JPS58159311A - Manufacture of metallic magnetic powder - Google Patents

Manufacture of metallic magnetic powder

Info

Publication number
JPS58159311A
JPS58159311A JP57042384A JP4238482A JPS58159311A JP S58159311 A JPS58159311 A JP S58159311A JP 57042384 A JP57042384 A JP 57042384A JP 4238482 A JP4238482 A JP 4238482A JP S58159311 A JPS58159311 A JP S58159311A
Authority
JP
Japan
Prior art keywords
powder
iron
aqueous solution
hydroxide
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57042384A
Other languages
Japanese (ja)
Inventor
Katsunori Tashimo
田下 勝則
Akinari Hayashi
林 章「あ」
Toshinobu Sueyoshi
俊信 末吉
Masahiro Amamiya
雨宮 政博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP57042384A priority Critical patent/JPS58159311A/en
Publication of JPS58159311A publication Critical patent/JPS58159311A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/06Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/061Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder with a protective layer

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To obtain powder, the principal ingredient thereof is iron having excellent oxidation stability, by forming oxide films containing iron onto the surface of the particles of powder formed when a metallic salt aqueous solution, which is dissolved into water while using iron salt as the principal ingredient, is reduced by an alkali metal borohydride and metallic powder, the principal ingredient thereof is iron, is formed, an alkaline aqueous solution is added to the water dispersant of powder formed, and an oxidizing gas is blown in while agitating the liquid. CONSTITUTION:Varieties of water-soluble salt, such as a sulfate of nickel, etc., a halide or the like is used as metallic salt used, sodium boron hydride or the like is used as the alkali metal borohydrides, and the concentration of the alkali metal borohydrides in the case when these alkali metal borohydrides are added to the metallic salt aqueous solution and reduced is kept within a range of 0.1- 10mol/l. An aqueous solution of sodium hydroxide, potassium hydroxide, calcium hydroxide, barium hydroxide, magnesium hydroxide, ammonia water, ammonium hydroxide or the like is used as the alklaine aqueous solution added to the dispersant of metallic powder, and air or oxygen gas or the like is used as the oxidizing gas blown in.

Description

【発明の詳細な説明】 この発明は鉄を主体とする金属磁性粉末の製造方法に関
し、その目的とするところFi醗化安定性に優れる前記
の金属磁性粉末の製造方法を提供するととkある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a metal magnetic powder containing iron as a main component, and an object thereof is to provide a method for producing the metal magnetic powder described above which has excellent stability in oxidation of Fi.

鉄を主体とする金属磁性粉末は従来の酸化物系磁性粉末
に比較して優れた磁気特性を有し、このような金属磁性
粉末の製造方法として、たとえば金属塩水溶液にアルカ
リ金属ポ0/%イドライドを加えて磁場を作用させなが
ら還元する方法が提案されている。
Metal magnetic powders mainly composed of iron have superior magnetic properties compared to conventional oxide-based magnetic powders, and methods for producing such metal magnetic powders include, for example, adding 0/% alkali metal particles to a metal salt aqueous solution. A method has been proposed in which hydrides are added and reduced while applying a magnetic field.

ところがこの方法て得られる鉄を主体とする金属磁性粉
末は非常KII化を受は易く、飽和磁化量が経時的に低
下し、貯蔵安定性に欠けると−う■点がある。
However, the metal magnetic powder mainly composed of iron obtained by this method is easily susceptible to KII formation, and the saturation magnetization decreases over time, resulting in a lack of storage stability.

この発明者らはかかる欠点を改善するため種々検討を行
なった結果、鉄塩を主成分として水に溶解した金属塩水
溶液をアルカリ金属ぎロムイドライドで還元して鉄を主
体とする金属粉末を生成した後、この生成粉末の水分散
液にアルカリ水溶液を添加し、攪拌しながら階化性ガス
を吹き込もと、生成粉末の粒子表面に鉄を含も酸化物被
膜が形成されて拳化安定性に優れた鉄を主体とする金属
磁性粉末が得られることを見いだし、この発明をなすに
至った。
The inventors conducted various studies to improve these drawbacks, and as a result, they produced a metal powder mainly composed of iron by reducing an aqueous solution of a metal salt mainly composed of iron salt dissolved in water with an alkali metal gyromoidide. After that, an alkaline aqueous solution is added to the aqueous dispersion of the resulting powder, and a oxidizing gas is blown into the resulting powder while stirring. As a result, an iron-containing oxide film is formed on the particle surface of the resulting powder, which improves the stability of the powder. It was discovered that a metal magnetic powder mainly composed of iron with excellent properties could be obtained, and this invention was completed.

この発明において使用される金属塩としては、鉄、コバ
ルト、ニッケルなどの硫酸塩、へロゲン化物、硝酸塩、
炭酸埴亀どの各種水可溶性塩が好適なものとして使用さ
れ、鉄塩を主体とし必要に応じて他の金属の金属塩とと
もに水に溶解して用いられる。
The metal salts used in this invention include sulfates, herogenides, nitrates of iron, cobalt, nickel, etc.
Various water-soluble salts such as carbonate, silica, etc. are preferably used, and the iron salt is the main salt, and if necessary, it is used by dissolving it in water together with other metal salts.

また、アルカリ金属ボロハイドライドとしては、水素化
ホウ素ナトリウム、水素化ホウ素カリウム、水素化ホウ
素リチウムなどが好適に使用され、これらのアルカリ金
属ボロハイドライドを金属塩水溶液に加えて還元する際
のアルカリ金属ボロハイドライドの濃度社0.1モル/
l以下では充分な還元が行なえず、10モル/1以上に
なると還元反応が急激になりすぎて得られる金属粉末の
針状性が損なわれ磁気特性が劣化するため0.1モル/
l−10モル/lの範囲内であることが好ましい。
In addition, as the alkali metal borohydride, sodium borohydride, potassium borohydride, lithium borohydride, etc. are preferably used. Concentration of hydride 0.1 mol/
If the amount is less than 1 mol/l, sufficient reduction cannot be achieved, and if it is more than 10 mol/1, the reduction reaction becomes too rapid, resulting in loss of acicularity of the resulting metal powder and deterioration of magnetic properties.
It is preferably within the range of l-10 mol/l.

このようなアルカリ金属ボロハイドライドで金属塩水溶
液を還元する場合の反応温度F150℃より高温になる
と鉄塩が酸化されるため50℃以下にするのが好ましく
、この還元反応を行かう際磁場を作用させると高保磁力
の金属磁性粉末が得られるため磁界中で還元反応を行な
うのが好ましい。
When reducing a metal salt aqueous solution with such an alkali metal borohydride, the reaction temperature F is higher than 150°C, since the iron salt will be oxidized, so it is preferable to keep the temperature below 50°C. It is preferable to carry out the reduction reaction in a magnetic field, since metal magnetic powder with a high coercive force can be obtained by doing so.

鉄を主体とする金属粉末は以上のようにして生にアルカ
リ水溶液を添加し、攪拌しながら酸化性ガスを吹き込む
と金属粉末の粒子表面にマグネタイト等の鉄を含も酸化
物被膜が形成され、酸化安定性に優れた金属磁性粉末が
得られる。このように金属粉末を生成した反応液をその
まま使用すると工程が短縮され別個の装置も必要としな
いため金属粉末の粒子表面の酸化物被膜の形成はこの方
法で行なうのが好ましいが、必ずしもこの方法による必
要はなく、生成された金属粉末を一旦乾燥した捗、水に
再分散させてもよい。
When an aqueous alkaline solution is added to raw metal powder containing iron as described above and oxidizing gas is blown in while stirring, an oxide film containing iron such as magnetite is formed on the surface of the metal powder particles. A metal magnetic powder with excellent oxidation stability is obtained. It is preferable to use this method to form an oxide film on the surface of the metal powder particles, since using the reaction solution that has produced the metal powder as it is will shorten the process and eliminate the need for separate equipment, but this method is not always necessary. There is no need to do this, and the produced metal powder may be once dried and then redispersed in water.

このような生成された金属粉末の分散液に添加するアル
カリ水溶液として轄、水酸化ナトリウム、水酸化カリウ
ム、水酸化カルシウム、水酸化バリウム、水酸化マグネ
シウム、アンモニア水、水酸化アンモニウム等の水溶液
が好適なものとして使用され、アルカリ濃度はPH8以
上にするのが好ましくアルカリ濃度が高いほど酸化物被
膜はでき秘い。またこれらのアルカリ水溶液を添加した
後この金属粉末分散液中に吹き込まれる酸化性−ガスと
しては空気および酸素ガス等が好適なものとして使用さ
れる。
Suitable aqueous alkaline solutions to be added to the dispersion of metal powder thus produced include aqueous solutions of sodium hydroxide, potassium hydroxide, calcium hydroxide, barium hydroxide, magnesium hydroxide, aqueous ammonia, ammonium hydroxide, etc. The alkali concentration is preferably PH8 or higher, and the higher the alkali concentration, the more secretive the oxide film will be. Further, as the oxidizing gas that is blown into the metal powder dispersion after adding these alkaline aqueous solutions, air, oxygen gas, etc. are preferably used.

反応温度社常温以上で行なうのが好ましく温度が高いは
ど酸化物被#はで111!−が、水性溶媒中において実
鳩されるものであるため20〜100℃の範囲内にする
のが好ましい。
It is preferable to carry out the reaction temperature at room temperature or above, and the higher the temperature, the less the oxide will be formed. The temperature is preferably within the range of 20 to 100°C since the temperature is measured in an aqueous solvent.

なお、このように生成された金属粉末の分散液にアルカ
リ水溶液を加え、酸化性ガスを吹き込む際、分散液中(
鉄塩を溶解させると生成された金属粉末粒子表面IIc
#化物被膜ができ易いため鉄塩を添加するのが好ましく
、金属粉末を生成した反応液をそのまま使用する場合に
は当初に過剰の鉄塩を溶解しておいてもよい。
Note that when adding an alkaline aqueous solution to the metal powder dispersion produced in this way and blowing oxidizing gas into the dispersion, (
Metal powder particle surface IIc generated by dissolving iron salt
# It is preferable to add an iron salt because a compound film is easily formed. If the reaction solution that produced the metal powder is used as it is, the excess iron salt may be dissolved at the beginning.

次に、この発明の実施例について説明する。Next, embodiments of the invention will be described.

実施例1 1モル/l濃度の硫酸第一鉄(FeSO,)水溶液90
−と1モル/l濃度の塩化ニッケル(NiC12)水溶
液10−とを容器中に入れて混合し、1000ガウスの
磁場を印加し門。次いで混合水溶液を攪拌しながら1モ
ル/l濃度の水素化ホウ素ナトリウム水溶液100−を
少しづつ滴下して還元を行ない、滴下終了後さもに2分
間反応を続行してF e −N iの合金粉末を生成し
た。次−でこの生成はれたFe−Ni合金粉末の分散液
中に1モル/l濃度の水酸化ナトリウム水溶液3−を添
加し、攪拌しながら空気を0.11/分の速度で吹き込
み25゛Cで200分間反応行なった。反応終了後、ろ
過し、乾燥してマグネタイトからなる被膜−で覆われた
Fe −N i合金粉末を得たO得られたFe−Ni合
金粉末は短軸粒径が0.03j%飽和磁化量σSが12
3emu/9で保磁力#11”170エルステツドであ
った。
Example 1 Ferrous sulfate (FeSO,) aqueous solution with a concentration of 1 mol/l 90
- and an aqueous solution of nickel chloride (NiC12) with a concentration of 1 mol/l 10- were placed in a container and mixed, and a magnetic field of 1000 Gauss was applied. Next, while stirring the mixed aqueous solution, a sodium borohydride aqueous solution with a concentration of 1 mol/l (100-) was added dropwise little by little to effect reduction, and after the dropwise addition was completed, the reaction was continued for 2 minutes to obtain an Fe-Ni alloy powder. was generated. Next, an aqueous sodium hydroxide solution with a concentration of 1 mol/l was added to the dispersion of the formed Fe-Ni alloy powder, and air was blown at a rate of 0.11/min while stirring to 25°C. The reaction was carried out at C for 200 minutes. After the reaction was completed, it was filtered and dried to obtain a Fe-Ni alloy powder covered with a film made of magnetite.The obtained Fe-Ni alloy powder had a minor axis particle size of 0.03j% saturation magnetization σS is 12
The coercive force was #11" and 170 oersted at 3 emu/9.

実施例2 実施例1において、生成されたFe −Ni合金粉末の
分散液中に水酸化すFリウム水溶液を添加する際、同時
に1モル/l濃度硫酸第一鉄(FeSO。
Example 2 In Example 1, when an aqueous solution of F hydroxide was added to the dispersion of the produced Fe-Ni alloy powder, 1 mol/l concentration of ferrous sulfate (FeSO) was added at the same time.

・7HO)水溶液を2.80−加えた以外は実施例1と
同様にしてマグネタイトからなる被膜で覆われた短軸粒
径0,03μ、飽和磁化量gs 120 emu/9、
保磁力1160エルステツドのFe−Ni合金粉末を得
た。
・7HO) Aqueous solution of 2.80% was added in the same manner as in Example 1, short axis grain size 0.03μ, saturated magnetization gs 120 emu/9, covered with a film made of magnetite.
Fe--Ni alloy powder having a coercive force of 1160 oersted was obtained.

実施例3 実施例1において、1モル/l濃度の硫酸第一鉄水溶液
の使用量を90−から1991m17!4(変更した以
外は実施例1と同様にしてマグネタイトからなる被膜で
覆われた短軸粒径0,03μ、飽和磁化量σs 118
 emu/9 、保磁力1160エルステツドのFe 
−Ni合金粉末を得た。
Example 3 A short film covered with a film made of magnetite was prepared in the same manner as in Example 1 except that the amount of the ferrous sulfate aqueous solution with a concentration of 1 mol/l was changed from 90 to 1991 m17!4. Axial grain diameter 0.03μ, saturation magnetization amount σs 118
emu/9, coercive force 1160 oersted Fe
-Ni alloy powder was obtained.

比較例 実施例1において、マグネタイトからなる被膜形成処理
を省いた以外社実施例1と同様にしてFe−Ni合金粉
末を生成し、ろ過、乾燥して短軸粒径0.03μ、飽和
磁化量σs147emu/g、保磁力1170エルステ
ツドのFe −N i合金粉末を得友。
Comparative Example Fe-Ni alloy powder was produced in the same manner as in Example 1 except that the treatment for forming a film made of magnetite was omitted, filtered and dried to obtain a short axis particle size of 0.03μ and a saturation magnetization amount. Fe-Ni alloy powder with σs of 147 emu/g and coercive force of 1170 oersted was obtained.

各実施例および比較例で得られ4Fe−Ni合金粉末を
、60℃、90%RHの条件下で24時間空気中に放置
し、放置後の飽和磁化量を測定して放置前の飽和磁化量
からの低下率を調べた。
The 4Fe-Ni alloy powder obtained in each example and comparative example was left in the air for 24 hours at 60°C and 90% RH, and the saturation magnetization after being left was measured. We investigated the rate of decline from

下表はその結果である。The table below shows the results.

F表から明らかなように1この発明で得られたFe−N
i合金粉末(実施例1〜3)社いずれも従来のFe−N
i合金粉末(比較例)に比し、飽和磁化量σSの低下率
が小さく、このことからこの発明の製造方法によれば酸
化安定性に優れ丸鉄を主体とする金属磁性粉末が得られ
ることがわかる。
As is clear from Table F, 1 Fe-N obtained by this invention
All the i alloy powders (Examples 1 to 3) were conventional Fe-N
Compared to the i-alloy powder (comparative example), the rate of decrease in the saturation magnetization σS is smaller, which indicates that the production method of the present invention provides a metal magnetic powder mainly composed of round iron with excellent oxidation stability. I understand.

Claims (1)

【特許請求の範囲】[Claims] 1、鉄塩を主成分として水に溶解゛した金属塩水溶液を
アルカリ金属ボpハイドライドで還元して鉄を主体とす
る金属粉末を生成し、次いでこの生成粉末の水分散液に
アルカリ水溶液を添加し、攪拌しながら拳化性ガスを吹
き込んで鉄を主体とする金属粉末の粒子表面に鉄を含t
J謙化物被膜を形成することを特徴とする金属磁性粉末
の製造方法
1. A metal salt aqueous solution containing iron salt as the main component and dissolved in water is reduced with an alkali metal bop hydride to produce a metal powder mainly consisting of iron, and then an aqueous alkali solution is added to the aqueous dispersion of the produced powder. Then, while stirring, blowing gas into the iron-containing metal powder on the surface of the particles of the metal powder, which mainly consists of iron.
A method for producing metal magnetic powder characterized by forming a J-humidity film
JP57042384A 1982-03-17 1982-03-17 Manufacture of metallic magnetic powder Pending JPS58159311A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57042384A JPS58159311A (en) 1982-03-17 1982-03-17 Manufacture of metallic magnetic powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57042384A JPS58159311A (en) 1982-03-17 1982-03-17 Manufacture of metallic magnetic powder

Publications (1)

Publication Number Publication Date
JPS58159311A true JPS58159311A (en) 1983-09-21

Family

ID=12634566

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57042384A Pending JPS58159311A (en) 1982-03-17 1982-03-17 Manufacture of metallic magnetic powder

Country Status (1)

Country Link
JP (1) JPS58159311A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013069926A (en) * 2011-09-22 2013-04-18 Toda Kogyo Corp Method for manufacturing ferromagnetic iron nitride grain powder, anisotropic magnet, bond magnet and powder-compact magnet
US8911663B2 (en) 2009-03-05 2014-12-16 Quebec Metal Powders, Ltd. Insulated iron-base powder for soft magnetic applications

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8911663B2 (en) 2009-03-05 2014-12-16 Quebec Metal Powders, Ltd. Insulated iron-base powder for soft magnetic applications
JP2013069926A (en) * 2011-09-22 2013-04-18 Toda Kogyo Corp Method for manufacturing ferromagnetic iron nitride grain powder, anisotropic magnet, bond magnet and powder-compact magnet

Similar Documents

Publication Publication Date Title
US3702270A (en) Method of making a magnetic powder
US4262037A (en) Method of producing ferromagnetic metal powder
JPS608606B2 (en) Manufacturing method of ferromagnetic powder
JPS58159311A (en) Manufacture of metallic magnetic powder
JPS6253444B2 (en)
JPS6021307A (en) Production of ferromagnetic metallic powder
JP3337046B2 (en) Spindle-shaped metal magnetic particles containing cobalt and iron as main components and method for producing the same
JPS62139803A (en) Production of ferromagnetic metallic powder
JPS5850005B2 (en) Jikikirokuyouji Seifun Matsuno Seizouhou
JP3011221B2 (en) Method for producing acicular goethite particle powder
JPH038083B2 (en)
JPS5919162B2 (en) Method for producing iron-cobalt alloy ferromagnetic powder
JPS64801B2 (en)
JPH0343325B2 (en)
JPS5941453A (en) Needle crystal iron alloy magnetic particulate powder for magnetic recording and preparation thereof
JPH032321B2 (en)
JPS5860504A (en) Magnetic powder and method of manufacturing the same
JPS6163921A (en) Magnetic powder and its production
JPH03199301A (en) Magnetic metallic powder and production thereof and magnetic recording medium
JPH02167829A (en) Cobalt-containing ferromagnetic iron oxide powder and production thereof
JPS62128931A (en) Production of magnetic iron oxide grain powder having spindle type
JPS59170202A (en) Magnetic metallic powder and its production
JPS59172209A (en) Metal magnetic powder and manufacture thereof
JPS58159306A (en) Manufacture of metallic magnetic powder
JPH0532421A (en) Production of needlelike magnetic iron oxide grain powder