JPH0711310A - Magnetic metallic powder for magnetic recording and its production - Google Patents

Magnetic metallic powder for magnetic recording and its production

Info

Publication number
JPH0711310A
JPH0711310A JP3272088A JP27208891A JPH0711310A JP H0711310 A JPH0711310 A JP H0711310A JP 3272088 A JP3272088 A JP 3272088A JP 27208891 A JP27208891 A JP 27208891A JP H0711310 A JPH0711310 A JP H0711310A
Authority
JP
Japan
Prior art keywords
iron oxide
magnetic
compound
particles
cobalt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3272088A
Other languages
Japanese (ja)
Inventor
Eiji Nomura
英司 野村
Toshihiko Kawamura
俊彦 河村
Katsuaki Kato
勝明 加藤
Haruki Ichinose
治紀 一ノ瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ishihara Sangyo Kaisha Ltd
Original Assignee
Ishihara Sangyo Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ishihara Sangyo Kaisha Ltd filed Critical Ishihara Sangyo Kaisha Ltd
Priority to JP3272088A priority Critical patent/JPH0711310A/en
Publication of JPH0711310A publication Critical patent/JPH0711310A/en
Pending legal-status Critical Current

Links

Landscapes

  • Paints Or Removers (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)
  • Magnetic Record Carriers (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To provide the magnetic metallic powder which has the excellent magnetic characteristics suitable for high-density recording and dispersibility at the time of forming a coating material, is improved in the stability in air, is ameliorated in the deterioration of the magnetic characteristics with lapse of time and is extremely suitable for production of high-output and high-density magnetic recording media. CONSTITUTION:Hydrous iron oxide contg. cobalt within the particles is formed by bringing an iron salt and alkali into reaction in the presence of a cobalt compd. The surfaces of this hydrous iron oxide or the iron oxide obtd. by subjecting this hydrous iron oxide to a heat treatment is then coated with a boron compd. and aluminum compd. and if necessary, further a silicon compd. and/or nickel compd. and is then reduced, by which the magnetic metallic powder for magnetic recording is obtd.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、磁気記録材料に好適な
金属磁性粉末及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic metal powder suitable for a magnetic recording material and a method for producing the same.

【0002】[0002]

【従来の技術】磁気記録媒体は、近年、その記録密度を
向上させ、より小型のもの、より高性能のものに改善し
ようとする指向が一段と強まってきている。これに伴
い、磁気記録用磁性粉末として、酸化鉄系磁性粉末に比
し、飽和磁化及び保磁力が大きい鉄または鉄系金属磁性
粉末(以下、金属磁性粉末という)が注目されている。
金属磁性粉末は、デジタルオーディオテープや8mmビデ
オテープなどへの実用が図られつつあるが、近時さらに
高画質ビデオテープ、高記録密度ディスクなど、高性能
記録媒体への一層の適用が期待されている。金属磁性粉
末は、これが例えば針状粒子の場合、通常、長軸径が約
0.5μ以下、さらには0.3μ以下の微細なものが要
求され、且つ、このものを磁性塗料としたときの分散
性、その塗膜での耐酸化性、配向性、充填性などの一層
優れたものが要求されている。
2. Description of the Related Art In recent years, magnetic recording media have been more and more aimed at improving their recording density to make them smaller and have higher performance. Along with this, as magnetic powder for magnetic recording, attention has been paid to iron or iron-based metal magnetic powder (hereinafter referred to as metal magnetic powder), which has higher saturation magnetization and coercive force than iron oxide-based magnetic powder.
Metal magnetic powders are being put to practical use in digital audio tapes and 8mm video tapes, but are expected to be further applied to high-performance recording media such as high-quality video tapes and high-density discs in recent years. There is. When the magnetic metal powder is, for example, acicular particles, a fine powder having a major axis diameter of about 0.5 μm or less, further 0.3 μm or less is usually required, and when this is used as a magnetic paint. It is required to have more excellent dispersibility, oxidation resistance in the coating film, orientation, and filling property.

【0003】[0003]

【発明が解決しようとする課題】前記要求に答えるため
には、高い保磁力と大きい飽和磁化を有し、かつ磁性塗
料としたときの分散性、またその塗膜での耐酸化性、配
向性、充填性、光沢などが改善された金属磁性粉末を得
ることが必要である。こういった金属磁性粉末を得るた
めには、形状保持成分の種類、添加方法などを適宜選択
する必要がある。
In order to meet the above-mentioned requirements, it has a high coercive force and a large saturation magnetization, and has a dispersibility when used as a magnetic paint, as well as an oxidation resistance and an orientation property in the coating film. It is necessary to obtain a metal magnetic powder having improved filling properties, gloss and the like. In order to obtain such a magnetic metal powder, it is necessary to appropriately select the type of shape-retaining component, the addition method, and the like.

【0004】これらの課題を解決するため従来から種々
の対策が提案されており、例えば、出発原料である針状
晶鉄水酸化物粒子や針状晶ヘマタイト粒子を予めコバル
ト化合物で被覆した後加熱還元する方法(特開昭54−
122664号公報、特公昭58−55203号公
報)、出発原料粒子を予めホウ素化合物とコバルト化合
物とで被覆した後加熱還元する方法(特開平2−197
503号公報)、出発原料粒子を予めホウ素化合物、コ
バルト化合物及びアルミニウム化合物及び/またはニッ
ケル化合物とで被覆した後加熱還元する方法(特開平2
−250902号公報)及び出発原料粒子を予めホウ素
化合物、コバルト化合物及びケイ素化合物、更にはアル
ミニウム化合物とで被覆した後加熱還元する方法(特開
平3−12902号公報)等が提案されているが、十分
満足できるものとは言い難い。
Various measures have been proposed in order to solve these problems. For example, acicular crystal iron hydroxide particles or acicular crystal hematite particles as starting materials are coated with a cobalt compound in advance and then heated. Method of reduction (JP-A-54-
No. 122264, Japanese Patent Publication No. 58-55203), a method in which starting raw material particles are previously coated with a boron compound and a cobalt compound and then heated and reduced (JP-A-2-197).
No. 503), starting material particles are previously coated with a boron compound, a cobalt compound and an aluminum compound and / or a nickel compound, and then heated and reduced (Japanese Patent Application Laid-Open No. HEI 2).
No. 250902) and starting material particles are previously coated with a boron compound, a cobalt compound, a silicon compound, and further an aluminum compound, and then heated and reduced (JP-A-3-12902). It's hard to say that it's enough.

【0005】[0005]

【課題を解決するための手段】本発明者等は、前記の問
題点を解決するために種々検討した結果、(1)コバル
ト化合物を金属磁性粉末の粒子表面近傍に被覆すると磁
気特性、耐酸化性は向上するが、金属磁性粉末の表面層
にコバルト化合物が多く存在すると磁性塗料としたとき
の分散性が悪化すること、(2)ホウ素、アルミニウム
などの化合物が含水酸化鉄や酸化鉄の粒子表面に必要以
上に被覆されると、還元処理後の金属磁性粉末粒子の表
面から偏析または剥離しやすいことなどの知見が得られ
た。
As a result of various studies to solve the above-mentioned problems, the present inventors have found that (1) when a cobalt compound is coated in the vicinity of the particle surface of a metal magnetic powder, magnetic properties and oxidation resistance are improved. Property is improved, but when a large amount of cobalt compound is present in the surface layer of the metallic magnetic powder, the dispersibility in a magnetic coating is deteriorated. (2) Compounds such as boron and aluminum are particles of hydrous iron oxide or iron oxide It was found that when the surface is coated more than necessary, it is likely to segregate or peel off from the surface of the metal magnetic powder particles after the reduction treatment.

【0006】これらの知見に基づき、さらに検討した結
果、出発原料である含水酸化鉄の製造反応工程中にコバ
ルト化合物を添加してコバルトを粒子内部に含有する含
水酸化鉄を生成させ、次にその粒子表面にホウ素化合物
及びアルミニウム化合物、必要に応じて更にケイ素化合
物及び/またはニッケル化合物を被着することにより、
コバルトが金属磁性粉末の粒子内部に含有されている
ために分散性の悪化が少なくできること、ホウ素化合
物、アルミニウム化合物などの被着量を低減でき、その
結果、金属磁性粉末の粒子表面からそれらの金属粒子の
剥離または偏析が少なくなること微細で且つ良好な粒
度分布を有し、軸比の大きい含水酸化鉄が生成するこ
と、含水酸化鉄や酸化鉄の粒子表面が、熱処理時に形
成されるホウ素化合物とアルミニウム化合物などからな
るガラス状の融膜で覆われ、焼結が少なくできること、
ニッケル化合物を含水酸化鉄や酸化鉄粒子の粒子表面
に含有させると、還元反応時において、ニッケル成分の
触媒的な働きにより、還元反応が効率的に進行するとと
もに、ホウ素化合物、アルミニウム化合物などとの相乗
的な効果により、形状の崩れが少ない状態で還元反応を
進めることができることなどより、針状性が良好で、磁
気特性、特に保磁力、角形比、配向比、飽和磁束密度
(充填性)、反転磁界分布に優れ、更には、テープの光
沢値、耐酸化性に優れ、高密度記録に適した高出力特性
を有する金属磁性粉末が得られることを見出した。
Based on these findings, as a result of further investigation, a cobalt compound was added during the production reaction process of the iron oxide hydroxide as a starting material to produce iron oxide hydroxide containing cobalt inside the particles. By depositing a boron compound and an aluminum compound, and optionally a silicon compound and / or a nickel compound on the surface of the particles,
Since cobalt is contained inside the particles of the magnetic metal powder, the deterioration of dispersibility can be reduced, and the deposition amount of boron compounds, aluminum compounds, etc. can be reduced. Particle separation or segregation is reduced Fine and has a good particle size distribution, iron oxide hydroxide having a large axial ratio is produced, and the particle surface of iron oxide hydroxide or iron oxide is a boron compound formed during heat treatment. And a glass-like fused film made of aluminum compound, etc.
When a nickel compound is contained on the particle surface of hydrous iron oxide particles or iron oxide particles, during the reduction reaction, the catalytic action of the nickel component allows the reduction reaction to proceed efficiently, and at the same time forms a boron compound, an aluminum compound, etc. Due to the synergistic effect, the reduction reaction can proceed in a state where the shape is not collapsed, and thus the acicularity is good, and the magnetic properties, especially coercive force, squareness ratio, orientation ratio, saturation magnetic flux density (filling property) It has been found that a magnetic metal powder having excellent reversal magnetic field distribution, excellent gloss value and oxidation resistance of the tape, and high output characteristics suitable for high density recording can be obtained.

【0007】すなわち、本発明は、粒子内部にコバルト
を、粒子表面にホウ素及びアルミニウム、必要に応じて
更にケイ素及び/またはニッケルを含有する磁気記録用
金属磁性粉末並びにコバルト化合物の存在下に鉄塩とア
ルカリとを反応させてコバルトを粒子内部に含有する含
水酸化鉄を生成させ、次いで該含水酸化鉄或いは該含水
酸化鉄を加熱処理して得られるコバルトを粒子内部に含
有する酸化鉄の粒子表面に、ホウ素化合物及びアルミニ
ウム化合物、必要に応じて更にケイ素化合物及び/また
はニッケル化合物を被着処理し、その後還元する磁気記
録用金属磁性粉末の製造方法である。
That is, the present invention provides an iron salt in the presence of cobalt inside the particles, metal magnetic powder for magnetic recording containing boron and aluminum on the surface of particles, and optionally silicon and / or nickel, and a cobalt compound. And an alkali are reacted to produce iron oxide hydroxide containing cobalt inside the particle, and then the iron oxide hydroxide or iron oxide particle surface containing cobalt obtained by heat treatment of the iron oxide hydroxide inside the particle In addition, a boron compound and an aluminum compound, and if necessary, a silicon compound and / or a nickel compound are further deposited, and then reduced.

【0008】上記本発明の実施態様としては、(1)コ
バルトを粒子内部に含有する含水酸化鉄或いは該含水酸
化鉄を加熱処理して得られるコバルトを粒子内部に含有
する酸化鉄の粒子表面に、最後に被着処理するものがホ
ウ素化合物である磁気記録用金属磁性粉末の製造方法、
(2)被着処理後の含水酸化鉄或いは酸化鉄粒子を、還
元前に非還元性雰囲気下、500〜900℃で加熱処理
する磁気記録用金属磁性粉末の製造方法、(3)含水酸
化鉄がゲータイトである磁気記録用金属磁性粉末の製造
方法、(4)ゲータイト核晶の生成反応時にコバルト化
合物を添加する磁気記録用金属磁性粉末の製造方法、
(5)コバルトを粒子内部に含有する含水酸化鉄の比表
面積が55m2 /g以上である磁気記録用金属磁性粉末
の製造方法などが挙げられる。
In the above embodiment of the present invention, (1) iron hydroxide particles containing cobalt inside the particles or iron oxide particles containing cobalt obtained by heat-treating the iron oxide particles on the surface of particles. A method for producing a metal magnetic powder for magnetic recording, wherein the final deposition treatment is a boron compound,
(2) A method for producing a magnetic metal powder for magnetic recording, which comprises heat-treating adhered iron oxide hydroxide or iron oxide particles at 500 to 900 ° C. in a non-reducing atmosphere before reduction, and (3) iron oxide hydroxide. A method for producing a magnetic metal powder for magnetic recording, wherein (4) a method for producing a magnetic metal powder for magnetic recording, in which a cobalt compound is added during the reaction of producing goethite nuclei.
(5) A method for producing a metal magnetic powder for magnetic recording, in which the iron oxide hydroxide containing cobalt inside the particles has a specific surface area of 55 m 2 / g or more can be mentioned.

【0009】なお、磁気記録用金属磁性粉末中での、コ
バルト、ホウ素、アルミニウム、ケイ素、ニッケルは、
金属あるいは酸化物の状態で存在するものと推定され
る。
Cobalt, boron, aluminum, silicon and nickel in the magnetic metal powder for magnetic recording are
Presumed to exist in the state of metal or oxide.

【0010】本発明方法においては、まず、コバルト化
合物の存在下に鉄塩とアルカリとを反応させ、コバルト
を粒子内部に含有する含水酸化鉄を得る。鉄塩、アルカ
リや反応条件などを適宜選択することにより、α- FeOO
H 、β-FeOOH、γ-FeOOHなどの含水酸化鉄を得ることが
できるが、本発明においてはα-FeOOH(ゲータイト)を
生成させるのが望ましい。鉄塩としては、たとえば硫酸
第一鉄、硫酸第二鉄、塩化第一鉄、塩化第二鉄などが使
用でき、第一鉄塩を用いる場合にはアルカリで中和した
後酸化反応を行う必要がある。アルカリとしては、たと
えば水酸化ナトリウム、水酸化カリウム、炭酸ナトリウ
ム、炭酸カリウム、アンモニア水、アンモニアガスなど
が使用できる。
In the method of the present invention, first, an iron salt is reacted with an alkali in the presence of a cobalt compound to obtain iron oxide hydroxide containing cobalt inside the particles. By appropriately selecting the iron salt, alkali, reaction conditions, etc., α-FeOO
Although hydrous iron oxide such as H 2, β-FeOOH and γ-FeOOH can be obtained, it is desirable to produce α-FeOOH (goethite) in the present invention. As the iron salt, for example, ferrous sulfate, ferric sulfate, ferrous chloride, ferric chloride, etc. can be used. When using a ferrous salt, it is necessary to neutralize with an alkali and then perform an oxidation reaction. There is. As the alkali, for example, sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, aqueous ammonia, ammonia gas or the like can be used.

【0011】コバルト化合物を存在させる方法として
は、コバルト化合物を、中和反応前の鉄塩またはアルカ
リのどちらかに添加して中和する方法、鉄塩とアルカリ
との中和懸濁液に添加する方法、中和懸濁物の反応時に
添加する方法などがあるが、望ましくは、例えば第一鉄
塩水溶液にコバルト化合物を添加後、部分中和・酸化し
て含水酸化鉄の核晶を生成させ、該核晶の水溶液をアル
カリで中和しつつ酸化し、核晶を成長させて含水酸化鉄
を得る方法である。この成長反応は酸性側ではpH2〜
5、アルカリ性側ではpH10〜14の範囲で行うのが
良い。pHが5よりも大きく10未満の範囲であれば粒
状マグネタイトの生成が危惧されるし、pHが2未満で
あれば成長反応に長時間を要する。この反応において、
その比表面積が55m2 /g以上のコバルトを粒子内部
に含有する含水酸化鉄を得ることは、目的物を微細化す
る観点から望ましいものである。
The cobalt compound may be present by adding the cobalt compound to either the iron salt or alkali before the neutralization reaction to neutralize it, or adding it to a neutralized suspension of the iron salt and alkali. There is a method of adding the cobalt compound to the aqueous solution of the ferrous salt, followed by partial neutralization and oxidation to form a nuclear crystal of hydrous iron oxide. Then, the aqueous solution of the nuclear crystals is neutralized with an alkali and oxidized to grow the nuclear crystals to obtain hydrous iron oxide. This growth reaction has a pH of 2 to 2 on the acidic side.
5. On the alkaline side, the pH is preferably in the range of 10-14. If the pH is in the range of more than 5 and less than 10, the formation of granular magnetite is feared, and if the pH is less than 2, the growth reaction takes a long time. In this reaction,
Obtaining iron oxide hydroxide containing cobalt having a specific surface area of 55 m 2 / g or more inside the particles is desirable from the viewpoint of refining the object.

【0012】コバルト化合物としては硫酸コバルト、塩
化コバルト、酢酸コバルト、炭酸コバルトなどの種々の
コバルト塩または水酸化コバルト、酸化コバルトのよう
なコロイド状のコバルト化合物を使用することができ
る。特に硫酸コバルト、塩化コバルトが好ましい。コバ
ルト化合物によるコバルトの含有量は生成する含水酸化
鉄中の鉄に対しCo/Feとして0.1〜10重量%、
望ましくは0.3〜3重量%である。この含有量が0.
1重量%未満である場合には、保磁力、飽和磁化等の磁
気特性及び耐酸化性等の所望の効果がもたらされない。
また、含有量が10重量%より多いと、含水酸化鉄の結
晶成長が抑制されて粒子の粒度分布幅が広がり軸比が低
下するほか、生成する金属磁性粉末の塗料化時に所望の
分散性が得られなくなる。
As the cobalt compound, various cobalt salts such as cobalt sulfate, cobalt chloride, cobalt acetate and cobalt carbonate, or colloidal cobalt compounds such as cobalt hydroxide and cobalt oxide can be used. Cobalt sulfate and cobalt chloride are particularly preferable. The content of cobalt by the cobalt compound is 0.1 to 10% by weight as Co / Fe with respect to the iron in the hydrous iron oxide produced,
It is preferably 0.3 to 3% by weight. This content is 0.
When it is less than 1% by weight, desired effects such as magnetic properties such as coercive force and saturation magnetization and oxidation resistance cannot be obtained.
On the other hand, if the content is more than 10% by weight, the crystal growth of the hydrous iron oxide is suppressed, the particle size distribution width of the particles is widened, and the axial ratio is lowered. You won't get it.

【0013】次に、本発明方法においては、前記のよう
にして得たコバルトを粒子内部に含有する含水酸化鉄或
いは該含水酸化鉄を加熱処理して得られるコバルトを粒
子内部に含有する酸化鉄の粒子表面にホウ素化合物及び
アルミニウム化合物、必要に応じて更にケイ素化合物及
び/またはニッケル化合物を被着処理する。
Next, in the method of the present invention, iron oxide hydroxide containing cobalt obtained as described above inside the particles or iron oxide containing cobalt obtained by heat treatment of the iron oxide hydroxide inside the particles. A boron compound and an aluminum compound, and if necessary, a silicon compound and / or a nickel compound are adhered to the surface of the particles.

【0014】コバルトを粒子内部に含有する含水酸化鉄
を加熱処理して得られるコバルトを粒子内部に含有する
酸化鉄としては、該含水酸化鉄を加熱脱水処理して得ら
れるα-Fe203やγ-Fe2O3、或いは、該含水酸化鉄を加熱
脱水処理して得られるα-Fe203やγ-Fe2O3を更に加熱還
元処理及び/または加熱酸化処理して得られるFe3O4
γ-Fe2O3、ベルトライド化合物などの酸化鉄が挙げられ
る。
The iron oxide containing cobalt inside the particles, which is obtained by heat-treating the iron oxide hydroxide containing cobalt inside the particles, is α-Fe 2 O 3 obtained by heating and dehydrating the iron oxide hydroxide. Or γ-Fe 2 O 3 or α-Fe 2 0 3 or γ-Fe 2 O 3 obtained by heating and dehydrating the iron oxide hydroxide is further subjected to heat reduction treatment and / or heat oxidation treatment. Fe 3 O 4 ,
Iron oxides such as γ-Fe 2 O 3 and beltride compounds can be mentioned.

【0015】ホウ素化合物を被着する方法としては、例
えば、コバルトを粒子内部に含有する含水酸化鉄の水
性懸濁液にホウ素化合物を添加し、pH6〜9の範囲で
ホウ素化合物を被着する方法、コバルトを粒子内部に
含有する含水酸化鉄の水性懸濁液に有機ホウ素化合物を
被着する方法、コバルトを粒子内部に含有する含水酸
化鉄の水性懸濁液にホウ素化合物の微粉末を添加し、被
着する方法、コバルトを粒子内部に含有する含水酸化
鉄あるいは酸化鉄にアルミニウム化合物、必要に応じて
更にケイ素化合物及び/またはニッケル化合物の被着処
理をした含水酸化鉄あるいは酸化鉄の懸濁液を分別し、
洗浄して得られる該含水酸化鉄あるいは該酸化鉄の湿ケ
ーキ、リパルプスラリーあるいはそれらの乾燥物に対し
てホウ素化合物を加え、該含水酸化鉄あるいは該酸化鉄
粒子表面にホウ素化合物を被着処理する方法など種々の
方法がある。工業的には、ホウ素化合物は、コバルトを
粒子内部に含有する含水酸化鉄あるいは酸化鉄に前記種
々の金属化合物を被着処理した後、最後に被着処理する
方法が望ましい。
As a method of depositing the boron compound, for example, a method of adding the boron compound to an aqueous suspension of hydrous iron oxide containing cobalt inside the particles and depositing the boron compound in a pH range of 6 to 9 is used. , A method of depositing an organic boron compound on an aqueous suspension of hydrous iron oxide containing cobalt inside particles, adding fine powder of a boron compound to an aqueous suspension of hydrous iron oxide containing cobalt inside particles. A method for depositing, a hydrous iron oxide or iron oxide containing cobalt inside the particles, and an aluminum compound, and optionally a silicon compound and / or a nickel compound, if necessary, to suspend the hydrous iron oxide or iron oxide. Separate the liquid,
A boron compound is added to a wet cake of the iron oxide hydroxide or iron oxide obtained by washing, a repulp slurry or a dried product thereof, and a boron compound is adhered to the surface of the iron oxide hydroxide or iron oxide particles. There are various methods such as Industrially, it is desirable that the boron compound is deposited by the above-mentioned various metal compounds on iron oxide hydroxide or iron oxide containing cobalt inside the particles, and finally by the deposition treatment.

【0016】被着されるホウ素化合物としては、ホウ
酸、酸化ホウ素、ホウ砂、ホウ酸ナトリウム、ホウ酸ア
ルミニウム、ホウ酸ニッケル、ホウ酸アンモニウム等の
ホウ酸塩、ホウ酸エステル、ホウ素アルコキシド等から
適宜選択することができるが、工業的にはホウ酸が適当
である。
Examples of the boron compound to be deposited include boric acid, boric oxide, borax, sodium borate, aluminum borate, nickel borate, borate salts such as ammonium borate, borate esters, boron alkoxides and the like. Although it can be appropriately selected, boric acid is industrially suitable.

【0017】ホウ素化合物の添加量としては、B/Fe
として0.1〜5重量%、望ましくは0.3〜2重量%
であり、この量が少なきに過ぎると所望の焼結抑制、耐
酸化性の効果がもたらされない。また、多きに過ぎると
生成する金属磁性粉末の飽和磁化が低下したり、磁気テ
ープにした場合のホウ素成分の溶出等の問題が生じ、好
ましくない。
The addition amount of the boron compound is B / Fe
0.1 to 5% by weight, preferably 0.3 to 2% by weight
If this amount is too small, the desired effects of suppressing sintering and oxidation resistance cannot be obtained. Further, when the amount is too large, the saturation magnetization of the metal magnetic powder produced is lowered, and problems such as elution of the boron component when the magnetic tape is formed are not preferable.

【0018】アルミニウム化合物を被着する方法として
は、例えばコバルトを粒子内部に含有する含水酸化鉄
の水性懸濁液にアルミニウム化合物を添加し、アルカリ
または酸を添加しpHが6〜9の範囲に中和してアルミニ
ウムの水和酸化物を被着する方法、コバルトを粒子内
部に含有する含水酸化鉄の水性懸濁液にアルミニウムの
有機化合物を添加し、加水分解してアルミニウムの水和
酸化物を被着する方法、コバルトを粒子内部に含有す
る含水酸化鉄の水性懸濁液にアルミニウム化合物の微粉
末を添加し被着する方法など種々の方法がある。工業的
にはアルミニウム化合物の水溶液を水性懸濁液に添加し
中和処理する方法が有利である。この場合、中和pHが
9よりも高いと、アルミニウムの水和酸化物の沈殿率が
下がり歩留りが悪くなるほか、ナトリウムなどのアルカ
リ成分の混入によって次工程での加熱において焼結し易
くなるので、アルミニウム被着処理の効果を損なうこと
となり好ましくない。
As a method of depositing the aluminum compound, for example, the aluminum compound is added to an aqueous suspension of hydrous iron oxide containing cobalt inside the particles, and an alkali or acid is added to adjust the pH to a range of 6-9. Method of neutralizing and depositing aluminum hydrated oxide, adding aluminum organic compound to an aqueous suspension of hydrous iron oxide containing cobalt inside particles, and hydrolyzing to add aluminum hydrated oxide There are various methods, such as a method of depositing the above, a method of adding fine powder of an aluminum compound to an aqueous suspension of iron oxide hydroxide containing cobalt inside the particles, and depositing. Industrially, a method of adding an aqueous solution of an aluminum compound to an aqueous suspension and performing a neutralization treatment is advantageous. In this case, if the neutralization pH is higher than 9, the precipitation rate of the hydrated oxide of aluminum will be lowered and the yield will be poor, and the inclusion of an alkaline component such as sodium will facilitate sintering in the heating in the next step. However, it is not preferable because the effect of the aluminum deposition treatment is impaired.

【0019】被着されるアルミニウム化合物としては、
アルミニウムの水和酸化物、水酸化物、酸化物またはリ
ン酸塩、硝酸アルミニウム、硫酸アルミニウム、塩化ア
ルミニウムなどのアルミニウムの酸性塩類やアルミン酸
ソーダなどのアルミニウム塩基性塩類、アルミニウムア
ルコキシド、アルキルアルミニウム化合物、コロイド状
アルミニウム化合物、酸化アルミナの超微粉末などから
適宜選択することができるが、これらの中ではアルミニ
ウムの水和酸化物が好ましい。
The aluminum compound to be deposited is
Aluminum hydrates, hydroxides, oxides or phosphates, aluminum nitrates, aluminum sulfates, aluminum basic salts such as aluminum chloride and aluminum basic salts such as sodium aluminate, aluminum alkoxides, alkyl aluminum compounds, It can be appropriately selected from colloidal aluminum compounds and ultrafine powders of alumina oxide, but among these, hydrated oxides of aluminum are preferable.

【0020】アルニミウム化合物の被着量は、含水酸化
鉄あるいは酸化鉄中の鉄に対しAl/Feとして0.1
〜8重量%、望ましくは0.3〜5重量%であり、この
被着量が0.1重量%未満であると所望の焼結抑制など
の効果がもたらされない。また、被着量が8重量%より
多いと還元に長時間を要したり、還元処理後の粒子表面
からアルミニウム化合物が偏析または剥離しやすく、得
られる金属磁性粉末の飽和磁化も低下するので望ましく
ない。
The deposition amount of the aluminum compound is 0.1 as Al / Fe with respect to iron in hydrous iron oxide or iron oxide.
-8% by weight, preferably 0.3-5% by weight, and if the amount of deposition is less than 0.1% by weight, desired effects such as suppression of sintering cannot be obtained. Further, if the deposition amount is more than 8% by weight, it takes a long time for the reduction, the aluminum compound is easily segregated or peeled from the particle surface after the reduction treatment, and the saturation magnetization of the obtained metal magnetic powder is lowered, which is desirable. Absent.

【0021】ケイ素化合物を被着する方法としては、例
えば、コバルトを粒子内部に含有する含水酸化鉄の水
性懸濁液にケイ素化合物を添加し、pHが6〜9の範囲
に中和してケイ素化合物を被着する方法、コバルトを
粒子内部に含有する含水酸化鉄の水性懸濁液に有機ケイ
素化合物を添加し、被着する方法、コバルトを粒子内
部に含有する含水酸化鉄の水性懸濁液にケイ素化合物の
微粉末を添加し、被着する方法など種々の方法がある。
As a method of depositing the silicon compound, for example, the silicon compound is added to an aqueous suspension of hydrous iron oxide containing cobalt inside the particles, and the pH is neutralized to a range of 6 to 9 to obtain silicon. Method of depositing compound, method of adding organosilicon compound to aqueous suspension of iron oxide hydroxide containing cobalt inside the particle, method of depositing, aqueous suspension of iron oxide hydroxide containing cobalt inside the particle There are various methods such as a method of adding fine powder of a silicon compound to and depositing.

【0022】被着されるケイ素化合物としては、二酸化
ケイ素,含水二酸化ケイ素、その縮合物、オルトケイ酸
ナトリウム、メタケイ酸ナトリウム、メタケイ酸カリウ
ム、メタケイ酸カルシウム、ケイ酸マグネシウムなどの
ケイ酸塩、あるいはその縮合物、水ガラス等のケイ酸塩
水溶液、シリコーンオイル、シリコーンレジン、クロル
シラン、アルコキシテンなどのシランやシロキサン等か
ら適宜選択されるが、これらの中ではケイ酸塩が好まし
い。
Examples of the silicon compound to be deposited include silicon dioxide, hydrous silicon dioxide, condensates thereof, sodium orthosilicate, sodium metasilicate, potassium metasilicate, calcium metasilicate, magnesium silicate, and the like, or a silicate thereof. It is appropriately selected from condensates, aqueous silicate solutions such as water glass, silicone oils, silicone resins, chlorosilanes, silanes such as alkoxytenes, siloxanes and the like, and among these, silicates are preferred.

【0023】ケイ素化合物の被着量は、含水酸化鉄ある
いは酸化鉄中の鉄に対しSi/Feとして0.1〜8重
量%、望ましくは0.3〜5重量%であり、この被着量
が0.1重量%未満であると所望の焼結抑制などの効果
がもたらされない。また、被着量が8重量%より多い
と、還元処理後の粒子表面からケイ素化合物が偏析また
は剥離しやすく、得られる金属磁性粉末の飽和磁化、保
磁力等の磁気特性の低下が見られるので好ましくない。
The deposition amount of the silicon compound is 0.1 to 8% by weight, preferably 0.3 to 5% by weight, as Si / Fe, with respect to the iron in the hydrous iron oxide or iron oxide. Is less than 0.1% by weight, desired effects such as suppression of sintering cannot be obtained. On the other hand, if the coating amount is more than 8% by weight, the silicon compound is likely to segregate or peel off from the particle surface after the reduction treatment, and the magnetic properties such as saturation magnetization and coercive force of the obtained metal magnetic powder are deteriorated. Not preferable.

【0024】本発明においては、工業的に一層好ましい
ものとするために、後段の還元工程でニッケルや銅、
銀、カルシウムなどの化合物を、該含水酸化鉄或いは該
酸化鉄の粒子表面に被着するのが望ましい。前記化合物
の中でもニッケル化合物は、生成される金属磁性粉末の
粒子形状も良好であり、かつ磁気的特性の低下もほとん
ど見られないので、望ましいものである。また、ニッケ
ル化合物を、ホウ素化合物、アルミニウム化合物などと
共に用いる本発明においては、これらの相乗的な効果に
より、粒子形状の整った針状の金属磁性粉末が得られる
と共に、得られる金属磁性粉末の耐酸化性も改善され
る。
In the present invention, in order to make it industrially more preferable, nickel or copper,
It is desirable to deposit a compound such as silver or calcium on the surface of the iron oxide hydroxide or iron oxide particles. Among the above compounds, the nickel compound is desirable because the produced metal magnetic powder has a good particle shape and magnetic properties are hardly deteriorated. Further, in the present invention in which a nickel compound is used together with a boron compound, an aluminum compound, etc., due to these synergistic effects, acicular metal magnetic powder having a regular particle shape can be obtained, and the acid resistance of the obtained metal magnetic powder can be improved. The chemical conversion is also improved.

【0025】ニッケル化合物を被着する方法としては、
例えば、コバルトを粒子内部に含有する含水酸化鉄の
水性懸濁液にニッケル化合物を添加し、pHが6〜9の
範囲に中和してニッケル化合物を被着する方法、コバ
ルトを粒子内部に含有する含水酸化鉄の水性懸濁液に有
機ニッケル化合物を添加し、被着する方法、コバルト
を粒子内部に含有する含水酸化鉄の水性懸濁液にニッケ
ル化合物の微粉末を添加し、被着する方法等がある。
As a method of depositing the nickel compound,
For example, a method of adding a nickel compound to an aqueous suspension of iron oxide hydroxide containing cobalt inside the particles, neutralizing the pH to a range of 6 to 9 and depositing the nickel compound, and containing cobalt inside the particles A method of adding an organic nickel compound to an aqueous suspension of hydrous iron oxide and depositing it, adding a fine powder of a nickel compound to an aqueous suspension of hydrous iron oxide containing cobalt inside the particles, and depositing There are ways.

【0026】被着されるニッケル化合物としては、硫酸
ニッケル、塩化ニッケル、酢酸ニッケル等のニッケル
塩、ニッケルアセチルアセトネート、ナフテン酸ニッケ
ル等から適宜選択することができるが、これらの中では
ニッケル塩が好ましい。
The nickel compound to be deposited can be appropriately selected from nickel salts such as nickel sulfate, nickel chloride and nickel acetate, nickel acetylacetonate, nickel naphthenate and the like. preferable.

【0027】ニッケル化合物の被着量は、含水酸化鉄あ
るいは酸化鉄中の鉄に対しNi/Feとして0.1〜8
重量%、望ましくは0.3〜5重量%であり、この被着
量が0.1重量%未満であると所望の還元促進などの効
果がもたらされない。また、被着量が8重量%より多い
と、得られる金属磁性粉末の飽和磁化、保磁力、反転磁
界分布等の磁気特性の低下が見られるので好ましくな
い。
The amount of the nickel compound deposited is 0.1 to 8 as Ni / Fe relative to iron in the hydrous iron oxide or iron oxide.
%, Preferably 0.3 to 5% by weight, and if the amount of deposition is less than 0.1% by weight, the desired effects such as reduction promotion cannot be obtained. On the other hand, if the coating amount is more than 8% by weight, the magnetic properties such as the saturation magnetization, the coercive force and the reversal magnetic field distribution of the obtained metal magnetic powder are deteriorated, which is not preferable.

【0028】本発明においては、コバルトを粒子表面に
含有する含水酸化鉄或いは該含水酸化鉄を加熱処理して
得られるコバルトを粒子表面に含有する酸化鉄の水性懸
濁液に、適当な分散剤、例えばリン酸塩、ポリリン酸
塩、ポリアクリル酸塩、カルボン酸塩などを添加して、
該含水酸化鉄或いは該酸化鉄の分散性を改良し、その後
アルミニウム化合物、必要に応じて更にケイ素化合物及
び/またはニッケル化合物の被着処理を行うことができ
る。
In the present invention, a suitable dispersant is added to an iron oxide hydroxide containing cobalt on the particle surface or an aqueous iron oxide suspension containing cobalt obtained by heat-treating the iron oxide hydroxide on the particle surface. , For example, adding phosphate, polyphosphate, polyacrylate, carboxylate, etc.,
It is possible to improve the dispersibility of the iron oxide hydroxide or iron oxide, and then carry out a deposition treatment of an aluminum compound and, if necessary, a silicon compound and / or a nickel compound.

【0029】なお、ホウ素化合物、アルミニウム化合
物、ケイ素化合物、ニッケル化合物の被着順序は特に問
わないが、より優れた磁気特性を有する目的物を得るに
は、コバルトを粒子内部に含有する含水酸化鉄或いは該
含水酸化鉄を加熱処理して得られるコバルトを粒子内部
に含有する酸化鉄にアルミニウム化合物、ケイ素化合
物、ニッケル化合物を被着処理し、最後にホウ素化合物
を被着処理するのが望ましい。
The order of depositing the boron compound, the aluminum compound, the silicon compound and the nickel compound is not particularly limited, but in order to obtain the target product having more excellent magnetic properties, the iron oxide hydroxide containing cobalt inside the particles is used. Alternatively, it is desirable that the iron oxide containing cobalt inside the particles obtained by heating the iron oxide hydroxide is heat-treated with an aluminum compound, a silicon compound and a nickel compound, and finally with a boron compound.

【0030】また、本発明の方法を工業的に一層好まし
いものとするために、更にP,Cr,Mn,Cd,P
d,Ca,Mg,Sr,Zn,Sn,W,Zrなどの化
合物を適宜併用して被着処理してもよい。前述の被着処
理及び本発明における被着処理とは、単に粒子表面に付
着させる処理や、粒子表面を均一に被覆処理する場合を
含むが、本発明においては、粒子表面を均一に被覆処理
する方が望ましい。
In order to make the method of the present invention industrially more preferable, P, Cr, Mn, Cd, P are further added.
Compounds such as d, Ca, Mg, Sr, Zn, Sn, W and Zr may be appropriately used in combination for the deposition treatment. The above-mentioned adhesion treatment and the adhesion treatment in the present invention include a treatment of simply adhering to the particle surface and a case of uniformly coating the particle surface, but in the present invention, the particle surface is uniformly coated. Is preferable.

【0031】上記のようにして、コバルトを粒子内部に
含有する含水酸化鉄を生成させ、次いで該含水酸化鉄あ
るいは該含水酸化鉄を加熱処理して得たコバルトを粒子
内部に含有する酸化鉄の粒子表面に、ホウ素化合物及び
アルミニウム化合物、必要に応じて更にケイ素化合物及
び/またはニッケル化合物を該粒子表面に被着処理し、
次いで還元して本発明の金属磁性粉末を製造する。
As described above, iron oxide hydroxide containing cobalt inside the particles is produced, and then the iron oxide hydroxide or the iron oxide containing iron oxide containing cobalt obtained by heat treatment of the iron oxide hydroxide is added. On the surface of the particles, a boron compound and an aluminum compound, and if necessary, a silicon compound and / or a nickel compound is applied to the surface of the particles,
Then, the metal magnetic powder of the present invention is manufactured by reduction.

【0032】前記還元の前に、必要に応じて被着処理後
の含水酸化鉄或いは酸化鉄粒子を、大気中、窒素ガス中
等の非還元性雰囲気下、500〜900℃、望ましくは
600〜800℃で加熱処理してもよい。この加熱処理
により、粒子全体が焼きしまって緻密になり、また還元
時の焼結や粒子形状の崩れを一層抑制することができ
る。加熱処理温度が高すぎると、酸化鉄の段階で粒子内
及び粒子間焼結による針状性の悪化や粗大化が生じて好
ましくない。また、加熱処理温度が低くすぎると、粒子
内に空孔が多く残り、そのものが緻密な結晶でないた
め、引き続く還元工程での形状劣化が大きく、所望の効
果が得られない。
Before the reduction, if necessary, the iron oxide hydroxide or iron oxide particles that have been subjected to the deposition treatment are subjected to a non-reducing atmosphere such as air or nitrogen gas at 500 to 900 ° C., preferably 600 to 800. You may heat-process at ℃. By this heat treatment, the entire particles are burned and become dense, and it is possible to further suppress the sintering at the time of reduction and the collapse of the particle shape. If the heat treatment temperature is too high, acicularity is deteriorated or coarsened due to intra-particle and inter-particle sintering at the iron oxide stage, which is not preferable. On the other hand, if the heat treatment temperature is too low, many pores remain in the particles and the particles themselves are not dense crystals, so that the shape deterioration in the subsequent reduction step is large and the desired effect cannot be obtained.

【0033】金属磁性粉末への還元は、公知の種々の方
法が採用できる。通常、還元性ガスとして、例えば水素
を使用し350〜600℃で処理して含水酸化鉄あるい
は酸化鉄の実質的に全部を金属に還元できる。
For the reduction to the metallic magnetic powder, various known methods can be adopted. Usually, hydrogen is used as a reducing gas, for example, and hydrogenated iron oxide or iron oxide can be substantially all reduced to a metal by treating at 350 to 600 ° C.

【0034】還元して得られた本発明の金属磁性粉末
は、大気に触れると発火し急激に酸化鉄に変化するた
め、通常大気中への取り出しにあたっては種々の公知の
方法を用い安定化させる。例えば、トルエン等の有機溶
媒中に浸漬後ゆっくりトルエンを蒸発させ安定化する方
法、トルエン等の液相または気相中に酸素含有ガスを通
気して安定化する方法、更には種々の化合物による酸化
抑制被膜形成処理と上記方法とを併用する方法などがあ
る。
The metal magnetic powder of the present invention obtained by reduction ignites when exposed to the atmosphere and rapidly changes into iron oxide, and therefore, when taken out into the atmosphere, it is stabilized by various known methods. . For example, a method of slowly evaporating and stabilizing toluene after immersion in an organic solvent such as toluene, a method of passing an oxygen-containing gas through a liquid phase or a gas phase of toluene such as stabilization, and further oxidation by various compounds. There is a method of using the suppression film forming treatment and the above method in combination.

【0035】このようにして得られた本発明の磁気記録
用金属磁性粉末は、保磁力、角型比、配向性、飽和磁束
密度(充填性)、反転磁界分布などの磁気特性及び耐酸
化性が良好であり、また磁気テープに用いた場合、高出
力特性が得られ、高記録密度の磁性媒体として優れたも
のが得られる。
The thus obtained metal magnetic powder for magnetic recording of the present invention has magnetic properties such as coercive force, squareness ratio, orientation, saturation magnetic flux density (filling property) and reversal magnetic field distribution, and oxidation resistance. Is good, and when used in a magnetic tape, high output characteristics are obtained, and an excellent magnetic medium having a high recording density is obtained.

【0036】[0036]

【実施例】【Example】

実施例1 (1)ゲータイト核晶の生成反応 空気吹込み管と撹拌機を備えた反応容器に1.50モル
/ lの硫酸第一鉄水溶液20リットルとCoとして10
g/lの硫酸コバルト水溶液2250mlを入れ、50
℃に昇温し、この温度を維持しながら、10モル/ lの
水酸化ナトリウム水溶液1075mlを撹拌下に加え、
この中へ10リットル/ 分の速度で空気を吹込み100
〜200分間反応させてゲータイトの核晶を得た。
Example 1 (1) Formation reaction of goethite nuclei crystals 1.50 mol in a reaction vessel equipped with an air blowing tube and a stirrer.
20 liters of ferrous sulfate aqueous solution / l and 10 as Co
Add 2250 ml of g / l cobalt sulfate aqueous solution,
The temperature was raised to 0 ° C., and while maintaining this temperature, 1075 ml of a 10 mol / l sodium hydroxide aqueous solution was added with stirring,
Air is blown into this at a rate of 10 liters / minute for 100
The reaction was carried out for about 200 minutes to obtain a goethite nucleus crystal.

【0037】(2)核晶の成長反応 所望の粒子径に成長させるために、上記の核晶スラリー
を50〜55℃に維持しつつ、10N水酸化ナトリウム
水溶液1615mlを8ml/分の速度で添加し、空気
を5リットル/ 分の速度で送入して中和、酸化反応を行
った。成長倍率は、核晶に対する重量比で2.5倍とな
る。この成長反応によって得られた、コバルトを粒子内
部に含有するゲータイトを濾過・洗浄した。このものの
比表面積(BET法)は、76m2 /gであった。
(2) Growth reaction of nuclei crystal In order to grow to a desired particle size, 1615 ml of 10N aqueous sodium hydroxide solution was added at a rate of 8 ml / min while maintaining the above-mentioned nuclei crystal slurry at 50 to 55 ° C. Then, air was introduced at a rate of 5 l / min for neutralization and oxidation reaction. The growth rate is 2.5 times the weight ratio to the nuclei. The goethite containing cobalt inside the particles obtained by this growth reaction was filtered and washed. The specific surface area (BET method) of this product was 76 m 2 / g.

【0038】(3)アルミニウム化合物の被着処理 前記のようにして得られたゲータイト120gを水15
00mlに懸濁させ、液温30℃、pHを5に保持し
た。このスラリーにAlとして15g/lの硫酸アルミ
ニウム水溶液250mlを30分間で添加し、30分間
熟成した後4Nのアンモニア水を添加し約2時間でスラ
リーpHを7.5とした。その後1時間保持して濾過、
水洗、乾燥した。
(3) Adhesion treatment of aluminum compound 120 g of goethite obtained as described above was treated with 15 parts of water.
The suspension was suspended in 00 ml and the liquid temperature was kept at 30 ° C. and the pH was kept at 5. To this slurry, 250 ml of 15 g / l aluminum sulfate aqueous solution as Al was added for 30 minutes, aged for 30 minutes, and then 4N ammonia water was added to adjust the slurry pH to 7.5 in about 2 hours. Then hold for 1 hour and filter,
It was washed with water and dried.

【0039】(4)ホウ素化合物の被着処理 次いで、前記乾燥物100gを乳鉢に取り、ホウ酸粉末
5.7gを添加して、解砕と同時に混合処理を10分間
行なった。
(4) Deposition Treatment of Boron Compound Next, 100 g of the dried product was placed in a mortar, 5.7 g of boric acid powder was added, and the mixture was crushed and mixed for 10 minutes.

【0040】(5)金属磁性粉末への還元 その後、前記ホウ素化合物の被着処理物100gをマッ
フル炉で大気中740℃で2時間加熱処理しα-Fe2O3
得た。しかる後、α-Fe2O350gをステンレス製竪型固
定床式還元反応器(内径:43mmφ、高さ:500m
m)に入れ、線速度約10cm/秒の水素気流下、42
5℃で排出ガスの露点が−20℃になるまで還元した。
還元に要した時間は185分であった。得られた還元物
は窒素気流中で冷却後トルエン中に浸漬し、次いでトル
エンを室温で徐々に蒸発させて本発明の金属磁性粉末
(試料A)を得た。
(5) Reduction to Metallic Magnetic Powder After that, 100 g of the adhered material of the boron compound was heat-treated in a muffle furnace at 740 ° C. for 2 hours in the atmosphere to obtain α-Fe 2 O 3 . Then, 50 g of α-Fe 2 O 3 was added to a vertical fixed bed stainless steel reduction reactor (inner diameter: 43 mmφ, height: 500 m).
m) and under a hydrogen stream with a linear velocity of about 10 cm / sec, 42
Reduction was performed at 5 ° C until the dew point of the exhaust gas reached -20 ° C.
The time required for the reduction was 185 minutes. The obtained reduced product was cooled in a nitrogen stream, immersed in toluene, and then toluene was gradually evaporated at room temperature to obtain a metal magnetic powder (Sample A) of the present invention.

【0041】実施例2 実施例1において、(3)アルミニウム化合物の被着処
理を、以下のような(3)アルミニウム化合物及びケイ
素化合物の被着処理に代えた以外、同例の場合と同様に
処理して、本発明の金属磁性粉末(試料B)を得た。
Example 2 In the same manner as in Example 1, except that the (3) aluminum compound deposition treatment was replaced with the following (3) aluminum compound and silicon compound deposition treatment. After processing, a metal magnetic powder of the present invention (Sample B) was obtained.

【0042】(3)アルミニウム化合物及びケイ素化合
物の被着処理 ケイ素化合物の被着処理 前記のようにして得られたゲータイト120gを水15
00mlに懸濁させ、液温30℃、pHを9にアンモニ
ア水で保持した。このスラリーにSiとして15g/l
のケイ酸ナトリウム水溶液100mlを30分間で添加
し、30分間熟成した後、3Nの硫酸水溶液を添加し約
1時間でスラリーpHを7.0とした。
(3) Deposition treatment of aluminum compound and silicon compound Deposition treatment of silicon compound 120 g of goethite thus obtained was treated with 15 parts of water.
The mixture was suspended in 00 ml, and the liquid temperature was kept at 30 ° C. and pH was maintained at 9 with ammonia water. 15 g / l as Si in this slurry
100 ml of the sodium silicate aqueous solution was added in 30 minutes and aged for 30 minutes, then a 3N sulfuric acid aqueous solution was added and the slurry pH was adjusted to 7.0 in about 1 hour.

【0043】アルミニウム化合物の被着処理 のスラリーにAlとして15g/lの硫酸アルミニウ
ム水溶液150mlを30分間で添加し、30分間熟成
した後4Nのアンモニア水を添加し約1時間でスラリー
pHを7.5とした。
150 ml of 15 g / l aqueous solution of aluminum sulfate as Al was added to the slurry for the aluminum compound deposition treatment in 30 minutes, aged for 30 minutes, and 4N ammonia water was added to the slurry for about 1 hour to adjust the slurry pH to 7. It was set to 5.

【0044】実施例3 実施例1において、アルミニウム化合物の被着処理の
後、Niとして10g/lの硫酸ニッケル水溶液を30
分で添加し、30分間熟成した後、1Nのアンモア水を
添加しスラリーpHを7.5とした。その後、1時間攪
拌しながら、pHを7.5に保持してから、濾過、水
洗、乾燥すること以外、同例の場合と同様に処理して、
本発明の金属磁性粉末(試料C)を得た。
Example 3 In Example 1, after the aluminum compound deposition treatment, 30 g of nickel sulfate aqueous solution of 10 g / l was added as Ni.
Minutes, and after aging for 30 minutes, 1N Ammore water was added to adjust the slurry pH to 7.5. Then, the pH is maintained at 7.5 while stirring for 1 hour, and then treated in the same manner as in the case of the same example except that filtration, washing with water and drying are performed,
A metal magnetic powder (Sample C) of the present invention was obtained.

【0045】実施例4 実施例2において、アルミニウム化合物の被着処理の
後、Niとして10g/lの硫酸ニッケル水溶液を30
分で添加し、30分間熟成した後、1Nのアンモア水を
添加しスラリーpHを7.5とした。その後、1時間攪
拌しながら、pHを7.5に保持してから、濾過、水
洗、乾燥すること以外、同例の場合と同様に処理して、
本発明の金属磁性粉末(試料D)を得た。
Example 4 In Example 2, after the aluminum compound deposition treatment, 30 g of a 10 g / l nickel sulfate aqueous solution was added as Ni.
Minutes, and after aging for 30 minutes, 1N Ammore water was added to adjust the slurry pH to 7.5. Then, the pH is maintained at 7.5 while stirring for 1 hour, and then treated in the same manner as in the case of the same example except that filtration, washing with water and drying are performed,
A metal magnetic powder (Sample D) of the present invention was obtained.

【0046】実施例5 実施例1において、硫酸コバルト水溶液をゲータイト核
晶の生成反応時に添加して調製したゲータイト120g
に対して、前記実施例1の(3)及び(4)の被着処理
に代えて、Bとして10g/lのホウ酸水溶液75ml
を添加し、次いでSiとして15g/lのケイ酸ナトリ
ウム水溶液150mlを添加し、更にAlとして15g
/lの硫酸アルミニウム水溶液250mlを添加して、
ホウ素化合物、アルミニウム化合物及びケイ素化合物を
被着させたこと以外、同例の場合と同様に処理して、本
発明の金属磁性粉末(試料E)を得た。
Example 5 Goethite (120 g) prepared in Example 1 by adding an aqueous cobalt sulfate solution during the reaction for producing goethite nuclei.
On the other hand, 75 ml of a 10 g / l boric acid aqueous solution as B was used instead of the deposition treatment of (3) and (4) of Example 1 above.
Was added, and then 150 ml of a 15 g / l sodium silicate aqueous solution was added as Si, and further 15 g was added as Al.
250 ml of 1 / l aluminum sulfate aqueous solution is added,
A metal magnetic powder (Sample E) of the present invention was obtained by the same treatment as in the same example except that the boron compound, aluminum compound and silicon compound were applied.

【0047】比較例1 実施例1において、硫酸コバルト水溶液をゲータイト核
晶の生成反応時に添加しないでゲータイトを調製したこ
と以外は同例の場合と同様に処理して、コバルトを含有
しない金属磁性粉末(試料F)を得た。
Comparative Example 1 Metal magnetic powder containing no cobalt was treated in the same manner as in Example 1 except that the goethite was prepared without adding the aqueous solution of cobalt sulfate in the reaction for producing goethite nuclei. (Sample F) was obtained.

【0048】比較例2 実施例2において、硫酸コバルト水溶液をゲータイト核
晶の生成反応時に添加しないでゲータイトを調製したこ
と以外は同例の場合と同様に処理して、コバルトを含有
しない金属磁性粉末(試料G)を得た。
Comparative Example 2 Metal magnetic powder containing no cobalt was treated in the same manner as in Example 2 except that the goethite was prepared without adding the aqueous solution of cobalt sulfate in the reaction for producing goethite nuclei in Example 2. (Sample G) was obtained.

【0049】比較例3 実施例1において、硫酸コバルト水溶液をゲータイト核
晶の生成反応時に添加せずに調製したゲータイト120
gに対して、前記実施例1の(3)の被着処理に代え
て、Alとして15g/lの硫酸アルミニウム水溶液2
50mlを添加し、アルミニウム化合物の被膜を形成さ
せた後、Coとして10g/lの硫酸コバルト水溶液7
5mlを30分間で添加し、30分間熟成したこと以外
は同例の場合と同様に処理して、金属磁性粉末(試料
H)を得た。
Comparative Example 3 Goethite 120 prepared in Example 1 without adding the aqueous solution of cobalt sulfate during the reaction for producing goethite nucleus crystals.
For g, instead of the deposition treatment of (3) of Example 1, 15 g / l aluminum sulfate aqueous solution 2 as Al was used.
After adding 50 ml to form a film of an aluminum compound, 10 g / l of cobalt sulfate aqueous solution as Co 7
A metal magnetic powder (Sample H) was obtained by the same treatment as in the same example except that 5 ml was added for 30 minutes and the mixture was aged for 30 minutes.

【0050】比較例4 実施例1において、硫酸コバルト水溶液をゲータイト核
晶の生成反応時に添加せずに調製したゲータイト120
gに対して、前記実施例2の(3)の被着処理に代え
て、Siとして15g/lのケイ酸ナトリウム水溶液1
00mlを添加し、次いでAlとして15g/lの硫酸
アルミニウム水溶液100mlを添加して、アルミニウ
ム化合物の被膜を形成させた後、Coとして10g/l
の硫酸コバルト水溶液75mlを30分間で添加し、3
0分間熟成したこと以外は同例の場合と同様に処理し
て、金属磁性粉末(試料I)を得た。
Comparative Example 4 Goethite 120 prepared in Example 1 without adding the aqueous cobalt sulfate solution during the reaction for producing goethite nuclei.
For g, instead of the deposition treatment of (3) of Example 2, an aqueous solution of sodium silicate of 15 g / l as Si 1
00 ml was added, and then 100 ml of 15 g / l aluminum sulfate aqueous solution was added as Al to form a film of an aluminum compound, and then Co was added at 10 g / l.
75 ml of aqueous solution of cobalt sulfate in
A magnetic metal powder (Sample I) was obtained by the same treatment as in the same example except that the aging was performed for 0 minutes.

【0051】比較例5 実施例1において、硫酸コバルト水溶液をゲータイト核
晶の生成反応時に添加せずに調製したゲータイト120
gに対して、前記実施例1の(3)及び(4)の被着処
理に代えて、Alとして15g/lの硫酸アルミニウム
水溶液250mlを添加し、さらにホウ素として10g
/lのホウ酸水溶液75mlを添加して、アルミニウム
化合物及びホウ素化合物の被膜を形成させた後、Coと
して10g/lの硫酸コバルト水溶液225mlを30
分間で添加し、30分間熟成したこと以外は同例の場合
と同様に処理して、金属磁性粉末(試料J)を得た。
Comparative Example 5 Goethite 120 prepared in Example 1 without adding the aqueous cobalt sulfate solution during the reaction for producing goethite nuclei.
Instead of the deposition treatment of (3) and (4) in Example 1, 250 g of aluminum sulfate aqueous solution of 15 g / l as Al was added to g, and further 10 g of boron was added.
After adding 75 ml of an aqueous solution of boric acid of 1 / l to form a coating film of an aluminum compound and a boron compound, 225 ml of an aqueous solution of cobalt sulfate of 10 g / l as Co was added to 30 ml.
A magnetic metal powder (Sample J) was obtained by the same treatment as in the same example except that the addition was carried out for 30 minutes and the mixture was aged for 30 minutes.

【0052】比較例6 実施例1において、硫酸コバルト水溶液をゲータイト核
晶の生成反応時に添加せずに調製したゲータイト120
gに対して、前記実施例2の(3)及び(4)の被着処
理に代えて、Siとして15g/lのケイ酸ナトリウム
水溶液150mlを添加し、次いでAlとして15g/
lの硫酸アルミニウム水溶液250mlを添加し、さら
にホウ素として10g/lのホウ酸水溶液75mlを添
加して、アルミニウム化合物及びケイ素化合物及びホウ
素化合物の被膜を形成させた後、Coとして10g/l
の硫酸コバルト水溶液225mlを30分間で添加し、
30分間熟成したこと以外は同例の場合と同様に処理し
て、金属磁性粉末(試料K)を得た。
Comparative Example 6 Goethite 120 prepared in Example 1 without adding the aqueous cobalt sulfate solution during the reaction for producing goethite nuclei.
Instead of the deposition treatment of (3) and (4) of Example 2, 150 g of a 15 g / l sodium silicate aqueous solution of Si was added to g, and then 15 g / l of Al was added.
1 of aluminum sulfate aqueous solution (250 ml) was further added, and further, 10 g / l of boric acid aqueous solution (75 ml) was added as boron to form a film of an aluminum compound, a silicon compound and a boron compound, and then Co was added at 10 g / l.
225 ml of cobalt sulfate aqueous solution of
A magnetic metal powder (Sample K) was obtained by the same treatment as in the case of the same example except that it was aged for 30 minutes.

【0053】このようにして得られた金属磁性粉末試料
について、常法により粉末磁気特性を測定した。また、
酸化安定性を評価するために、試料粉末を温度60℃、相
対湿度80%の環境下で1週間放置して、σs について促
進経時変化を測定し、飽和磁化の劣化率Δσs(%) を下
記の式によって求めた。
With respect to the metal magnetic powder sample thus obtained, the powder magnetic characteristics were measured by a conventional method. Also,
In order to evaluate the oxidative stability, the sample powder was allowed to stand for 1 week in an environment of a temperature of 60 ° C. and a relative humidity of 80%, the accelerated aging change of σs was measured, and the deterioration rate Δσs (%) of the saturation magnetization was measured as follows. It was calculated by the formula.

【0054】 (式中、σs0は経時前のσs であり、σs1は経時後のσ
s である)
[0054] (Where σs0Is σs before aging, and σs1Is σ after aging
s)

【0055】更に前記試料粉末を用いて以下の組成の磁
性塗料を調製し、次いで乾燥膜厚が10μmとなるよう
に塗布し、配向処理後乾燥して作成した磁気テープにつ
いて、常法によりテープ磁気特性を測定した。 金属磁性粉末 5 重量部 分散剤 0.25 〃 ポリウレタン樹脂 2.96 〃 混合溶媒 13.4 〃 (トルエン/MEK/シクロヘキサノン(4.5/4.
5/1))
Further, a magnetic coating material having the following composition was prepared by using the above-mentioned sample powder, which was then coated so that the dry film thickness was 10 μm, and after the orientation treatment, the magnetic tape was prepared by drying by a conventional method. The properties were measured. Metal magnetic powder 5 parts by weight Dispersant 0.25 〃 Polyurethane resin 2.96 〃 Mixed solvent 13.4 〃 (Toluene / MEK / Cyclohexanone (4.5 / 4.
5/1))

【0056】これらの磁気特性、すなわち、保磁力(H
c:Oe)、飽和磁化(σs:emu/g)、飽和磁束
密度(Bm:Gauss)、角型比(Rs、SQ)、配
向比(OR)及び反転磁界分布(SFD)を測定し、更
に、光沢計で60°−60°光沢を測定した。これらの
結果を表1及び表2に示す。
These magnetic characteristics, that is, the coercive force (H
c: Oe), saturation magnetization (σs: emu / g), saturation magnetic flux density (Bm: Gauss), squareness ratio (Rs, SQ), orientation ratio (OR) and switching field distribution (SFD), and further The 60 ° -60 ° gloss was measured with a gloss meter. The results are shown in Tables 1 and 2.

【0057】[0057]

【表1】 [Table 1]

【0058】[0058]

【表2】 [Table 2]

【0059】[0059]

【発明の効果】本発明によって得られる金属磁性粉末
は、高密度記録に適した磁気特性や、塗料化時の分散性
に優れたものであるほか、空気中での安定性も向上した
ものであって、磁気特性の経時劣化が改善されたもので
あり、高出力の高記録密度磁気媒体を製造する上で極め
て好適なものである。また本発明は、比較的簡素な手段
でもって前記の優れた性能の磁性粉末を経済的有利に製
造することができるものであり、甚だ工業的意義の大き
いものである。
Industrial Applicability The magnetic metal powder obtained by the present invention has excellent magnetic properties suitable for high-density recording and excellent dispersibility at the time of coating, and also has improved stability in air. Therefore, the deterioration of the magnetic characteristics with time is improved, and it is extremely suitable for manufacturing a high-output, high-recording-density magnetic medium. Further, the present invention is capable of economically and advantageously producing the above-mentioned magnetic powder having excellent performance by a relatively simple means, and is of great industrial significance.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01F 1/06 (72)発明者 一ノ瀬 治紀 三重県四日市市石原町1番地 石原産業株 式会社四日市事業所内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification number Internal reference number FI Technical display location H01F 1/06 (72) Inventor Haruki Ichinose 1 Ishihara-cho, Yokkaichi-shi, Mie Ishihara Industrial Co., Ltd. Yokkaichi In the office

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 粒子内部にコバルトを含有し、かつホウ
素及びアルミニウムを粒子表面に含有する磁気記録用金
属磁性粉末。
1. A magnetic metal powder for magnetic recording, which contains cobalt inside the particles and also contains boron and aluminum on the surface of the particles.
【請求項2】 粒子表面に更にケイ素及び/またはニッ
ケルを含有する請求項1に記載の磁気記録用金属磁性粉
末。
2. The magnetic metal powder for magnetic recording according to claim 1, further comprising silicon and / or nickel on the surface of the particles.
【請求項3】 コバルト化合物の存在下に鉄塩とアルカ
リとを反応させてコバルトを粒子内部に含有する含水酸
化鉄を生成させ、次いで該含水酸化鉄或いは該含水酸化
鉄を加熱処理して得られるコバルトを粒子内部に含有す
る酸化鉄の粒子表面に、ホウ素化合物及びアルミニウム
化合物を被着処理し、その後還元する磁気記録用金属磁
性粉末の製造方法。
3. An iron hydroxide is obtained by reacting an iron salt with an alkali in the presence of a cobalt compound to produce iron oxide hydroxide containing cobalt inside the particles, and then heat-treating the iron oxide hydroxide or iron oxide hydroxide. The method for producing a metal magnetic powder for magnetic recording, comprising: applying a boron compound and an aluminum compound to the surface of an iron oxide particle containing the obtained cobalt inside the particle, and then reducing the particle.
【請求項4】 粒子表面に、ホウ素化合物及びアルミニ
ウム化合物並びにケイ素化合物及び/またはニッケル化
合物を被着処理し、その後還元する請求項3に記載の磁
気記録用金属磁性粉末の製造方法。
4. The method for producing a magnetic metal powder for magnetic recording according to claim 3, wherein a boron compound, an aluminum compound, a silicon compound and / or a nickel compound is deposited on the surface of the particles and then reduced.
【請求項5】 粒子表面に、最後に被着処理するものが
ホウ素化合物である請求項3または4に記載の磁気記録
用金属磁性粉末の製造方法。
5. The method for producing a metal magnetic powder for magnetic recording according to claim 3, wherein a material to be finally deposited on the surface of the particles is a boron compound.
【請求項6】 被着処理後の含水酸化鉄或いは酸化鉄粒
子を、還元前に非還元性雰囲気下、500〜900℃で
加熱処理する請求項3〜5に記載の磁気記録用金属磁性
粉末の製造方法。
6. The metal magnetic powder for magnetic recording according to claim 3, wherein the iron oxide hydroxide or iron oxide particles after the deposition treatment are heat-treated at 500 to 900 ° C. in a non-reducing atmosphere before reduction. Manufacturing method.
【請求項7】 含水酸化鉄がゲータイトである請求項3
〜6に記載の磁気記録用金属磁性粉末の製造方法。
7. The hydrous iron oxide is goethite.
7. A method for producing the magnetic metal powder for magnetic recording according to any one of 6 to 6.
【請求項8】 ゲータイト核晶の生成反応時にコバルト
化合物を添加する請求項3〜7に記載の磁気記録用金属
磁性粉末の製造方法。
8. The method for producing a magnetic metal powder for magnetic recording according to claim 3, wherein a cobalt compound is added during the reaction of producing goethite nuclei.
【請求項9】 コバルトを粒子内部に含有する含水酸化
鉄の比表面積が55m2 /g以上である請求項3〜8に
記載の磁気記録用金属磁性粉末の製造方法。
9. The method for producing a metal magnetic powder for magnetic recording according to claim 3, wherein the hydrous iron oxide containing cobalt inside the particles has a specific surface area of 55 m 2 / g or more.
JP3272088A 1991-09-24 1991-09-24 Magnetic metallic powder for magnetic recording and its production Pending JPH0711310A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3272088A JPH0711310A (en) 1991-09-24 1991-09-24 Magnetic metallic powder for magnetic recording and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3272088A JPH0711310A (en) 1991-09-24 1991-09-24 Magnetic metallic powder for magnetic recording and its production

Publications (1)

Publication Number Publication Date
JPH0711310A true JPH0711310A (en) 1995-01-13

Family

ID=17508919

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3272088A Pending JPH0711310A (en) 1991-09-24 1991-09-24 Magnetic metallic powder for magnetic recording and its production

Country Status (1)

Country Link
JP (1) JPH0711310A (en)

Similar Documents

Publication Publication Date Title
JPS6186424A (en) Manufacture of particulate isotropic ferrite powder having spinel structure
JP3087825B2 (en) Spindle-shaped goethite particle powder, method for producing the same, spindle-shaped metal magnetic particle powder containing iron as a main component obtained using the goethite particle powder as a starting material, and method for producing the same
JPH0711310A (en) Magnetic metallic powder for magnetic recording and its production
JP3337046B2 (en) Spindle-shaped metal magnetic particles containing cobalt and iron as main components and method for producing the same
JPH10245233A (en) Spindle-like hematite particle and its production and spindle-like metal magnetic particle containing iron as main component and obtained from the hematite particle as starting ram material and its production
JPS6021307A (en) Production of ferromagnetic metallic powder
JP2740922B2 (en) Method for producing metal magnetic powder for magnetic recording material
JP2000302445A (en) Fusiform goethite particle powder, fusiform hematite particle powder, and fusiform metallic magnetic particle powder consisting mainly of iron, and their production
JPS6122604A (en) Magnetic metal powder and manufacture thereof
JPH02175806A (en) Manufacture of metal magnetic powder for magnetic recorder
JP2805162B2 (en) Method for producing metal magnetic powder for magnetic recording
JP3303896B2 (en) Spindle-shaped iron-based metal magnetic particle powder and method for producing the same
JP2945458B2 (en) Acicular ferromagnetic iron oxide powder and method for producing the same
JP3092649B2 (en) Method for producing spindle-shaped metal magnetic particles containing iron as a main component
JP2002050508A (en) Method of manufacturing magnetic powder
JP3171223B2 (en) Method for producing acicular magnetic particle powder
JPH04278501A (en) Metal magnetic powder for magnetic recording and manufacture thereof
JPS6349722B2 (en)
JPH0361307A (en) Manufacture of metallic magnetic powder for magnetic recording
JPH0569048B2 (en)
JP2945457B2 (en) Acicular magnetic iron oxide powder and method for producing the same
JPS619504A (en) Manufacture of magnetic metallic powder
JPH06330111A (en) Production of magnetic metal powder
JPH06333711A (en) Manufacture of metallic magnetic powder
JPH0725619A (en) Production of fusiform magnetic iron oxide particle powder