JPH03199301A - Magnetic metallic powder and production thereof and magnetic recording medium - Google Patents

Magnetic metallic powder and production thereof and magnetic recording medium

Info

Publication number
JPH03199301A
JPH03199301A JP1338112A JP33811289A JPH03199301A JP H03199301 A JPH03199301 A JP H03199301A JP 1338112 A JP1338112 A JP 1338112A JP 33811289 A JP33811289 A JP 33811289A JP H03199301 A JPH03199301 A JP H03199301A
Authority
JP
Japan
Prior art keywords
magnetic
oxidation
magnetic powder
iron
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1338112A
Other languages
Japanese (ja)
Inventor
Hiromi Miyazaki
浩美 宮崎
Michiji Okai
理治 大貝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP1338112A priority Critical patent/JPH03199301A/en
Publication of JPH03199301A publication Critical patent/JPH03199301A/en
Pending legal-status Critical Current

Links

Landscapes

  • Hard Magnetic Materials (AREA)
  • Paints Or Removers (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)
  • Magnetic Record Carriers (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To develop the magnetic metallic iron powder for magnetic recording media having excellent magnetic characteristics by subjecting the suspension of Fe(OH)2 to two stages of oxidation treatments in a specific oxidative atmosphere and subjecting the resulted alpha-FeOOH to dry reduction. CONSTITUTION:While the suspension of the Fe(OH)2 is kept at 15 to 40 deg.C, the suspension is stirred in the atmosphere of 15 to 40vol.% O2 concn. and is thereby subjected to primary oxidation in a range of 10 to 50% oxidation rate. Gaseous N2 contg. O2 at 0.5 to 15vol.% ratio is brought into reaction at 40 to 60 deg.C and is thereby subjected to secondary oxidation to obtain the alpha-iron oxyhydroxide (alpha-FeOOH). The thin film of Al2O3 and SiO2 is formed for the purpose of preventing sintering on the surface of the iron oxyhydroxide obtd. by filtering the above-mentioned alpha-iron oxyhydroxide and thereafter, the oxide is calcined to form Fe2O3 which is then subjected to the dry reduction in a reducing gas contg. H2, CO, etc. The resulted powder reduced iron is kneaded with a binder and the mixture is applied on a polyethylene terephthalate film, etc., and is subjected to the orientation of magnetic particles in a magnetic flux, by which the iron powder for magnetic recording media having a small inversion magnetization rate distribution (SFD) and excellent magnetic characteristics is produced.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はオーディオ用テープ、8mmVTRテープ、磁
気カメラ用ディスク、DAT用テープ等の塗布型磁気記
録媒体に用いることのできる金属磁性粉末に関するもの
である。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a metal magnetic powder that can be used in coated magnetic recording media such as audio tapes, 8mm VTR tapes, magnetic camera disks, and DAT tapes. be.

[従来の技術] 近年、記録媒体に対する高性能化の必要性が強く求めら
れており、高密度記録、高出力特性及びノイズレベルの
低下が要求されている。このような要求を満足する磁性
粉末の特性は粉体特性としては微細で表面積が大きく且
つ針状性が優れていることであり、磁気特性としては飽
和磁化が大きく所望する最適な保磁力を有し、さらに磁
性粉末をテープ化した場合、角型比(Rs)が大きく、
5FD(反転磁化率分布)が小さいことが重要である。
[Prior Art] In recent years, there has been a strong need for higher performance in recording media, and high-density recording, high output characteristics, and lower noise levels are required. The characteristics of magnetic powder that satisfies these requirements are that it is fine, has a large surface area, and has excellent acicularity, and has high saturation magnetization and the desired optimal coercive force. However, when the magnetic powder is made into a tape, the squareness ratio (Rs) is large,
It is important that 5FD (flip magnetic susceptibility distribution) is small.

−膜内に金属磁性粉末は、α−オキシ水酸化鉄(α−F
e00H)あるいは酸化鉄をH2。
- The metal magnetic powder in the film is α-iron oxyhydroxide (α-F
e00H) or iron oxide as H2.

Co等の還元性ガスで還元して製造されるが、従来、磁
性粉末のSFDを小さくするために、出発原料となるα
−オキシ水酸化鉄の形状を均一にし、還元中の粉末の焼
結、形崩れを防止して金属磁性粉末の粒度分布を狭くす
ることが提案されている(例えば特開昭52−1398
58号公報、特開昭57−23002号公報、特開昭5
9−57917号公報など)。
It is produced by reduction with a reducing gas such as Co, but in the past, in order to reduce the SFD of magnetic powder, the starting material α
- It has been proposed to narrow the particle size distribution of metal magnetic powder by making the shape of iron oxyhydroxide uniform and preventing the powder from sintering and deforming during reduction (for example, JP-A-52-1398
No. 58, JP-A-57-23002, JP-A-Sho 5
9-57917, etc.).

しかしながら、金属磁性粉末の形状を均一にすることは
非常に困難であるため、上記方法によりSFDを小さく
することには限界があった。
However, since it is very difficult to make the metal magnetic powder uniform in shape, there is a limit to reducing the SFD using the above method.

また、金属磁性粉末を塗布して用いる場合、塗布物の残
留磁束密度とRsを大きくし、SFDを小さくするため
に金属磁性粉末は塗布後、磁石により長手方向に配向さ
れるが、この配向によって金属磁性粉末の磁化容易軸を
長手方向に完全にそろえることは不可能であり、このた
め前記した形状の均一な磁性粉末を塗布して得た塗布物
であっても保磁力の分布は広がってしまうという問題が
あった。
In addition, when applying metal magnetic powder, in order to increase the residual magnetic flux density and Rs of the applied material and to reduce SFD, the metal magnetic powder is oriented in the longitudinal direction by a magnet after application. It is impossible to perfectly align the axis of easy magnetization of metal magnetic powder in the longitudinal direction, and therefore, even in a coated material obtained by coating uniform magnetic powder with the shape described above, the distribution of coercive force is widened. There was a problem with putting it away.

[発明が解決しようとする課題] 本発明の目的は、SFDが小さく、かつ塗布したときの
磁気特性に優れた金属磁性粉末及びその製造法を提供す
ることにある。
[Problems to be Solved by the Invention] An object of the present invention is to provide a metal magnetic powder that has a small SFD and excellent magnetic properties when applied, and a method for producing the same.

[課題を解決するための手段] 本発明者らは上記課題を解決するために鋭意検討を行な
った結果、保磁力の角度依存性の小さい金属磁性粉末を
見出し、本発明を完成するに至った。すなわち本発明は
、塗布して用いられる金属磁性粉末であって、これを塗
布して得られる塗布物の配向方向に対する比保磁力が塗
布面内のo″〜±50″の範囲の全ての角度で90%以
上となりかつ±90@で0%となる金属磁性粉末である
[Means for Solving the Problems] As a result of intensive studies to solve the above problems, the present inventors discovered a metal magnetic powder whose coercive force has a small dependence on angle, and completed the present invention. . That is, the present invention provides a metal magnetic powder that is used by coating, and the specific coercive force with respect to the orientation direction of the coated material obtained by coating the powder is applied at all angles in the range of o'' to ±50'' within the coated surface. It is a metal magnetic powder with a value of 90% or more and a value of 0% at ±90@.

ここでいう保磁力の角度依存性が小さいとは、通常磁化
反転機構がコヒーレントモードの場合、磁化容易軸が磁
場方向とθ°傾いている時の保磁力をHe(θ0)とし
、磁場と同方向の保磁力He (0’ )−AならHc
(45°)−A/2となりファンニングモードの場合H
e (0’ )=A′ならHc (45’ ):1.I
 XA’ となると言われており、この場合ファンニン
グモードの方がコヒーレントモードより保磁力の角度依
存性が小さいといい、磁化容易軸と磁場方向との角度が
変化しても保磁力の変化が小さいことである。
The small angular dependence of coercive force here means that when the magnetization reversal mechanism is normally in coherent mode, the coercive force when the axis of easy magnetization is inclined by θ° with respect to the magnetic field direction is He (θ0), which is the same as the magnetic field. If the coercive force in the direction He (0')-A is Hc
(45°) - A/2 and H in fanning mode
If e (0')=A', then Hc (45'):1. I
It is said that the angle dependence of the coercive force is smaller in the fanning mode than in the coherent mode, and the coercive force does not change even if the angle between the axis of easy magnetization and the magnetic field direction changes. It's a small thing.

また、本発明における比保磁力は、金属磁性粉末を磁性
塗料としてポリエステルフィルム等に塗布し、これを外
部磁場等によって配向させ、配向方向に対して塗布面内
で00傾けて磁場をかけたときの保磁力Hc(θ″)を
振動試料型磁力計で測定することにより、下記の式から
求めることができる。
In addition, the specific coercive force in the present invention is measured when a metal magnetic powder is applied as a magnetic paint to a polyester film, etc., oriented by an external magnetic field, etc., and a magnetic field is applied at an angle of 00 within the coating surface with respect to the orientation direction. By measuring the coercive force Hc (θ″) with a vibrating sample magnetometer, it can be determined from the following equation.

ItHe(θ” )−11c(90’ ))/1Hc(
0°)−He(90°)+1 X100(%)但し、式
中Hc (0°)は配向方向の保磁力、Hc(90”)
は配向方向と直角の方向の保磁力を示す。
ItHe(θ")-11c(90'))/1Hc(
0°) - He (90°) + 1
represents the coercive force in the direction perpendicular to the orientation direction.

本発明の金属磁性粉末は上記のとおり保磁力の角度依存
性が小さいので、SFDが小さく、塗布したときの磁気
特性も優れたものとなる。
As described above, the metal magnetic powder of the present invention has a small angular dependence of coercive force, so the SFD is small and the magnetic properties when applied are excellent.

以下、本発明の金属磁性粉末の製造法について述べる。The method for producing the metal magnetic powder of the present invention will be described below.

本発明の金属磁性粉末は、水酸化第一鉄を含む懸濁液を
温度15〜40℃、酸素濃度15〜40容量%の雰囲気
中で酸化率10〜50%となるまで一次酸化し、次いで
温度40〜60℃、酸素濃度0.5〜15容量%の雰囲
気中で二次酸化することにより得られたα−オキシ水酸
化鉄を乾式還元することにより製造することができる。
The metal magnetic powder of the present invention is produced by primary oxidizing a suspension containing ferrous hydroxide in an atmosphere with a temperature of 15 to 40°C and an oxygen concentration of 15 to 40% by volume until an oxidation rate of 10 to 50% is obtained. It can be produced by dry reducing α-iron oxyhydroxide obtained by secondary oxidation in an atmosphere with a temperature of 40 to 60° C. and an oxygen concentration of 0.5 to 15% by volume.

上記方法において用いられる水酸化第一鉄を含む懸濁液
としては例えば塩化第一鉄、硫酸第一鉄。
Examples of suspensions containing ferrous hydroxide used in the above method include ferrous chloride and ferrous sulfate.

硝酸第−鉄等の第一鉄塩と水酸化ナトリウム、水酸化カ
リウム等の水酸化アルカリを混合して含む水溶液から得
ることができる。この懸濁液中にはニッケル、コバルト
、クロム、カルシウム、亜鉛。
It can be obtained from an aqueous solution containing a mixture of a ferrous salt such as ferrous nitrate and an alkali hydroxide such as sodium hydroxide or potassium hydroxide. In this suspension are nickel, cobalt, chromium, calcium and zinc.

マンガン等の金属を一種以上、媒晶剤として加えること
ができる。なお、媒晶剤の添加量は鉄に対して2.0重
量%以下とすることが好ましい。媒晶剤が上記の量を越
える場合、得られる金属磁性粉末の角度依存性が小さく
ならないおそれがある。
One or more metals such as manganese can be added as modifiers. Note that the amount of crystal modifier added is preferably 2.0% by weight or less based on iron. If the amount of the crystal modifier exceeds the above range, the angular dependence of the obtained metal magnetic powder may not be reduced.

また、水酸化第一鉄を得る際に、非酸化性雰囲気下で温
度40℃以下の条件で晶出を行なうことにより、針状比
の大きい水酸化第一鉄を得ることができる。このとき、
水酸化第一鉄の針状比を大きくすることにより、製造さ
れる金属磁性粉末の磁気特性が向上する。
Moreover, when obtaining ferrous hydroxide, ferrous hydroxide having a high acicular ratio can be obtained by performing crystallization at a temperature of 40° C. or lower in a non-oxidizing atmosphere. At this time,
By increasing the acicular ratio of ferrous hydroxide, the magnetic properties of the produced metal magnetic powder are improved.

次に上記水酸化第一鉄を含む懸濁液の酸化を行ない、α
−オキシ水酸化鉄を得るが、該酸化反応は二段階の反応
により行なわれる。また、この酸化は懸濁液を撹拌しな
がら酸化性ガス雰囲気下で行なうことができる。上記酸
化反応の一次酸化は温度15〜40°C1酸素濃度15
〜40容量%の雰囲気中で酸化率10〜50%となるま
で行なうが、この酸化により適度な大きさに成長したα
−オキシ水酸化鉄が生じる。更に一次酸化後、温度40
〜60℃、酸素濃度0.5〜15容量%の雰囲気中で二
次酸化を行なうが、この酸化によりα−オキシ水酸化鉄
の新たな核発生が抑制され、すでに生じているα−オキ
シ水酸化鉄の結晶が成長する。以上のように酸化反応を
二段階にすることにより、α−オキシ水酸化鉄の針状比
を大きくすることができる。なお、−吹酸化を酸化率1
0%未満で終了した場合、得られるα−オキシ水酸化鉄
の結晶は大きくなりすぎてしまうおそれがあり、50%
を越えて終了した場合、得られるα−オキシ水酸化鉄の
針状比が小さくなってしまう。
Next, the suspension containing the above ferrous hydroxide is oxidized, and α
- iron oxyhydroxide is obtained, the oxidation reaction being carried out in two steps. Further, this oxidation can be carried out in an oxidizing gas atmosphere while stirring the suspension. The primary oxidation of the above oxidation reaction is carried out at a temperature of 15 to 40°C, an oxygen concentration of 15
The oxidation is carried out in an atmosphere of ~40% by volume until the oxidation rate reaches 10~50%. Due to this oxidation, the α
- Iron oxyhydroxide is produced. After further primary oxidation, the temperature was increased to 40
Secondary oxidation is carried out at ~60°C in an atmosphere with an oxygen concentration of 0.5 to 15% by volume, but this oxidation suppresses new nucleation of α-oxyiron hydroxide and removes the already generated α-oxyhydroxide. Iron oxide crystals grow. By performing the oxidation reaction in two stages as described above, the acicular ratio of α-iron oxyhydroxide can be increased. Note that -blown oxidation is performed at an oxidation rate of 1
If the concentration is less than 0%, the resulting α-iron oxyhydroxide crystals may become too large;
If the process is completed in excess of 20%, the acicular ratio of the obtained α-iron oxyhydroxide will become small.

その後、得られたα−オキシ水酸化鉄を乾式還元するこ
とにより、本発明の金属磁性粉末を得ることができる。
Thereafter, the obtained α-iron oxyhydroxide is subjected to dry reduction to obtain the metal magnetic powder of the present invention.

この乾式還元は例えば通常行なわれているように、α−
オキシ水酸化鉄を焼結防止のためにアルミニウム化合物
、ケイ素化合物などにより表面処理し、これを脱水、焼
成し、て酸化第二鉄とした後に還元性ガス雰囲気中で還
元することにより行なうことができる。このときの脱水
This dry reduction is carried out, for example, by α-
This can be done by surface-treating iron oxyhydroxide with an aluminum compound, silicon compound, etc. to prevent sintering, dehydrating and firing it to form ferric oxide, and then reducing it in a reducing gas atmosphere. can. Dehydration at this time.

焼成は大気中で行なってもよいが、粉末の型くずれを防
止することができることから窒素雰囲気中で行なうこと
が好ましい。また窒素雰囲気中で脱水、焼成を行なうと
きは500〜750℃の温度で行なうことが好ましく、
500℃未満で行なった場合、粉末の形状がくずれるお
それがあり、750℃を越える温度で行なった場合、粉
末が焼結するおそれがある。また、還元の際に用いられ
るガスは水素ガス、−酸化炭素ガス等があり、特に限定
されないが、水素ガスが好ましく用いられる。水素ガス
を用いて還元を行なう場合、還元時間が5〜15時間と
なるように還元温度、水素ガス供給量等を調節すること
により、粉末間の焼結や粉末の型くずれ等が抑制される
。上記条件は通常還元温度を350〜550℃、水素ガ
ス供給量を酸化第二鉄1 kg当たり3〜2ONffl
/時とすることにより達成される。
Although the firing may be performed in the air, it is preferable to perform the firing in a nitrogen atmosphere since this can prevent the powder from losing its shape. Furthermore, when dehydrating and firing in a nitrogen atmosphere, it is preferable to perform the dehydration and baking at a temperature of 500 to 750°C.
If the temperature is lower than 500°C, the powder may lose its shape, and if the temperature is higher than 750°C, the powder may be sintered. Further, gases used in the reduction include hydrogen gas, -carbon oxide gas, etc., and although not particularly limited, hydrogen gas is preferably used. When reduction is performed using hydrogen gas, sintering between powders, deformation of powder, etc. can be suppressed by adjusting the reduction temperature, hydrogen gas supply amount, etc. so that the reduction time is 5 to 15 hours. The above conditions are usually a reduction temperature of 350 to 550°C and a hydrogen gas supply amount of 3 to 2 ONffl per 1 kg of ferric oxide.
/ This is achieved by taking time.

以上の方法により本発明の金属磁性粉末が得られるが、
還元直後の粉末は空気中において発火することがあり得
るので、粉末表面に薄い酸化膜を形成した後に空気中に
取り出すことが好ましく、この酸化膜の形成は還元後に
酸素を含む不活性ガスを粉末と接触させることにより行
なうことができる。
Although the metal magnetic powder of the present invention can be obtained by the above method,
Since the powder may ignite in the air immediately after reduction, it is preferable to form a thin oxide film on the powder surface before taking it out into the air. This can be done by contacting with.

また、本発明の金属磁性粉末は、バインダと共に混練し
、磁性塗料として使用され、これを非磁性支持体上に塗
布することにより磁気記録媒体を得ることができる。
Further, the metal magnetic powder of the present invention is kneaded with a binder and used as a magnetic coating, and a magnetic recording medium can be obtained by coating this on a non-magnetic support.

(実施例) 以下、実施例により本発明を説明するが、本発明はこれ
らに限定されない。
(Examples) Hereinafter, the present invention will be explained with reference to Examples, but the present invention is not limited thereto.

実施例1 塩化第二鉄2.2kgを含む水溶液50j2に苛性ソー
ダ11kgを含む水溶液50uを窒素雰囲気下で加え】
8℃で撹拌し水酸化第一鉄の懸濁液を得た。次いで温度
を18℃に保ちながら毎分61の割合で空気を45分間
通気し酸化反応前半を終了した。この時の酸化率は35
%であった。次に空気を窒素で希釈し酸素含有量を4%
としたガスを毎分111の割合で10時間通気し、酸化
反応後半を終了しα−オキシ水酸化鉄を得た。得られた
α−オキシ水酸化鉄を濾過、水洗しケイ酸ソーダ水溶液
とアルミン酸ソーダ水溶液を用いてケイ素化合物とアル
ミ化合物からなる被膜を形成した。
Example 1 50 u of an aqueous solution containing 11 kg of caustic soda was added to 50 j2 of an aqueous solution containing 2.2 kg of ferric chloride under a nitrogen atmosphere]
The mixture was stirred at 8°C to obtain a suspension of ferrous hydroxide. Next, while maintaining the temperature at 18° C., air was passed through the reactor at a rate of 61 per minute for 45 minutes to complete the first half of the oxidation reaction. The oxidation rate at this time is 35
%Met. The air is then diluted with nitrogen to reduce the oxygen content to 4%.
This gas was passed through the reactor at a rate of 111 per minute for 10 hours to complete the second half of the oxidation reaction and obtain α-iron oxyhydroxide. The obtained α-iron oxyhydroxide was filtered and washed with water, and a film made of a silicon compound and an aluminum compound was formed using an aqueous solution of sodium silicate and an aqueous solution of sodium aluminate.

その後得られたα−オキシ水酸化鉄粉末を窒素気流中6
00°Cで3時間焼成し酸化第二鉄とした。
Thereafter, the obtained α-iron oxyhydroxide powder was dissolved in a nitrogen stream for 6 hours.
It was fired at 00°C for 3 hours to form ferric oxide.

この酸化第二鉄1 kgにH2ガスを12NTI!/時
で供給し450℃で10時時間式還元し磁性鉄粉を得た
Add 12 NTI of H2 gas to 1 kg of this ferric oxide! Magnetic iron powder was obtained through reduction at 450° C. for 10 hours.

次いで酸素濃度0.2%の窒素気流中、80℃で該鉄粉
の表面酸化を行い強磁性鉄粉を得、該強磁性鉄粉100
重量部に、塩化ビニル−酢酸ビニルコポリマー25重量
部、レシチン1重量部、メチルエチルケトン100m1
、シクロヘキサノン100m1及びトルエン100m1
をガラスピーズを入れたサンドグラインダーで6時間混
合し、分散して磁性塗料を調製した。これをポリエチレ
ンテレフタレートフィルムの上に塗布し、磁束中で磁性
粒子の配向を行い、磁気テープを作製し、得られた磁気
テープの比保磁力と他の磁気特性を振動試料型磁力計で
測定した。
Next, the surface of the iron powder was oxidized at 80°C in a nitrogen stream with an oxygen concentration of 0.2% to obtain ferromagnetic iron powder.
Parts by weight include 25 parts by weight of vinyl chloride-vinyl acetate copolymer, 1 part by weight of lecithin, and 100 ml of methyl ethyl ketone.
, cyclohexanone 100ml and toluene 100ml
were mixed for 6 hours using a sand grinder containing glass beads and dispersed to prepare a magnetic paint. This was applied onto a polyethylene terephthalate film, the magnetic particles were oriented in a magnetic flux, a magnetic tape was produced, and the specific coercive force and other magnetic properties of the resulting magnetic tape were measured using a vibrating sample magnetometer. .

電磁変換特性をシバツク社の電磁変換特性測定システム
(型式:WV24AO)及びソニー社の8ミリビデオデ
ツキで測定した。その結果を第1図及び表1に示す。
The electromagnetic conversion characteristics were measured using an electromagnetic conversion characteristics measurement system (model: WV24AO) manufactured by Sibaku Corporation and an 8 mm video deck manufactured by Sony Corporation. The results are shown in FIG. 1 and Table 1.

実施例2 塩化第二鉄水溶液にN iCj22を25g加えること
以外は実施例1と同様に行った。本実施例において金属
磁性粉末中の鉄に対し1.1重量%のNiを含有してい
た。
Example 2 The same procedure as in Example 1 was carried out except that 25 g of N iCj22 was added to the ferric chloride aqueous solution. In this example, 1.1% by weight of Ni was contained relative to iron in the metal magnetic powder.

実施例1と同様の測定条件で求めた結果を第2図及び表
1に示す。
The results obtained under the same measurement conditions as in Example 1 are shown in FIG. 2 and Table 1.

実施例3 塩化第二鉄水溶液にCa Ci2を15g加えること以
外は実施例1と同様に行った。本実施例において金属磁
性粉末中の鉄に対し0.5重量%のCaを含有していた
Example 3 The same procedure as in Example 1 was carried out except that 15 g of Ca Ci2 was added to the ferric chloride aqueous solution. In this example, 0.5% by weight of Ca was contained relative to iron in the metal magnetic powder.

実施例1と同様の測定条件で求めた結果を第3図及び表
1に示す。
The results obtained under the same measurement conditions as in Example 1 are shown in FIG. 3 and Table 1.

比較例1 塩化第二鉄水溶液にN i Cfl□を130g加える
こと以外は実施例1と同様に行った。金属磁性粉末中の
鉄に対し6.0重量%のNiを含有していた。
Comparative Example 1 The same procedure as in Example 1 was carried out except that 130 g of N i Cfl□ was added to the ferric chloride aqueous solution. The metal magnetic powder contained 6.0% by weight of Ni based on iron.

実施例1と同様の測定条件で求めた結果を第4図及び表
1に示す。
The results obtained under the same measurement conditions as in Example 1 are shown in FIG. 4 and Table 1.

[発明の効果] 本発明の金属磁性粉末はSFDが小さく、保磁力の角度
依存性が小さいのでこれによってヒステリシス・ループ
の第2象限の保磁力付近での立上がりは急峻となり記録
分解能が向上すると共に、有効残留密度が大きいため、
短波長の記録に適したものとなる。
[Effects of the Invention] The metal magnetic powder of the present invention has a small SFD and a small angular dependence of coercive force, so that the rise of the hysteresis loop near the coercive force in the second quadrant becomes steep, and recording resolution is improved. , because the effective residual density is large,
This makes it suitable for short wavelength recording.

【図面の簡単な説明】[Brief explanation of drawings]

第1〜3図は本発明の実施例1〜3の金属磁性粉末を塗
布した塗布物の配向方向に対する角度と比保磁力の関係
を示す図である。 第4図は比較例1の金属磁性粉末を塗布した塗布物の配
向方向に対する角度と比保磁力の関係を示す図である。
1 to 3 are diagrams showing the relationship between the specific coercive force and the angle with respect to the orientation direction of coated articles coated with metal magnetic powders of Examples 1 to 3 of the present invention. FIG. 4 is a diagram showing the relationship between the specific coercive force and the angle with respect to the orientation direction of the coated product coated with the metal magnetic powder of Comparative Example 1.

Claims (3)

【特許請求の範囲】[Claims] (1)塗布して用いられる金属磁性粉末であって、これ
を塗布して得られる塗布物の配向方向に対する比保磁力
が塗布面内の0°〜±50°の範囲の全ての角度で90
%以上となりかつ±90°で0%となる金属磁性粉末。
(1) A metal magnetic powder used by coating, which has a specific coercive force of 90% in the coating surface at all angles in the range of 0° to ±50° with respect to the orientation direction of the coated material obtained by applying the powder.
% or more and 0% at ±90°.
(2)水酸化第一鉄を含む懸濁液を温度15〜40℃,
酸素濃度15〜40容量%の雰囲気中で酸化率10〜5
0%となるまで一次酸化し、次いで温度40〜60℃,
酸素濃度0.5〜15容量%の雰囲気中で二次酸化する
ことにより得られたα−オキシ水酸化鉄を乾式還元する
ことを特徴とする請求項第1項に記載の金属磁性粉末の
製造法。
(2) A suspension containing ferrous hydroxide at a temperature of 15 to 40°C.
Oxidation rate 10-5 in an atmosphere with an oxygen concentration of 15-40% by volume
Primary oxidation is performed until it becomes 0%, then the temperature is 40-60℃,
The production of metal magnetic powder according to claim 1, characterized in that α-iron oxyhydroxide obtained by secondary oxidation in an atmosphere with an oxygen concentration of 0.5 to 15% by volume is subjected to dry reduction. Law.
(3)金属磁性粉末を非磁性支持体上に塗布して得られ
る磁気記録媒体において、金属磁性粉末が請求項第1項
に記載の金属磁性粉末であることを特徴とする磁気記録
媒体。
(3) A magnetic recording medium obtained by coating metal magnetic powder on a non-magnetic support, characterized in that the metal magnetic powder is the metal magnetic powder according to claim 1.
JP1338112A 1989-12-28 1989-12-28 Magnetic metallic powder and production thereof and magnetic recording medium Pending JPH03199301A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1338112A JPH03199301A (en) 1989-12-28 1989-12-28 Magnetic metallic powder and production thereof and magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1338112A JPH03199301A (en) 1989-12-28 1989-12-28 Magnetic metallic powder and production thereof and magnetic recording medium

Publications (1)

Publication Number Publication Date
JPH03199301A true JPH03199301A (en) 1991-08-30

Family

ID=18315025

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1338112A Pending JPH03199301A (en) 1989-12-28 1989-12-28 Magnetic metallic powder and production thereof and magnetic recording medium

Country Status (1)

Country Link
JP (1) JPH03199301A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007081227A (en) * 2005-09-15 2007-03-29 Dowa Holdings Co Ltd Ferromagnetic powder, coating using the same and magnetic recording medium
JP2009197323A (en) * 2008-01-22 2009-09-03 Mitsubishi Materials Corp Dispersion solution of metal nanoparticle, and method for production thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007081227A (en) * 2005-09-15 2007-03-29 Dowa Holdings Co Ltd Ferromagnetic powder, coating using the same and magnetic recording medium
JP2009197323A (en) * 2008-01-22 2009-09-03 Mitsubishi Materials Corp Dispersion solution of metal nanoparticle, and method for production thereof

Similar Documents

Publication Publication Date Title
CA1115511A (en) Process for producing cobalt-containing ferromagnetic iron oxide powder
JPS608606B2 (en) Manufacturing method of ferromagnetic powder
JPH09295814A (en) Spindle-like geothite particle powder, its production, spindle-like metal magnetic particle powder consisting mainly of iron and obtained by using the same geothite particle powder as starting raw material and its production
US4437881A (en) Acicular ferromagnetic alloy particles and process for producing said particles
JPH03199301A (en) Magnetic metallic powder and production thereof and magnetic recording medium
JPS5923505A (en) Magnetic powder
JP3337046B2 (en) Spindle-shaped metal magnetic particles containing cobalt and iron as main components and method for producing the same
US4495164A (en) Process for producing acicular magnetite or acicular maghemite
JP3092649B2 (en) Method for producing spindle-shaped metal magnetic particles containing iron as a main component
JP3171223B2 (en) Method for producing acicular magnetic particle powder
JP3303896B2 (en) Spindle-shaped iron-based metal magnetic particle powder and method for producing the same
JP2885253B2 (en) Method of producing spindle-shaped goethite particles
JP2711719B2 (en) Needle crystal iron alloy magnetic particles for magnetic recording
JP3141907B2 (en) Method for producing spindle-shaped iron-based metal magnetic particle powder
JPH0120201B2 (en)
JP2965606B2 (en) Method for producing metal magnetic powder
JP2885252B2 (en) Method for producing acicular magnetic iron oxide particles for magnetic recording
JPS59169937A (en) Production of magnetic powder
JPS6187302A (en) Manufacture of magnetic recording medium
JPS62128931A (en) Production of magnetic iron oxide grain powder having spindle type
JPH0532421A (en) Production of needlelike magnetic iron oxide grain powder
JPS58159311A (en) Manufacture of metallic magnetic powder
JPH0755827B2 (en) Manufacturing method of spindle-shaped iron-based metallic magnetic particle powder
JPS61229305A (en) Manufacture of magnetic metal powder
JPH08165117A (en) Spindlelike geothite particulate powder containing cobalt and its production