JPH038083B2 - - Google Patents

Info

Publication number
JPH038083B2
JPH038083B2 JP56111281A JP11128181A JPH038083B2 JP H038083 B2 JPH038083 B2 JP H038083B2 JP 56111281 A JP56111281 A JP 56111281A JP 11128181 A JP11128181 A JP 11128181A JP H038083 B2 JPH038083 B2 JP H038083B2
Authority
JP
Japan
Prior art keywords
acicular
salt
alloy powder
magnetic
mol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56111281A
Other languages
Japanese (ja)
Other versions
JPS5812309A (en
Inventor
Kazuharu Iwasaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP56111281A priority Critical patent/JPS5812309A/en
Publication of JPS5812309A publication Critical patent/JPS5812309A/en
Publication of JPH038083B2 publication Critical patent/JPH038083B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/06Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/065Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder obtained by a reduction

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Hard Magnetic Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は針状磁性合金粉末の製法に関するもの
であり、その針状磁性合金粉末は特に高出力およ
び高密度磁気記録用の磁性材料として適している
ものである。 高出力および高密度磁気記録用の磁性材料とし
ては、飽和磁化(σS)が大きくかつ抗磁力(Hc
が高いことが要求されている。 従来から磁性粉として広く用いられているもの
としては、γ−Fe2O3、Fe3O4あるいはこれらの
固溶体、CrO2またはCo含有酸化鉄系磁性粉など
が挙げられるが、γ−Fe2O3、Fe3O4あるいはこ
れらの固溶体ならびにCrO2は、飽和磁化(σS
が70〜90emu/g、抗磁力(Hc)が250〜600Oe
程度と低く、また、Co含有酸化鉄系磁性粉は、
その抗磁力はHc=600〜1000Oeと高いけれども、
他方飽和磁化(σS)が60〜80emu/gと低く、高
出力および高密度磁気記録用の磁性粉末としては
満足できるものではない。 したがつて、最近では、飽和磁化(σS)が大き
くかつ抗磁力(Hc)の高いいわゆる磁性合金粉
末の開発が盛んに行われている。Fe、Fe−Co、
Fe−Co−Niなどの磁性粉末の製造方法としては
種々のものが提案されているが、その代表的なも
のは、針状含水酸化鉄粒子または針状酸化鉄粒子
を出発物質として、この出発物質を還還元性ガス
中で還元して針状磁性合金粉末を得る乾式還元法
と、強磁性金属の塩を含有する溶液を、次亜リン
酸ナトリウムまたは水素化ホウ素ナトリウムなど
で還元処理してネツクレス状の磁性合金粉末を得
る湿式還元法とがある。 なお、従来の酸素吹き込み法によつてCo含有
ゲータイトを得、これを脱水、加熱および還元し
て針状Fe−Co磁性合金粉末を得る方法が知られ
ている。この方法によつて得られるCo含有ゲー
タイトには枝分れ結晶(双晶)が発生し易く、こ
のようなゲータイトを出発原料として得られる磁
性合金粉末は加熱および還元処理において焼結が
著しく、所望の磁気特性を確保するのが困難であ
る。したがつて、このような磁性粉を用いて作成
した磁気テープは電磁変換特性が劣り好ましくな
い。 本発明は、特に高出力および高密度磁気記録用
に使用しうる磁性材料として好適な針状磁性合金
粉末を提供するものである。本発明に係る方法に
よつて得られる針状磁性合金粉末は、Coおよび
またはNiがドープされた針状磁性合金粉末であ
つて、飽和磁化(σS)が大きくかつ抗磁力(Hc
の高いものである。 本発明に係る製法は、第2鉄塩ならびにCoお
よび/またはNi塩を含む溶液と、強アルカリ溶
液とを混合してCoおよび/またはNi含有水酸化
第2鉄のコロイド状物質を含有する懸濁液を得、
この懸濁液をその沸点以下から30℃までの温度で
熱成してCoおよび/またはNiをドープした針状
ゲータイトを得、これを脱水加熱し330〜450℃の
温度で還元することからなつている。 本発明の方法に使用される第2鉄塩としては、
磁気記録媒体に使用される磁性粒子の出発原料で
ある針状ゲータイトを生成するために使用される
ものであれば何ら限定されるものではなく、例え
ば硫酸第2鉄、塩化第2鉄、硝酸第2鉄などが挙
げられる。この第2鉄塩の使用量は、得られる懸
濁液中の第2鉄イオン濃度が0.40〜0.80モル/リ
ツトルの範囲内になるようにするのが好ましい。
その濃度が低くなりすぎると、結晶が細くなり、
その結晶の長軸が短く耐熱性に乏しいものしか生
成されなく好ましくない。他方、その濃度が高く
なりすぎると、生成する粒子が凝集し易くなり適
当ではない。 また、使用されるCo塩およびNi塩としては、
硫酸、硝酸塩、塩化塩および臭化塩などのハロゲ
ン化などが挙げられる。このCo塩および/また
はNi塩の添加量は、5at%以下であるのがよい。
Co塩およびNi塩を単独で添加する場合には、
Co/Fe+CoおよびNi/Fe+Coがそれぞれ5at%
以下になるように、またCo塩とNi塩とを併用す
る場合にも、Co+Ni/Fe+Co+Niが5at%以下
になるようにする。添加するCo塩および/また
はNi塩の量が多くなると、懸濁液を作成する段
階で完全にドープせず無定形のCoおよび/また
はNi含有コロイドが析出混入してくるので磁性
粉として不適当である。 なお、第2鉄塩とCoおよび/またはNi塩とを
含む液は、それぞれ塩を水などの溶媒に溶解する
ことによつて作成することができる。 更に、強アルカリ溶液として使用される強アル
カリとしては、例えば水酸化ナトリウム、水酸化
カリウム、水酸化リチウム等の水酸化アルカリ金
属などが挙げられる。これらの強アルカリは例え
ば水などの溶媒に溶解して溶液とされる。 本発明において懸濁液を熟成する温度を、その
懸濁液の沸点より低くまた30℃以上の温度にした
のは、熟成温度を沸点以上にすると、Coおよ
び/またはNi含有のα−ヘマタイトが析出して
きて好ましくなく、また低くしすぎると、Coお
よび/またはNi含有ゲータイト粒子の結晶化が
困難になり、かつ、無定形コロイドが混入してき
て好ましくないからである。 また、還元温度については、その温度が高すぎ
れば、得られる金属粒子は焼結し易くなり好まし
くなく、また低すぎれば還元が起らずマグネタイ
トが生成し磁性特性上不適当である。 なお、懸濁液のPH濃度は11.0〜14.0にするのが
よい。PH濃度が高くなりすぎると、生成される
Coおよび/またはNiをドープしたゲータイト粒
子が凝集し易くなり、逆にPH濃度が低くなりすぎ
ると、かかるゲータイト粒子の結晶化の妨げとな
り好ましくない。 また、本発明においては、得られた懸濁液を室
温で保持した状態でCoおよび/またはNi含有水
酸化第2鉄の濃度を均一化するために適当な時間
撹拌して混合するのがよい。このような前処理を
行うことにより熟成終了後のCoおよび/または
Niがドープしたゲータイト粒子の結晶を均一化
することができ好都合である。なお、強磁性金属
の塩を含有する溶液と強アルカリ溶液との混合は
室温で行うのがよいが、それぞれの溶液の添加の
方法は、特に限定されず、例えば強アルカリ溶液
を他方の溶液に滴下してもよいし、またその逆の
添加方法によつてもよい。いずれの添加方法によ
つても粒子状態に大差のない最終生成物が得られ
る。 更に、熟成時間は、熟成温度と関係があり、熟
成温度を高くすれば熟成時間を短縮できるが、生
成するゲータイトの粒子形態に悪影響を及ぼさな
い程度に、熟成生成量を勘案しながら任意に調整
すればよい。 また、本発明に係る方法において得られてCo
および/またはNiをドープした針状ゲータイト
の脱水加熱は常法に従つて行うことができ、次の
還元処理で適用される温度で行えば処理操作上便
利である。また、還元は脱水加熱後、適当な時間
330〜450℃で常法に従つて行なうとよい。 前述したような本発明に係る方法によつて得ら
れる針状磁性合金粉末は、特に飽和磁化(σS)が
150emu/g以上と大きくかつ抗磁力(Hc)が
1000Oe以上と高いものであり、高出力および高
密度磁気記録用の磁性材料として好適なものであ
る。 なお、本発明においてられる針状磁性合金粉末
をCoおよび/またはNiがドープされたものにす
るのは、Coおよび/またはNiをドープさせない
ゲータイトを出発原料として磁性合金粉末を生成
させる場合には、粒子内の結晶成長が不充分とな
り所望の磁気特性を得るのが困難になるので、か
かる困難を排除して、容易にかつ十分な結晶成長
を可能にするためである。 以下、本発明を実施例によつて更に詳細に説明
する。 実施例 1 硫酸第2鉄100gと硫酸コバルト7.39gを蒸留
水に溶解し、それぞれ0.5モル/の硫酸第2鉄
および0.0263モル/の硫酸コバルトの混合溶液
1000mlを準備し、撹拌しながらこれに水酸化ナト
リウム100gを蒸留水に溶解し得た25モル/の
水酸化ナトリウム溶液560mlを滴下してCo含有の
水酸化第2鉄コロイドの懸濁液を作成した。この
母液中のFe3+濃度およびPHはそれぞれ0.321モ
ル/および12.7であつた。なお、Coの添加量は
5at%(Co/Fe+Co)であつた。 得られた母液は、室温12時間撹拌混合した後、
熟成温度100℃で48時間熟成してCo含有針状α−
FeOOHを得た。次に、このα−FeOOHを洗浄
した後、3リツトルの水中で撹拌し、α−
FeOOH粒子を分散させた状態でシランカツプリ
ング剤で表面処理して以後の熱処理過程に於ける
粒子の焼結防止を図つた。表面処理したα−
FeOOHを100℃以下で適当な時間乾燥して後、
大気中において700℃で2時間加熱脱水し、Co含
有のα−Fe2O3粒子を作成し、350℃3時間水素
還元しFe−Co磁性合金粉末を得た。このFe−Co
メタルパウダーを室温およびN2雰囲気中でトル
エンに合金粉末を浸漬した後、室温および大気中
で風乾し針状Fe−Co磁性合金粉末を得た。 実施例 2 硫酸第2鉄100gおよび硫酸コバルト4.35gと
硫酸ニツケル2.89gとを蒸留水に溶解し、それぞ
れ0.5モルの硫酸第2鉄、0.0155モル/の硫
酸コバルトおよび0.0103モル/の硫酸ニツケル
の混合溶液1000mlを準備し、撹拌しながらこれに
水酸化ナトリウム100g蒸留水に溶解して得た2.5
モル/の水酸化ナトリウム溶液585mlを滴下し
て、CoおよびNi含有の水酸化第2鉄コロイドの
懸濁液を作成した。この母液中のFe3+濃度およ
びPHはそれぞれ0.316モル/および13.0であつ
た。なおCoの添加量は3at%(Co/Fe+Co)、
Niの添加量は2at%(Ni/Fe+Ni)であつた。
その後、母液を室温で12時間撹拌混合した後、熟
成温度60℃で72時間熟成して、CoおよびNi含有
の針状α−FeOOHを得た。 この針状α−FeOOHを、実施例1と、同様な
方法で処理して針状Fe−Co−Ni磁性合金粉末を
作成した。 比較例 1 硫酸第1鉄83.4gと硫酸コバルト2.61gを蒸留
水に溶解し、それぞれ0.3モル/の硫酸第1鉄
および0.0093モル/の硫酸コバルトの混合液
1000mlを準備し、N2中の非酸化性雰囲気中で撹
拌しながら、これに水酸化ナトリウム48gを蒸留
水に溶解して得た1.2モル/の水酸化ナトリウ
ム溶液1000mlを滴下して、Co含有の水酸化第1
鉄コロイドの懸濁液を作成した。この母液中の
Co添加量は3at%(Co/Fe+Co)であつた。そ
の後、N2雰囲気中で母液を十分撹拌混合した後、
反応温度50℃で7/分の空気を母液中に通気
し、撹拌混合しながら、反応時間15時間で反応さ
せて、Co含有の針状α−FeOOHを得た。 この針状α−FeOOHを、実施例1と同様な方
法で処理して針状Fe−Co合金粉末を作成した。 比較例 2 硫酸第2鉄150gを蒸留水に溶解し、0.75モ
ル/の硫酸第2鉄溶液1000mlを準備し、撹拌し
ながら、これに水酸化ナトリウム150gを蒸留水
に溶解して得た3.75モル/の水酸化ナトリウム
溶液490mlを滴下して、水酸化第2鉄コロイドの
懸濁液を作成した。この母液中のFe3+濃度およ
びPHはそれぞれ0.503モル/および12.0であつ
た。その後、母液を室温で12時間撹拌混合した
後、熟成温度60℃で24時間熟成して針状α−
FeOOHを得た。 この針状α−FeOOHを、実施例1と同様な方
法で処理して針状Fe−Co合金粉を作成した。 上記実施例および比較例で得たα−FeOOHな
らびに合金粉の諸特性を下表に示す。
The present invention relates to a method for producing acicular magnetic alloy powder, and the acicular magnetic alloy powder is particularly suitable as a magnetic material for high-output and high-density magnetic recording. Magnetic materials for high-output and high-density magnetic recording have large saturation magnetization (σ S ) and coercive force (H c ).
is required to be high. Conventionally widely used magnetic powders include γ-Fe 2 O 3 , Fe 3 O 4 or solid solutions thereof, CrO 2 or Co-containing iron oxide-based magnetic powder, but γ-Fe 2 O 3 , Fe 3 O 4 or their solid solutions as well as CrO 2 have saturation magnetization (σ S )
is 70 to 90 emu/g, coercive force (H c ) is 250 to 600 O e
In addition, Co-containing iron oxide magnetic powder has a low level of
Although its coercive force is as high as H c = 600 to 1000 O e ,
On the other hand, the saturation magnetization (σ S ) is as low as 60 to 80 emu/g, which is not satisfactory as a magnetic powder for high output and high density magnetic recording. Therefore, in recent years, so-called magnetic alloy powders with large saturation magnetization (σ S ) and high coercive force (H c ) have been actively developed. Fe, Fe−Co,
Various methods have been proposed for producing magnetic powders such as Fe-Co-Ni, but a typical method uses acicular hydrated iron oxide particles or acicular iron oxide particles as a starting material. There is a dry reduction method in which a substance is reduced in a reducing gas to obtain acicular magnetic alloy powder, and a solution containing a ferromagnetic metal salt is reduced with sodium hypophosphite or sodium borohydride. There is a wet reduction method to obtain neckless magnetic alloy powder. Note that a method is known in which Co-containing goethite is obtained by a conventional oxygen blowing method, and then dehydrated, heated, and reduced to obtain an acicular Fe--Co magnetic alloy powder. The Co-containing goethite obtained by this method tends to have branched crystals (twins), and the magnetic alloy powder obtained using such goethite as a starting material undergoes significant sintering during heating and reduction treatments, making it difficult to achieve the desired results. It is difficult to ensure the magnetic properties of Therefore, magnetic tapes made using such magnetic powders have poor electromagnetic conversion characteristics and are therefore undesirable. The present invention provides an acicular magnetic alloy powder suitable as a magnetic material that can be used particularly for high-output and high-density magnetic recording. The acicular magnetic alloy powder obtained by the method according to the present invention is an acicular magnetic alloy powder doped with Co and/or Ni, and has a large saturation magnetization (σ S ) and a coercive force (H c ).
It has a high value. The production method according to the present invention involves mixing a solution containing a ferric salt and a Co and/or Ni salt with a strong alkaline solution to produce a suspension containing a colloidal substance of ferric hydroxide containing Co and/or Ni. Obtain a cloudy liquid;
This suspension is thermally formed at a temperature from below its boiling point to 30°C to obtain acicular goethite doped with Co and/or Ni, which is dehydrated and heated and reduced at a temperature of 330 to 450°C. ing. The ferric salts used in the method of the present invention include:
There are no limitations on the materials as long as they are used to produce acicular goethite, which is the starting material for magnetic particles used in magnetic recording media. Examples include ferric sulfate, ferric chloride, and ferric nitrate. Examples include 2 iron. The amount of the ferric salt used is preferably such that the ferric ion concentration in the resulting suspension is within the range of 0.40 to 0.80 mol/liter.
If its concentration becomes too low, the crystals become thinner,
This is not preferable because only crystals with short long axes and poor heat resistance are produced. On the other hand, if the concentration is too high, the particles produced tend to aggregate, which is not appropriate. In addition, the Co salt and Ni salt used are:
Examples include halogenated salts such as sulfuric acid, nitrates, chloride salts, and bromide salts. The amount of Co salt and/or Ni salt added is preferably 5 at% or less.
When adding Co salt and Ni salt alone,
Co/Fe+Co and Ni/Fe+Co are each 5at%
Also, when using Co salt and Ni salt together, make sure that Co+Ni/Fe+Co+Ni is 5 at% or less. If the amount of Co salt and/or Ni salt added is large, the suspension is not completely doped and amorphous Co and/or Ni-containing colloids are precipitated and mixed in, making it unsuitable as a magnetic powder. It is. Note that a liquid containing a ferric salt and a Co and/or Ni salt can be created by dissolving each salt in a solvent such as water. Further, examples of the strong alkali used as the strong alkaline solution include alkali metal hydroxides such as sodium hydroxide, potassium hydroxide, and lithium hydroxide. These strong alkalis are dissolved in a solvent such as water to form a solution. In the present invention, the temperature at which the suspension is aged is lower than the boiling point of the suspension and above 30°C, because when the aging temperature is set above the boiling point, α-hematite containing Co and/or Ni is This is because precipitation occurs, which is undesirable, and if it is too low, it becomes difficult to crystallize Co and/or Ni-containing goethite particles, and amorphous colloids become mixed, which is undesirable. Regarding the reduction temperature, if the temperature is too high, the resulting metal particles tend to sinter, which is undesirable, and if it is too low, reduction does not occur and magnetite is produced, which is inappropriate in terms of magnetic properties. Note that the pH concentration of the suspension is preferably 11.0 to 14.0. When the PH concentration becomes too high, it is produced
Goethite particles doped with Co and/or Ni tend to aggregate, and conversely, if the PH concentration becomes too low, this is undesirable as it impedes crystallization of the goethite particles. In addition, in the present invention, it is preferable to keep the obtained suspension at room temperature and stir it for an appropriate time to make the concentration of Co and/or Ni-containing ferric hydroxide uniform. . By performing such pretreatment, Co and/or
This is advantageous because the crystals of Ni-doped goethite particles can be made uniform. Note that the solution containing the ferromagnetic metal salt and the strong alkaline solution are preferably mixed at room temperature, but the method of adding each solution is not particularly limited. It may be added dropwise or vice versa. Regardless of the addition method, a final product with no significant difference in particle state can be obtained. Furthermore, the ripening time is related to the ripening temperature, and the ripening time can be shortened by increasing the ripening temperature, but it can be arbitrarily adjusted while taking into account the amount of ripened product to the extent that it does not adversely affect the particle morphology of the goethite produced. do it. Moreover, Co obtained by the method according to the present invention
The dehydration and heating of the acicular goethite doped with Ni and/or Ni can be carried out in accordance with a conventional method, and it is convenient for processing operations if it is carried out at a temperature that will be applied in the subsequent reduction treatment. In addition, reduction is carried out for an appropriate period of time after dehydration and heating.
It is preferable to carry out the reaction at 330 to 450°C according to a conventional method. The acicular magnetic alloy powder obtained by the method according to the present invention as described above particularly has a saturation magnetization (σ S ).
It has a large coercive force (H c ) of 150 emu/g or more.
It has a high strength of 1000 Oe or more, and is suitable as a magnetic material for high-output and high-density magnetic recording. The acicular magnetic alloy powder used in the present invention is doped with Co and/or Ni when the magnetic alloy powder is produced using goethite as a starting material which is not doped with Co and/or Ni. This is because crystal growth within the grains becomes insufficient, making it difficult to obtain desired magnetic properties.This is to eliminate such difficulties and enable easy and sufficient crystal growth. Hereinafter, the present invention will be explained in more detail with reference to Examples. Example 1 100g of ferric sulfate and 7.39g of cobalt sulfate were dissolved in distilled water to form a mixed solution of 0.5 mol/0.5 mol/mol/cobalt sulfate and 0.0263 mol/cobalt sulfate, respectively.
Prepare 1000 ml and drop 560 ml of a 25 mol sodium hydroxide solution obtained by dissolving 100 g of sodium hydroxide in distilled water into it while stirring to create a suspension of Co-containing ferric hydroxide colloid. did. The Fe 3+ concentration and PH in this mother liquor were 0.321 mol/and 12.7, respectively. The amount of Co added is
It was 5at% (Co/Fe+Co). The obtained mother liquor was stirred and mixed at room temperature for 12 hours, and then
Co-containing acicular α-
Got FeOOH. Next, after washing this α-FeOOH, it was stirred in 3 liters of water and α-FeOOH was washed.
The surface of the dispersed FeOOH particles was treated with a silane coupling agent to prevent sintering of the particles during the subsequent heat treatment process. Surface treated α-
After drying FeOOH at below 100℃ for an appropriate time,
Co-containing α-Fe 2 O 3 particles were produced by heating and dehydrating at 700°C for 2 hours in the air, and hydrogen reduction was performed at 350°C for 3 hours to obtain Fe-Co magnetic alloy powder. This Fe−Co
After immersing the metal powder in toluene at room temperature and N2 atmosphere, the alloy powder was air-dried at room temperature and in the atmosphere to obtain acicular Fe-Co magnetic alloy powder. Example 2 100 g of ferric sulfate, 4.35 g of cobalt sulfate, and 2.89 g of nickel sulfate were dissolved in distilled water, and 0.5 mol of ferric sulfate, 0.0155 mol of cobalt sulfate, and 0.0103 mol of nickel sulfate were mixed, respectively. Prepare 1000 ml of solution and dissolve 100 g of sodium hydroxide in distilled water while stirring to obtain 2.5
A suspension of ferric hydroxide colloid containing Co and Ni was prepared by dropping 585 ml of a mol/mol sodium hydroxide solution. The Fe 3+ concentration and PH in this mother liquor were 0.316 mol/and 13.0, respectively. The amount of Co added is 3at% (Co/Fe+Co),
The amount of Ni added was 2at% (Ni/Fe+Ni).
Thereafter, the mother liquor was stirred and mixed at room temperature for 12 hours, and then aged at an aging temperature of 60°C for 72 hours to obtain acicular α-FeOOH containing Co and Ni. This acicular α-FeOOH was treated in the same manner as in Example 1 to produce acicular Fe-Co-Ni magnetic alloy powder. Comparative Example 1 83.4 g of ferrous sulfate and 2.61 g of cobalt sulfate were dissolved in distilled water to create a mixed solution of 0.3 mol/0.3 mol/mol/cobalt sulfate and 0.0093 mol/cobalt sulfate, respectively.
1000 ml of Co-containing solution was prepared by adding 1000 ml of a 1.2 mol sodium hydroxide solution obtained by dissolving 48 g of sodium hydroxide in distilled water dropwise while stirring in a non-oxidizing atmosphere of N2 . 1st hydroxide of
A suspension of iron colloid was prepared. In this mother liquor
The amount of Co added was 3 at% (Co/Fe+Co). Then, after stirring and mixing the mother liquor thoroughly in an N2 atmosphere,
Air was bubbled through the mother liquor at a rate of 7/min at a reaction temperature of 50° C., and the reaction was carried out for a reaction time of 15 hours while stirring and mixing, to obtain Co-containing acicular α-FeOOH. This acicular α-FeOOH was treated in the same manner as in Example 1 to produce acicular Fe-Co alloy powder. Comparative Example 2 150 g of ferric sulfate was dissolved in distilled water to prepare 1000 ml of a 0.75 mol/ferric sulfate solution, and while stirring, 150 g of sodium hydroxide was dissolved in distilled water to obtain 3.75 mol. 490 ml of sodium hydroxide solution was added dropwise to create a suspension of ferric hydroxide colloid. The Fe 3+ concentration and PH in this mother liquor were 0.503 mol/and 12.0, respectively. After that, the mother liquor was stirred and mixed at room temperature for 12 hours, and then aged for 24 hours at an aging temperature of 60°C to form an acicular α-
Got FeOOH. This acicular α-FeOOH was treated in the same manner as in Example 1 to produce acicular Fe-Co alloy powder. The properties of α-FeOOH and alloy powder obtained in the above Examples and Comparative Examples are shown in the table below.

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】[Claims] 1 第2の鉄塩ならびにCo塩および/またはNi
塩を含む溶液と強アルカリ溶液とを混合してCo
および/またはNi含有水酸化第2鉄のコロイド
状物質を含有する懸濁液を得、この懸濁液をその
沸点より低くまた30℃以上の温度で熟成してCo
および/またはNiをドープした針状ゲータイト
を得、これを脱水加熱し330〜450℃の温度で還元
することにより針状磁性合金粉末を得ることを特
徴とする針状磁性合金粉末の製法。
1 Second iron salt and Co salt and/or Ni
Co by mixing a salt-containing solution and a strong alkaline solution.
and/or a suspension containing a colloidal material of Ni-containing ferric hydroxide is obtained, and this suspension is aged at a temperature below its boiling point and above 30°C to
and/or a method for producing acicular magnetic alloy powder, characterized in that acicular magnetic alloy powder is obtained by obtaining acicular goethite doped with Ni, dehydrating and heating it, and reducing it at a temperature of 330 to 450°C.
JP56111281A 1981-07-16 1981-07-16 Manufacture of acicular metal powder Granted JPS5812309A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56111281A JPS5812309A (en) 1981-07-16 1981-07-16 Manufacture of acicular metal powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56111281A JPS5812309A (en) 1981-07-16 1981-07-16 Manufacture of acicular metal powder

Publications (2)

Publication Number Publication Date
JPS5812309A JPS5812309A (en) 1983-01-24
JPH038083B2 true JPH038083B2 (en) 1991-02-05

Family

ID=14557245

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56111281A Granted JPS5812309A (en) 1981-07-16 1981-07-16 Manufacture of acicular metal powder

Country Status (1)

Country Link
JP (1) JPS5812309A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61124507A (en) * 1984-11-22 1986-06-12 Ube Ind Ltd Production of magnetic metallic powder
JPS61130407A (en) * 1984-11-30 1986-06-18 Ube Ind Ltd Production of metallic magnetic powder

Also Published As

Publication number Publication date
JPS5812309A (en) 1983-01-24

Similar Documents

Publication Publication Date Title
US4267207A (en) Process for producing cobalt-containing ferromagnetic iron oxide powder
JPS608606B2 (en) Manufacturing method of ferromagnetic powder
US4396596A (en) Method of preparing gamma ferric hydroxyoxide powder
JPH038083B2 (en)
JPS6021307A (en) Production of ferromagnetic metallic powder
JPS6135135B2 (en)
JPS62139803A (en) Production of ferromagnetic metallic powder
JP3303896B2 (en) Spindle-shaped iron-based metal magnetic particle powder and method for producing the same
JP2852460B2 (en) Method for producing spindle-shaped iron-based metal magnetic particle powder
JP2640817B2 (en) Spindle-shaped goethite particles and method for producing the same
JPS6242858B2 (en)
JP2704525B2 (en) Method for producing spindle-shaped goethite particles
JP2885253B2 (en) Method of producing spindle-shaped goethite particles
JP3011221B2 (en) Method for producing acicular goethite particle powder
JPS58159311A (en) Manufacture of metallic magnetic powder
JP2965606B2 (en) Method for producing metal magnetic powder
JP2660714B2 (en) Method for producing cobalt-containing ferromagnetic iron oxide powder
JP3087808B2 (en) Manufacturing method of magnetic particle powder for magnetic recording
JPS6149252B2 (en)
KR910009210B1 (en) Method for manufacturing lepidocrocite
JP2704544B2 (en) Manufacturing method of spindle-shaped magnetic iron oxide particles
JPS61130407A (en) Production of metallic magnetic powder
JPS6244842B2 (en)
JPS62128926A (en) Production of magnetic iron oxide grain powder having spindle type
JPH04132621A (en) Acicular ferromagnetic iron oxide powder and production thereof