JPS6349722B2 - - Google Patents

Info

Publication number
JPS6349722B2
JPS6349722B2 JP55137418A JP13741880A JPS6349722B2 JP S6349722 B2 JPS6349722 B2 JP S6349722B2 JP 55137418 A JP55137418 A JP 55137418A JP 13741880 A JP13741880 A JP 13741880A JP S6349722 B2 JPS6349722 B2 JP S6349722B2
Authority
JP
Japan
Prior art keywords
magnetic
sho
tokuko
iron oxyhydroxide
feooh
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55137418A
Other languages
Japanese (ja)
Other versions
JPS5763605A (en
Inventor
Shintaro Suzuki
Hironori Sakumoto
Munehiko Takahashi
Juichi Omote
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanto Denka Kogyo Co Ltd
Original Assignee
Kanto Denka Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanto Denka Kogyo Co Ltd filed Critical Kanto Denka Kogyo Co Ltd
Priority to JP55137418A priority Critical patent/JPS5763605A/en
Publication of JPS5763605A publication Critical patent/JPS5763605A/en
Publication of JPS6349722B2 publication Critical patent/JPS6349722B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Paints Or Removers (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Magnetic Record Carriers (AREA)
  • Hard Magnetic Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は強磁性粉末の製造法に関するものであ
り、特に高密度記録に適した保持力及び飽和磁束
密度の高い磁気記録媒体用の強磁性金属、合金粉
末の製造方法に関するものである。 従来、磁気記録体に使用されていた強磁性粉末
としてはγ−Fe2O3、Co含有γ−Fe2O3、Fe3O4
Co含有Fe3O4、Fe3O4−γ−Fe2O3、CrO2等があ
つた。しかしこれらの強磁性粉末は今後の磁性層
の単位体積当りの記録信号を多くしようとする高
密度化の方向に適したものであるとは言えない。
すなわち高密度記録に使用するには保磁力(Hc)
および磁束密度(σ)等の磁気特性が不充分であ
り記録波長の短い信号の磁気記録にはあまり適し
ていない。 そのため最近になり高密度記録に適する強磁性
媒体の開発が盛んになされている。その対象とな
る材料の1つとして強磁性金属、合金の粉末があ
る。すなわち、γ−Fe2O3は単位体積当りの飽和
磁束密度は約5000ガウスであるが、Fe、Fe−Co
合金等ではγ−Fe2O3の約4倍に当る約20000〜
25000ガウスにも及ぶ高い飽和磁束密度を有して
いると言われ、きわめて簡単に換算すれば約4倍
の再生出力が期待され、より高密度記録が可能と
なる。 このような強磁性金属、合金粉末の製造法とし
ては従来から次のような方法が検討されてきた。 (1) 強磁性の金属、合金の有機酸塩(主として蓚
酸塩)を加熱分解し、還元性気体で還元する方
法。 例えば特公昭36−11412、特公昭36−22230、
特公昭40−8027、特公昭42−24032、特公昭43
−22394、特公昭47−38417、特開昭47−38523
号、特公昭48−29280、特開昭48−22346、特開
昭48−22994、米国特許第3186829、米国特許第
3190748号、フタル酸塩を用いるものとして特
公昭47−4286、 (2) オキシ水酸化鉄あるいはこれらに他の金属
(例えばCo)を含有(ドープ)せしめたもの、
あるいは酸化鉄、又はフエライト組成酸化物を
還元性気体で還元する方法。 例えば特公昭35−3862、特公昭37−11520、
特公昭39−20939、特公昭47−29706、特公昭47
−30477、特公昭47−39477、特開昭46−5057、
特開昭46−7153、特公昭48−24952、特開昭48
−79153、特開昭48−82393、特公昭49−7313、
特開昭49−135867、特公昭51−5608、米国特許
第3598568、米国特許第3607220、米国特許第
3702270、英国特許第640438、 (3) 強磁性金属、合金を不活性ガス中で蒸発させ
る方法。例えば、特公昭47−27718、特公昭48
−964、特公昭48−42780、特開昭48−25662〜
25665、特開昭48−31166、特開昭48−55400、
特開昭48−81092、特開昭49−52134、 (4) 金属カルボニル化合物を分解する方法。 例えば、特公昭45−16868、米国特許第
2983997、米国特許第3172776、米国特許第
3200007、米国特許第3228882、 (5) 水銀電解によつて強磁性金属粉末を電析させ
たのち、水銀を分解除去する方法。 例えば、特公昭39−15525、特公昭40−8123、
特公昭47−6007、米国特許第3156650、米国特
許第3262812、 (6) 強磁性を有する金属の塩を、その溶液中で次
亜リン酸ナトリウム、あるいは水素化ホウ素ナ
トリウム、などで湿式還元する方法。 例えば、特公昭38−20520、特公昭38−
26555、特公昭43−20116、特公昭45−9869、特
公昭47−7820、特公昭47−16052、特公昭47−
41718、特公昭47−41719、特開昭47−1353、特
開昭47−42252、特開昭47−42253、特開昭48−
7585、特開昭48−25896、特開昭48−44194、特
開昭48−79754、特開昭48−82396、特開昭48−
28999、特開昭48−1998、米国特許第3607218、
米国特許第3494760、米国特許第3535104、米国
特許第3661556、米国特許第3663318、米国特許
第3669643、米国特許第3672867、 (7) その他、例えば衝撃大電流を通じて放電爆発
によつて強磁性金属粉末を生成させる方法。 例えば特開昭47−33857、 以上のように、各種方法によつて検討されて来
たが、それぞれ、どの方法も一長一短を有してお
り、まだ、いずれも工業的、実用的な意味におい
て、決定的な方法とはなり得ない。 例えば(1)の蓚酸塩の分解による方法は古くから
検討された来た方法であるが、この方法で得られ
る磁性粉末は一般に粒子サイズが大きく5〜10μ
程度もあり、このままでは磁気テープとした時テ
ープの表面がザラザラして、雑音レベルが悪く、
また、磁気ヘツドの摩耗、およびヘツドとテープ
表面の密着性がさまたげられ、目的とする高密度
化記録が実現しがたいという欠点がある。 また(3)の蒸発法は複雑な装置および作業を必要
とし、大規模な実施は、工業性、経済性の面で欠
点を有している。 また(5)の水銀電解法においては、電着した生成
物は4〜6%の水銀を含んだ樹枝状の粒子であ
り、これを熱処理して樹枝状粒子から除くわけで
あるが、水銀の完全な除去は困難であり、水銀公
害等の面からも実用化にはむづかしい問題点を有
している。 また(6)の湿式還元反応による方法については、
この方法で得られた強磁性金属、合金粉末は表面
の活性度が強いため自然性が強く、空気中の酸素
や湿気に弱く、常温、常湿においても、徐々に酸
化され、磁気特性の低下をまねきやすい。またこ
の方法で得られる個々の粒子は糸状をしている
が、結合剤と混合分散処理の過程において、その
粒子形状の破壊を生じて磁場配向性が悪くなり、
磁気記録体の磁気特性、特に角形比が悪くなる欠
点を有している。 さて本発明は(2)のオキシ水酸化鉄、又は酸化鉄
を還元性ガスで乾式還元する方法に属するもので
あるが、これに属する従来の方法についても幾つ
かの欠点が指摘されていた。まず、還元処理が通
常高温水素気流中で行なわれるため、体積の減
少、多孔質化、形状の変化、焼結が生じて、たと
え望ましい形状の鉄酸化物から出発しても期待ほ
どの磁気特性が得られ難い。 これはγ−Fe2O3の通常の製造工程においても
α−Fe2O3→Fe3O4の工程つまり水素ガスによつ
てα−Fe2O3の1/9の酸素を取る工程において、
形状の変化、焼結が一番起り易いと言われ、これ
を防ぐ努力がかなりなされている。これに比較し
て金属、合金の場合はさらに全部の酸素を取るわ
けであるから、なおさら、形状の変化、焼結は激
しくなる方向にあると言え、保磁力(Hc)、角形
比が悪く、テープ化において分散が不完全となり
記録材料的に、有望な性質をそなえているにもか
かわらず実用的になり得ていない。また、この方
法で得られた金属、合金粉末も発火性であるとい
う欠点を有し、実際上の使用の妨げとなつてい
る。 本発明は上記欠点を解除するものである。 すなわち、針状オキシ水酸化鉄を水ガラスで処
理した後、過、水洗、焼成し次いで還元するこ
とにより、上記欠点である形状の崩れ、焼結が防
止され、保持力(Hc)、角形比(σr/σs)、分散
性に優れ、かつ発火性のおさえられた安定な磁気
記録用強磁性体として充分使用に耐え得る金属粉
末が得られる。 本発明に用いられる針状オキシ水酸化鉄として
はα−FeOOH、β−FeOOH及びγ−FeOOHが
挙げられ、またこれらの混合物であつても良い。
本発明でいう針状オキシ水酸化鉄とは上記針状オ
キシ水酸化鉄にCo、Ni、Ti、Bi、Mo、Agなど
の金属をドープせしめたものも含まれる。 ケイ素化合物による処理は上記原料を水に懸濁
させた後、ケイ素化合物を溶解させ、良く撹拌、
混合することにより行なわれる。処理に用いられ
るケイ素化合物としては水に可溶性のものもしく
はコロイド状のものであればよく、例えば
Na2SiO3、Na2Si2O5等の如きコイ酸塩、Si
(OH)4、コロイドシリカ等を挙げることができ
るが、特に水ガラスが好適である。 また、水ガラスによる処理量は原料の針状オキ
シ水酸化鉄に対してFe2O3換算で0.1〜10重量%で
ある。この水ガラスの使用量については多くなる
と金属、合金粉の磁気特性が稀釈されることにな
り、特性値を落すから多量の使用は望ましくな
い。 次いで処理物をフイルター等で過し、水洗す
る。 次いでこれら処理、過、水洗がなされた針状
オキシ水酸化鉄を600〜800℃で焼成し、しかる
後、600℃を越えない温度、好ましくは500℃を越
えない温度で水素雰囲気中において還元する。濃
度については下限は実際上ないが、低温において
は反応が非常にゆつくり進むので、実施の観点か
らは、反応時間が長くなつて実際的でなくなるの
をさけるため、少なくとも250℃の温度を使用す
べきである。しかし、200℃程度の低い温度でも
可能である。 還元後、還元器を冷却して、空気1%および窒
素99%の混合ガスを還元器に導入し、約30分の間
隔で、このガスの空気含有量を2倍づつにする。
4〜5時間後、空気だけに切り替え、還元器から
磁性鉄粉を取り出すことができる。そして、磁気
テープ、その他の磁気記録体とすることができ
る。 つぎに、さらに詳細に、本発明の具体化例を実
施例をもつて説明するが、この実施例によつて本
発明の制限がなされるものではない。 実施例1、比較例1 針状晶ゲータイト(α−FeOOH)100gを9
の水に懸濁させJIS−1号水ガラス9g(α−
Fe2O3換算で10重量%)を溶解し、40分間撹拌し
た後、過し、充分に水洗した。ケーキは乾燥し
た後400、500、600、700、800℃の各温度で焼成
した後、水素ガスで還元した。 得られた金属磁性粉の磁気特性を表−1に示し
た。尚焼成しない場合をも比較例に併記した。
尚、焼成は空気雰囲気中で2時間行い、還元は次
の条件により行つた。すなわち、窒素気流中で
450℃まで約1時間かけて昇温させ、次いで窒素
を水素に切換え、水素流量を2/minとし、3
時間、450℃に維持した。還元後、窒素気流中で
冷却し、次いで空気1%および窒素99%の混合ガ
スを導入し、約30分の間隔で、このガスの空気含
有量を2倍づつにし、4時間後に空気だけに切り
換えた。
The present invention relates to a method for producing ferromagnetic powder, and in particular to a method for producing ferromagnetic metal or alloy powder for magnetic recording media with high coercive force and high saturation magnetic flux density suitable for high-density recording. Ferromagnetic powders conventionally used in magnetic recording materials include γ-Fe 2 O 3 , Co-containing γ-Fe 2 O 3 , Fe 3 O 4
Co-containing Fe 3 O 4 , Fe 3 O 4 −γ−Fe 2 O 3 , CrO 2 , etc. were found. However, these ferromagnetic powders cannot be said to be suitable for the future trend toward higher densification in which the recording signal per unit volume of the magnetic layer is increased.
In other words, coercive force (Hc) is required for use in high-density recording.
Also, the magnetic properties such as magnetic flux density (σ) are insufficient, and it is not very suitable for magnetic recording of signals with short recording wavelengths. Therefore, recently, ferromagnetic media suitable for high-density recording have been actively developed. One of the target materials is powder of ferromagnetic metals and alloys. In other words, the saturation magnetic flux density per unit volume of γ-Fe 2 O 3 is approximately 5000 Gauss, but that of Fe, Fe-Co
For alloys, etc., it is about 20,000~, which is about four times that of γ-Fe 2 O 3 .
It is said to have a saturation magnetic flux density as high as 25,000 gauss, and in very simple terms, it is expected that the playback output will be about four times as high, making even higher density recording possible. Conventionally, the following methods have been studied as methods for producing such ferromagnetic metal and alloy powders. (1) A method in which organic acid salts (mainly oxalates) of ferromagnetic metals and alloys are thermally decomposed and reduced with a reducing gas. For example, Tokuko Sho 36-11412, Tokko Sho 36-22230,
Tokuko Sho 40-8027, Tokuko Sho 42-24032, Tokko Shou 43
−22394, JP 1977-38417, JP 47-38523
No. 48-29280, 22346-2013, 22994-1984, U.S. Patent No. 3186829, U.S. Patent No.
No. 3190748, Japanese Patent Publication No. 47-4286 for using phthalates, (2) Iron oxyhydroxide or these doped with other metals (e.g. Co),
Alternatively, a method of reducing iron oxide or ferrite composition oxide with a reducing gas. For example, Tokuko Sho 35-3862, Tokko Sho 37-11520,
Tokuko Sho 39-20939, Tokuko Sho 47-29706, Tokuko Sho 47
−30477, Japanese Patent Publication No. 47-39477, Japanese Patent Publication No. 46-5057,
Japanese Patent Publication No. 1973-7153, Special Publication No. 48-24952, Japanese Patent Publication No. 1977-24952
-79153, Japanese Patent Publication No. 1983-82393, Special Publication No. 49-7313,
JP 49-135867, JP 51-5608, U.S. Patent No. 3598568, U.S. Patent No. 3607220, U.S. Patent No.
3702270, British Patent No. 640438, (3) Method for vaporizing ferromagnetic metals and alloys in an inert gas. For example, Tokuko Sho 47-27718, Tokuko Sho 48
-964, JP 1977-42780, JP 1977-25662~
25665, Japanese Patent Publication No. 48-31166, Japanese Patent Publication No. 48-55400,
JP-A-48-81092, JP-A-49-52134, (4) Method for decomposing metal carbonyl compounds. For example, Japanese Patent Publication No. 45-16868, U.S. Patent No.
2983997, U.S. Patent No. 3172776, U.S. Patent No.
3200007, US Patent No. 3228882, (5) A method of electrodepositing ferromagnetic metal powder by mercury electrolysis and then decomposing and removing mercury. For example, Tokuko Sho 39-15525, Tokuko Sho 40-8123,
Japanese Patent Publication No. 47-6007, U.S. Patent No. 3156650, U.S. Patent No. 3262812, (6) A method of wet reduction of a ferromagnetic metal salt with sodium hypophosphite, sodium borohydride, etc. in its solution. . For example, Tokuko Sho 38-20520, Tokuko Sho 38-
26555, Special Publication No. 43-20116, Special Publication No. 45-9869, Special Publication No. 47-7820, Special Publication No. 47-16052, Special Publication No. 47-
41718, JP 47-41719, JP 47-1353, JP 47-42252, JP 47-42253, JP 48-
7585, JP-A 1987-25896, JP-A 48-44194, JP-A 48-79754, JP-A 1972-82396, JP-A 1972-
28999, Japanese Unexamined Patent Publication No. 48-1998, US Patent No. 3607218,
U.S. Patent No. 3494760, U.S. Patent No. 3535104, U.S. Patent No. 3661556, U.S. Patent No. 3663318, U.S. Patent No. 3669643, U.S. Patent No. 3672867; How to generate it. For example, Japanese Patent Application Laid-Open No. 47-33857. As mentioned above, various methods have been investigated, but each method has its own advantages and disadvantages, and none of them has yet been applied in an industrial or practical sense. It cannot be a definitive method. For example, method (1) by decomposing oxalate is a method that has been studied for a long time, but the magnetic powder obtained by this method generally has a large particle size of 5 to 10 μm.
To some extent, if left as is, when used as a magnetic tape, the surface of the tape would be rough and the noise level would be poor.
Another disadvantage is that the magnetic head is worn out and the adhesion between the head and the tape surface is hindered, making it difficult to achieve the desired high-density recording. Furthermore, the evaporation method (3) requires complicated equipment and operations, and its large-scale implementation has disadvantages in terms of industrial efficiency and economy. In addition, in the mercury electrolysis method (5), the electrodeposited product is dendritic particles containing 4 to 6% mercury, which is removed from the dendritic particles by heat treatment. It is difficult to completely remove it, and there are also problems such as mercury pollution that make it difficult to put it into practical use. Regarding the method using wet reduction reaction (6),
The ferromagnetic metals and alloy powders obtained by this method have a strong surface activity, making them highly natural, and are sensitive to oxygen and moisture in the air. Even at room temperature and humidity, they gradually oxidize and deteriorate their magnetic properties. easy to imitate. In addition, the individual particles obtained by this method are thread-like, but during the process of mixing and dispersing with the binder, the particle shape is destroyed and the magnetic field orientation becomes poor.
This has the disadvantage that the magnetic properties of the magnetic recording medium, especially the squareness ratio, deteriorate. Now, the present invention belongs to the method (2) of dry reducing iron oxyhydroxide or iron oxide with a reducing gas, but some drawbacks have been pointed out in the conventional methods related thereto. First, the reduction process is usually carried out in a high-temperature hydrogen stream, which results in volume reduction, porosity, shape changes, and sintering, resulting in less-than-expected magnetic properties even if starting from iron oxide in the desired shape. is difficult to obtain. This is true even in the normal manufacturing process of γ-Fe 2 O 3 , in the process of α-Fe 2 O 3 → Fe 3 O 4 , that is, the process of removing 1/9 of the oxygen from α-Fe 2 O 3 with hydrogen gas. ,
It is said that shape change and sintering are the most likely to occur, and considerable efforts are being made to prevent this. In comparison, in the case of metals and alloys, all the oxygen is removed, so it can be said that shape changes and sintering become even more severe, resulting in poor coercive force (Hc) and squareness ratio. Due to incomplete dispersion during tape production, it has not been practical as a recording material, although it has promising properties. Furthermore, the metal and alloy powders obtained by this method also have the disadvantage of being flammable, which hinders their practical use. The present invention eliminates the above drawbacks. In other words, by treating acicular iron oxyhydroxide with water glass, filtering, washing with water, firing, and then reducing, the above-mentioned drawbacks of shape collapse and sintering can be prevented, and the holding force (Hc) and squareness ratio can be improved. (σr/σs), a metal powder with excellent dispersibility and suppressed ignitability that can be used as a stable ferromagnetic material for magnetic recording is obtained. The acicular iron oxyhydroxide used in the present invention includes α-FeOOH, β-FeOOH and γ-FeOOH, and may also be a mixture thereof.
The acicular iron oxyhydroxide used in the present invention includes the above-mentioned acicular iron oxyhydroxide doped with metals such as Co, Ni, Ti, Bi, Mo, and Ag. Treatment with a silicon compound involves suspending the above raw materials in water, dissolving the silicon compound, stirring well,
This is done by mixing. The silicon compound used in the treatment may be water-soluble or colloidal; for example,
Coiates such as Na 2 SiO 3 , Na 2 Si 2 O 5 etc., Si
Examples include (OH) 4 , colloidal silica, and water glass is particularly suitable. The amount of water glass treated is 0.1 to 10% by weight in terms of Fe 2 O 3 based on the raw material acicular iron oxyhydroxide. It is undesirable to use a large amount of water glass, as the magnetic properties of the metal or alloy powder will be diluted and the characteristic values will be lowered. Next, the treated product is filtered and washed with water. The acicular iron oxyhydroxide that has been subjected to these treatments, filtering, and water washing is then calcined at 600 to 800°C, and then reduced in a hydrogen atmosphere at a temperature not exceeding 600°C, preferably not exceeding 500°C. . There is practically no lower limit for concentration, but since the reaction proceeds very slowly at low temperatures, from a practical point of view a temperature of at least 250°C should be used to avoid long reaction times that become impractical. Should. However, it is also possible at temperatures as low as 200°C. After reduction, the reducer is cooled and a gas mixture of 1% air and 99% nitrogen is introduced into the reducer, doubling the air content of this gas at approximately 30 minute intervals.
After 4-5 hours, it is possible to switch to air only and remove the magnetic iron powder from the reducer. Then, it can be a magnetic tape or other magnetic recording medium. Next, embodiments of the present invention will be described in more detail with reference to Examples, but the present invention is not limited to these Examples. Example 1, Comparative Example 1 100g of acicular goethite (α-FeOOH) was
9 g of JIS-1 water glass (α-
10% by weight (calculated as Fe 2 O 3 ) was dissolved therein, stirred for 40 minutes, filtered, and thoroughly washed with water. After drying, the cake was baked at temperatures of 400, 500, 600, 700, and 800°C, and then reduced with hydrogen gas. The magnetic properties of the obtained metal magnetic powder are shown in Table 1. In addition, the case where no firing was performed is also shown in the comparative example.
Incidentally, the calcination was performed in an air atmosphere for 2 hours, and the reduction was performed under the following conditions. That is, in a nitrogen stream
Raise the temperature to 450℃ over about 1 hour, then switch nitrogen to hydrogen, set the hydrogen flow rate to 2/min, and heat for 3 hours.
The temperature was maintained at 450°C for an hour. After reduction, it is cooled in a stream of nitrogen, then a gas mixture of 1% air and 99% nitrogen is introduced, the air content of this gas is doubled at intervals of about 30 minutes, and after 4 hours it is reduced to air only. I switched.

【表】 実施例2、比較例2 水ガラス4.5g(α−Fe2O3に対し5重量%)を
用いる以外は実施例1と同様にして金属磁性粉を
得た。金属磁性粉の磁気特性を表−2に示した。
[Table] Example 2, Comparative Example 2 Metal magnetic powder was obtained in the same manner as in Example 1, except that 4.5 g of water glass (5% by weight based on α-Fe 2 O 3 ) was used. The magnetic properties of the metal magnetic powder are shown in Table 2.

【表】 実施例3、比較例3 水ガラス0.9g(α−Fe2O3に対し1重量%)を
用いる以外は実施例1と同様にして金属磁性粉を
得た。金属磁性粉の磁気特性を表−3に示した。
尚焼成しない場合を比較例2として併記した。
[Table] Example 3, Comparative Example 3 Metal magnetic powder was obtained in the same manner as in Example 1, except that 0.9 g of water glass (1% by weight based on α-Fe 2 O 3 ) was used. The magnetic properties of the metal magnetic powder are shown in Table 3.
The case where no firing was performed was also shown as Comparative Example 2.

【表】【table】

【表】 実施例4、比較例4 水ガラス0.09g(α−Fe2O3に対し0.1重量%)
を用いる以外は実施例1と同様にして金属磁性粉
を得た。金属磁性粉の磁気特性を表−4に示し
た。
[Table] Example 4, Comparative Example 4 Water glass 0.09g (0.1% by weight based on α-Fe 2 O 3 )
A metal magnetic powder was obtained in the same manner as in Example 1 except that . The magnetic properties of the metal magnetic powder are shown in Table 4.

【表】 比較例 5 水ガラス処理をしない以外は実施例4と同様に
して金属磁性粉を得た。金属磁性粉の磁気特性を
表−5に示した。
[Table] Comparative Example 5 Metal magnetic powder was obtained in the same manner as in Example 4 except that the water glass treatment was not performed. The magnetic properties of the metal magnetic powder are shown in Table 5.

【表】【table】

Claims (1)

【特許請求の範囲】 1 針状オキシ水酸化鉄を、該針状オキシ水酸化
鉄に対しFe2O3換算で0.1〜10重量%の水ガラスで
処理した後、濾過、水洗し、600〜800℃の温度で
焼成し、次いで還元することを特徴とする金属磁
性粉末の製造法。 2 針状オキシ水酸化鉄がα−FeOOH、β−
FeOOH及びγ−FeOOHの内1種若しくは2種
以上の混合物である特許請求の範囲第1項記載の
製造法。 3 還元温度が200〜600℃である特許請求の範囲
第1項記載の製造法。 4 還元が水素気流中で行なわれる特許請求の範
囲第1項記載の製造法。
[Scope of Claims] 1. Acicular iron oxyhydroxide is treated with water glass in an amount of 0.1 to 10% by weight calculated as Fe 2 O 3 based on the acicular iron oxyhydroxide, and then filtered and washed with water. A method for producing metal magnetic powder, which is characterized by firing at a temperature of 800°C and then reducing. 2 Acicular iron oxyhydroxide is α-FeOOH, β-
The manufacturing method according to claim 1, wherein the method is one or a mixture of two or more of FeOOH and γ-FeOOH. 3. The production method according to claim 1, wherein the reduction temperature is 200 to 600°C. 4. The production method according to claim 1, wherein the reduction is carried out in a hydrogen stream.
JP55137418A 1980-10-01 1980-10-01 Manufacture of metallic magnetic powder Granted JPS5763605A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55137418A JPS5763605A (en) 1980-10-01 1980-10-01 Manufacture of metallic magnetic powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55137418A JPS5763605A (en) 1980-10-01 1980-10-01 Manufacture of metallic magnetic powder

Publications (2)

Publication Number Publication Date
JPS5763605A JPS5763605A (en) 1982-04-17
JPS6349722B2 true JPS6349722B2 (en) 1988-10-05

Family

ID=15198160

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55137418A Granted JPS5763605A (en) 1980-10-01 1980-10-01 Manufacture of metallic magnetic powder

Country Status (1)

Country Link
JP (1) JPS5763605A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5980901A (en) * 1982-11-01 1984-05-10 Fuji Photo Film Co Ltd Manufacture of ferromagnetic metal powder
JPS60181210A (en) * 1984-02-27 1985-09-14 Fuji Photo Film Co Ltd Manufacture of ferromagnetic metallic powder
JPH02175806A (en) * 1988-12-27 1990-07-09 Ishihara Sangyo Kaisha Ltd Manufacture of metal magnetic powder for magnetic recorder

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4883100A (en) * 1972-01-21 1973-11-06
JPS5177900A (en) * 1974-11-29 1976-07-06 Montedison Spa
JPS534895A (en) * 1976-06-16 1978-01-17 Fujitsu Ltd Manufacture of needle-shaped magnetic iron particles
JPS5422958A (en) * 1977-07-20 1979-02-21 Matsushita Electric Ind Co Ltd Dust remover for vacuum cleaner

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4883100A (en) * 1972-01-21 1973-11-06
JPS5177900A (en) * 1974-11-29 1976-07-06 Montedison Spa
JPS534895A (en) * 1976-06-16 1978-01-17 Fujitsu Ltd Manufacture of needle-shaped magnetic iron particles
JPS5422958A (en) * 1977-07-20 1979-02-21 Matsushita Electric Ind Co Ltd Dust remover for vacuum cleaner

Also Published As

Publication number Publication date
JPS5763605A (en) 1982-04-17

Similar Documents

Publication Publication Date Title
US4384892A (en) Production of magnetic powder
US4306921A (en) Production of magnetic powder
JPS608606B2 (en) Manufacturing method of ferromagnetic powder
JPH09295814A (en) Spindle-like geothite particle powder, its production, spindle-like metal magnetic particle powder consisting mainly of iron and obtained by using the same geothite particle powder as starting raw material and its production
JPS6349722B2 (en)
JPS62139803A (en) Production of ferromagnetic metallic powder
GB1589355A (en) Acicular cobalt magnetic iron oxide and its manufacture
JPH0585487B2 (en)
JP3337046B2 (en) Spindle-shaped metal magnetic particles containing cobalt and iron as main components and method for producing the same
JPH0633116A (en) Ferromagnetic metallic powder for magnetic recording medium and production thereof
JP4378763B2 (en) Method for producing compound particle powder containing iron as its main component
JPS5853045B2 (en) Manufacturing method of magnetic powder
JP2002050508A (en) Method of manufacturing magnetic powder
JP2744641B2 (en) Method for producing ferromagnetic metal powder
JP3303896B2 (en) Spindle-shaped iron-based metal magnetic particle powder and method for producing the same
JPH0343325B2 (en)
JPS6350842B2 (en)
JPH0312125B2 (en)
JP3087808B2 (en) Manufacturing method of magnetic particle powder for magnetic recording
JPS5946281B2 (en) Method for producing acicular Fe-Co alloy magnetic particle powder
JPS619504A (en) Manufacture of magnetic metallic powder
JPH0416924B2 (en)
JPH04132621A (en) Acicular ferromagnetic iron oxide powder and production thereof
JPS609321B2 (en) Magnetic recording medium and its manufacturing method
JPS60262906A (en) Metallic magnetic powder and its manufacture