで、その上にシリカ化合物及び/又はア
ルミニウム化合物を被着させた後、濾過、水洗、乾燥を
行い、次いで非還元性雰囲気中で熱処理を行い、続いて
水素気流下300〜600℃の温度範囲で加熱還元することを
特徴とする金属磁性粉末の製造方法である。
The present invention is to neutralize the aqueous ferrous chloride solution with an alkali to adjust the pH.
= 10 or more alkaline suspension, and the oxygen-containing gas is passed through the suspension to oxidize it to produce needle-like α-FeOOH particles, the ferrous chloride aqueous solution Alternatively, a water-soluble barium salt is added to the alkaline suspension before passing the oxygen-containing gas, and then the oxygen-containing gas is passed to generate α-FeOOH having excellent needle-like properties containing barium, Next, a silica compound and / or an aluminum compound was deposited on the needle compound α-FeOOH particles containing the barium compound, with or without the nickel compound and / or the cobalt compound deposited on the surface of the particles. Thereafter, filtration, washing with water, drying, and then heat treatment in a non-reducing atmosphere, followed by heat reduction in a temperature range of 300 to 600 ° C. under a hydrogen stream, to produce a metal magnetic powder. It is the law.

第一鉄塩には塩化第一鉄、硝酸第一鉄、硫酸第一鉄が
あるが、本発明に用いるのは塩化第一鉄である。硝酸第
一鉄では経済的でなく、硫酸第一鉄の場合は硫酸バリウ
ムの微結晶が生成してα−FeOOH結晶に混合してくるこ
とがあり、いずれも好ましくない。
Ferrous salts include ferrous chloride, ferrous nitrate, and ferrous sulfate, and ferrous chloride is used in the present invention. Ferrous nitrate is not economical, and in the case of ferrous sulfate, barium sulfate microcrystals may be formed and mixed with the α-FeOOH crystal, which is not preferable.

また本発明に使用されるアルカリとは、KOH、NaOH等
の水酸化アルカリ、K2CO3、Na2CO3等の炭酸アルカリ、N
H3の水溶液等であるが、これらのどれを選択しても本発
明の実施が本質的に可能である。
The alkali used in the present invention is an alkali hydroxide such as KOH or NaOH, an alkali carbonate such as K 2 CO 3 or Na 2 CO 3 ,
An aqueous solution of H 3 or the like can be used, but any of these can be essentially selected to implement the present invention.

本発明の方法に用いる水溶性バリウム塩は、塩化バリ
ウム、硝酸バリウム、塩素酸バリウム、過塩素酸バリウ
ム、低級カルボン酸のバリウム塩等が使用可能である。
水溶性バリウム塩の添加量は、鉄に対してバリウム換算
で0.2〜5.0原子%が好ましく、さらに好ましくは0.3〜
3.0原子%である。0.2原子%未満の添加量では添加効果
がなく、針状性の優れたα−FeOOHは得られない。また
5.0原子%より多くを添加してもそれ以上の効果はな
い。
As the water-soluble barium salt used in the method of the present invention, barium chloride, barium nitrate, barium chlorate, barium perchlorate, barium salts of lower carboxylic acids and the like can be used.
The addition amount of the water-soluble barium salt is preferably 0.2 to 5.0 atomic% in terms of barium with respect to iron, more preferably 0.3 to 5.0 atomic%.
3.0 atomic%. With an addition amount of less than 0.2 atomic%, there is no addition effect, and α-FeOOH having excellent needle-like properties cannot be obtained. Also
Adding more than 5.0 atomic% has no further effect.

水溶性バリウム塩の添加方法は、塩化第一鉄水溶液に
混合しておき、この混合溶液をアルカリで中和する方法
が一般的であるが、水溶性バリウム塩を別に中和してお
き、中和の済んだ塩化第一鉄のアルカリ性懸濁液に添加
する方法、あるいは中和済水溶性バリウム塩のアルカリ
過剰懸濁液を塩化第一鉄水溶液に添加して中和する方法
等種々考えられるが、いずれの方法でもよい。バリウム
イオンの存在下に塩化第一鉄のアルカリ性懸濁液に酸化
性ガスを吹き込むことにより、針状性に優れたα−FeOO
Hが得られるが、粒子の大きさは、水溶性バリウム塩の
添加量、懸濁液の温度、吹き込みガス中の酸素濃度及び
吹き込み量でコントロールすることが出来る。また、懸
濁液中に還元促進剤或いは磁気特性のコントロール剤、
還元時の焼結防止剤、耐酸化安定性を向上させるための
添加剤(例えば、Ni、Co、Zn、Cu、Mn、Cr、Al、Zr、
B、Ca、Mg、Ti等)を適宜組み合わせて添加しておき、
これらの金属化合物を含有した針状晶α−FeOOHを得る
ことも出来る。このようにして製造したバリウム化合物
を含有する針状晶α−FeOOHの表面に、ニッケル化合物
及び/又はコバルト化合物を被着させる場合は、添加す
るニッケル及びコバルト化合物の種類としては塩化物、
硝酸塩が適当であり、硫酸根を含む硫酸塩等は、バリウ
ムイオンと反応して水に対して不溶性の硫酸バリウム結
晶を生成するので避けた方が良い。被着の方法は、バリ
ウム化合物を含む針状晶α−FeOOH懸濁液にニッケル化
合物及び/又はコバルト化合物の水溶液を滴下し、十分
に攪拌した後、アルカリを滴下して懸濁液のpHを7〜9
の範囲に調整して被着させる方法、あるいは滴下順を逆
にした方法、またはバリウム化合物を含有する針状晶α
−FeOOH懸濁液に、ニッケル化合物及び/又はコバルト
化合物の水溶液とアルカリを同時に滴下して、懸濁液の
pHを7〜9の範囲の中で一定に保持したまま滴下を続け
て被着する方法等、いづれの方法でも本発明を実施する
ことは可能である。被着するニッケル化合物及び/又は
コバルト化合物の量は、鉄に対してそれぞれ0.3〜30原
子%の範囲が好ましく、0.5〜20原子%がさらに好まし
い範囲である。ニッケル、コバルト共、還元促進剤とし
ての働きと、磁気特性のコントロール剤としての働きを
有し、添加量が少なすぎる場合は還元反応が進行しにく
く、また多すぎる場合は、ニッケルについては飽和磁束
密度の低下と保持力の低下で、所望する磁気特性が得ら
れなくなる。特に飽和磁束密度の低下は、高出力の磁気
記録媒体の製造にとっては大きなマイナス要因である。
コバルトの場合は、鉄との合金になっていると仮定した
場合、理論的には30原子%までは飽和磁束密度は上昇す
ることになるが、多量の添加は還元時における粒子形状
の保持と経済性に問題がある。
As a method for adding the water-soluble barium salt, it is common to mix the aqueous solution of ferrous chloride and neutralize the mixed solution with an alkali. Various methods are conceivable, such as a method of adding to an alkaline suspension of ferrous chloride which has been finished, or a method of adding an alkali excess suspension of a neutralized water-soluble barium salt to an aqueous solution of ferrous chloride for neutralization. However, any method may be used. By blowing an oxidizing gas into an alkaline suspension of ferrous chloride in the presence of barium ions, α-FeOO with excellent acicularity
Although H is obtained, the size of the particles can be controlled by the addition amount of the water-soluble barium salt, the temperature of the suspension, the oxygen concentration in the gas to be blown, and the flow rate. In addition, a reduction accelerator or a magnetic property control agent in the suspension,
Sintering inhibitor during reduction, additives for improving oxidation resistance (for example, Ni, Co, Zn, Cu, Mn, Cr, Al, Zr,
B, Ca, Mg, Ti, etc.)
Needle-like α-FeOOH containing these metal compounds can also be obtained. When the nickel compound and / or the cobalt compound is deposited on the surface of the needle-like crystals α-FeOOH containing the barium compound thus produced, the type of the nickel and cobalt compound to be added is chloride,
Nitrate is suitable, and it is better to avoid sulfate or the like containing a sulfate group since it reacts with barium ions to produce barium sulfate crystals insoluble in water. The method of deposition is such that an aqueous solution of a nickel compound and / or a cobalt compound is added dropwise to a needle-like crystal α-FeOOH suspension containing a barium compound, and after sufficient stirring, alkali is added dropwise to adjust the pH of the suspension. 7-9
The method of applying and adjusting to the range of, or the method of inverting the dropping order, or the needle crystal α containing a barium compound
-An aqueous solution of a nickel compound and / or a cobalt compound and an alkali are simultaneously dropped into the FeOOH suspension to form a suspension.
The present invention can be carried out by any method, such as a method in which the pH is kept constant in the range of 7 to 9 and a drop is continuously applied. The amount of the nickel compound and / or the cobalt compound to be deposited is preferably in the range of 0.3 to 30 at%, more preferably 0.5 to 20 at%, based on iron. Both nickel and cobalt have a function as a reduction promoter and a function as a control agent for magnetic properties.If the amount is too small, the reduction reaction does not proceed easily. The desired magnetic properties cannot be obtained due to the decrease in density and the decrease in coercive force. In particular, a decrease in the saturation magnetic flux density is a significant negative factor in manufacturing a high-output magnetic recording medium.
In the case of cobalt, assuming that it is alloyed with iron, theoretically the saturation magnetic flux density will increase up to 30 atomic%, but adding a large amount will maintain the particle shape during reduction and There is a problem with economy.

次にシリカ化合物及び/又はアルミニウム化合物の被
着であるが、本発明で用いるシリカ化合物、アルミニウ
ム化合物は、水可溶性のものもしくはコロイド状のもの
であればいずれも使用出来る。好適に使用される化合物
としては、塩化アルミニウム、硝酸アルミニウム、水ガ
ラス、コロイダルシリカ、アルミン酸ナトリウム、アル
ミナゾル等を挙げることが出来る。
Next, the silica compound and / or the aluminum compound is applied. As the silica compound and the aluminum compound used in the present invention, any water-soluble or colloidal one can be used. Preferred examples of the compound include aluminum chloride, aluminum nitrate, water glass, colloidal silica, sodium aluminate, and alumina sol.

被着の方法は、ニッケル化合物及び/又はコバルト化
合物の被着処理を終えた(もしくは被着処理を行ってい
ない)バリウムを含有するα−FeOOHの懸濁液に、シリ
カ化合物及び/又はアルミニウム化合物の水溶液を所定
量添加し、添加した化合物が酸性のものであればアルカ
リを、アルカリ性のものであれば酸(例えば、塩酸、硝
酸等)を滴下して、懸濁液のpHが7〜9の範囲になるよ
うに中和して被着させればよい。シリカ化合物、アルミ
ニウム化合物の両方を被着させる場合は、2種類の化合
物を重ねるように被着させる方法と、2種類の化合物を
混合して同時に被着させる場合が考えられるが、いずれ
の方法でも本発明の実施に支障はない。
The deposition method is performed by adding a barium-containing suspension of α-FeOOH containing nickel compound and / or cobalt compound (or not having undergone the deposition process) to a silica compound and / or an aluminum compound. Is added dropwise, and if the added compound is acidic, an alkali is added. If the added compound is alkaline, an acid (eg, hydrochloric acid, nitric acid, etc.) is added dropwise, and the pH of the suspension is adjusted to 7 to 9. It is sufficient to neutralize and adhere so as to fall within the range. When both the silica compound and the aluminum compound are applied, a method of applying two kinds of compounds so as to overlap each other and a case of applying the two kinds of compounds at the same time can be considered. There is no hindrance to the implementation of the present invention.

被着させるシリカ化合物、アルミニウム化合物の量
は、鉄に対してそれぞれ0.5〜20原子%が好ましい範囲
であり、さらに好ましくは1.0〜15原子%である。シリ
カ化合物及び/又はアルミニウム化合物の被着は、還元
時の粒子の焼結を防止するのが目的であり、被着量が少
なすぎて焼結防止の効果がなく、また、多すぎるとシリ
カ及びアルミニウムが磁性を持たないため、添加量に比
例して磁性が希釈され、飽和磁束密度が低下してしま
う。またこれら焼結防止剤と鉄とで難還元性物質が生成
するためか、還元が著しく困難になってしまう。
The amount of the silica compound and the amount of the aluminum compound to be applied are each preferably 0.5 to 20 atomic%, more preferably 1.0 to 15 atomic%, based on iron. The purpose of the deposition of the silica compound and / or the aluminum compound is to prevent sintering of the particles at the time of reduction, and the amount of deposition is too small to have the effect of preventing sintering. Since aluminum does not have magnetism, the magnetism is diluted in proportion to the addition amount, and the saturation magnetic flux density decreases. Also, the reduction becomes extremely difficult, probably due to the formation of a hardly reducible substance by the sintering inhibitor and iron.

以上の被着処理が終了した後、当該処理物を濾過し、
十分に洗浄して乾燥する。次いで、非還元性雰囲気中、
例えば、空気中あるいは窒素等の不活性ガス中で熱処理
を行う。この熱処理で、α−FeOOHの脱水反応が起こ
り、α−Fe2O3を主体とする酸化物に変化し、還元時に
おける粒子の形崩れを防止する効果を有するようにな
る。熱処理の温度は500〜850℃が好ましく、温度が低い
場合には熱処理の効果がなく、また高すぎる場合には、
熱処理の段階で粒子の形状が変化して、金属磁性粉末の
特性が低下する。
After the above deposition process is completed, the processed material is filtered,
Wash and dry thoroughly. Then, in a non-reducing atmosphere,
For example, the heat treatment is performed in air or an inert gas such as nitrogen. In this heat treatment, a dehydration reaction of α-FeOOH occurs, which changes to an oxide mainly composed of α-Fe 2 O 3 , and has an effect of preventing the shape of particles during reduction. The temperature of the heat treatment is preferably 500 to 850 ° C. If the temperature is low, there is no effect of the heat treatment, and if the temperature is too high,
The shape of the particles changes during the heat treatment, and the characteristics of the metal magnetic powder deteriorate.

次いで、当該処理物を還元反応器中に仕込み、水素気
流下で300〜600℃の温度範囲で、常法により還元するの
であるが、還元温度が低すぎると反応時間が長くなり、
経済的ではない。また温度が高い場合は、反応時間は短
くなるが、金属磁性粉末が焼結し、保磁力及び角型比を
低下をきたし、さらに媒体にした時のノイズレベルが高
いものになってしまう。
Next, the treated product is charged into a reduction reactor, and reduced by a conventional method in a temperature range of 300 to 600 ° C. under a stream of hydrogen.If the reduction temperature is too low, the reaction time becomes longer,
Not economic. When the temperature is high, the reaction time is shortened, but the metal magnetic powder is sintered, the coercive force and the squareness ratio are reduced, and the noise level when the medium is used becomes high.

還元後は、還元反応器を冷却し、窒素と空気の混合ガ
スを流す等常法により金属磁性粉末を安定化して系外へ
取り出す。
After reduction, the reduction reactor is cooled, and the metal magnetic powder is stabilized and taken out of the system by a conventional method such as flowing a mixed gas of nitrogen and air.

以上により、本発明の針状性が良く、分散性に優れ、
角型比の良い金属磁性粉末が製造される。
As described above, the needle-like property of the present invention is good, and the dispersibility is excellent.
A metal magnetic powder having a good squareness ratio is produced.

〔実施例〕〔Example〕

次に本発明を実施例を以て説明する。 Next, the present invention will be described with reference to examples.

実施例−1 鉄に対し、バリウム換算で1.0原子%を含むように、
塩化バリウム(BaCl2・2H2O)146.6gを添加させて得ら
れた塩化第一鉄0.6mol/l水溶液100lを、あらかじめ反応
器中に準備しておいた1.8mol/lのNaOH水溶液200l中に窒
素ガスを流し、攪拌しながら加え、アルカリ性の懸濁液
の生成反応を行った。
Example-1 In order to contain 1.0 atomic% of barium with respect to iron,
100 l of a 0.6 mol / l aqueous solution of ferrous chloride obtained by adding 146.6 g of barium chloride (BaCl 2 .2H 2 O) was added to 200 l of a 1.8 mol / l aqueous NaOH solution previously prepared in a reactor. A nitrogen gas was flowed into the mixture, and the mixture was added with stirring to carry out a reaction for forming an alkaline suspension.

該懸濁液に温度50℃において、毎分100lの空気を7時
間通気して、バリウムを含有する針状晶α−FeOOHを得
た。
At a temperature of 50 ° C., 100 liters of air per minute was passed through the suspension for 7 hours to obtain barium-containing acicular α-FeOOH.

このものを常法により濾別、水洗して湿潤ケーキを得
た(これを原料Aとする)。
This was separated by filtration and washed with water by a conventional method to obtain a wet cake (this was used as a raw material A).

このバリウムを含有する針状晶α−FeOOH粒子は電子
顕微鏡観察の結果、長軸の平均値0.55μm、平均の針状
比(長軸/短軸)28の針状性に優れるものであった。ま
たこのもののBET法による比表面積値は68m2/gであっ
た。添加したバリウムは蛍光X線分析でα−FeOOH中に
検出され、バリウムが針状晶α−FeOOH中に固溶してい
ることを確認した。
As a result of electron microscopic observation, the barium-containing acicular α-FeOOH particles were found to have excellent acicularity with an average major axis of 0.55 μm and an average acicular ratio (major axis / minor axis) of 28. . The specific surface area of this product measured by the BET method was 68 m 2 / g. The added barium was detected in α-FeOOH by X-ray fluorescence analysis, and it was confirmed that barium was dissolved in the needle crystal α-FeOOH.

このバリウムを含有する針状晶α−FeOOH 500g(純分
換算)を100lの蒸留水に入れて良く分散した。これに別
に用意した塩化ニッケルと塩化コバルトの各0.28モルを
1の蒸留水に溶解した水溶液を加えて、30分間攪拌し
た。次いで2NのNaOH水溶液を1時間かけて滴下してpH=
8まで中和し、1時間攪拌を続けた。次に、0.34モルの
塩化アルミニウムを2lの蒸留水に溶解した水溶液を加え
て良く攪拌し、これにシリカ換算で0.11モルの水ガラス
を2lの蒸留水に溶解した水溶液を1時間かけて滴下し
た。この後、懸濁液のpHが8になるまで2NのNaOH水溶液
を滴下し、そのまま1時間攪拌を続けた。被着処理の終
了したα−FeOOHを濾過、水洗、乾燥してニッケル及び
コバルト化合物とアルミニウム及びシリカ化合物被着α
−FeOOHを得た。
500 g of this barium-containing acicular α-FeOOH (in terms of pure content) was put into 100 l of distilled water and dispersed well. An aqueous solution obtained by dissolving separately prepared 0.28 mol of each of nickel chloride and cobalt chloride in 1 distilled water was added thereto, followed by stirring for 30 minutes. Then, a 2N aqueous NaOH solution was added dropwise over 1 hour, and pH =
Neutralization to 8 and continued stirring for 1 hour. Next, an aqueous solution in which 0.34 mol of aluminum chloride was dissolved in 2 liters of distilled water was added, and the mixture was stirred well, and an aqueous solution in which 0.11 mol of water glass in terms of silica was dissolved in 2 liters of distilled water was added dropwise over 1 hour. . Thereafter, a 2N aqueous solution of NaOH was added dropwise until the pH of the suspension became 8, and stirring was continued for 1 hour. The α-FeOOH after the deposition process is filtered, washed with water, and dried to deposit a nickel and cobalt compound and an aluminum and silica compound.
-FeOOH was obtained.

次に、該被着α−FeOOHを650℃の電気炉中で2時間加
熱処理し、続いて、該熱処理物を水素ガス気流中で460
℃の温度で5時間還元した。還元終了後、反応系のガス
を窒素ガスに変えて、室温まで冷却した後、空気を徐々
に送入して該還元物を安定化して金属磁性粉末を得た。
該金属磁性粉末を試料振動型磁力計(東英工業製VSM)
により、最大磁場10KGで磁気測定したところ、保磁力
(Hc)=1603 Oe、飽和磁束密度(σs)=137.0emu/
g、角型比(σr/σs)=0.525であった。BET値は56.5m
2/gであった。また透過電子顕微鏡(TEM)により該金属
磁性粉末の粒子形態を観察したところ、焼結のない針状
性の優れた粒子であった。
Next, the deposited α-FeOOH is subjected to a heat treatment in an electric furnace at 650 ° C. for 2 hours.
Reduction at a temperature of 5 ° C. for 5 hours. After completion of the reduction, the gas in the reaction system was changed to nitrogen gas and cooled to room temperature, and then air was gradually fed in to stabilize the reduced product to obtain a metal magnetic powder.
Sample vibration type magnetometer (VSM manufactured by Toei Kogyo Co., Ltd.)
According to the measurement of the magnetic field at a maximum magnetic field of 10KG, the coercive force (Hc) = 1603 Oe and the saturation magnetic flux density (σs) = 137.0 emu /
g, squareness ratio (σr / σs) = 0.525. BET value is 56.5m
2 / g. Observation of the particle morphology of the metal magnetic powder with a transmission electron microscope (TEM) revealed that the particles were excellent in needle-like properties without sintering.

次いで、該金属磁性粉末を塩化ビニル−酢酸ビニル共
重合樹脂を溶解した溶液に、分散剤、滑剤、研磨剤と共
に入れて分散し、これにウレタンエラストマーを添加し
て分散を十分に行った。該分散塗料に架橋剤を添加して
十分混合した後、グラビアコーターにより14μmのPET
フィルム上に塗布し、磁性塗料が未乾燥の状態で、2500
ガウスの磁石で磁場配向処理を行い、さらに乾燥後スー
パーカレンダー処理を行って、8mm幅にスリットして8
ミリビデオ用テープを製造した。該テープの磁気特性を
VSMにより最大磁場10KGで測定したところ、Hc=1570 O
e、Br=3420 G、Bm=3931 G、Br/Bm=0.87で極めて角型
比の良好なものであった。
Next, the metal magnetic powder was dispersed in a solution in which a vinyl chloride-vinyl acetate copolymer resin was dissolved together with a dispersing agent, a lubricant and an abrasive, and a urethane elastomer was added to the dispersion to sufficiently disperse. After adding a cross-linking agent to the dispersion paint and mixing well, a 14 μm PET by a gravure coater.
Apply on a film and leave the magnetic paint undried, 2500
The magnetic field orientation treatment was performed with a Gaussian magnet, and after drying, a super calender treatment was performed.
Millivideo tape was manufactured. The magnetic properties of the tape
When measured with VSM at a maximum magnetic field of 10KG, Hc = 1570 O
e, Br = 3420 G, Bm = 3931 G, Br / Bm = 0.87, indicating that the squareness ratio was extremely good.

実施例−2 実施例−1で製造したバリウムを含有する針状晶α−
FeOOH(原料A)500g(純分換算)を100lの蒸留水に入
れて良く分散した。これに、別に用意した塩化ニッケル
と塩化コバルトの各0.45モルを1の蒸留水に溶解した
水溶液を加えて30分間攪拌した。次いで2NのNaOH水溶液
を1時間かけて滴下してpH=8まで中和し、1時間攪拌
を続けた。次に、シリカ換算で0.26モルの水ガラスを2l
の蒸留水に溶解した水溶液を加えて十分に攪拌し、これ
に2NのHCl水溶液を滴下し、1時間でpH=8になるよう
に中和して、シリカ化合物を被着させた。中和終了後、
1時間攪拌を続けてから、該被着α−FeOOHを濾過、水
洗、乾燥してニッケル化合物及びコバルト化合物及びシ
リカ化合物を被着させたα−FeOOHを得た。
Example-2 Barium-containing acicular crystal α- produced in Example-1
500 g of FeOOH (raw material A) (in terms of pure content) was put into 100 l of distilled water and dispersed well. An aqueous solution prepared by dissolving separately prepared 0.45 mol of nickel chloride and cobalt chloride in 1 distilled water was added thereto, followed by stirring for 30 minutes. Then, a 2N aqueous NaOH solution was added dropwise over 1 hour to neutralize to pH = 8, and stirring was continued for 1 hour. Next, 2 l of 0.26 mol water glass in terms of silica
An aqueous solution dissolved in distilled water was added thereto, and the mixture was sufficiently stirred. A 2N HCl aqueous solution was added dropwise thereto, and the mixture was neutralized to pH = 8 in 1 hour, and a silica compound was applied. After neutralization,
After stirring for 1 hour, the deposited α-FeOOH was filtered, washed with water, and dried to obtain α-FeOOH on which the nickel compound, the cobalt compound and the silica compound were deposited.

次に、該被着α−FeOOHを600℃の電気炉中で2時間加
熱処理し、続いて該熱処理物を水素ガス気流中で450℃
の温度で5時間還元した。還元終了後は実施例−1と同
様に安定化し、金属磁性粉末を得た。該金属磁性粉末の
磁気特性は、Hc=1635 Oe、σs=139.0 emu/g、σr/σ
s=0.530であった。BET値は54.2m2/gであった。実施例
−1と同様にテープ化した時の磁気特性は、Hc=1590 O
e、Br=3551 G、Bm=4105 G、Br/Bm=0.865であり、実
施例−1と同様優れた角型比であった。
Next, the deposited α-FeOOH is heat-treated in an electric furnace at 600 ° C. for 2 hours, and then the heat-treated product is heated at 450 ° C. in a stream of hydrogen gas.
For 5 hours. After completion of the reduction, stabilization was performed in the same manner as in Example 1, and a metal magnetic powder was obtained. The magnetic properties of the metal magnetic powder were as follows: Hc = 1635 Oe, σs = 139.0 emu / g, σr / σ
s = 0.530. The BET value was 54.2 m 2 / g. The magnetic properties when taped in the same manner as in Example 1 were Hc = 1590 O
e, Br = 3551 G, Bm = 4105 G, Br / Bm = 0.865, and excellent squareness ratio as in Example-1.

実施例−3 実施例−1で製造した原料Aを使用し、実施例−1と
同じ方法で0.5原子%のニッケル化合物(塩化ニッケル
使用)を被着させ、次いで0.56モルの塩化アルミニウム
を2lの蒸留水に溶解した水溶液を加えて十分攪拌した。
これに2NのNaOH水溶液を1時間かけて滴下してpH=8.5
にし、攪拌を1時間続けた。その後、濾過、水洗、乾燥
し、700℃の電気炉中で2時間熱処理し、水素気流下440
℃で5時間還元した。実施例−1と同様に安定化し、金
属磁性粉末を得た。該金属磁性粉末の磁気特性は、Hc=
1545 Oe、σs=128.0 emu/g、σr/σs=0.524であっ
た。BET値は53.8m2/gであった。実施例−1と同様にテ
ープ化した時の磁気特性は、Hc=1530 Oe、Br=3381
G、Bm=3900 G、Br/Bm=0.876であり、実施例−1,2と同
様、極めて角型比の良好なものであった。
Example 3 Using the raw material A prepared in Example 1, a nickel compound of 0.5 atomic% (using nickel chloride) is applied in the same manner as in Example 1, and then 0.56 mol of aluminum chloride is added to 2 liters. An aqueous solution dissolved in distilled water was added and sufficiently stirred.
A 2N aqueous solution of NaOH was added dropwise over 1 hour, and the pH was adjusted to 8.5.
And stirring was continued for 1 hour. Then, it is filtered, washed with water, dried, and heat-treated in an electric furnace at 700 ° C. for 2 hours.
Reduced at 5 ° C for 5 hours. It was stabilized in the same manner as in Example 1 to obtain a metal magnetic powder. The magnetic property of the metal magnetic powder is Hc =
1545 Oe, σs = 128.0 emu / g, and σr / σs = 0.524. The BET value was 53.8m 2 / g. The magnetic properties when taped were as in Example-1: Hc = 1530 Oe, Br = 3381
G, Bm = 3900 G, Br / Bm = 0.876, as in Examples 1-1 and 2, the squareness ratio was extremely good.

実施例−4 鉄に対し、バリウム換算で0.5原子%と、ニッケル換
算で3.0原子%を含むように、塩化バリウム(BaCl2・2
H2O)73.3gと塩化ニッケル(NiCl2・6H2O)214gを添加
させて得られる塩化第一鉄0.6モル/lの水溶液100lを、
あらかじめ反応器中に準備しておいた1.8モル/lのNaOH
水溶液200l中に窒素ガスを流し、攪拌しながら加え、ア
ルカリ性の懸濁液の生成反応を行った。該懸濁液に温度
45℃において、毎分100lの空気を6時間通気してバリウ
ムとニッケルを含有する針状晶α−FeOOHを得た。この
ものを常法により濾別、水洗して湿潤ケーキを得た(こ
れを原料Bとする)。このバリウムとニッケルを含有す
る針状晶α−FeOOH粒子は電子顕微鏡観察の結果、長軸
の平均値0.49μm、平均の針状比(長軸/短軸)23の針
状性に優れるものであった。またこのもののBET法によ
る比表面積値は63m2/gであった。
Example-4 Barium chloride (BaCl 2 .2) was added so that it contained 0.5 atomic% in terms of barium and 3.0 atomic% in terms of nickel with respect to iron.
H 2 O) 73.3 g and nickel chloride (NiCl 2 .6H 2 O) 214 g obtained by adding 100 mol of an aqueous solution of ferrous chloride 0.6 mol / l,
1.8 mol / l NaOH previously prepared in the reactor
Nitrogen gas was flowed into 200 l of the aqueous solution, and the mixture was added with stirring to perform an alkaline suspension generation reaction. Temperature to the suspension
At 45 ° C., 100 l / min of air were passed through for 6 hours to obtain needle-like α-FeOOH containing barium and nickel. This was separated by filtration and washed with water by a conventional method to obtain a wet cake (this was used as raw material B). The needle-like α-FeOOH particles containing barium and nickel were found to have excellent needle-like properties with an average major axis value of 0.49 μm and an average needle-like ratio (major axis / minor axis) of 23 by electron microscopic observation. there were. The specific surface area of this product by the BET method was 63 m 2 / g.

このα−FeOOH中のバリウム及びニッケルを蛍光線で
分析したところ、両元素共検出され、バリウム及びニッ
ケルが針状晶α−FeOOH中に固溶していることを確認し
た。
When barium and nickel in the α-FeOOH were analyzed with a fluorescent light, both elements were detected, and it was confirmed that barium and nickel were dissolved in the needle α-FeOOH.

次に、該α−FeOOHに実施例−1と同じ方法で、コバ
ルト(塩化コバルト使用)0.28モルを被着させ、次いで
シリカ(水ガラス使用)を0.26モル被着させて、濾過、
水洗、乾燥させて、電気炉中600℃で2時間加熱処理し
た。該熱処理物を水素気流下450℃の温度で5時間還元
した。還元終了後、実施例−1と同じ方法で安定化して
金属磁性粉末を得た。該金属磁性粉末の磁気特性は、Hc
=1647 Oe、σs=134.0 emu/g、σr/σs=0.531であ
り、BET値は52.0m2/gであった。実施例−1と同じ方法
で製造したテープの磁気特性は、Hc=1604 Oe、Br=347
6 G、Bm=4018 G、Br/Bm=0.865であり、角型比の優れ
たものであった。
Next, in the same manner as in Example 1, 0.28 mol of cobalt (using cobalt chloride) was applied to the α-FeOOH, and then 0.26 mol of silica (using water glass) was applied to the α-FeOOH, followed by filtration.
It was washed with water, dried and heat-treated at 600 ° C. for 2 hours in an electric furnace. The heat-treated product was reduced under a hydrogen stream at a temperature of 450 ° C. for 5 hours. After the reduction was completed, the powder was stabilized in the same manner as in Example 1 to obtain a metal magnetic powder. The magnetic properties of the metal magnetic powder are Hc
= 1647 Oe, σs = 134.0 emu / g, σr / σs = 0.331, and the BET value was 52.0 m 2 / g. The magnetic properties of the tape manufactured by the same method as in Example 1 were as follows: Hc = 1604 Oe, Br = 347.
6 G, Bm = 4018 G, and Br / Bm = 0.865, indicating that the squareness ratio was excellent.

実施例−5 実施例−4で製造したバリウム及びニッケル化合物を
含有する針状晶α−FeOOH(原料B)に、鉄に対してシ
リカ化合物を1.8原子%とアルミニウム化合物を9.0原子
%をシリカ化合物の上にアルミニウム化合物の順に中和
法で被着させた。濾過、水洗、乾燥後、電気炉中650℃
で2時間熱処理し、水素気流下470℃で5時間還元し
た。
Example-5 The needle compound α-FeOOH containing the barium and nickel compounds produced in Example-4 (raw material B) was added with 1.8 atomic% of a silica compound and 9.0 atomic% of an aluminum compound with respect to iron to a silica compound. Was applied in the order of aluminum compounds by a neutralization method. After filtration, washing and drying, 650 ° C in an electric furnace
At 470 ° C. for 5 hours under a hydrogen stream.

得られた金属磁性粉末の磁気特性及びBET法による比
表面積値、並びにテープにした時の磁気特性を表−3に
示した。
Table 3 shows the magnetic properties of the obtained metal magnetic powder, the specific surface area measured by the BET method, and the magnetic properties when formed into a tape.

尚、この後の実施例、比較例で使用した原料α−FeOO
Hの製造条件及び生成物のBET法による比表面積値、平均
長軸の寸法、平均の軸比を表−1にまとめて示した。同
様に各実施例、比較例の被着のために添加した金属化合
物の種類と量、熱処理条件、還元条件を表−2にまとめ
て示した。
The raw material α-FeOO used in the following Examples and Comparative Examples
Table 1 summarizes the production conditions of H, the specific surface area of the product by the BET method, the average major axis dimension, and the average axial ratio. Similarly, Table 2 summarizes the types and amounts of metal compounds added for deposition in each of the examples and comparative examples, heat treatment conditions, and reduction conditions.

実施例−6 実施例−1と同じ方法で、鉄に対してバリウム換算で
3.0原子%のバリウム化合物を含有する針状晶α−FeOOH
を製造した(このものを原料Cとする)。
Example-6 In the same manner as in Example-1, barium was converted to iron.
Acicular α-FeOOH containing 3.0 atomic% barium compound
(This is referred to as raw material C).

この原料Cに、鉄に対して15原子%のニッケル化合物
と4.7原子%のシリカ化合物を被着させ、濾過、水洗、
乾燥後、600℃の電気炉中で2時間熱処理し、水素気流
下440℃で5時間還元した。得られた金属磁性粉末の磁
気特性及びBET法による比表面積値、並びにテープにし
た時の磁気特性を表−3に示した。
This raw material C is coated with 15 atomic% of a nickel compound and 4.7 atomic% of a silica compound with respect to iron, filtered, washed with water,
After drying, it was heat-treated in an electric furnace at 600 ° C. for 2 hours and reduced at 440 ° C. for 5 hours under a hydrogen stream. Table 3 shows the magnetic properties of the obtained metal magnetic powder, the specific surface area measured by the BET method, and the magnetic properties when formed into a tape.

実施例−7 原料Cに、ニッケル化合物を鉄に対して3.0原子%と
コバルト化合物を鉄に対して12.0原子%被着させ、さら
にその上に実施例−1と同じ方法でシリカ化合物を鉄に
対して2.0原子%、アルミニウム化合物を6.0原子%被着
させた。以下、表−2に示す条件で処理した。得られた
金属磁性粉末の磁気特性及びBET法による比表面積値、
並びにテープにした時の磁気特性を表−3に示した。
Example -7 A nickel compound of 3.0 atomic% with respect to iron and a cobalt compound of 12.0 atomic% with respect to iron were applied to the raw material C, and a silica compound was further applied to iron in the same manner as in Example-1. On the other hand, 2.0 atomic% of the aluminum compound and 6.0 atomic% of the aluminum compound were applied. Hereinafter, processing was performed under the conditions shown in Table-2. Magnetic properties of the obtained metal magnetic powder and specific surface area value by BET method,
Table 3 shows the magnetic properties of the tape.

実施例−8 原料Cにコバルト化合物を鉄に対して3.0原子%被着
させ、該被着α−FeOOH懸濁液に水ガラスとアルミン酸
ナトリウムの混合水溶液を加え、十分攪拌した後、これ
に2NのHCl水溶液を滴下してpH=8.0とし、シリカ化合物
を鉄に対して2.0原子%、アルミニウム化合物を5.0原子
%被着させた。以下、表−2に示す条件で処理した。得
られた金属磁性粉末の磁気特性及びBET法による比表面
積値、並びにテープにした時の磁気特性を表−3に示し
た。
Example -8 The material C was coated with a cobalt compound at 3.0 atomic% based on iron, and a mixed aqueous solution of water glass and sodium aluminate was added to the coated α-FeOOH suspension, and the mixture was sufficiently stirred. A 2N HCl aqueous solution was added dropwise to adjust the pH to 8.0, and the silica compound and the aluminum compound were deposited on 2.0 atomic% and 5.0 atomic% of iron, respectively. Hereinafter, processing was performed under the conditions shown in Table-2. Table 3 shows the magnetic properties of the obtained metal magnetic powder, the specific surface area measured by the BET method, and the magnetic properties when formed into a tape.

比較例−1 鉄に対し、ニッケル換算で、3.0原子%含むように、
塩化ニッケル(NiCl2・6H2O)214gを添加させて得られ
た塩化第一鉄0.6モル/lの水溶液100lをあらかじめ反応
器中に準備しておいた1.8モル/lのNaOH水溶液200l中に
窒素ガスを流し、攪拌しながら加え、アルカリ性の懸濁
液の生成反応を行った。該懸濁液に温度45℃において毎
分100lの空気を6時間通気して、ニッケル化合物を含有
する針状晶α−FeOOHを得た(これを原料Dとする)。
Comparative Example-1 In order to contain 3.0 atomic% in terms of nickel with respect to iron,
Aqueous NaOH solution 200l of 1.8 mol / l that had been prepared in advance reactor solution 100l of ferrous chloride 0.6 mol / l, obtained by adding nickel (NiCl 2 · 6H 2 O) 214g chloride Nitrogen gas was flowed and the mixture was added with stirring to carry out a reaction for forming an alkaline suspension. Air was passed through the suspension at a temperature of 45 ° C. at a rate of 100 l / min for 6 hours to obtain needle-like crystals α-FeOOH containing a nickel compound (this is referred to as “raw material D”).

次に、このニッケル化合物を含有する針状晶α−FeOO
Hの表面に、実施例と同じ方法でコバルト化合物を鉄に
対して5.0原子%被着させ、次いで、シリカ化合物を鉄
に対して4.7原子%被着させた。以下、表−2に示す条
件で処理した。得られた金属磁性粉末の磁気特性及びBE
T法による比表面積値、並びにテープにした時の磁気特
性を表−3に示した。
Next, acicular crystals containing this nickel compound α-FeOO
On the surface of H, a cobalt compound was deposited at 5.0 atomic% on iron in the same manner as in the example, and then a silica compound was deposited at 4.7 atomic% on iron. Hereinafter, processing was performed under the conditions shown in Table-2. Magnetic properties and BE of the obtained metal magnetic powder
Table 3 shows the specific surface area by the T method and the magnetic properties of the tape.

このものは実施例−4と、金属磁性粉末の金属組成と
しては比較出来るものであり、テープの角型比も悪い数
値ではない。しかし、実施例に比較すると劣るものであ
る。
This can be compared with Example-4 as the metal composition of the metal magnetic powder, and the squareness ratio of the tape is not a bad value. However, it is inferior to the examples.

比較例−2 原料Dの表面に、実施例−1と同じ方法でニッケル、
コバルト、シリカ、アルミニウムの各化合物を、鉄に対
して夫々2.0、5.0、2.0、6.0原子%被着させた。以下、
表−2に示す条件で処理した。得られた金属磁性粉末の
磁気特性及びBET法による比表面積値、並びにテープに
した時の磁気特性を表−3に示した。
Comparative Example-2 Nickel was formed on the surface of the raw material D in the same manner as in Example-1.
Cobalt, silica, and aluminum compounds were deposited at 2.0, 5.0, 2.0, and 6.0 atomic percent, respectively, on iron. Less than,
Processing was performed under the conditions shown in Table-2. Table 3 shows the magnetic properties of the obtained metal magnetic powder, the specific surface area measured by the BET method, and the magnetic properties when formed into a tape.

このものは、実施例−1と金属磁性粉末の金属組成と
しては比較できるものであるが、テープの角型比は劣る
ものであった。
This was comparable to the metal composition of Example 1 and the metal magnetic powder, but the tape squareness ratio was inferior.

比較例−3 原料Dの表面に、実施例−2と同じ方法でニッケル、
コバルト、シリカ化合物を、鉄に対して5.0、8.0、4.7
原子%被着させた。以下、表−2に示す条件で処理し
た。得られた金属磁性粉末の磁気特性及びBET法による
比表面積値、並びにテープにした時の磁気特性を表−3
に示した。
Comparative Example-3 Nickel was applied on the surface of the raw material D in the same manner as in Example-2.
Cobalt, silica compounds, iron, 5.0, 8.0, 4.7
Atomic% deposited. Hereinafter, processing was performed under the conditions shown in Table-2. Table 3 shows the magnetic properties of the obtained metal magnetic powder, the specific surface area value by the BET method, and the magnetic properties when a tape was formed.
It was shown to.

このものは、実施例−2と金属磁性粉末の金属組成と
しては比較できるものであるが、テープの角型比は劣る
ものであった。
This was comparable to Example-2 as the metal composition of the metal magnetic powder, but the tape squareness ratio was inferior.

比較例−4 鉄に対し、ニッケル換算で、3.0原子%と、亜鉛換算
で2.5原子%を含むように、塩化ニッケルと塩化亜鉛を
添加させて得られた塩化第一鉄0.5モル/lの水溶液100l
をあらかじめ反応器中に準備しておいた1.8モル/lのNaO
H水溶液200l中に窒素ガスを流し、攪拌しながら加え、
アルカリ性の懸濁液の生成反応を行った。該懸濁液に温
度45℃において毎分100lの空気を6時間通気して、ニッ
ケル及び亜鉛化合物を含有する針状晶α−FeOOHを得
た。このものを常法により濾別、水洗して湿潤ケーキを
得た(これを原料Eとする)。
Comparative Example-4 0.5 mol / l of an aqueous solution of ferrous chloride obtained by adding nickel chloride and zinc chloride so as to contain 3.0 atomic% in terms of nickel and 2.5 atomic% in terms of zinc with respect to iron. 100l
1.8 mol / l NaO previously prepared in the reactor
Nitrogen gas is flowed into 200 liters of H aqueous solution and added with stirring.
An alkaline suspension formation reaction was performed. Air was passed through the suspension at a temperature of 45 ° C. at 100 l / min for 6 hours to obtain needle-like α-FeOOH containing nickel and zinc compounds. This was separated by filtration and washed with water by a conventional method to obtain a wet cake (this was used as raw material E).

このニッケル及び亜鉛化合物を含有する針状晶α−Fe
OOHを電子顕微鏡で観察したところ、非常に細かい粒子
が束状になったものであった。この束状粒子の平均長軸
長は約0.44μmであり、束状粒子であるため、短軸長が
測定できなかったが、針状性の良い粒子であった。また
BET法による比表面積は70.0m2/gであり微細な粒子であ
った。
Acicular crystals α-Fe containing nickel and zinc compounds
Observation of OOH by an electron microscope revealed that very fine particles were bundled. The average major axis length of the bundled particles was about 0.44 μm. Since the particles were bundled, the short axis length could not be measured, but the particles had good needle-like properties. Also
The specific surface area by the BET method was 70.0 m 2 / g, and the particles were fine.

次に、該α−FeOOH表面に、鉄に対して、5.0原子%の
コバルト化合物と、4.7原子%のシリカ化合物を被着さ
せた。以下、表−2に示す条件で処理した。得られた金
属磁性粉末の磁気特性及びBET法による比表面積値、並
びにテープにした時の磁気特性を表−3に示した。
Next, on the surface of the α-FeOOH, a cobalt compound of 5.0 atomic% and a silica compound of 4.7 atomic% with respect to iron were applied. Hereinafter, processing was performed under the conditions shown in Table-2. Table 3 shows the magnetic properties of the obtained metal magnetic powder, the specific surface area measured by the BET method, and the magnetic properties when formed into a tape.

このものは、金属磁性粉末の金属組成としては、実施
例−4と比較出来るもので、亜鉛の効果で良い角型比を
示しているが、実施例の数値には及ばないものであっ
た。
The metal composition of the metal magnetic powder was comparable to that of Example-4, and showed a good squareness ratio due to the effect of zinc, but was below the numerical value of the example.

比較例−5 原料Eに、鉄に対して1.8原子%のシリカ化合物と、
9.0原子%のアルミニウム化合物を実施例−5と同じ方
法で被着させた。以下、表−2に示す条件で処理した。
得られた金属磁性粉末の磁気特性及びBET法による比表
面積値、並びにテープにした時の磁気特性を表−3に示
した。
Comparative Example-5 A raw material E was provided with a 1.8 atomic% silica compound with respect to iron,
9.0 atomic% of an aluminum compound was deposited in the same manner as in Example-5. Hereinafter, processing was performed under the conditions shown in Table-2.
Table 3 shows the magnetic properties of the obtained metal magnetic powder, the specific surface area measured by the BET method, and the magnetic properties when formed into a tape.

このものは、金属磁性粉末の金属組成としては、実施
例−5と比較出来るものであるが、テープの角型比は実
施例には及ばないものであった。
Although the metal composition of the metal magnetic powder was comparable to that of Example-5, the squareness ratio of the tape was inferior to that of Example.

〔発明の効果〕 実施例、比較例で明らかなように、本発明の方法で製
造した金属磁性粉末は、微細でありながら、分散性と配
向性に優れ、テープにした時の角型比が極めて優れたも
のである。
[Effects of the Invention] As is clear from the examples and comparative examples, the metal magnetic powder produced by the method of the present invention, while being fine, has excellent dispersibility and orientation, and has a squareness ratio when formed into a tape. It is very good.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 遠藤 盈 群馬県渋川市金井425番地 関東電化工 業株式会社研究開発センター内 (56)参考文献 特開 昭57−5802(JP,A) 特開 昭56−169708(JP,A) 特開 昭58−159313(JP,A) 特開 昭58−159312(JP,A) 特公 平1−22204(JP,B2) 特公 昭58−37363(JP,B2) (58)調査した分野(Int.Cl.6,DB名) B22F 9/22 G11B 5/842 H01F 1/06 ────────────────────────────────────────────────── ─── Continuing from the front page (72) Inventor Ei Endo 425 Kanai, Shibukawa-shi, Gunma Research and Development Center, Kanto Denka Kogyo Co., Ltd. (56) References JP-A-57-5802 (JP, A) JP-A-58-159313 (JP, A) JP-A-58-159312 (JP, A) JP-B 1-222204 (JP, B2) JP-B-58-37363 (JP, A) B2) (58) Field surveyed (Int.Cl. 6 , DB name) B22F 9/22 G11B 5/842 H01F 1/06

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】塩化第一鉄水溶液をアルカリで中和してpH
=10以上のアルカリ性懸濁液とし、該懸濁液に酸素含有
ガスを通気して酸化することにより針状晶α−FeOOH粒
子を生成させる金属磁性粉末の製造方法において、前記
塩化第一鉄水溶液、あるいは酸素含有ガスを通気する前
のアルカリ性懸濁液中に水溶性バリウム塩を添加してお
き、次いで酸素含有ガスを通気してバリウムを含有する
針状性に優れるα−FeOOHを生成させ、次に、該バリウ
ム化合物を含有する針状晶α−FeOOH粒子表面にシリカ
化合物及び/又はアルミニウム化合物を被着させた後、
濾過、水洗、乾燥を行い、次いで非還元性雰囲気中で熱
処理を行い、続いて水素気流下300〜600℃の温度範囲で
加熱還元することを特徴とする金属磁性粉末の製造方
法。
1. A ferrous chloride aqueous solution is neutralized with an alkali to obtain a pH value.
= 10 or more alkaline suspension, and the oxygen-containing gas is passed through the suspension to oxidize it to produce needle-like α-FeOOH particles, the ferrous chloride aqueous solution Alternatively, a water-soluble barium salt is added to the alkaline suspension before passing the oxygen-containing gas, and then the oxygen-containing gas is passed to generate α-FeOOH having excellent needle-like properties containing barium, Next, after a silica compound and / or an aluminum compound are applied to the surface of the needle-like α-FeOOH particles containing the barium compound,
A method for producing a metal magnetic powder, which comprises performing filtration, washing with water, and drying, followed by heat treatment in a non-reducing atmosphere, and subsequently heating and reducing in a hydrogen stream at a temperature in the range of 300 to 600 ° C.
【請求項2】塩化第一鉄水溶液をアルカリで中和してpH
=10以上のアルカリ性懸濁液とし、該懸濁液に酸素含有
ガスを通気して酸化することにより針状晶α−FeOOH粒
子を生成させる金属磁性粉末の製造方法において、前記
塩化第一鉄水溶液、あるいは酸素含有ガスを通気する前
のアルカリ性懸濁液中に水溶性バリウム塩を添加してお
き、次いで酸素含有ガスを通気してバリウムを含有する
針状性に優れるα−FeOOHを生成させ、次に、該バリウ
ム化合物を含有する針状晶α−FeOOH粒子表面にニッケ
ル化合物及び/又はコバルト化合物を被着させ、その上
にシリカ化合物及び/又はアルミニウム化合物を被着さ
せた後、濾過、水洗、乾燥を行い、次いで非還元性雰囲
気中で熱処理を行い、続いて水素気流下300〜600℃の温
度範囲で加熱還元することを特徴とする金属磁性粉末の
製造方法。
2. The ferrous chloride aqueous solution is neutralized with an alkali to obtain a pH value.
= 10 or more alkaline suspension, and the oxygen-containing gas is passed through the suspension to oxidize it to produce needle-like α-FeOOH particles, the ferrous chloride aqueous solution Alternatively, a water-soluble barium salt is added to the alkaline suspension before passing the oxygen-containing gas, and then the oxygen-containing gas is passed to generate α-FeOOH having excellent needle-like properties containing barium, Next, a nickel compound and / or a cobalt compound are applied to the surface of the needle-like α-FeOOH particles containing the barium compound, and a silica compound and / or an aluminum compound are applied thereon, followed by filtration and washing with water. Drying, followed by heat treatment in a non-reducing atmosphere, followed by heat reduction in a hydrogen stream at a temperature in the range of 300 to 600 ° C.
JP2056135A 1990-03-06 1990-03-06 Method for producing metal magnetic powder Expired - Fee Related JP2965606B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2056135A JP2965606B2 (en) 1990-03-06 1990-03-06 Method for producing metal magnetic powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2056135A JP2965606B2 (en) 1990-03-06 1990-03-06 Method for producing metal magnetic powder

Publications (2)

Publication Number Publication Date
JPH03257105A JPH03257105A (en) 1991-11-15
JP2965606B2 true JP2965606B2 (en) 1999-10-18

Family

ID=13018634

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2056135A Expired - Fee Related JP2965606B2 (en) 1990-03-06 1990-03-06 Method for producing metal magnetic powder

Country Status (1)

Country Link
JP (1) JP2965606B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5794755B2 (en) * 2009-05-21 2015-10-14 石原産業株式会社 Infrared reflective material, method for producing the same, and paint and resin composition containing the same

Also Published As

Publication number Publication date
JPH03257105A (en) 1991-11-15

Similar Documents

Publication Publication Date Title
US5645652A (en) Spindle-shaped magnetic iron-based alloy particles containing cobalt and iron as the main ingredients and process for producing the same
WO2000038201A1 (en) Ferromagnetic powder
JP3268830B2 (en) Metal magnetic powder and method for producing the same
JP4182232B2 (en) Ferromagnetic powder
JP3750414B2 (en) Spindle-shaped goethite particle powder, spindle-shaped hematite particle powder, spindle-shaped metal magnetic particle powder containing iron as a main component, and production method thereof
JP2965606B2 (en) Method for producing metal magnetic powder
JPH10340447A (en) Lower layer powder of coated type magnetic recording medium
JP3337046B2 (en) Spindle-shaped metal magnetic particles containing cobalt and iron as main components and method for producing the same
EP0371384B1 (en) Process for producing magnetic iron oxide particles for magnetic recording
US5989516A (en) Spindle-shaped geothite particles
JP3264374B2 (en) Method for producing spindle-shaped iron-based metal magnetic particle powder
JPH107420A (en) Granule of cobalt-coated needle-shaped magnetic oxide of iron
JP3303896B2 (en) Spindle-shaped iron-based metal magnetic particle powder and method for producing the same
JP2885253B2 (en) Method of producing spindle-shaped goethite particles
JP3482177B2 (en) Cobalt-containing magnetic iron oxide powder and magnetic recording medium using the same
JP2735885B2 (en) Method for producing metal magnetic powder for magnetic recording
JP2897794B2 (en) Method for producing cobalt-coated magnetic iron oxide particles
JP3055308B2 (en) Method for producing acicular magnetic iron oxide particles
JP3087808B2 (en) Manufacturing method of magnetic particle powder for magnetic recording
JP2925561B2 (en) Spindle-shaped magnetic iron oxide particles
JP3171223B2 (en) Method for producing acicular magnetic particle powder
JP2935292B2 (en) Method for producing acicular magnetic iron oxide particles
JP2743007B2 (en) Spindle-shaped magnetic iron oxide particles and method for producing the same
JP3141907B2 (en) Method for producing spindle-shaped iron-based metal magnetic particle powder
JP3405748B2 (en) Method for producing metal magnetic powder

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080813

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090813

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees