JP2740922B2 - Method for producing metal magnetic powder for magnetic recording material - Google Patents

Method for producing metal magnetic powder for magnetic recording material

Info

Publication number
JP2740922B2
JP2740922B2 JP1302534A JP30253489A JP2740922B2 JP 2740922 B2 JP2740922 B2 JP 2740922B2 JP 1302534 A JP1302534 A JP 1302534A JP 30253489 A JP30253489 A JP 30253489A JP 2740922 B2 JP2740922 B2 JP 2740922B2
Authority
JP
Japan
Prior art keywords
magnetic powder
metal magnetic
iron oxide
goethite
aluminum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1302534A
Other languages
Japanese (ja)
Other versions
JPH03162508A (en
Inventor
一郎 本間
英司 野村
勝明 加藤
泰功 東
哲児 藤岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ishihara Sangyo Kaisha Ltd
Original Assignee
Ishihara Sangyo Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ishihara Sangyo Kaisha Ltd filed Critical Ishihara Sangyo Kaisha Ltd
Priority to JP1302534A priority Critical patent/JP2740922B2/en
Publication of JPH03162508A publication Critical patent/JPH03162508A/en
Application granted granted Critical
Publication of JP2740922B2 publication Critical patent/JP2740922B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、磁気記録材料に好適な鉄系金属磁性粉末の
製造方法に関する。
Description: FIELD OF THE INVENTION The present invention relates to a method for producing an iron-based metal magnetic powder suitable for a magnetic recording material.

〔従来の技術〕[Conventional technology]

磁気記録媒体は、近年その記録密度を向上させ、より
小型のもの、より高性能のものに改善しようとする指向
が一段と強まってきている。これに伴い、磁気記録材料
用磁性粉末として、酸化鉄系磁性粉末に比し、飽和磁化
および保磁力が大きい鉄又は鉄系金属磁性粉末(以下、
金属磁性粉末という)が注目されている。金属磁性粉末
は、デジタルオーディオテープや8mmビデオテープなど
への実用が図られつつあるが、近時さらに高画質ビデオ
テープ、高記録密度ディスクなど、高性能記録媒体への
一層の適用が期待されている。
In recent years, magnetic recording media have been more and more tended to be improved in recording density and to be smaller and have higher performance. Along with this, as a magnetic powder for a magnetic recording material, iron or an iron-based metal magnetic powder (hereinafter, referred to as an iron or iron-based metal powder having a larger saturation magnetization and coercive force than an iron oxide-based magnetic powder.
(Referred to as metal magnetic powder). Metal magnetic powders are being put to practical use in digital audio tapes and 8mm video tapes, but are expected to be applied to high-performance recording media such as high-quality video tapes and high recording density discs in recent years. I have.

金属磁性粉末は、これが例えば針状粒子の場合、通
常、長軸径が約0.5μ以下、さらには0.3μ以下の微細な
ものが要求され、且つ、このものを磁性塗料としたとき
の分散性、その塗膜での配向性、充填性などの一層優れ
たものが要求されている。
When the metal magnetic powder is, for example, acicular particles, usually a long axis diameter of about 0.5μ or less, and further, a fine thing of 0.3μ or less is required, and dispersibility when this is used as a magnetic paint Further, there is a demand for a coating film having better orientation and filling properties.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

前記要求に答えるためには、金属磁性粉末の出発原料
である含水酸化鉄粒子が微細であり、且つ良好な粒度分
布を有することが必須である。更に、含水酸化鉄から金
属磁性粉末への焼成工程や還元工程での粒子焼結を抑制
するとともに、金属磁性粉末を磁性塗料としたときの分
散性、その塗膜での配向性、充填性、光沢などを改善す
るために形状保持成分の種類、添加方法などを適宜選択
することも必要である。
In order to meet the above requirements, it is essential that the iron oxide hydroxide particles, which are the starting materials of the magnetic metal powder, are fine and have a good particle size distribution. Furthermore, while suppressing the particle sintering in the firing step and the reduction step from the hydrous iron oxide to the metal magnetic powder, the dispersibility when the metal magnetic powder is used as a magnetic paint, the orientation in the coating film, the filling property, In order to improve the gloss and the like, it is also necessary to appropriately select the type of the shape maintaining component, the method of addition, and the like.

これらの課題を解決するため従来から種々の対策が提
案されている。形状保持成分としてはたとえばシリカ化
合物やアルミニウム化合物などがあり、これらを含水酸
化鉄の粒子表面に被着する方法が提案されているが、十
分満足できるとは言い難い。
Various measures have been conventionally proposed to solve these problems. Examples of the shape-retaining component include a silica compound and an aluminum compound, and a method of applying these to the surface of the iron oxide hydroxide particles has been proposed, but it cannot be said that the method is sufficiently satisfactory.

〔課題を解決するための手段〕[Means for solving the problem]

本発明者等は、前記の問題点を解決するために種々検
討した結果、(1)シリカ化合物が金属磁性粉末の表面
層に多く存在すると磁性塗料としたときの分散性が悪化
すること、(2)アルミニウムの水和酸化物が含水酸化
鉄や酸化鉄の粒子表面に必要以上に被覆されると還元処
理後の金属磁性粉末粒子の表面から偏析又は剥離しやす
いことなどの知見が得られた。これらの知見に基づきさ
らに検討した結果、出発原料である含水酸化鉄の製造反
応工程中にケイ素化合物を添加してケイ素含有水酸化鉄
を生成させ、次にその粒子表面にアルミニウム化合物を
被覆することにより、(1)微細で且つ良好な粒度分布
を有し、軸比の大きい含水酸化鉄が生成すること、
(2)その後の焼成工程や還元工程での焼結が少なくで
きること、(3)ケイ素が金属磁性粉末の粒子内部に含
有されているために分散性の悪化が少ないこと、(4)
アルミニウム化合物の被覆量を低減でき、そのために金
属磁性粉末の粒子表面から偏析又は剥離が少ないことな
どにより金属磁性粉末の磁気特性、特に保磁力、角形
比、配向比、飽和磁束密度(充填性)、反転磁界分布が
優れ、又、テープの光沢値が高くなることを見出した。
The present inventors have conducted various studies in order to solve the above-mentioned problems. As a result, (1) that if a silica compound is present in a large amount in the surface layer of a metal magnetic powder, the dispersibility of a magnetic coating material is deteriorated; 2) It was found that if the hydrated oxide of aluminum was coated on the surface of the iron oxide hydroxide or iron oxide particles more than necessary, segregation or peeling was easy from the surface of the metal magnetic powder particles after the reduction treatment. . As a result of further study based on these findings, it was found that a silicon compound was added during the production reaction process of the iron oxide hydroxide as a starting material to generate silicon-containing iron hydroxide, and then the particle surface was coated with an aluminum compound. Thereby, (1) having a fine and good particle size distribution and producing a high ratio of hydrous iron oxide,
(2) Sintering in the subsequent firing step or reduction step can be reduced, (3) Dispersibility is less deteriorated because silicon is contained in the particles of the metal magnetic powder, (4)
The coating amount of the aluminum compound can be reduced, and the segregation or peeling off from the particle surface of the metal magnetic powder is small, so that the magnetic properties of the metal magnetic powder, especially the coercive force, squareness ratio, orientation ratio, saturation magnetic flux density (filling property) It was found that the switching field distribution was excellent and the gloss value of the tape was high.

すなわち、本発明方法は、ケイ素化合物の存在下に鉄
塩とアルカリ剤とを反応させてケイ素含有含水酸化鉄を
生成させ、次いで該含水酸化鉄或いは酸化鉄の粒子表面
にアルミニウム化合物を被覆した後還元することを特徴
とする磁気記録材料用金属磁性粉末の製造方法である。
That is, the method of the present invention comprises reacting an iron salt with an alkali agent in the presence of a silicon compound to produce silicon-containing iron oxide hydroxide, and then coating the aluminum oxide on the surface of the iron oxide hydroxide or iron oxide particles. A method for producing a metal magnetic powder for a magnetic recording material, comprising reducing.

本発明方法においては、まず、ケイ素化合物の存在下
に鉄塩とアルカリ剤とを反応させ、ケイ素含有含水酸化
鉄を得る。鉄塩、アルカリ剤や反応条件などを適宜選択
することにより、α−FeOOH、β−FeOOH、γ−FeOOHな
どの含水酸化鉄を得ることができるが、本発明において
はα−FeOOH(ゲータイト)を生成させるのが望まし
い。鉄塩としては、たとえば硫酸第一鉄、硫酸第二鉄、
塩化第一鉄、塩化第二鉄などが使用でき、第一鉄塩を用
いる場合にはアルカリ剤で中和した後酸化反応を行う必
要がある。アルカリ剤としては、たとえば水酸化ナトリ
ウム、水酸化カリウム、炭酸ナトリウム、炭酸カリウ
ム、アンモニア水、アンモニアガスなどが使用できる。
In the method of the present invention, first, an iron salt is reacted with an alkali agent in the presence of a silicon compound to obtain silicon-containing iron oxide hydroxide. By appropriately selecting an iron salt, an alkali agent, reaction conditions, and the like, α-FeOOH, β-FeOOH, γ-FeOOH and the like can be obtained, and in the present invention, α-FeOOH (goethite) is used. It is desirable to generate it. As iron salts, for example, ferrous sulfate, ferric sulfate,
Ferrous chloride, ferric chloride and the like can be used. When a ferrous salt is used, it is necessary to neutralize with an alkali agent and then perform an oxidation reaction. As the alkaline agent, for example, sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, aqueous ammonia, ammonia gas and the like can be used.

ケイ素化合物を存在させる方法としては、ケイ素化合
物を鉄塩とアルカリ剤との中和反応前に一方の液に入れ
て中和する方法、鉄塩とアルカリ剤との中和懸濁液に添
加する方法、中和懸濁物の反応時に添加する方法などが
あるが、中和懸濁物の反応時に添加する方法が良い。特
に望ましい方法は、第一鉄塩水溶液を部分中和・酸化し
てゲータイト核晶を生成させ、次いでアルカリ剤で中和
しつつ酸化し核晶を成長させてゲータイトを得る反応の
核晶の成長反応中にケイ素化合物を少量ずつ連続的に添
加することである。この成長反応は酸性側ではpH2〜
5、又、アルカリ性側ではpH10〜14の範囲で行うのが良
い。pHが5よりも大きく10未満の範囲であれば粒状マグ
ネタイトの生成が危惧されるし、pHが2未満であれば成
長反応に長時間を要する。
As a method of allowing the silicon compound to be present, a method in which the silicon compound is neutralized by putting it in one liquid before the neutralization reaction between the iron salt and the alkali agent, or added to a neutralized suspension of the iron salt and the alkali agent There are a method and a method of adding during the reaction of the neutralized suspension, and a method of adding during the reaction of the neutralized suspension is preferable. A particularly desirable method is to partially neutralize and oxidize an aqueous ferrous salt solution to generate goethite nuclei, and then oxidize while neutralizing with an alkali agent to grow nuclei to obtain goethite, thereby growing goethite. That is, the silicon compound is continuously added little by little during the reaction. This growth reaction is pH2 ~
5. On the alkaline side, the pH is preferably in the range of 10 to 14. If the pH is more than 5 and less than 10, the generation of particulate magnetite is feared, and if the pH is less than 2, the growth reaction takes a long time.

更に望ましいのは、微細化の観点から比表面積が55m2
/g以上のケイ素含有含水酸化鉄を得ることである。
More preferably, the specific surface area is 55 m 2 from the viewpoint of miniaturization.
/ g or more of silicon-containing iron oxide hydroxide.

ケイ素化合物としてはオルトケイ酸ナトリウム、オル
トケイ酸カリウム、メタケイ酸ナトリウム、メタケイ酸
カリウム、水ガラスなどの種々のケイ酸塩又はコロイダ
ルシリカのようなその他のケイ素化合物を使用すること
ができる。特に水ガラスが好ましいものの一つである。
ケイ素化合物によるケイ素の含有量は生成する含水酸化
鉄中の鉄に対しSi/Feとして0.1〜5重量%、望ましくは
0.3〜3重量%である。この含有量が0.1重量%未満であ
ると生成する含水酸化鉄粒子の粒度分布の改善、所望の
焼結抑制などの効果がもたらされない。又、5重量%よ
り多いと含水酸化鉄の結晶成長が抑制されて粒子の粒度
分布幅が広がり軸比が低下するほか、還元に長時間を要
したり金属磁性材料の飽和磁化が低下する。
As the silicon compound, various silicates such as sodium orthosilicate, potassium orthosilicate, sodium metasilicate, potassium metasilicate, water glass or other silicon compounds such as colloidal silica can be used. Particularly, water glass is one of the preferable ones.
The content of silicon by the silicon compound is 0.1 to 5% by weight as Si / Fe with respect to the iron in the produced hydrous iron oxide, preferably
0.3 to 3% by weight. When the content is less than 0.1% by weight, effects such as improvement of the particle size distribution of the produced iron oxide hydroxide particles and suppression of the desired sintering cannot be obtained. On the other hand, when the content is more than 5% by weight, the crystal growth of the hydrous iron oxide is suppressed, the particle size distribution width of the particles is widened, the axial ratio is lowered, and a long time is required for the reduction, and the saturation magnetization of the metal magnetic material is lowered.

次に、本発明方法においては、ケイ素含有含水酸化鉄
粒子表面にアルミニウム化合物を被覆する。アルミニウ
ム化合物を被覆する方法としては種々の方法がある。例
えばケイ素含有含水酸化鉄の水性懸濁液に硝酸アルミ
ニウム、硫酸アルミニウム、塩化アルミニウムなどのア
ルミニウムの酸性塩類やアルミン酸ソーダなどのアルミ
ニウム塩基性塩類の溶液を添加し、アルカリ又は酸を添
加しpHが6〜9の範囲に中和してアルミニウムの水和酸
化物を被覆する方法、ケイ素含有含水酸化鉄の水性懸
濁液にアルミニウムアルコキシド、アルキルアルミニウ
ム化合物等の有機アルミニウム化合物の溶液を水性懸濁
液に添加し加水分解してアルミニウムの水和酸化物を被
覆する方法、ケイ素含有含水酸化鉄の水性懸濁液の系
外でアルミニウムの水和酸化物を生成し、それを該水性
懸濁液に添加し被覆する方法などである。工業的には、
アルミニウム化合物の水溶液を水性懸濁液に添加し中和
処理する方法が有利である。この場合、中和pHが9より
も高いと、アルミニウムの水和酸化物の沈殿率が下がり
歩留りが悪くなるほか、ナトリウムなどのアルカリ成分
の混入により極端に焼結しやすくなり、アルミニウム被
覆処理の効果を損なうので好ましくない。
Next, in the method of the present invention, the surface of the silicon-containing hydrated iron oxide particles is coated with an aluminum compound. There are various methods for coating the aluminum compound. For example, a solution of an acidic salt of aluminum such as aluminum nitrate, aluminum sulfate, or aluminum chloride or a basic salt of aluminum such as sodium aluminate is added to an aqueous suspension of silicon-containing hydrous iron oxide, and an alkali or acid is added to adjust the pH. A method of coating a hydrated oxide of aluminum by neutralizing to a range of 6 to 9, a solution of an organic aluminum compound such as an aluminum alkoxide, an alkyl aluminum compound or the like in an aqueous suspension of a silicon-containing hydrous iron oxide aqueous suspension To form a hydrated oxide of aluminum outside the system of an aqueous suspension of silicon-containing iron oxide hydroxide and hydrolyze it to form a hydrated oxide of aluminum. A method of adding and coating. Industrially,
A method in which an aqueous solution of an aluminum compound is added to an aqueous suspension and subjected to a neutralization treatment is advantageous. In this case, if the neutralization pH is higher than 9, the precipitation rate of hydrated oxides of aluminum decreases and the yield deteriorates. In addition, sintering becomes extremely easy due to the incorporation of alkali components such as sodium. It is not preferable because the effect is lost.

尚、本発明においてはケイ素含有含水酸化鉄を必要に
応じて550〜900℃、望ましくは600〜800℃で焼成して得
たα−Fe2O3やこれを還元して得られるFe3O4、γ−Fe2O
3、ベルトライド化合物などの酸化鉄粒子表面にアルミ
ニウム化合物を被覆してもよい。
In the present invention, α-Fe 2 O 3 obtained by calcining silicon-containing hydrated iron oxide at 550 to 900 ° C., preferably 600 to 800 ° C. or Fe 3 O obtained by reducing the same 4 , γ-Fe 2 O
3. An aluminum compound may be coated on the surface of iron oxide particles such as a beltride compound.

被覆されるアルミニウム化合物としては、アルミニウ
ムの水和酸化物、水酸化物、酸化物又はリン酸塩などが
あげられ、これらの中では水和酸化物が好ましい。
Examples of the aluminum compound to be coated include hydrated oxides, hydroxides, oxides and phosphates of aluminum, and among them, hydrated oxides are preferred.

アルミニウム化合物の被覆量は、含水酸化鉄或いは酸
化鉄中の鉄に対しAl/Feとして0.1〜8重量%、望ましく
は0.3〜5重量%であり、この被覆量が0.1重量%未満で
あると所望の焼結抑制などの効果がもたらされない。
又、8重量%より多いと還元に長時間を要したり、還元
処理後の粒子表面からアルミニウム化合物が偏析又は剥
離しやすく、金属磁性材料の飽和磁化も低下する。
The coating amount of the aluminum compound is 0.1 to 8% by weight, preferably 0.3 to 5% by weight as Al / Fe with respect to the iron in the hydrous iron oxide or iron oxide, and it is desirable that the coating amount is less than 0.1% by weight. No effect such as suppression of sintering is provided.
On the other hand, if the content is more than 8% by weight, the reduction takes a long time, the aluminum compound tends to segregate or peel off from the particle surface after the reduction treatment, and the saturation magnetization of the metal magnetic material also decreases.

本発明においては、ケイ素含有含水酸化鉄或いは酸化
鉄の水性懸濁液に適当な分散剤たとえばリン酸塩、ポリ
リン酸塩、ポリアクリル酸塩、カルボン酸塩などを添加
して含水酸化鉄或いは酸化鉄の分散を良くしてからアル
ミニウム化合物の被覆処理を行うことができる。
In the present invention, a suitable dispersing agent such as phosphate, polyphosphate, polyacrylate, carboxylate, etc. is added to an aqueous suspension of silicon-containing hydrated iron oxide or iron oxide to prepare the hydrated iron oxide or oxide. The coating treatment of the aluminum compound can be performed after improving the dispersion of iron.

本発明方法を工業的に一層好ましいものとするため後
段の還元工程で還元促進剤として作用するたとえばニッ
ケル、銅、コバルト、銀、カルシウムなどの化合物を該
含水酸化鉄或いは酸化鉄の粒子表面に被覆してもよく、
又、この他にP,Cr,Mn,B,Cd,Pb,Ca,Mg,Sr,Zn,Sn,W,Zr,Co
などの化合物を適宜併用して被覆処理してもよい。
In order to make the method of the present invention more industrially preferable, a compound such as nickel, copper, cobalt, silver, calcium or the like which acts as a reduction accelerator in the subsequent reduction step is coated on the surface of the iron oxide hydroxide or iron oxide particles. May be
In addition, P, Cr, Mn, B, Cd, Pb, Ca, Mg, Sr, Zn, Sn, W, Zr, Co
Such a compound may be used in combination for coating treatment.

次に、前記のように被覆処理した含水酸化鉄或いは酸
化鉄を懸濁液から分別し、洗浄し、乾燥した後、還元し
て金属磁性粉末を製造する。この場合、必要に応じて還
元前に550〜900℃、望ましくは650〜850℃で焼成しても
よい。この焼成により、粒子全体が焼きしまって緻密に
なり、また還元時の焼結や粒子形状の崩れを一層抑制す
ることができる。焼結温度が高すぎると、酸化鉄の段階
で粒子内及び粒子間焼結による針状性の悪化や粗大化が
生じて好ましくない。又、焼成温度が低くすぎると、粒
子内に空孔が多く残り、そのものが緻密な結晶でないた
め、引き続く還元工程での形状劣化が大きく、所望の効
果が得られない。
Next, the iron oxide hydroxide or iron oxide coated as described above is separated from the suspension, washed, dried, and then reduced to produce a metal magnetic powder. In this case, if necessary, calcination may be performed at 550 to 900 ° C, preferably 650 to 850 ° C, before reduction. By this calcination, the whole particles are baked to be dense, and sintering during reduction and collapse of the particle shape can be further suppressed. If the sintering temperature is too high, it is not preferable because acicularity is deteriorated or coarsened due to sintering within and between particles at the stage of iron oxide. On the other hand, if the firing temperature is too low, many pores remain in the particles, and the particles themselves are not dense crystals, so that the shape is greatly deteriorated in the subsequent reduction step, and the desired effect cannot be obtained.

金属磁性粉末への還元は、公知の種々の方法が採用で
きる。通常、還元性ガスとしてたとえば水素を使用し35
0〜600℃で処理して含水酸化鉄或いは酸化鉄の実質的に
全部を金属に還元できる。このように還元して得られた
金属磁性粉末は、大気に触れると発火し急激に酸化鉄に
変化するため、通常大気中への取り出しにあたっては種
々の公知の方法を用い安定化させる。例えば、トルエン
等の有機溶媒中に浸漬後ゆっくりトルエンを蒸発させ安
定化する方法、トルエン等の液相又は気相中に酸素含有
ガスを通気して安定化する方法、更には種々の化合物に
よる酸化抑制被膜形成処理と上記方法とを併用する方法
などがある。
Various known methods can be used for the reduction to the metal magnetic powder. Usually, hydrogen is used as a reducing gas, for example.
By treating at 0 to 600 ° C., substantially all of the iron oxide hydroxide or iron oxide can be reduced to the metal. The metal magnetic powder obtained by such reduction is ignited when it comes into contact with the atmosphere and rapidly changes to iron oxide. Therefore, when it is taken out to the atmosphere, it is usually stabilized using various known methods. For example, a method of stabilizing by evaporating toluene slowly after being immersed in an organic solvent such as toluene, a method of stabilizing by passing an oxygen-containing gas through a liquid or gaseous phase such as toluene, and a method of oxidizing with various compounds. There is a method in which the suppression film forming treatment and the above method are used in combination.

このようにして得られた本発明の磁気記録材料用金属
磁性粉末は、保磁力、角型比、配向性、飽和磁束密度
(充填性)、反転磁界分布などの磁気特性やテープの光
沢値が優れたものである。
The magnetic metal powder for a magnetic recording material of the present invention thus obtained has magnetic properties such as coercive force, squareness ratio, orientation, saturation magnetic flux density (filling property), switching magnetic field distribution, and gloss value of the tape. It is excellent.

〔実施例〕〔Example〕

実施例1 (1) ゲータイト核晶の生成反応 空気吹込み管と撹拌機を備えた反応容器に1.50モル/
の硫酸第一鉄水溶液20を入れ、50℃に昇温し、この
温度を維持しながら、10モル/の水酸化ナトリウム水
溶液1.07を撹拌下に加え(沈殿Fe15g/)、この中へ
10/分の速度で空気を吹込み100〜200分間反応させて
ゲータイトの核晶を得た。
Example 1 (1) Formation reaction of goethite nucleus crystal A reaction vessel equipped with an air blowing tube and a stirrer was charged at 1.50 mol /
Ferrous sulfate aqueous solution 20 was added, and the temperature was raised to 50 ° C. While maintaining this temperature, a 10 mol / aqueous sodium hydroxide aqueous solution 1.07 was added with stirring (precipitated Fe 15 g /).
Air was blown in at a rate of 10 / min to react for 100 to 200 minutes to obtain goethite nuclei.

(2) 核晶の成長反応 所望の粒子径に成長させるために、上記の核晶スラリ
ーを50〜55℃に維持しつつ、10N水酸化ナトリウム水溶
液1.61を8ml/分の速度で添加し、空気を5/分の速
度で送入して中和、酸化反応を行った。成長倍率は、核
晶に対する重量比で2.5倍となる。
(2) Growth reaction of nucleus crystal In order to grow to a desired particle diameter, while maintaining the above nucleus slurry at 50 to 55 ° C, 1.61 of 10N aqueous sodium hydroxide solution was added at a rate of 8 ml / min, and air was added. Was fed at a rate of 5 / min to carry out neutralization and oxidation reactions. The growth magnification is 2.5 times the weight ratio to the nucleus crystal.

この成長反応において、0.5モル/のオルトケイ酸
ナトリウム水溶液を水酸化ナトリウム水溶液と並行して
連続的に添加した。成長反応時のpHを3〜5に維持し
た。オルトケイ酸ナトリウムの添加量は生成するゲータ
イト中の鉄に対しSi/Feとして1.0重量%となるように添
加した。
In this growth reaction, a 0.5 mol / sodium orthosilicate aqueous solution was continuously added in parallel with the sodium hydroxide aqueous solution. The pH during the growth reaction was maintained at 3-5. The amount of sodium orthosilicate added was 1.0% by weight as Si / Fe with respect to the iron in the resulting goethite.

このようにして得られるケイ素含有ゲータイトを濾過
・洗浄した。比表面積(B.E.T.法)は75m2/gであった。
The silicon-containing goethite thus obtained was filtered and washed. The specific surface area (BET method) was 75 m 2 / g.

(3) アルミニウム化合物の被覆処理 このゲータイト120gを水1.5に懸濁させ、液温30
℃、pHを5に保持した。このスラリーに塩化アルミニウ
ム(AlCl3・6H2O)水溶液を30分間で添加し、30分間熟
成した後4Nのアンモニア水を添加し約2時間でスラリー
pHを7.5とした。塩化アルミニウムの添加量はアルミニ
ウムの被覆量をゲータイト中の鉄に対しAl/Feとして5.0
重量%となるように添加した。
(3) Coating treatment of aluminum compound 120 g of this goethite was suspended in 1.5 of water,
C and the pH was kept at 5. The slurry for about 2 hours the slurry of aluminum chloride (AlCl 3 · 6H 2 O) solution was added at 30 minutes, it was added aqueous ammonia 4N After aging for 30 minutes
The pH was adjusted to 7.5. The amount of aluminum chloride to be added was set to 5.0 as Al / Fe with respect to iron in goethite.
% By weight.

続いて、還元促進剤として塩化ニッケル(NiCl2・6H2
O)水溶液を30分で添加し、30分間熟成した後1Nのアン
モニア水を添加しスラリーpHを7.5として、ゲータイト
の表面上にニッケル化合物を被覆した。塩化ニッケルの
添加量はニッケルの被覆量をゲータイト中の鉄に対しNi
/Feとして1.0重量%となるように添加した。この後1時
間保持し濾過・水洗を行い乾燥した。
Subsequently, nickel chloride (NiCl 2 · 6H 2
O) An aqueous solution was added for 30 minutes, and after aging for 30 minutes, 1N ammonia water was added to adjust the slurry pH to 7.5, and the surface of the goethite was coated with a nickel compound. The amount of nickel chloride added was determined by changing the amount of nickel
/ Fe as 1.0% by weight. Thereafter, the mixture was kept for 1 hour, filtered, washed with water and dried.

(4) 金属磁性粉末の製造 次いで、この乾燥ケーキ100gをマッフル炉で大気中74
0℃で2時間焼成しα−Fe2O3を得た。しかる後、α−Fe
2O350gをステンレス製竪型固定床式還元反応器(内径:4
3mmφ,高さ:500mm)に入れ、線速度約10cm/秒の水素気
流下、425℃で排出ガスの露点が−20℃になるまで還元
した。還元に要した時間は185分であった。得られた還
元物は窒素気流中で冷却後トルエン中に浸漬し、次いで
トルエンを室温で徐々に蒸発させて本発明の金属磁性粉
末(試料A)を得た。
(4) Production of metal magnetic powder Next, 100 g of the dried cake was placed in a muffle furnace in air.
Calcination was performed at 0 ° C. for 2 hours to obtain α-Fe 2 O 3 . Then, α-Fe
50 g of 2 O 3 is fed into a stainless steel vertical fixed-bed reduction reactor (inner diameter: 4
3 mmφ, height: 500 mm) and reduced under a hydrogen stream at a linear velocity of about 10 cm / sec at 425 ° C until the dew point of the exhaust gas became -20 ° C. The time required for the reduction was 185 minutes. The obtained reduced product was cooled in a nitrogen stream and then immersed in toluene, and then the toluene was gradually evaporated at room temperature to obtain a metal magnetic powder (Sample A) of the present invention.

実施例2 実施例1において、オルトケイ酸ナトリウムの添加量
を2.0重量%とすること以外同様に処理して、本発明の
金属磁性粉末(試料B)を得た。
Example 2 A metal magnetic powder of the present invention (sample B) was obtained in the same manner as in Example 1, except that the amount of sodium orthosilicate was changed to 2.0% by weight.

実施例3 実施例1において、オルトケイ酸ナトリウムの添加量
を3.0重量%とすること、塩化アルミニウムの添加量を
3.0重量%とすること以外同様に処理して、本発明の金
属磁性粉末(試料C)を得た。
Example 3 In Example 1, the addition amount of sodium orthosilicate was 3.0% by weight, and the addition amount of aluminum chloride was
The same treatment was carried out except that the content was changed to 3.0% by weight to obtain a metal magnetic powder (sample C) of the present invention.

比較例1 実施例1において、オルトケイ酸ナトリウムをゲータ
イト核晶の成長反応時に添加せず、アルミニウム水和酸
化物を被覆した後にオルトケイ酸ナトリウム水溶液を30
分間で添加し、30分間熟成した後1Nの希硫酸を添加し約
2時間でスラリーpHを7.5とし、続いて塩化ニッケル水
溶液を添加してケイ素被覆ゲータイトを調製した以外は
同様に処理して、金属磁性粉末(試料D)を得た。
Comparative Example 1 In Example 1, sodium orthosilicate was not added during the growth reaction of the goethite nucleus crystal, and after coating the aluminum hydrated oxide, an aqueous sodium orthosilicate solution was added.
Minutes, aging for 30 minutes, then adding 1N diluted sulfuric acid to adjust the slurry pH to 7.5 in about 2 hours, and then adding an aqueous nickel chloride solution to prepare silicon-coated goethite, A metal magnetic powder (sample D) was obtained.

比較例2 実施例2において、オルトケイ酸ナトリウムをゲータ
イト核晶の成長反応時に添加せず、アルミニウム水和酸
化物を被覆した後にオルトケイ酸ナトリウム水溶液を30
分間で添加し、30分間熟成した後1Nの希硫酸を添加し約
2時間でスラリーpHを7.5とし、続いて塩化ニッケル水
溶液を添加してケイ素被覆ゲータイトを調製した以外は
同様に処理して、金属磁性粉末(試料E)を得た。
Comparative Example 2 In Example 2, sodium orthosilicate was not added during the growth reaction of the goethite nucleus crystal, and after coating the aluminum hydrated oxide, an aqueous solution of sodium orthosilicate was added.
Minutes, aging for 30 minutes, then adding 1N diluted sulfuric acid to adjust the slurry pH to 7.5 in about 2 hours, and then adding an aqueous nickel chloride solution to prepare silicon-coated goethite, A metal magnetic powder (sample E) was obtained.

比較例3 実施例3において、オルトケイ酸ナトリウムをゲータ
イト核晶の成長反応時に添加せず、アルミニウム水和酸
化物を被覆した後にオルトケイ酸ナトリウム水溶液を30
分間で添加し、30分間熟成した後1Nの希硫酸を添加し約
2時間でスラリーpHを7.5とし、続いて塩化ニッケル水
溶液を添加してケイ素被覆ゲータイトを調製した以外は
同様に処理して、金属磁性粉末(試料F)を得た。
Comparative Example 3 In Example 3, sodium orthosilicate was not added during the growth reaction of the goethite nucleus crystal, and after coating the aluminum hydrated oxide, an aqueous solution of sodium orthosilicate was added.
Minutes, aging for 30 minutes, then adding 1N diluted sulfuric acid to adjust the slurry pH to 7.5 in about 2 hours, and then adding an aqueous nickel chloride solution to prepare silicon-coated goethite, A metal magnetic powder (sample F) was obtained.

このようにして得られた金属磁性粉末試料について磁
気特性を常法により測定した。又、酸化安定性を評価す
るために、試料粉末を温度60℃、相対湿度80%の環境下
で1週間放置して、σsについて促進経時変化を測定
し、飽和磁化の劣化率Δσs(%)を下記の式によって
求めた。
The magnetic properties of the thus obtained metal magnetic powder sample were measured by a conventional method. Further, in order to evaluate the oxidation stability, the sample powder was left for 1 week in an environment of a temperature of 60 ° C. and a relative humidity of 80%, and the change with time of the accelerated σs was measured, and the deterioration rate of the saturation magnetization Δσs (%) Was determined by the following equation.

(式中、σs0は経時前のσsであり、σs1は経時後のσ
sである) 更に前記試料粉末を用いて以下の組成の磁性塗料を調
製し、次いで乾燥膜厚が10μmとなるように塗布し、配
向処理後乾燥して作成した磁気テープについて、テープ
磁気特性を常法により測定した。
(Where σs 0 is σs before aging, σs 1 is σs after aging
Further, using the sample powder, a magnetic paint having the following composition was prepared, and then applied so as to have a dry film thickness of 10 μm, followed by orientation treatment and drying. It was measured by an ordinary method.

金属磁性粉末 5 重量部 分散剤 0.25 〃 ポリウレタン樹脂 2.96 〃 混合溶媒 13.4 〃 トルエン/MEK/シクロヘキサノン(4.5/4.5/1) これらの磁気特性、すなわち、保磁力(Hc:Oe)、飽
和磁化(σs:emu/g)、飽和磁束密度(Bm:Gauss)、角
型比(Rs、SQ)、配向比(OR)及び反転磁界分布(SF
D)を測定し、更に、光沢計で60゜−60゜光沢を測定し
た。これらの結果を表に示す。
Metal magnetic powder 5 parts by weight Dispersant 0.25 〃 Polyurethane resin 2.96 〃 Mixed solvent * 13.4 〃 * Toluene / MEK / cyclohexanone (4.5 / 4.5 / 1) These magnetic properties, that is, coercive force (Hc: Oe), saturation magnetization ( s: emu / g), saturation magnetic flux density (Bm: Gauss), squareness ratio (Rs, SQ), orientation ratio (OR), and switching field distribution (SF)
D) was measured, and further, 60-60 ° gloss was measured with a gloss meter. The results are shown in the table.

〔発明の効果〕 本発明方法によって得た金属磁性粉末は優れた磁気特
性を有するほか、空気中での安定性が向上し磁気特性の
経時劣化が改善される。この方法により長軸径0.2μ以
下且つ比表面積50m2/g以上の超微粒子金属磁性粉末を得
ることも可能である。
[Effects of the Invention] The metal magnetic powder obtained by the method of the present invention has excellent magnetic properties, is also improved in stability in air, and the deterioration with time of the magnetic properties is improved. By this method, it is also possible to obtain ultrafine metal magnetic powder having a major axis diameter of 0.2 μm or less and a specific surface area of 50 m 2 / g or more.

フロントページの続き (72)発明者 藤岡 哲児 三重県四日市市石原町1番地 石原産業 株式会社四日市工場内 審査官 刑部 俊 (56)参考文献 特開 昭64−207(JP,A) 特開 昭59−41453(JP,A) 特公 昭61−14202(JP,B2)Continuation of the front page (72) Inventor Tetsuji Fujioka 1 Ishiharacho, Yokkaichi-shi, Mie Pref. 59-41453 (JP, A) JP-B 61-14202 (JP, B2)

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】第一鉄塩水溶液を部分中和・酸化してゲー
タイト核晶を生成させ、次いで該液をアルカリ剤で中和
しつつ酸化し該核晶を成長させてゲータイトを得る反応
において、該核晶の成長反応をケイ素化合物の存在下に
行い、次いで該ゲータイトの粒子表面にアルミニウム化
合物を被覆した後還元することを特徴とする磁気記録材
料用金属磁性粉末の製造方法。
1. A reaction for obtaining goethite by partially neutralizing and oxidizing an aqueous ferrous salt solution to form goethite nuclei, and then oxidizing the solution while neutralizing the solution with an alkali agent to grow the nuclei. A method of producing a metal magnetic powder for a magnetic recording material, wherein the growth reaction of the nucleus crystal is carried out in the presence of a silicon compound, and then the surface of the goethite particles is coated with an aluminum compound and then reduced.
【請求項2】アルミニウム化合物の被覆処理の前又は後
で該ゲータイトを焼成することを特徴とする特許請求の
範囲第1項記載の磁気記録材料用金属磁性粉末の製造方
法。
2. The method for producing a metal magnetic powder for a magnetic recording material according to claim 1, wherein said goethite is baked before or after coating with an aluminum compound.
JP1302534A 1989-11-21 1989-11-21 Method for producing metal magnetic powder for magnetic recording material Expired - Lifetime JP2740922B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1302534A JP2740922B2 (en) 1989-11-21 1989-11-21 Method for producing metal magnetic powder for magnetic recording material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1302534A JP2740922B2 (en) 1989-11-21 1989-11-21 Method for producing metal magnetic powder for magnetic recording material

Publications (2)

Publication Number Publication Date
JPH03162508A JPH03162508A (en) 1991-07-12
JP2740922B2 true JP2740922B2 (en) 1998-04-15

Family

ID=17910126

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1302534A Expired - Lifetime JP2740922B2 (en) 1989-11-21 1989-11-21 Method for producing metal magnetic powder for magnetic recording material

Country Status (1)

Country Link
JP (1) JP2740922B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111662727B (en) * 2020-07-17 2021-04-23 北京市环境保护科学研究院 Improver for soil polluted by primary explosive

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5941453A (en) * 1982-08-30 1984-03-07 Toda Kogyo Corp Needle crystal iron alloy magnetic particulate powder for magnetic recording and preparation thereof
IT1176299B (en) * 1984-06-22 1987-08-18 Anic Spa METHOD FOR THE PREPARATION OF A ZIRCONIUM OR AFHNIUM CATALYST AND PROCESS OF POLYMERIZATION OR COPOLYMERIZATION OF UNSATURATE COMPOUNDS USING THE SAME

Also Published As

Publication number Publication date
JPH03162508A (en) 1991-07-12

Similar Documents

Publication Publication Date Title
US5466306A (en) Spindle-shaped magnetic iron based alloy particles
JP3087825B2 (en) Spindle-shaped goethite particle powder, method for producing the same, spindle-shaped metal magnetic particle powder containing iron as a main component obtained using the goethite particle powder as a starting material, and method for producing the same
JPS5853688B2 (en) Method for producing acicular alloy magnetic particle powder mainly composed of Fe-Mg
JP3268830B2 (en) Metal magnetic powder and method for producing the same
JP2740922B2 (en) Method for producing metal magnetic powder for magnetic recording material
JP3428351B2 (en) Spindle-shaped metal magnetic particles containing iron as a main component and method for producing the same
JP3603926B2 (en) Spindle-shaped goethite particle powder and method for producing the same, spindle-shaped hematite particle powder and method for producing the same, and spindle-shaped metal magnetic particle powder containing iron as a main component and method for producing the same
EP0857693B1 (en) Processes for producing hydrated iron oxide and ferromagnetic iron oxide
JP3750414B2 (en) Spindle-shaped goethite particle powder, spindle-shaped hematite particle powder, spindle-shaped metal magnetic particle powder containing iron as a main component, and production method thereof
JP3337046B2 (en) Spindle-shaped metal magnetic particles containing cobalt and iron as main components and method for producing the same
JP2805162B2 (en) Method for producing metal magnetic powder for magnetic recording
JPH02175806A (en) Manufacture of metal magnetic powder for magnetic recorder
JP3166809B2 (en) Method for producing acicular magnetic iron oxide particles
JP3171223B2 (en) Method for producing acicular magnetic particle powder
JP2001192211A (en) Method for manufacturing powdery particle of iron- based compound
JP3141907B2 (en) Method for producing spindle-shaped iron-based metal magnetic particle powder
JPH04278501A (en) Metal magnetic powder for magnetic recording and manufacture thereof
JPH03257105A (en) Manufacture of magnetic metal powder
JPS5919162B2 (en) Method for producing iron-cobalt alloy ferromagnetic powder
JPH11130439A (en) Fusiform goethite particle powder and its production, fusiform hematite particle powder and its production and fusiform metallic magnetic particle powder consisting essentially of iron and its production
JPH0711310A (en) Magnetic metallic powder for magnetic recording and its production
JPH0569048B2 (en)
JPH06163232A (en) Magnetic powder for high-density magnetic recording medium
JPS60170906A (en) Spindle shaped gamma-fe2o3 magnetic powder including co and manufacture of the same
JPH02254109A (en) Metallic magnetic powder for magnetic recording and its production