JPS5860504A - Magnetic powder and method of manufacturing the same - Google Patents

Magnetic powder and method of manufacturing the same

Info

Publication number
JPS5860504A
JPS5860504A JP56158129A JP15812981A JPS5860504A JP S5860504 A JPS5860504 A JP S5860504A JP 56158129 A JP56158129 A JP 56158129A JP 15812981 A JP15812981 A JP 15812981A JP S5860504 A JPS5860504 A JP S5860504A
Authority
JP
Japan
Prior art keywords
magnetic powder
rare earth
powder
iron
atomic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56158129A
Other languages
Japanese (ja)
Other versions
JPS6244842B2 (en
Inventor
Yoshiharu Shimokawa
下川 善春
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chiyoda Corp
Chiyoda Chemical Engineering and Construction Co Ltd
Original Assignee
Chiyoda Corp
Chiyoda Chemical Engineering and Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chiyoda Corp, Chiyoda Chemical Engineering and Construction Co Ltd filed Critical Chiyoda Corp
Priority to JP56158129A priority Critical patent/JPS5860504A/en
Publication of JPS5860504A publication Critical patent/JPS5860504A/en
Publication of JPS6244842B2 publication Critical patent/JPS6244842B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/68Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent
    • G11B5/70Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer
    • G11B5/706Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer characterised by the composition of the magnetic material
    • G11B5/70626Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer characterised by the composition of the magnetic material containing non-metallic substances
    • G11B5/70642Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer characterised by the composition of the magnetic material containing non-metallic substances iron oxides
    • G11B5/70652Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer characterised by the composition of the magnetic material containing non-metallic substances iron oxides gamma - Fe2 O3
    • G11B5/70668Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer characterised by the composition of the magnetic material containing non-metallic substances iron oxides gamma - Fe2 O3 containing a dopant
    • G11B5/70673Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer characterised by the composition of the magnetic material containing non-metallic substances iron oxides gamma - Fe2 O3 containing a dopant containing Co

Landscapes

  • Magnetic Record Carriers (AREA)
  • Hard Magnetic Materials (AREA)
  • Compounds Of Iron (AREA)
  • Paints Or Removers (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

PURPOSE:To attain magnetic powder with high coercive force and high intensity of saturated magnetization by adding rare-metal elements together with Co to Fe. CONSTITUTION:Magnetic powder contains Co, R.E. with Fe being a main ingredient. Co/Fe is 0.1-7wt% in atomic ratio, rare-metal elements/Co is 7-50wt% and iron consists of a needle crystal iron oxide, maghematitie (gammaFe2O3) or pure iron. Ce, Y, La, Sm, Pr, Cd, Tb, Dy, Ho, etc. can be used as rare-metal elements singularly or in the form of a mixture containing two or more among them. When both rare-metal elements and Co are used combinedly relative to iron oxide powder, the coercive force is improved up to a level of 700-800 oersted and the intensity of saturated magnetization sigmas becomes 80-90emu/g. Using of metal iron powder increases the coercive force up to a level of 1,100-1,300 oersted and results in metal powder with superior square ratio (sigmar/sigmas) and dispersibility.

Description

【発明の詳細な説明】 本発明は、磁性粉末ならびにその製造に関し、更に詳し
くは、優れた磁性を有し、保磁力分布の広がりが小さく
、高い保磁力と大きな飽和磁化σBを有し、粉末として
の高分散性、高配向性、高充填性等の粉末特性を兼備し
た安定した酸化鉄粉末ならびにその製造に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a magnetic powder and its production, and more specifically, the present invention relates to a magnetic powder and its production, and more specifically, the present invention relates to a magnetic powder having excellent magnetism, a small spread of coercive force distribution, a high coercive force, and a large saturation magnetization σB. The present invention relates to a stable iron oxide powder that has powder properties such as high dispersibility, high orientation, and high filling properties, as well as its production.

磁性酸化鉄、Fe、Oq + r F e 205の粉
末あるいは鉄粉を磁気テープ、磁気ディスク等に使用す
ることは従来から広く行なわれていたところであり、ま
た、これらの改良手段として、微量のCO単独、あるい
はOu、Zn等と共に酸化鉄結晶の表面を薄く被覆・し
たシ、水酸化鉄あるいはゲータイト生成時にCO含有化
合物を添加することも行わnている。
The use of magnetic iron oxide, Fe, Oq + r Fe 205 powder or iron powder in magnetic tapes, magnetic disks, etc. has been widely used for a long time, and as a means of improving these, trace amounts of CO CO-containing compounds have also been added alone or together with Ou, Zn, etc., by thinly coating the surface of iron oxide crystals, and when iron hydroxide or goethite is being formed.

フェライトに少量添加さnたCo   の挙動はまこと
に興味深く、C02+はFe、04のB位置に入シ大き
い磁気異方性を換起しうる本質的な性格を備えている。
The behavior of Co added in a small amount to ferrite is truly interesting, and C02+ has the essential property of causing large magnetic anisotropy when added to the B position of Fe, 04.

COのFeに対する添加の態様として、Oof均一に分
布したものと、粉体粒子表面にCOの一部を被着したも
のとが用いらnてbる。
The manner in which CO is added to Fe may be one in which Oof is uniformly distributed, or one in which a portion of CO is deposited on the surface of the powder particles.

発明者らはFeに対しCo f加える代シニco  と
共に希土類元素を加えることによフ、更に磁性粉末の性
質の改良に成功し、こnt−特定の方法によシ製造する
ことによって形状比の大きい、サイズの揃った、しかも
空孔のない粒子を合成することによシ今までに′ない優
れた粉状粒子の開発をみたものである。
The inventors succeeded in further improving the properties of the magnetic powder by adding a rare earth element to Fe along with the addition of Cof, and by manufacturing it by a specific method, the shape ratio was improved. By synthesizing particles that are large, uniform in size, and free of pores, we have achieved the development of unprecedentedly superior powder particles.

希土類元素は、既にyco5.Sm00610eC!o
6 tPrCo5等の粉末磁石として用いらnlまたこ
のCOの一部をCuで置換した保磁力の大きい磁石が開
発されているが、鉄に対しCOの代シにCo と希土類
元素との混合物を添加したときの磁性の改善は全く驚く
べきものであった。即ちその特徴は保磁力分布の広がル
が小さく、よシ大きな保持力と大きな飽和磁化(σB)
を有し、更に高い飽和磁束、高い高密度記録性、優nた
保磁力(Hc)、ならびに角形比(σ、/σ5)にある
。希土類金属は鉄、アルミニウム、銅、あるいはそnら
の合金に微量添加することによって結晶の微細化、ある
いは耐熱性、耐酸化性等の機械的、化学的性質の向上あ
るいは改良かもたらさnることか知らnていたが、その
添加には溶融状にした金属中に押込む方法しか行われて
いなかったため、任意の量を加えることが極めて困難で
あったが、発明者は希土類との単なる混合あるいは鉄粉
表面への被覆によって磁性粉末の磁気特性が大きく改良
し得ることを見出したものである。しかも希土類金属単
独でなく、これt−COと併用することによって耐熱性
と更に優37’(磁気特性の開発に至つ之ものである。
Rare earth elements are already yco5. Sm00610eC! o
A magnet with a large coercive force has been developed that is used as a powder magnet such as 6tPrCo5, and a part of this CO is replaced with Cu, but a mixture of Co and rare earth elements is added to iron instead of CO. The improvement in magnetism was quite surprising. In other words, its characteristics are a small spread of coercive force distribution, a large coercive force, and a large saturation magnetization (σB).
It also has high saturation magnetic flux, high high-density recording performance, excellent coercive force (Hc), and squareness ratio (σ, /σ5). Rare earth metals can be added to iron, aluminum, copper, or their alloys in small amounts to make crystals finer, or to improve or improve mechanical and chemical properties such as heat resistance and oxidation resistance. However, the only way to add it was to push it into the molten metal, making it extremely difficult to add it in any desired amount. Alternatively, it has been discovered that the magnetic properties of magnetic powder can be greatly improved by coating the surface of the iron powder. Furthermore, by using rare earth metals not only alone but also in combination with t-CO, it is possible to develop heat resistance and even better magnetic properties.

本発明に係わる磁性粉末は、Fef、主成分とし、こn
にC!o、R,E、i含有してなj) Co/ Feが
原子割合で0.1〜7重量%、好ましくは0.5〜3重
量%、希土類元素/ Coが原子割合で7〜50重量%
、好ましくは10〜40重量%である。また主成分であ
る鉄分は、針状品性酸化鉄、マグヘマタイート(γPe
20B)あるいは鉄からなり、最も好ましくは針状品性
酸化鉄および針状鉄粉である。
The magnetic powder according to the present invention has FEF as its main component.
NiC! o, R, E, i j) Co/Fe is 0.1 to 7% by weight in atomic proportion, preferably 0.5 to 3% by weight, rare earth element/Co is 7 to 50% by weight in atomic proportion %
, preferably 10 to 40% by weight. The main components of iron include acicular iron oxide, maghematite (γPe
20B) or iron, most preferably acicular iron oxide and acicular iron powder.

希土類金属化合物としては、Ce、 Y、 La 。Examples of rare earth metal compounds include Ce, Y, and La.

Sm、 Pr、 Cd、 Tby Er、Dy、 Ho
 等であり、これらを単独であるいは二種以上の混合物
として用いる。現在市販品として入手し易い、発火用合
金あるいは金属(!%に鋼、アルミニウム等)の添加剤
としてのミツシュメタル(ランセル7ンプンも利用し得
る。希土類元素のうちOeνE!m ならびにそnらと
Gdとの混合物は特に望ましい。
Sm, Pr, Cd, Tby Er, Dy, Ho
etc., and these can be used alone or as a mixture of two or more. Mitsushmetal (Lancel 7 is also available as an additive for pyrotechnic alloys or metals (!% steel, aluminum, etc.), which is currently easily available as a commercial product. Among the rare earth elements, OeνE!m and Gd Particularly desirable are mixtures with

本発明に係わる磁性粉末は、以上の三成分のほかに更に
C!u、 Zr、 Ti  あるいはVの単独あるいは
二種以上を加えることによフ、特性を向上し優れた磁性
粉末とすることができる。
In addition to the above three components, the magnetic powder according to the present invention further contains C! By adding one or more of u, Zr, Ti, or V, the properties can be improved and an excellent magnetic powder can be obtained.

希土類の添加を酸化鉄に対して行うか、あるいはゲータ
イト生成時に行うことによって製品たるマグヘマタイト
あるいは鉄粉は、一般には保磁力が向上し、このため体
積抵抗率が向上すると考えられる。
It is thought that by adding rare earth elements to iron oxide or at the time of goethite formation, the product maghematite or iron powder generally has an improved coercive force and therefore an improved volume resistivity.

例えば酸化鉄粉末に対し希土類金属とコバルトとを併用
した場合には、単にコバルトを添加したときあるいはコ
バルトを銅、亜鉛と併用したときに比較して、480〜
700工ルステツド程度であった保磁力が700〜80
0工ルステツド程度まで向上し、また飽和磁化σ、は7
0〜85 emu / gのものが80〜90 emu
 / gとなる。また金属鉄粉末の場合には、保磁力が
せいぜい1000〜1150エルステツド程度であった
ものが容易に1100〜1600工ルステツド程度に上
昇し、しかも角形比(σr/σ、)分散性の優nた金属
粉末となる。
For example, when rare earth metals and cobalt are used together with iron oxide powder, compared to when cobalt is simply added or when cobalt is used together with copper and zinc, the
The coercive force was about 700 to 80
The saturation magnetization σ has been improved to about 0 process level, and the saturation magnetization σ is 7.
0-85 emu/g is 80-90 emu
/ g. In addition, in the case of metallic iron powder, the coercive force, which was about 1000 to 1150 oersted at most, easily increases to about 1100 to 1600 oersted, and moreover, the squareness ratio (σr/σ,) is superior in dispersibility. It becomes metal powder.

添加する希土類金属は、Co  あるいはその他の添加
成分と別々に添加してもよいが、FL2Co、、 、 
RCo5(ここで几は希土類を表わす)等の合金として
加えることもできる。同様に他の成分との合金例えばR
(Co、5〜。95Cu o〜。、2Fe、。4”’−
[1,26zrO〜0.[16)5−9  として加え
ることもできる。この場合においてCo、 Ou、 H
の三成分のときには例えば” (Coo、A〜0.91
> CuO,1〜G、2Fe O,114〜0.25 
) 5〜9 が好ましい・希土類金属以外に添加するC
u、 Zr) Tj、 V等の添加は、酸化鉄、鉄粉磁
性体を空隙の少ない緻密な構造とし、よシ高温における
安定性を示す温度特性を改善し、且つ製造過程、例えば
還元、酸化等の工程における針状結晶の変形破壊の防止
に寄与する。
The rare earth metal to be added may be added separately from Co or other additive components, but FL2Co, , ,
It can also be added as an alloy such as RCo5 (where 釠 stands for rare earth). Similarly, alloys with other components such as R
(Co, 5~.95Cu o~., 2Fe, .4'''-
[1,26zrO~0. [16) It can also be added as 5-9. In this case Co, Ou, H
For example, when the three components are ” (Coo, A~0.91
>CuO,1~G,2FeO,114~0.25
) Preferably 5 to 9 C added in addition to rare earth metals
Addition of iron oxide, iron powder magnetic material, etc., makes it have a dense structure with few voids, improves the temperature characteristics showing stability at high temperatures, and improves the manufacturing process, such as reduction and oxidation. This contributes to the prevention of deformation and destruction of needle-shaped crystals in processes such as

本発明に係わる磁性粉末は、更に十分大きい形状比を有
し、粒子の大きさが揃い磁性塗料製造時における分散が
良好である等の磁性粉末に要求さnる条件t?R足する
が、こnは特にその製造方法に依存するところが大きい
The magnetic powder according to the present invention also has a sufficiently large shape ratio, has uniform particle sizes, and satisfies the conditions required for magnetic powder, such as having uniform particle sizes and good dispersion during the production of magnetic paint. R is added, but n largely depends on the manufacturing method.

代表的な製造方法を以下に説明すると、先ずFe(OH
) 、 Co(OH)  ならびに希土類金属の2 水酸化物を含むpH10以上の水溶液に、水可溶性珪酸
塩または水可溶性アルミニウム塩を加え、しかる後該水
溶液に酸素含有ガスを通し、COならびに希土類金属を
含有する針状のα−Fe OOH粒子晶を住成し、かぐ
して得た針状晶を還元用ガス中で還元することによシ目
的物を生成することよシなる。その際使用する第1鉄塩
水溶液としては、硫酸第1鉄水溶液、塩化第1鉄水溶液
が最も入手し易く且つ取扱い上から好ましく、有機酸の
塩類もまた有効である。またコバル′トならびに希土類
金属も、同様に硫酸塩、硝酸塩あるいはハロゲン化物(
塩化物、弗化物として使用するのが望ましい。
A typical manufacturing method will be explained below. First, Fe(OH
), Co(OH), and a rare earth metal dihydroxide, a water-soluble silicate or a water-soluble aluminum salt is added to an aqueous solution containing dihydroxide of a rare earth metal, and then an oxygen-containing gas is passed through the aqueous solution to remove CO and a rare earth metal. The desired product can be produced by forming the acicular α-Fe OOH particle crystals contained therein and reducing the acicular crystals obtained by sifting in a reducing gas. As the ferrous salt aqueous solution used in this case, ferrous sulfate aqueous solution and ferrous chloride aqueous solution are the most easily available and preferred from the viewpoint of handling, and salts of organic acids are also effective. Cobalt and rare earth metals can also be used as sulfates, nitrates or halides (
It is preferable to use it as a chloride or fluoride.

溶液に添加する珪酸塩、アルミニウム塩には、ナトリウ
ム、カリウムの珪酸塩、市販のコロイダルシリカ、アル
ミニウムの硫酸塩、塩化物ならびに市販のコロイダルア
ルミナ水溶液を用いることができる。この珪酸塩、アル
ミニウム塩の添加の目的は鉄化合物と添加金属化合物に
アルカリを添加したときに生ずる水酸化鉄の結晶核およ
びこのフロックの均一生成の助長α〜Pe00H結晶生
長の抑制ならびに高温処理時の結晶の変形の防止にある
。従ってこn c)AI、 8A  の塩類の添加量は
わずかであシ、AI!あるいはSiとして鉄、コバルト
ならびに希土類金属合計量に対し原子重量%とじて0.
1〜1.5%でよい。珪酸塩、アルミニウム塩の多量の
使用は粒状のFe、 04を生じやすく、且つ合金の磁
気特性を稀釈することとな)好ましくない。
As the silicates and aluminum salts to be added to the solution, sodium and potassium silicates, commercially available colloidal silica, aluminum sulfates and chlorides, and commercially available colloidal alumina aqueous solutions can be used. The purpose of adding these silicates and aluminum salts is to promote the uniform formation of iron hydroxide crystal nuclei and flocs that are generated when an alkali is added to the iron compound and the additive metal compound, to suppress α~Pe00H crystal growth, and to suppress the growth of α~Pe00H crystals and during high-temperature treatment. The purpose is to prevent deformation of the crystal. Therefore, the amount of salts added in c) AI, 8A is small, AI! Or as Si, it is expressed as 0.0% by atomic weight based on the total amount of iron, cobalt and rare earth metals.
It may be 1 to 1.5%. The use of a large amount of silicate or aluminum salt is not preferred as it tends to produce particulate Fe, 04 and dilutes the magnetic properties of the alloy.

以上の方法で得らnるα−Pe 00H針状晶は、更に
水洗、沢別し、150〜45.0℃で還元して金R#の
粉末とするか、あるいは還元の途中で生成するFe、0
4f−酸化してγFe2O,粉末とする。このよりにし
て得られる粉体中には、Si tたはAJを全金属量に
対し0.1〜t O原子類、通常0.2〜0.7原子係
含む。
The n α-Pe 00H needle crystals obtained by the above method are further washed with water, separated from the grain, and reduced at 150 to 45.0°C to obtain gold R# powder, or are produced during the reduction. Fe, 0
4f-oxidize to γFe2O, powder. The powder thus obtained contains 0.1 to t O atoms, usually 0.2 to 0.7 atoms, of Si t or AJ based on the total metal content.

別法として、オキシ水酸化鉄(Fe0OH)、酸化鉄(
Fe2O,またはFe、 04)の粉末をあらかじめ生
成しておき、この表面に Re(000、!+ 〜0.
95 C’ O〜0.2 Fe(1,04〜。、25 
”l+”−0,O5)?’−9゜FLe(COOj”−
[1,960,1〜+1.2 0.04”−0,2!l
 )S〜? (こCu        Fe こにReは希土類金属をあられす)あるいはコバルト、
銅、Zr、 Ti、 V等の塩類の溶液で表面に被覆す
るか吸着させ、次いでアルカリを加えて攪拌混合し、必
要ならば、珪酸塩、アルミニウム塩を加え攪拌、混合し
たのち、水洗、r別する。沈殿物を還元するか、あるい
は更に酸化して、目的とする磁性粉末を得る。
Alternatively, iron oxyhydroxide (Fe0OH), iron oxide (
Powder of Fe2O, or Fe, 04) is generated in advance, and the surface is coated with Re(000,!+ ~0.
95C'O~0.2Fe(1,04~.,25
"l+"-0,O5)? '-9゜FLe(COOj"-
[1,960,1~+1.2 0.04”-0,2!l
)S~? (Cu Fe and Re are rare earth metals) or cobalt,
The surface is coated or adsorbed with a solution of salts such as copper, Zr, Ti, V, etc., then an alkali is added and mixed with stirring, and if necessary, silicates and aluminum salts are added and stirred and mixed, followed by washing with water and r. Separate. The precipitate is reduced or further oxidized to obtain the desired magnetic powder.

金属粉末は細かくなるほど自然発火の危険性が増大する
が、発火1性を抑える方法としては、例えば、次のよう
な方法が有効であることが知らnておシ、この方法は本
発明に係わる磁性粉末の処理にも適用できる。すなわち
、先づ1%程度の酸素を含む窒素にさらしたのち、次オ
に酸素を増加して酸化し、最終的に空気中で放置するこ
とによって薄い酸化膜を形成する方法である。
The finer the metal powder, the greater the risk of spontaneous ignition; however, the following method is known to be effective in suppressing ignition, and this method is related to the present invention. It can also be applied to processing magnetic powder. That is, the material is first exposed to nitrogen containing about 1% oxygen, then oxidized by increasing oxygen, and finally left in air to form a thin oxide film.

以下に本発明を実施例によシ更に詳細に説明する。特に
ことわらない限シ%はすべで重量基準による。
The present invention will be explained in more detail below using examples. Unless otherwise specified, all percentages are based on weight.

実施例 1゜ Feに対しcoを2原子%、 Smを0.3%含むよう
に硫酸コバルトおよび硫酸サマリウムを添加して得た硫
酸オー鉄を1.5モル/l含む水溶液141に、3 N
 Na OH水溶液約141を加え、更に水を加え30
Jとした。珪酸ナトリウム(Si028.5%) 22
 g (si/ Fe+ Co +8m 0.5原子%
に相当する)を添加して攪拌混合し、 pH13に調節
した。温度50℃で毎分2DJの空気を15時間通気し
て、Co、  Sm含有の針状晶α−FeOOHを生成
した。沈澱を水洗、P別したのち乾燥、粉砕した。この
ようにして得た針状晶は下記の成分を有し、電子顕微鏡
写真から平均の長軸長0.75μm、形状比(長軸/短
軸) F!i4であつた。
Example 1 Aqueous solution 141 containing 1.5 mol/l of ferric sulfate obtained by adding cobalt sulfate and samarium sulfate to contain 2 atomic % of co and 0.3 % of Sm with respect to Fe was added with 3 N
Add about 141 liters of NaOH aqueous solution, then add water to 30
I made it J. Sodium silicate (Si028.5%) 22
g (si/ Fe+ Co +8m 0.5 atomic%
) was added, stirred and mixed, and the pH was adjusted to 13. At a temperature of 50° C., air was passed through at a rate of 2 DJ per minute for 15 hours to produce acicular α-FeOOH containing Co and Sm. The precipitate was washed with water, separated from P, dried, and ground. The needle-like crystals obtained in this way have the following components, and from electron micrographs, the average long axis length is 0.75 μm, and the shape ratio (long axis/short axis) is F! It was i4.

Co  / Fe        1.96原子係Sm
 / Fe       O,34−8i  / (F
e +Oo+Sm )0.61  @次に、上記のα−
Fe00H粉末300grを一端開放型レトルト中30
0℃でH2ガスを31!/分の割合で通し還元し、四三
酸化鉄(マグネタイト)粉末を得た。電子顕微鏡写真か
ら、平均長軸0.6μm、形状比(長軸、1軸)F!1
1であった。
Co/Fe 1.96 atoms Sm
/ Fe O, 34-8i / (F
e +Oo+Sm )0.61 @Next, the above α-
300g of Fe00H powder in a retort with one end open
31 H2 gas at 0℃! The mixture was reduced at a rate of 1/min to obtain triiron tetroxide (magnetite) powder. From the electron micrograph, the average long axis is 0.6 μm, the shape ratio (long axis, 1 axis) F! 1
It was 1.

尚、磁気特性は、 保磁力  Hc”7200e 飽和磁化  σt−90emu/1 であった。In addition, the magnetic properties are Coercive force Hc”7200e Saturation magnetization σt-90emu/1 Met.

実施例 2゜ 実施例1で得たマグネタイト粉末200grを空気中、
280℃で80分間酸化してr(peo)(マグヘマタ
イト)を得た。電子顕3 微鏡写真から平均長軸0.6μm、形状比(長軸/短軸
)は10であった。
Example 2゜200g of magnetite powder obtained in Example 1 was placed in air,
It was oxidized at 280° C. for 80 minutes to obtain r(peo) (maghematite). Electron micrograph 3 The average long axis was 0.6 μm, and the shape ratio (long axis/short axis) was 10.

尚、磁気特性は 保磁力  Hc=520oe 飽和磁化  σ =80  emu/11であった。Furthermore, the magnetic properties are Coercive force Hc=520oe Saturation magnetization σ = 80 emu/11.

実施例 3゜ 実施例1で得たα−Pe00H粉末の乾燥ケーキiog
をとり、350℃で、水素317分の割合で7時間通し
還元して、°9o含有量(/Fe ) 1.9原子%の
磁性粉末を得た。、磁気特性は、 保磁力   Hc”42500e 残残留束密度o r =65  em u/1飽和磁束
密度σ5=158  ″ 角形比  σγ/σs=0.41 であった。
Example 3゜Dry cake iog of α-Pe00H powder obtained in Example 1
was reduced at 350° C. with hydrogen at a rate of 317 min for 7 hours to obtain a magnetic powder with a °9O content (/Fe 2 ) of 1.9 at %. The magnetic properties were as follows: Coercive force Hc"42500e Residual flux density or = 65 em u/1 Saturation magnetic flux density σ5 = 158" Squareness ratio σγ/σs = 0.41.

実施例 4゜ Smの代りに、Oe 、 Pr 、 La 、 Y 、
 Tb 。
Example 4 Instead of Sm, Oe, Pr, La, Y,
Tb.

Br 、 Dy 、 Ho およびミツシュメタル(S
mO,9,Gd O,1)を使用して実施例1〜6の方
法を繰少返した。その結果、Smを使用したときとほぼ
同様な磁気特性音もった粉末を得た。
Br, Dy, Ho and Mitsushmetal (S
The method of Examples 1-6 was repeated using mO,9,Gd O,1). As a result, a powder with almost the same magnetic characteristics and sound as when using Sm was obtained.

実施例 5゜ Feに対しCo2.5原子%、Cu O,15原子%、
Sm 0.5原子係含むように、そnぞnの硫酸塩を添
加した硫酸第1鉄を、1.5モル/11含む水溶液14
11に、3NNaOH水溶液約141を加え、更に水を
加えて30I!とした。硫酸アルミニウム(AI 8.
 j % ) 501r (Al /Fe 十Co 十
Cu = 0.3%)を加えて攪拌混合し、pHを12
に調節したのち、温度50〜60℃で毎分20/の空気
を15時間通気して針状晶α−Fe 00Hを生成した
。この沈澱を水洗、r別、乾燥、粉砕した。
Example 5゜Co2.5 at%, CuO, 15 at%,
Aqueous solution 14 containing 1.5 mol/11 of ferrous sulfate to which n each n of sulfate was added so as to contain 0.5 atoms of Sm.
To 11, add about 141 ml of 3N NaOH aqueous solution, and further add water to make 30 I! And so. Aluminum sulfate (AI 8.
j%) 501r (Al/Fe/Co/Cu = 0.3%) was added and mixed with stirring, and the pH was adjusted to 12.
After adjusting the temperature to 50 to 60° C., air was passed through the reactor at a rate of 20/min for 15 hours to produce needle-shaped α-Fe 00H. This precipitate was washed with water, separated, dried, and pulverized.

この粉末は下記の組成を有し、電子顕微鏡写真から平均
長軸要約0.7μm、形状比(長軸/短軸)がほぼ14
であった。
This powder has the following composition, and from an electron micrograph, the average long axis is approximately 0.7 μm, and the shape ratio (long axis/short axis) is approximately 14.
Met.

Co/Fe          =195原子%Sm/
Fe        =0.37 −AJ/(Fe+O
o+C! u+sm)=0.4Cu/Co      
     =  21上記のα−PeOOH粉末300
1rをとシ、ガラス製円筒型反応器につめ、570 ”
CでH2ガスを61/分の割合で通し還元し四三酸化鉄
を得た。この粉末は電子顕微鏡写真から平均の長軸長が
0.6μm、形状比(長軸/短軸)β10であシその磁
気特性は次の通シである。
Co/Fe = 195 atomic% Sm/
Fe=0.37-AJ/(Fe+O
o+C! u+sm)=0.4Cu/Co
= 21 above α-PeOOH powder 300
1r was poured into a glass cylindrical reactor, and 570"
The mixture was reduced by passing H2 gas through it at a rate of 61/min to obtain triiron tetroxide. This powder has an average major axis length of 0.6 μm and a shape ratio (major axis/minor axis) β10 from an electron micrograph, and its magnetic properties are as follows.

保磁力HC’=7300e 飽和磁化σs=91emu/g 実施例 6゜ 実施例5で得たマグネタイト粉末200grを空気中、
275℃で80分間酸化してrFe20゜(マグヘマタ
イト)を得た。電子顕微鏡写真から平均長軸長は0.6
μm、形状比(長軸/短軸)は10であシ、磁気特性は
次の通シであった。
Coercive force HC' = 7300e Saturation magnetization σs = 91 emu/g Example 6゜ 200 gr of magnetite powder obtained in Example 5 was placed in air,
It was oxidized at 275°C for 80 minutes to obtain rFe20° (maghematite). From the electron micrograph, the average major axis length is 0.6
The shape ratio (major axis/minor axis) was 10, and the magnetic properties were as follows.

保磁力HC=5400e 飽和磁束密度σs    ”= 84 ’emu/g実
施例 Z 実施例5で得たα−FeOOH粉末乾燥ケーキiogを
とって350℃でH2ガス3//分の割合で7時間通し
て還元して、Co/Pe原子%が約1.95%の下記の
磁気特性を有する磁性粉末を得た。
Coercive force HC = 5400e Saturation magnetic flux density σs '' = 84 'emu/g Example Z The α-FeOOH powder dry cake iog obtained in Example 5 was taken and passed through H2 gas at a rate of 3/min at 350°C for 7 hours. A magnetic powder with a Co/Pe atomic % of about 1.95% and the following magnetic properties was obtained.

保磁力He        : 12800e残残留束
密度σr=67emu/g 飽和磁束密度σS   二165emu/g角形比σr
/σs     ””0.41実施例 8゜ Fe  に対しCo2.2原子%、CuO,6原子係、
Sm0.4原子係、Zr0.3原子%を含むようにそれ
ぞれの硫酸塩を添加した硫酸オー鉄を1.5モル/11
含む水溶液14I!に、5NNaOH水溶液1411を
加え更に水を加えて301とした。珪酸ナトリウム(8
40228,5%)45.9・tを加えて混合し、pH
を12に!II整した後、50〜60℃で20I!分の
割合で空気を15時間通気し針状晶α−F’eOOHを
生成した。この沈澱を水洗、r別、乾燥、粉砕した。こ
の針状結晶は、下記の組成を有し、電子顕微鏡写真から
平均長軸長が約0.7μm、形状比(長軸/短軸)−1
4であった。
Coercive force He: 12800e Residual flux density σr = 67 emu/g Saturation magnetic flux density σS 2165 emu/g Squareness ratio σr
/σs ””0.41 Example 8° Co2.2 atomic %, CuO, 6 atomic percent relative to Fe,
1.5 mol/11 of ferrous sulfate to which each sulfate was added so as to contain 0.4 atomic % of Sm and 0.3 atomic % of Zr.
Aqueous solution containing 14I! To this, 5N NaOH aqueous solution 1411 was added, and water was further added to make 301. Sodium silicate (8
Add 40228, 5%) 45.9・t, mix, and adjust the pH.
to 12! 20I at 50-60℃ after conditioning! Air was aerated for 15 hours at a rate of 1.5 min to produce needle-shaped α-F'eOOH. This precipitate was washed with water, separated, dried, and pulverized. This needle-shaped crystal has the following composition, and as seen from an electron micrograph, the average major axis length is approximately 0.7 μm, and the shape ratio (major axis/minor axis) is −1.
It was 4.

Co / Fe        = 195原子%Sm
 / Fe        = 0.3981 /CF
e+Co+Cu+8m+ZF)  = 0J5Cu /
 Co        = 0jZr / Co   
     = 0.14上記のC1−PeoOH粉末3
0粉末30全ガラス製円筒型反応器に充填し、3 0 
0 ’CでH2  ガスを31!/分の割合で通して還
元して四三酸化鉄を得た。この粒子は電子顕微鏡写真か
ら、平均長軸長0. 6μm,形状比(長軸/短@)は
約10であり下記の磁気特性を有していた。
Co/Fe = 195 atomic% Sm
/Fe=0.3981/CF
e+Co+Cu+8m+ZF) = 0J5Cu/
Co = 0jZr / Co
= 0.14 above C1-PeoOH powder 3
0 powder was packed into an all-glass cylindrical reactor, and 30
31 H2 gas at 0'C! The mixture was reduced to obtain triiron tetroxide. From an electron micrograph, this particle has an average major axis length of 0. It had a diameter of 6 μm, a shape ratio (major axis/minor axis) of about 10, and had the following magnetic properties.

保磁力Hc”=7500e 飽和磁束密度σs     = 95 emu/.!i
i’実施例 9 実施例8で得たマグネタイト粉末200,!i’rをと
シ、空気中、2 7 5 ”Cで80分間酸化してγF
e2O3 マグヘマタイトを得た。
Coercive force Hc” = 7500e Saturation magnetic flux density σs = 95 emu/.!i
i' Example 9 Magnetite powder obtained in Example 8 200,! oxidize in air at 275"C for 80 minutes to obtain γF.
e2O3 maghematite was obtained.

この粒子は電子顕微鏡写真から平均長軸長0.6μm形
状比(長@/短軸ン約゛10で、下記の磁気特性を有し
ていた。
The particles had an average major axis length of 0.6 μm, a shape ratio (major axis/minor axis ratio) of approximately 10, and the following magnetic properties.

保磁力He        : 6000e飽飽和束密
度σ、     = 88 emu / 11実施例 
10゜ 実施例8で得たαFe0OH粉末乾燥ケ一キ10gをと
シ、360℃でH2ガスを3//分の割合で・4時間通
して還元し、co含有量(対Fe)が1.9原子%の磁
性粉末を得た。
Coercive force He: 6000e Saturation flux density σ, = 88 emu / 11 Examples
10° 10 g of the dried αFe0OH powder obtained in Example 8 was reduced to 360°C with H2 gas at a rate of 3/min for 4 hours until the co content (relative to Fe) was reduced to 1. A magnetic powder containing 9 atom % was obtained.

磁気特性は 保磁力He       = 14000e残残留束密
度0γ   = 70 emu / 1飽和磁束密It
 ’U’、 s    = 170 emu / 9角
形比−σγ/σ、     =0.1であった。
The magnetic properties are coercive force He = 14000e residual flux density 0γ = 70 emu / 1 saturation magnetic flux density It
'U', s = 170 emu/nonagonal ratio - σγ/σ, = 0.1.

実施例 11゜ 実施例8〜10の方法において、Zrの代シにLr h
、あるいはVを使用する以外は、同じ方法を繰返したと
ころはぼ同様な磁性粉末を得た。
Example 11゜In the method of Examples 8 to 10, Lr h is substituted for Zr.
, or V was used, and the same method was repeated to obtain substantially the same magnetic powder.

実施例 12゜ 実施例5〜1oの方法においてSmの代シにCe、 Y
 2 Pr、 La  その他Y、 Td、 Br、 
Dyあるいはミツシュメタルをする以外は同じ方法を繰
返したところ龜Iチ同様な磁性粉末を得た。
Example 12゜In the method of Examples 5 to 1o, Ce, Y is substituted for Sm.
2 Pr, La Others Y, Td, Br,
When the same method was repeated except for using Dy or Mitsushmetal, a magnetic powder similar to that of the powder was obtained.

実施例 13゜ 従来公知の方法で製造した針状晶αFe0OH180j
i (2mol )を91の水に分散し攪拌した。
Example 13゜Acicular crystal αFe0OH180j produced by a conventionally known method
i (2 mol) was dispersed in 91 water and stirred.

一方下記のそれぞれの化合物をそnぞれのN量(!:I
) CO8047H20? 5.211r CLISO45H202,I  FirFeSO47H
z0     4.! flrZr80a4H200,
61r Sm2(804)s 8H203,99r1/の水に溶
かし攪拌したものをFe0OHを分散した91の水に加
え合計?OA’とし念。
On the other hand, each of the following compounds was mixed with the respective amount of N (!:I
) CO8047H20? 5.211r CLISO45H202,I FirFeSO47H
z0 4. ! flrZr80a4H200,
61r Sm2(804)s 8H203, 99r1/dissolved in water and stirred, added to 91 water in which Fe0OH was dispersed, total? OA'.

30分間攪拌した後j N −NaOH液を滴下してp
Hを8にし、次いで水硝子(840228,5%)  
51  (Sr / (Fe+、α>、+Cu、十Zr
+8m)=0.56%)を加え60℃で60分間攪拌し
た。
After stirring for 30 minutes, add N-NaOH solution dropwise.
H to 8, then water glass (840228, 5%)
51 (Sr / (Fe+, α>, +Cu, 10Zr
+8m)=0.56%) was added and stirred at 60°C for 60 minutes.

沈澱物を水洗、濾過、乾燥した後9011rを350℃
で H2ガスで還元した。
After washing the precipitate with water, filtering, and drying, 9011r was heated at 350°C.
It was reduced with H2 gas.

次いで280℃で80分間酸化して全金属に対し87の
量0.6%のγFe・2011  を得た。電子顕微鏡
写真から粒子の平均長軸は0.7μm、軸比は10:1
であシ、 保磁力 Hc      =  740  エルステッ
ド飽和磁化σs    =  90 emu/Ji’で
あった。
Then, it was oxidized at 280° C. for 80 minutes to obtain γFe·2011 in an amount of 87 and 0.6% based on the total metal. From the electron micrograph, the average long axis of the particles is 0.7 μm, and the axial ratio is 10:1.
The coercive force Hc = 740 Oersted saturation magnetization σs = 90 emu/Ji'.

実施例 14゜ 実施例13で得た沈澱物10gをとシ450℃で水素で
還元して次の磁性鉄粉を得た。
Example 14 10 g of the precipitate obtained in Example 13 was roasted and reduced with hydrogen at 450°C to obtain the following magnetic iron powder.

保磁力       =1280  エルステッド残留
磁束密度σr  =68 emu / ji飽和磁束密
度σs  = 166 emu / 1角形比σr/σ
s=0.41
Coercive force = 1280 Oersted residual magnetic flux density σr = 68 emu / ji Saturation magnetic flux density σs = 166 emu / monogonal ratio σr/σ
s=0.41

Claims (1)

【特許請求の範囲】 1、 鉄を主成分とし、コバルトおよび希土類元素を共
存してなり、前記金属総量に対し0.1〜0.7原子量
%のAJまたはSiを含むことを特徴とする磁性粉末。 10  2、  Co/Feが0.1〜7原子%、希土
類金属類/Co が7〜50原子%である特許請求の範
囲子1項の磁性粉末。 3、 鉄を主成分とし、コバルトおよび希土類元素を共
存し、更に銅を含有してなシ、前15  記金属総量に
対し0.1−M O,7原子鏑のAJまたはSiを含む
ことを特徴とする磁性粉末。 4、  Co/Feが0.1〜7原子%、希土類元 。 素/Coが7〜50原子%、Ou/Coが7〜′30原
子%である特許請求の範囲子3項の磁20  性粉末。 5 鉄を主成分とし、コバルト、希土類元素、銅を共存
し、更にZi、 Ti、  Vから選ばれる少なくとも
一種を含有してなシ、全金属量に対し0.1〜1.0原
子%のA7またはSiを含むことを特徴とする磁性粉末
。 (5,Co / Feが0.1〜10原子%、希土類元
素/COが7〜50原子%、Ou/Coが10〜60原
子%、M/Co(ここでMはZrlTi  および■か
ら選ばれる少なくとも1種を表わす)が0.5〜5原子
%である特許請求の範囲子5項の磁性粉末。 7、  re(OH)、Co(OH)、希土類金2 属水酸化物および必要に応じ調水酸化物と、任意的にZ
r、TiおよびVからなる群から選ばれる少なくとも1
種の水酸化物を含むpH10以上の水溶液に、水可溶性
珪酸塩、または水可溶性アルミニウム塩を添加した後、
該水溶液に酸素含有ガスを通気してCoおよび希土類元
素ならびに添加したその他の金属を含有する針状晶α−
Fe00H粒子を生成分離した該針状晶を還元性ガス中
で還元することを特徴とする鉄を主成分とする磁性粉末
の製造方法。 8、 添加金属を含むFeoOH粒子を還元した後、更
に酸化する磁性粉末の製造方法。
[Scope of Claims] 1. Magnetism characterized by having iron as a main component, coexisting with cobalt and rare earth elements, and containing AJ or Si in an amount of 0.1 to 0.7 atomic weight % based on the total amount of metals. powder. 10 2. The magnetic powder according to claim 1, wherein Co/Fe is 0.1 to 7 at % and rare earth metal/Co is 7 to 50 at %. 3. Contains iron as the main component, cobalt and rare earth elements, does not contain copper, and contains 0.1-M O, 7 atoms of AJ or Si based on the total amount of metals listed in 15 above. Characteristic magnetic powder. 4. Co/Fe 0.1-7 atomic%, rare earth elements. The magnetic powder according to claim 3, wherein the element/Co content is 7 to 50 at % and the O/Co content is 7 to 30 at %. 5 Mainly composed of iron, coexisting with cobalt, rare earth elements, and copper, and further containing at least one selected from Zi, Ti, and V, in an amount of 0.1 to 1.0 atomic % based on the total metal content. A magnetic powder characterized by containing A7 or Si. (5, Co/Fe is 0.1 to 10 at%, rare earth element/CO is 7 to 50 at%, Ou/Co is 10 to 60 at%, M/Co (where M is selected from ZrlTi and 7. The magnetic powder according to claim 5, wherein the amount of at least one compound (representing at least one kind) is 0.5 to 5 atomic %. prepared hydroxide and optionally Z
At least one selected from the group consisting of r, Ti and V
After adding a water-soluble silicate or a water-soluble aluminum salt to an aqueous solution with a pH of 10 or more containing a seed hydroxide,
Oxygen-containing gas is passed through the aqueous solution to form acicular crystals α- containing Co, rare earth elements, and other metals added.
A method for producing magnetic powder containing iron as a main component, which comprises reducing the needle-like crystals that have been produced and separated into Fe00H particles in a reducing gas. 8. A method for producing magnetic powder in which FeoOH particles containing added metal are reduced and then further oxidized.
JP56158129A 1981-10-06 1981-10-06 Magnetic powder and method of manufacturing the same Granted JPS5860504A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56158129A JPS5860504A (en) 1981-10-06 1981-10-06 Magnetic powder and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56158129A JPS5860504A (en) 1981-10-06 1981-10-06 Magnetic powder and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPS5860504A true JPS5860504A (en) 1983-04-11
JPS6244842B2 JPS6244842B2 (en) 1987-09-22

Family

ID=15664915

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56158129A Granted JPS5860504A (en) 1981-10-06 1981-10-06 Magnetic powder and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JPS5860504A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010092587A (en) * 2010-01-27 2010-04-22 Dowa Holdings Co Ltd Ferromagnetic metal powder and magnetic recording medium using the same
JP2011162882A (en) * 2011-03-11 2011-08-25 Dowa Holdings Co Ltd Ferromagnetic metal powder, and magnetic recording medium using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010092587A (en) * 2010-01-27 2010-04-22 Dowa Holdings Co Ltd Ferromagnetic metal powder and magnetic recording medium using the same
JP2011162882A (en) * 2011-03-11 2011-08-25 Dowa Holdings Co Ltd Ferromagnetic metal powder, and magnetic recording medium using the same

Also Published As

Publication number Publication date
JPS6244842B2 (en) 1987-09-22

Similar Documents

Publication Publication Date Title
JPH0722224A (en) Ferromagnetic metal powder
JPH0625702A (en) Magnetic metal powder and its production
JPS5860504A (en) Magnetic powder and method of manufacturing the same
JP3337046B2 (en) Spindle-shaped metal magnetic particles containing cobalt and iron as main components and method for producing the same
JP3164355B2 (en) Method for producing acicular alloy magnetic powder
JP3144683B2 (en) Spindle-shaped iron-based metal magnetic particle powder
JP2003247002A (en) Metal magnetic grain powder essentially consisting of iron, production method thereof and magnetic recording medium
JP3303896B2 (en) Spindle-shaped iron-based metal magnetic particle powder and method for producing the same
JP3264374B2 (en) Method for producing spindle-shaped iron-based metal magnetic particle powder
US4497654A (en) Ferromagnetic metallic powders useful for magnetic recording and processes for producing said metallic powders
JPH032321B2 (en)
JP2852460B2 (en) Method for producing spindle-shaped iron-based metal magnetic particle powder
JP2678480B2 (en) Metal magnetic powder
JPH1083906A (en) Metallic powder for magnetic recording use and manufacture thereof
JP3092649B2 (en) Method for producing spindle-shaped metal magnetic particles containing iron as a main component
JPS61141627A (en) Production of alpha-feooh needles
JPH0598321A (en) Production of magnetic metal powder
JP3141907B2 (en) Method for producing spindle-shaped iron-based metal magnetic particle powder
JP2925561B2 (en) Spindle-shaped magnetic iron oxide particles
JPS58159311A (en) Manufacture of metallic magnetic powder
JP2852459B2 (en) Method for producing spindle-shaped iron-based metal magnetic particle powder
JPH08165117A (en) Spindlelike geothite particulate powder containing cobalt and its production
JP3087808B2 (en) Manufacturing method of magnetic particle powder for magnetic recording
JP3446960B2 (en) Method for producing magnetic metal powder for magnetic recording using α-iron oxyhydroxide
JPS61124507A (en) Production of magnetic metallic powder