JPS5919162B2 - Method for producing iron-cobalt alloy ferromagnetic powder - Google Patents

Method for producing iron-cobalt alloy ferromagnetic powder

Info

Publication number
JPS5919162B2
JPS5919162B2 JP54091702A JP9170279A JPS5919162B2 JP S5919162 B2 JPS5919162 B2 JP S5919162B2 JP 54091702 A JP54091702 A JP 54091702A JP 9170279 A JP9170279 A JP 9170279A JP S5919162 B2 JPS5919162 B2 JP S5919162B2
Authority
JP
Japan
Prior art keywords
cobalt
hydroxide
particles
goethite
composite particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54091702A
Other languages
Japanese (ja)
Other versions
JPS5616605A (en
Inventor
大介 渋田
素彦 吉住
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Metal Corp
Original Assignee
Mitsubishi Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Metal Corp filed Critical Mitsubishi Metal Corp
Priority to JP54091702A priority Critical patent/JPS5919162B2/en
Publication of JPS5616605A publication Critical patent/JPS5616605A/en
Publication of JPS5919162B2 publication Critical patent/JPS5919162B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は鉄−コバルト合金強磁性粉末の新規な製造方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a novel method for producing iron-cobalt alloy ferromagnetic powder.

磁気記録用材料である強磁性合金粉末は従来の酸化物系
の粉末に比べ、磁気特性において数倍すぐれている。
Ferromagnetic alloy powder, which is a magnetic recording material, has several times better magnetic properties than conventional oxide-based powder.

そのため将来その使用量は著しい伸びを示すものと思わ
れる。商業的ベースでの製造方法としては針状の水酸化
第二鉄であるゲータイトを出発原料とした鉄系酸化物の
低温(350〜500℃)の水素還元法が有力とされて
いる。
Therefore, its usage is expected to increase significantly in the future. As a production method on a commercial basis, a low-temperature (350 to 500° C.) hydrogen reduction method of iron-based oxides using goethite, which is acicular ferric hydroxide, as a starting material is considered to be effective.

このプロセスでの問題点ぱ、5 還元段階での還元剤の
効果的な利用である。原料であるゲータイトの針状性を
保持したままの還元となるため低温還元が望まれるが、
還元温度が低いため還元剤と鉄酸化物との反応速度は遅
くなD還元剤の消費量は大きなものになる。この対策と
10しては現在主に次の2つの方法がある。1、Sn、
Ag、Co、Ni、Cuなどのいわゆるその酸化物が酸
化鉄よりも水素ガスにより還元され易い元素を鉄水酸化
物または鉄酸化物へ含有させ還元速度の増加をはかる。
The problem with this process is the effective use of the reducing agent in the reduction step. Low-temperature reduction is desired because the reduction maintains the acicular nature of the raw material goethite.
Since the reduction temperature is low, the reaction rate between the reducing agent and the iron oxide is slow, and the amount of reducing agent D consumed is large. Currently, there are two main methods to deal with this problem: 1, Sn,
The so-called oxides of Ag, Co, Ni, Cu, etc. contain elements that are more easily reduced by hydrogen gas than iron oxide in iron hydroxide or iron oxide to increase the reduction rate.

152、還元段階での針状性の保持、焼結の防止のため
金属化合物、例えばケイ酸、アルミニウムもしくはチタ
ンなどの水酸化物でゲータイト粒子をひふくし、温度を
上げて還元する。
152, the goethite particles are enriched with a metal compound, such as hydroxide of silicic acid, aluminum or titanium, to maintain their acicularity and prevent sintering during the reduction step, and are reduced by raising the temperature.

本発明の方法は1の方法に準するものでゲータ20 イ
トを得て、これを第1コバルトイオンを含む水溶液に懸
濁させ中和剤を加えてコバルトイオンを加水分解させ、
水酸化第一コバルト(Co(OH)O)をゲータィト表
面に均一に付着されるものである。
The method of the present invention is similar to method 1, in which gator 20ite is obtained, suspended in an aqueous solution containing primary cobalt ions, and a neutralizing agent is added to hydrolyze the cobalt ions.
Cobaltous hydroxide (Co(OH)O) is uniformly deposited on the goethite surface.

このこと自体は知られているが、これまでに知ら25れ
ている方法は中和剤としてアルカリ水溶液(アンモニア
水を含む)を使用するものであるため、ゲータィト懸濁
媒中に単独に球状のコバルト水酸化物が生成することが
多くまた水酸化第一コバルトは粒状となつてゲータイト
表面上に付着し、完全30にゲータイト表面をおおわな
かつた。尿素を添加し高温で分解して生ずるアンモニア
を利用する中和反応による方法はアルカリ水溶液を使用
するものより中和反応の均一性は良いが尿素の利用率が
悪くまた価格も高いため経済的ではない。35本法は中
和剤としてアンモニアガスを用い、これを単独もしくは
不活性ガス、空気との混合ガスで懸濁液中に吹き込みゆ
つくわ中和反応を生ぜしめ生成してくる水酸化コバルト
をゲータイト表面に均一に直接析出させるものである。
Although this is known, the methods known so far25 use an alkaline aqueous solution (including aqueous ammonia) as a neutralizing agent; Cobalt hydroxide was often produced, and cobaltous hydroxide was deposited on the goethite surface in the form of particles and did not completely cover the goethite surface. A neutralization reaction method using ammonia produced by adding urea and decomposing it at high temperature has better uniformity of the neutralization reaction than the method using an alkaline aqueous solution, but it is not economical because the utilization rate of urea is poor and the price is high. do not have. 35 This method uses ammonia gas as a neutralizing agent, and blows it into the suspension either alone or in a mixture with an inert gas or air to cause a neutralization reaction and generate cobalt hydroxide. It is deposited uniformly and directly on the goethite surface.

即ち、本発明によれば、分散したゲータイト粒子を含み
コバルトイオンを含む水性媒質中に、アルカリを加えて
、ゲータイト粒子上に水酸化コバルトを付着させて鉄水
酸化物コバルト水酸化物複合粒子を得、これを酸化物複
合粒子に転化し、該酸化物複合粒子を水素還元して鉄−
コバルト合金強磁性粉末を得る方法であつて、水酸化コ
バルトを付着させる工程においてアルカリとしてアンモ
ニアガスまたはアンモニアガスと不活性ガスとの混合物
を使用し、これを該水性媒質中に気泡状で供給すること
を特徴とする方法が提供される。
That is, according to the present invention, an alkali is added to an aqueous medium containing dispersed goethite particles and cobalt ions, and cobalt hydroxide is deposited on the goethite particles to form iron hydroxide cobalt hydroxide composite particles. This is converted into oxide composite particles, and the oxide composite particles are reduced with hydrogen to obtain iron-
A method for obtaining a cobalt alloy ferromagnetic powder, which uses ammonia gas or a mixture of ammonia gas and an inert gas as an alkali in the step of depositing cobalt hydroxide, and supplies this in the form of bubbles into the aqueous medium. A method is provided which is characterized in that:

本発明の方法において、コバルト(自)イオ・ン源はコ
バルトの鉱酸塩、無機酸塩の何れであつてもよいが、入
手容易性、価格、安定性等から硫酸第一コバルトが使い
やすい。アンモニアガスを希釈するガスは特に高価なも
のを使用する必要はなく窒素または空気でよい。
In the method of the present invention, the cobalt (auto)ion source may be either a mineral acid salt or an inorganic acid salt of cobalt, but cobaltous sulfate is easily used due to its availability, price, stability, etc. . It is not necessary to use a particularly expensive gas to dilute the ammonia gas, and nitrogen or air may be used.

本法によれば反応は気一液接触で起わガス体を微細な気
泡として導入することができ、溶液中における中和反応
の均一性が高くなり、またガス量を変化させることによ
り中和の速度のコントロールができ、設備も取り扱いも
極めて簡単である。更に本法によつた場合水酸化第一コ
バルト(CO(0H)2)がゲータイト表面上に均一に
むらなく析出しているため、還元の際、還元速度が早く
なり水素量の消費は少ない。
According to this method, the reaction occurs through gas-liquid contact, and the gas can be introduced as fine bubbles, which increases the uniformity of the neutralization reaction in the solution, and neutralizes by changing the amount of gas. The speed can be controlled, and the equipment and handling are extremely simple. Furthermore, when this method is used, cobaltous hydroxide (CO(0H)2) is precipitated uniformly and evenly on the goethite surface, so that during reduction, the reduction rate is fast and the amount of hydrogen consumed is small.

これは水素還元の際にコバルトが反応の核となることが
考えられ、コバルトが粒子表面全体を均一にお}つてい
るためと思われる。次に本発明方法の実施例を示すが、
本発明はこれに限定されるものではない。
This is thought to be because cobalt becomes the nucleus of the reaction during hydrogen reduction, and cobalt is uniformly distributed over the entire particle surface. Next, examples of the method of the present invention will be shown.
The present invention is not limited to this.

実施例 硫酸第一鉄(FeSO4・7H20)1700gを12
1の水に溶解し、水酸化ナトリウム200gを溶解した
121の水と混合する。
Example 1700g of ferrous sulfate (FeSO4.7H20)
1 of water and mixed with 121 of water in which 200 g of sodium hydroxide was dissolved.

温度を50℃に保ちながら、空気を1000ce//T
ninの速度で吹き込み針状ゲータイトを得た。これを
F別洗浄し水201中へ分散させた後、硫酸第一コバル
ト(COSO4・7H20)298g(CO/(Fe+
CO)モル%で15モル%)を水411に溶解した溶液
を加え室温(20℃)でアンモニアガス/空気1:10
容量比混合ガスを1100cc/Mmのj流速で吹き込
み溶液のPHが9になつた時点でガスの吹き込みを停止
し、沈殿を済別洗浄し、乾燥した。
Air at 1000ce//T while maintaining temperature at 50℃
Acicular goethite was obtained by blowing at a speed of 10 min. After washing this separately with F and dispersing it in water 201, 298 g (CO/(Fe+
Add a solution of CO) (15 mol% by mol%) dissolved in water 411 and mix with ammonia gas/air 1:10 at room temperature (20°C).
A mixed gas by volume ratio was blown into the solution at a flow rate of 1100 cc/Mm, and when the pH of the solution reached 9, the blowing of gas was stopped, and the precipitate was washed separately and dried.

このようにして得た水酸化物結晶の、20000倍の電
子顕微鏡写真を第1図として示す。そこに見られるよう
に、細い針状ゲータイト結晶に水酸化第一コバルトが一
様に付着している。前記実施例と同じ条件で、ただし、
空気稀釈アンモニアガスの代bに14%アンモニア水を
攪拌しながらPHが9になるまで注いで生成させた複合
水酸化物の20000倍の電子顕微鏡写真を第2図とし
て示す。
FIG. 1 shows an electron micrograph of the hydroxide crystal thus obtained at a magnification of 20,000 times. As seen there, cobaltous hydroxide is uniformly attached to thin acicular goethite crystals. Under the same conditions as the previous example, but,
Figure 2 shows a 20,000x electron micrograph of a composite hydroxide produced by pouring 14% ammonia water into air-diluted ammonia gas with stirring until the pH reached 9.

この場合は、ゲータイトの針状結晶に球状の水酸化第一
コバルトが付着していて好ましくない。前記の複合水酸
化物を600℃で2時間の焼成を施し、還元の試料とし
た。
In this case, spherical cobaltous hydroxide is attached to the needle-shaped goethite crystals, which is not preferable. The above composite hydroxide was calcined at 600° C. for 2 hours to prepare a sample for reduction.

還元は試料50mgを熱天秤に取り還元温度を400℃
に設定し、水素ガスを500cc/Ninの流速で流し
て行なつた。
For reduction, place 50 mg of the sample on a thermobalance and set the reduction temperature to 400°C.
The hydrogen gas was flowed at a flow rate of 500 cc/Nin.

単純なヘマタイト(αFe2O3)粒子および本発明と
同じ条件で、たとしアンモニアガスではなくNaOH溶
液の添加によつて生成した水酸化コバルト(自)被覆ゲ
ータイトよシ得た複合酸化物粒子についても同様に水素
還元を行ない、結果は第1表および第3図にまとめてあ
る。第1表および第3図に見られるように本発明方法に
よつて得られる酸化鉄酸化コバルト複合粒子は従来法の
酸化鉄酸化コバルト複合体粒子より著しく単時間で還元
でき、従つて水素の使用も少なくなくてすむ。
The same applies to simple hematite (αFe2O3) particles and complex oxide particles obtained from cobalt hydroxide (auto)coated goethite produced under the same conditions as in the present invention by adding NaOH solution instead of ammonia gas. Hydrogen reduction was performed and the results are summarized in Table 1 and Figure 3. As seen in Table 1 and Figure 3, the iron oxide cobalt oxide composite particles obtained by the method of the present invention can be reduced in a significantly shorter time than the iron oxide cobalt oxide composite particles obtained by the conventional method. It doesn't have to be too small.

なお上記実施例−1によつて得た本発明方法の製品は、
77KOeの磁場で測定してHc:1050.0e.B
m:170emu/g1角形比:43%であつた。
The products obtained by the method of the present invention obtained in Example-1 above are as follows:
Hc measured in a magnetic field of 77KOe: 1050.0e. B
m: 170 emu/g1 Square ratio: 43%.

これに対して従来法即ちアルカリ水溶液を用いて沈殿さ
せ、他は同条件で処理して得た粒子の磁気特性は抗磁力
、角形比は本発明方法の生成物と略々同じ値であるが、
Bmは160emu/gであつた。
On the other hand, the magnetic properties of the particles obtained by the conventional method, i.e., precipitated using an alkaline aqueous solution and treated under the same conditions, are approximately the same as the products produced by the method of the present invention in terms of coercive force and squareness ratio. ,
Bm was 160 emu/g.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の方法に従つて、アンモニアガスを用い
て生成した複合水酸化物の電子顕微鏡写真である。
FIG. 1 is an electron micrograph of a composite hydroxide produced using ammonia gas according to the method of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 1 分散したゲータイト粒子を含みコバルトイオンを含
む水性媒質中に、アルカリを加えて、ゲータイト粒子上
に水酸化コバルトを付着させて鉄水酸化物コバルト水酸
化物複合粒子を得、これを酸化物複合粒子に転化し、該
酸化物複合粒子を水素還元して鉄−コバルト合金強磁性
粉末を得る方法であつて、水酸化コバルトを付着させる
工程においてアルカリとしてアンモニアガスまたはアン
モニアガスと不活性ガスもしくは空気との混合物を使用
し、これを該水性媒質中に気泡状で供給することにより
中和反応をゆつくり進行させることを特徴とする方法。
1. Add an alkali to an aqueous medium containing dispersed goethite particles and cobalt ions to adhere cobalt hydroxide onto the goethite particles to obtain iron hydroxide cobalt hydroxide composite particles, which are then converted into oxide composite particles. A method of obtaining iron-cobalt alloy ferromagnetic powder by converting the oxide composite particles into particles and reducing the oxide composite particles with hydrogen, using ammonia gas or ammonia gas and an inert gas or air as an alkali in the step of attaching cobalt hydroxide. A method characterized in that the neutralization reaction is allowed to proceed slowly by using a mixture of and supplying the mixture in the form of bubbles to the aqueous medium.
JP54091702A 1979-07-20 1979-07-20 Method for producing iron-cobalt alloy ferromagnetic powder Expired JPS5919162B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP54091702A JPS5919162B2 (en) 1979-07-20 1979-07-20 Method for producing iron-cobalt alloy ferromagnetic powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP54091702A JPS5919162B2 (en) 1979-07-20 1979-07-20 Method for producing iron-cobalt alloy ferromagnetic powder

Publications (2)

Publication Number Publication Date
JPS5616605A JPS5616605A (en) 1981-02-17
JPS5919162B2 true JPS5919162B2 (en) 1984-05-02

Family

ID=14033844

Family Applications (1)

Application Number Title Priority Date Filing Date
JP54091702A Expired JPS5919162B2 (en) 1979-07-20 1979-07-20 Method for producing iron-cobalt alloy ferromagnetic powder

Country Status (1)

Country Link
JP (1) JPS5919162B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62133662U (en) * 1986-02-14 1987-08-22

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59157204A (en) * 1983-02-23 1984-09-06 Chisso Corp Manufacture of ferromagnetic metallic fine particle
GB9921784D0 (en) 1999-09-16 1999-11-17 British Aerospace A method of producing a joint

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62133662U (en) * 1986-02-14 1987-08-22

Also Published As

Publication number Publication date
JPS5616605A (en) 1981-02-17

Similar Documents

Publication Publication Date Title
JPH0448732B2 (en)
JPS5919162B2 (en) Method for producing iron-cobalt alloy ferromagnetic powder
JPH0368923B2 (en)
JPS6021307A (en) Production of ferromagnetic metallic powder
JPH10226520A (en) Hydrate iron oxide and production of ferromagnetic iron oxide
JPH02175806A (en) Manufacture of metal magnetic powder for magnetic recorder
JP2740922B2 (en) Method for producing metal magnetic powder for magnetic recording material
JP2704525B2 (en) Method for producing spindle-shaped goethite particles
JPS61141627A (en) Production of alpha-feooh needles
JPS619505A (en) Manufacture of magnetic metallic powder
JPS58159311A (en) Manufacture of metallic magnetic powder
JP2965606B2 (en) Method for producing metal magnetic powder
JP3087808B2 (en) Manufacturing method of magnetic particle powder for magnetic recording
JPH0343324B2 (en)
KR910009210B1 (en) Method for manufacturing lepidocrocite
JPS63140005A (en) Production of fine ferromagnetic metal particle powder
JP2704544B2 (en) Manufacturing method of spindle-shaped magnetic iron oxide particles
JPH0312125B2 (en)
JPH0616426A (en) Production of spindle-shaped goethite granular powder
JPS5855203B2 (en) Method for producing iron-cobalt alloy ferromagnetic powder
JPH038083B2 (en)
JPS59172209A (en) Metal magnetic powder and manufacture thereof
JPS62219902A (en) Manufacture of metal magnetic powder
JPS60255627A (en) Prduction of ferromagnetic powder
JPH04278501A (en) Metal magnetic powder for magnetic recording and manufacture thereof