JP2744641B2 - Method for producing ferromagnetic metal powder - Google Patents

Method for producing ferromagnetic metal powder

Info

Publication number
JP2744641B2
JP2744641B2 JP1123955A JP12395589A JP2744641B2 JP 2744641 B2 JP2744641 B2 JP 2744641B2 JP 1123955 A JP1123955 A JP 1123955A JP 12395589 A JP12395589 A JP 12395589A JP 2744641 B2 JP2744641 B2 JP 2744641B2
Authority
JP
Japan
Prior art keywords
metal powder
carbon dioxide
powder
oxide
iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1123955A
Other languages
Japanese (ja)
Other versions
JPH02303006A (en
Inventor
浩之 中村
通人 井垣
周平 有北
由郎 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP1123955A priority Critical patent/JP2744641B2/en
Publication of JPH02303006A publication Critical patent/JPH02303006A/en
Application granted granted Critical
Publication of JP2744641B2 publication Critical patent/JP2744641B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Paints Or Removers (AREA)
  • Powder Metallurgy (AREA)
  • Magnetic Record Carriers (AREA)
  • Hard Magnetic Materials (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は磁気記録に用いられる強磁性金属粉末の製造
方法に関し、特に安定性、塗料調製時の分散性等に優れ
た鉄を主成分とする強磁性金属粉末の製造方法に関す
る。
Description: TECHNICAL FIELD The present invention relates to a method for producing a ferromagnetic metal powder used for magnetic recording, and particularly to a method comprising iron as a main component, which is excellent in stability, dispersibility at the time of coating preparation, and the like. And a method for producing a ferromagnetic metal powder.

〔従来の技術及びその課題〕[Conventional technology and its problems]

近年、各種の記録方式の発展は著しいものがあるが、
中でも磁気記録再生装置の小型軽量化の進歩は顕著であ
る。これにつれて磁気テープ・磁気ディスク等の磁気記
録媒体に対する高性能化の要求が高まっている。
In recent years, various recording methods have developed remarkably,
Above all, progress in reducing the size and weight of the magnetic recording / reproducing apparatus is remarkable. Accordingly, there is an increasing demand for higher performance of magnetic recording media such as magnetic tapes and magnetic disks.

磁気記録媒体に対するこのような要求を満足するため
には高い保持力と高い飽和磁化を有する磁性粉末が必要
である。従来、磁気記録用の磁性粉末として一般には針
状のマグネタイトやマグヘマイト又はこれらの磁性酸化
鉄粉末をコバルトで変性したいわゆるコバルト含有酸化
鉄が用いられているが、より高出力の媒体を得るため
に、より高い保磁力・飽和磁化を持つ強磁性金属粉末、
いわゆるメタル粉が用いられ始めている。
In order to satisfy such requirements for a magnetic recording medium, a magnetic powder having a high coercive force and a high saturation magnetization is required. Conventionally, so-called cobalt-containing iron oxide obtained by modifying acicular magnetite or maghemite or these magnetic iron oxide powders with cobalt has been used as a magnetic powder for magnetic recording. , Ferromagnetic metal powder with higher coercivity and saturation magnetization,
So-called metal powder has begun to be used.

上記強磁性金属粉末の製造方法としては種々の方法が
提案されているが、経済的な優位性から、一般的には針
状のゲーサイトあるいはこれを脱水して得た酸化鉄を原
料とし、これを還元する方法が用いられている。具体的
には、まず非還元性雰囲気下で加熱脱水して酸化鉄と
し、脱水により生じた細孔を焼き締めた後、水素等の還
元性雰囲気下で加熱還元する方法や、酸化鉄にすること
なくゲーサイトを直接水素等の還元性雰囲気下で加熱還
元する方法が用いられている。これらの方法は、加熱脱
水ないし加熱還元の際に針状粒子同士の焼結や針状性の
崩壊を生じ、磁気特性、分散性の低下を招くので、これ
らの現象を防ぐため原料のゲーサイトに各種の処理がな
されることが多い。
Various methods have been proposed as a method for producing the ferromagnetic metal powder.However, from the economic advantage, generally, needle-like goethite or iron oxide obtained by dehydrating the same is used as a raw material, A method of reducing this has been used. Specifically, first, heat dehydration in a non-reducing atmosphere to form iron oxide, and after baking pores generated by dehydration, heat-reducing in a reducing atmosphere such as hydrogen or iron oxide A method is used in which goethite is directly heated and reduced under a reducing atmosphere such as hydrogen without being used. These methods cause sintering of acicular particles and collapse of acicularity during heating dehydration or reduction, leading to a decrease in magnetic properties and dispersibility. In many cases, various processes are performed.

ところで、この強磁性金属粉末は化学的に不安定であ
り、酸化を受け時間の経過とともに磁気特性が低下する
という欠点があった。この欠点を解決するために、金属
粉末の表面に酸化皮膜を形成し金属粉末を安定化させる
試みがなされ、種々の方法が提案されている。
By the way, this ferromagnetic metal powder is chemically unstable and has a drawback that it undergoes oxidation and its magnetic properties deteriorate with time. In order to solve this drawback, attempts have been made to form an oxide film on the surface of the metal powder to stabilize the metal powder, and various methods have been proposed.

その一例は、溶液中に金属粉末を懸濁し、酸素含有ガ
スを吹き込む方法(例えば特開昭60-128202号公報、同5
9-16904号公報、同55-164001号公報)、希釈酸素ガスに
より金属粉末を徐酸化し、酸化膜形成と共に徐々に酸素
濃度をあげる方法(例えば特開昭61-216306号公報、同4
6-7153号公報)等であるが、溶剤中での酸化では溶剤が
酸化されこれが塗膜に悪影響を与えたり、溶剤取扱い上
の危険性等の問題があった。希釈酸素による酸化では上
記のような問題はないが、酸化皮膜の形成の際に粒子の
凝集・焼結を生じ易く、塗料調製時の分散が困難とな
り、最終的に得られる塗膜の表面性の悪化、角形比の低
下等の原因となっていた。
One example is a method of suspending a metal powder in a solution and blowing an oxygen-containing gas (for example, JP-A-60-128202 and JP-A-60-128202).
9-16904 and 55-164001), a method of gradually oxidizing a metal powder with a diluted oxygen gas and gradually increasing the oxygen concentration while forming an oxide film (for example, JP-A-61-216306, JP-A-61-216306).
However, oxidation in a solvent oxidizes the solvent, which adversely affects the coating film and poses a problem in handling the solvent. Oxidation with diluted oxygen does not have the above-mentioned problems, but tends to cause agglomeration and sintering of particles during the formation of an oxide film, making it difficult to disperse during the preparation of paints, and the surface properties of the finally obtained coating film And a decrease in the squareness ratio.

またこの他にも金属粉末と炭酸ガスとを200℃以下で
接触させ炭酸ガスを吸着させて安定化する方法が提案さ
れているが(特開昭62-156201号公報)、このような方
法では化学的に非常に脆弱な単なる吸着膜が形成される
にすぎない。そのため、この技術で得られる金属粉末も
上述の金属粉末と何等異なるところなく、時間と共に磁
気的特性が急速に低下するという従来技術の本質的欠陥
を到底解決するものとはならなかった。
In addition, a method has been proposed in which a metal powder and carbon dioxide gas are contacted at a temperature of 200 ° C. or lower to stabilize the carbon dioxide gas by adsorbing the same (Japanese Patent Application Laid-Open No. 62-156201). It merely forms an adsorption film that is chemically very fragile. Therefore, the metal powder obtained by this technique is not different from the above-mentioned metal powder at all, and has not completely solved the essential deficiency of the conventional technique that the magnetic properties rapidly decrease with time.

〔発明の目的〕[Object of the invention]

本発明はこのような従来技術の問題点を解決するため
になされたものであり、とりわけ分散性に優れ、かつ耐
酸化安定性の優れた強磁性金属粉末を得るための製造方
法をを提供することを目的とする。
The present invention has been made in order to solve such problems of the prior art, and in particular, provides a production method for obtaining a ferromagnetic metal powder having excellent dispersibility and excellent oxidation resistance. The purpose is to:

〔課題を解決するための手段〕[Means for solving the problem]

本発明者らは上記のような従来技術の課題を解決すべ
く、還元された新鮮な鉄表面が酸化されていく過程につ
いて克明な観察と分析を重ね、その表面酸化膜の形成機
構に関して種々の仮説を立てて試行錯誤を繰り返した結
果、従来一般的に化学的には不活性ガスと考えられてい
た炭酸ガスもしくは炭酸ガスと不活性ガスの混合ガス
を、還元されたばかりの鉄に高温で接触させることによ
り安定性の優れた酸化膜が形成されることを見出した。
更に、このようにして形成された表面酸化膜を形成した
金属粉末は、予想外なことに、塗料化に際して極めて良
好な分散性を示すことも併せて見出し、本発明を完成す
るに至った。
In order to solve the problems of the prior art as described above, the present inventors have repeated careful observation and analysis on the process of oxidizing the reduced fresh iron surface, and have variously studied the formation mechanism of the surface oxide film. As a result of repeated trial and error based on a hypothesis, carbon dioxide or a mixed gas of carbon dioxide and inert gas, which was conventionally considered chemically inert gas, is brought into contact with freshly reduced iron at high temperature. It has been found that by doing so, an oxide film having excellent stability is formed.
Further, the present inventors have unexpectedly found that the metal powder having a surface oxide film formed in such a manner exhibits an extremely good dispersibility when it is formed into a coating material, thereby completing the present invention.

すなわち本発明は、酸化鉄を主とする酸化物粉末を還
元性ガスにより還元して金属鉄粉末とした後、250℃〜4
50℃で炭酸ガスのみからなるガス又はアルゴン及び窒素
から選ばれる不活性ガスと炭酸ガスとからなる混合ガス
であって、炭酸ガスを10容量%以上含むガスと接触させ
ることにより表面に金属酸化物層を形成させることを特
徴とする、鉄を主成分とする強磁性金属粉末の製造方法
を提供するものである。
That is, the present invention reduces the oxide powder mainly composed of iron oxide with a reducing gas to obtain metallic iron powder,
A gas consisting of carbon dioxide alone or a mixed gas consisting of carbon dioxide and an inert gas selected from argon and nitrogen at 50 ° C. An object of the present invention is to provide a method for producing a ferromagnetic metal powder containing iron as a main component, characterized by forming a layer.

本発明において、酸化鉄を主とする酸化物粉末とは、
針状ゲーサイト又は、酸化状態若しくは結晶状態を異に
する各種の酸化鉄等の総称である。
In the present invention, the oxide powder mainly containing iron oxide,
It is a generic term for acicular goethite or various iron oxides having different oxidation states or crystal states.

この酸化物粉末はその製造工程を反映する結晶変性用
金属元素、例えばCo,Ni,Cr,Al,Ti,Si,Zn,Cu,Ca,Mg等の
鉄以外の元素を含んでいても差し支えない。
This oxide powder may contain metal elements for crystal modification reflecting its manufacturing process, for example, elements other than iron such as Co, Ni, Cr, Al, Ti, Si, Zn, Cu, Ca, Mg, etc. .

本発明の目的に照らし、特に好ましい酸化物粉末はマ
グネタイト、マグヘマイトの様なスピネル構造を有する
ものである。中でも、針状ゲーサイトを還元性ガス雰囲
気中で脱水還元して得られるマグネタイトの場合、特に
好結果を得ることができる。この場合、ゲーサイトを脱
水還元する前に、形状維持と焼結防止のための表面処理
をしておくことが好ましい。その表面処理にはSi,Al,Zr
等の化合物を用いることができる。具体的には例えばゲ
ーサイトのスラリーに水ガラス、アルミン酸ソーダ等の
水溶性化合物溶液を加えた後、系のpHを調節することに
より不溶性化合物を析出させる方法や、ゲーサイトスラ
リーにトリイソプロポキシアルミニウム、テトラエトキ
シシラン等の金属アルコキシドを加え加水分解物を析出
させる等の表面処理を行うと良い。この様にして得られ
た表面処理ゲーサイトを水素気流中のような還元性雰囲
気の下で脱水、還元したスピネル構造を有する酸化鉄が
本発明の酸化物粉末として好ましいものである。
For the purpose of the present invention, particularly preferred oxide powders are those having a spinel structure such as magnetite or maghemite. In particular, in the case of magnetite obtained by dehydrating and reducing acicular goethite in a reducing gas atmosphere, particularly good results can be obtained. In this case, it is preferable to perform a surface treatment for maintaining the shape and preventing sintering before the dehydration and reduction of the goethite. The surface treatment is Si, Al, Zr
And the like. Specifically, for example, a method of adding a water-soluble compound solution such as water glass or sodium aluminate to a goethite slurry and then adjusting the pH of the system to precipitate an insoluble compound, or adding triisopropoxy to the goethite slurry A surface treatment such as adding a metal alkoxide such as aluminum or tetraethoxysilane to precipitate a hydrolyzate may be performed. The surface-treated goethite thus obtained is dehydrated and reduced in a reducing atmosphere such as a hydrogen stream, and iron oxide having a spinel structure is preferable as the oxide powder of the present invention.

本発明においては以上例記したような各種の酸化鉄を
主とする酸化物粉末を用いることができるが、更に、そ
の表面に鉄以外の遷移金属元素の化合物層を形成した場
合、これを還元して得られる強磁性金属粉末は耐酸化安
定性の面で好ましいものとなる。特に、遷移金属元素と
してCo又はNiの化合物を被着した後、更に形状維持・焼
結防止のための処理を行なった酸化物粉末が好ましい。
酸化物粉末にCo又はNiのような遷移金属元素化合物を被
着する方法としては、酸化物粉末のアルカリ性スラリー
に被着すべき遷移金属元素の水溶性の塩の溶液を加え、
水酸化物を析出させた後、適当な後処理(例えば、スラ
リーのリフラックス、乾燥粉末の熱処理等)を行なう方
法が用いられる。更にこれを形状維持処理、焼結防止処
理を行う場合はSi,Al,Zr等の化合物による処理の他に、
フェノール樹脂、フラン樹脂等の熱硬化性樹脂による処
理も有効である。その具体的な方法は先に記述した、ゲ
ーサイトに対するものと同様の方法が用いられる。熱硬
化性樹脂による処理の例としてはこれらの樹脂の水溶性
有機溶剤(アセトン、エタノール等)溶液をマグネタイ
トのスラリーに加え不溶化することに依って行なわれ
る。勿論、これらの処理剤は単独で用いてもよく、組み
合わせて用いることもできる。
In the present invention, various oxide powders mainly containing iron oxide as described above can be used, and when a compound layer of a transition metal element other than iron is formed on the surface thereof, The ferromagnetic metal powder obtained as described above is preferable in terms of oxidation resistance stability. In particular, an oxide powder obtained by applying a compound of Co or Ni as a transition metal element and further performing a treatment for maintaining the shape and preventing sintering is preferable.
As a method of depositing a transition metal element compound such as Co or Ni on the oxide powder, a solution of a water-soluble salt of a transition metal element to be deposited is added to an alkaline slurry of the oxide powder,
After the hydroxide is precipitated, a method of performing an appropriate post-treatment (for example, reflux of a slurry, heat treatment of a dry powder, or the like) is used. Furthermore, when performing this shape maintenance treatment and sintering prevention treatment, in addition to treatment with compounds such as Si, Al, Zr,
Treatment with a thermosetting resin such as a phenol resin or a furan resin is also effective. As the specific method, the same method as described above for the game site is used. An example of the treatment with a thermosetting resin is performed by adding a solution of these resins in a water-soluble organic solvent (acetone, ethanol, etc.) to a magnetite slurry to make it insoluble. Of course, these treating agents may be used alone or in combination.

本発明で云う還元性ガスとは、具体的には水素ガス又
はこれと窒素、アルゴン、ヘリウムなどの不活性ガスの
混合ガスのことである。本発明の目的からも、又、安全
上からも、これに酸化性のガスが実質上混入していては
ならない。
The reducing gas referred to in the present invention is specifically a hydrogen gas or a mixed gas of hydrogen gas and an inert gas such as nitrogen, argon and helium. For the purposes of the present invention and for safety reasons, it must be substantially free of oxidizing gases.

前記酸化鉄を主とする酸化物粉末の還元はレトルト
炉、流動層型の炉等により還元性雰囲気に保ちながら加
熱することに依って行ない、金属鉄粉末を得る。
The reduction of the oxide powder mainly composed of iron oxide is performed by heating in a retort furnace, a fluidized bed furnace or the like while maintaining a reducing atmosphere, to obtain metallic iron powder.

次いで、得られた金属鉄粉末を炭酸ガスもしくは炭酸
ガスと不活性ガスの混合ガスと接触させることにより表
面に酸化膜の形成を行なう。この時の温度は250℃以上
好ましくは300℃以上であることが必要である。これよ
り低温では実質上表面の酸化物膜を生じない。また、反
応温度は高い程酸化膜の形成が容易になるので反応時間
短縮の面からは好ましいが、高温になり過ぎると金属粉
末粒子の焼結、融着等を生じ易くなるのでこの点に注意
することが必要であり、450℃程度が上限となる。
Next, an oxide film is formed on the surface by bringing the obtained metallic iron powder into contact with carbon dioxide gas or a mixed gas of carbon dioxide gas and an inert gas. The temperature at this time needs to be 250 ° C. or higher, preferably 300 ° C. or higher. At a lower temperature than this, substantially no oxide film is formed on the surface. The higher the reaction temperature, the easier the formation of an oxide film, which is preferable from the viewpoint of shortening the reaction time. However, if the temperature is too high, sintering and fusing of the metal powder particles are likely to occur. And the upper limit is about 450 ° C.

炭酸ガスは単独で用いてもよいが、条件に応じ、アル
ゴン、窒素等の不活性ガスと混合して用いてもよい。こ
の場合、炭酸ガス濃度が低過ぎると酸化が遅くなるの
で、実用上炭酸ガス濃度として10容量%以上が好まし
い。接触時間は温度、炭酸ガス濃度にもよるが、実用上
30分〜20時間程度が好ましい。接触時間が短すぎると有
効な酸化膜が十分には形成されず、長すぎると酸化が過
度になり、磁気特性が低下する。
Carbon dioxide gas may be used alone, or may be used by mixing with an inert gas such as argon or nitrogen depending on the conditions. In this case, if the concentration of carbon dioxide is too low, the oxidation is slowed down. Therefore, the concentration of carbon dioxide is preferably 10% by volume or more in practical use. The contact time depends on the temperature and the concentration of carbon dioxide gas.
About 30 minutes to 20 hours are preferable. If the contact time is too short, an effective oxide film will not be formed sufficiently. If the contact time is too long, the oxidation will be excessive and the magnetic properties will be reduced.

メタル粉と炭酸ガスもしくは炭酸ガスと不活性ガスの
混合ガスとの接触反応は、上述の還元過程と同様に、例
えば、レトルト炉、流動層反応炉、ロータリキルン、多
段式立型炉等を使用して行うことができる。流動層反応
炉を使用する場合を一例として示せば、その流動層を流
れる炭酸ガス流量は、流動状態を良好に維持できる流量
であればよく、例えばガス線速度5〜25cm/秒程度で良
好な結果を与える。
The contact reaction between metal powder and carbon dioxide or a mixed gas of carbon dioxide and inert gas uses, for example, a retort furnace, fluidized bed reactor, rotary kiln, multi-stage vertical furnace, etc. You can do it. If a fluidized bed reactor is used as an example, the flow rate of carbon dioxide gas flowing through the fluidized bed may be any flow rate that can maintain a good fluidized state, for example, a good gas linear velocity of about 5 to 25 cm / sec. Give the result.

〔発明の効果〕〔The invention's effect〕

本発明の強磁性金属粉末の製造方法を用いると、全般
的に磁気特性に優れ、特に磁性粉の分散性の物差しとな
る塗膜の形状比において良好な強磁性金属微粉末を得る
ことができる。
When the method for producing a ferromagnetic metal powder of the present invention is used, it is possible to obtain a ferromagnetic metal fine powder having excellent magnetic properties in general and a good shape ratio of a coating film which is a measure of dispersibility of the magnetic powder. .

本発明の製造方法において、酸化鉄を主とする酸化物
粉末の酸化皮膜の形成を炭酸ガスもしくは炭酸ガスと不
活性ガスの混合ガスで行なうと何故安定化時の粒子の融
着が起き難くなるのかについての理由は明かではない
が、炭酸ガスと金属鉄の反応は吸熱反応であり金属鉄と
酸素の反応(発熱反応)とは異なること等の事実に関係
するものと推定される。
In the production method of the present invention, if formation of an oxide film of an oxide powder mainly containing iron oxide is performed using carbon dioxide gas or a mixed gas of carbon dioxide gas and an inert gas, fusion of particles during stabilization is unlikely to occur. Although the reason for this is not clear, it is presumed to be related to the fact that the reaction between carbon dioxide and metallic iron is an endothermic reaction and different from the reaction between metallic iron and oxygen (exothermic reaction).

〔実施例〕〔Example〕

以下実施例により本発明を説明するが本発明はこれら
の実施例に限定されるものではない。
Hereinafter, the present invention will be described with reference to examples, but the present invention is not limited to these examples.

実施例1 ゲーサイト(長軸径0.18μm、軸比8)1kgを、ポイ
ズ530(花王(株)製ポリカルボン酸系オリゴマー:分
散剤)の3%溶液10lに分散し、TKホモミキサーSL型
(特殊機化工業(株)製)で約1時間分散・攪拌した
後、3号ケイソー(SiO2分29%)70gを加え、更に1時
間攪拌を続けた。その後、希硝酸を加え、系のpHを6.5
に下げ、1時間攪拌した後、濾過・洗浄・乾燥してケイ
素化合物層を有するゲーサイトを得た。
Example 1 1 kg of goethite (major axis diameter 0.18 μm, axis ratio 8) was dispersed in 10 l of a 3% solution of Poise 530 (polycarboxylic acid oligomer: dispersant, manufactured by Kao Corporation), and TK homomixer SL type was used. After dispersion and stirring for about 1 hour (manufactured by Tokushu Kika Kogyo Co., Ltd.), 70 g of No. 3 Keiso (SiO 2 content: 29%) was added, and stirring was continued for another hour. After that, dilute nitric acid was added to adjust the pH of the system to 6.5.
After stirring for 1 hour, filtration, washing and drying were performed to obtain goethite having a silicon compound layer.

このケイ素含有ゲーサイトをレトルト炉(内容積30
l)で水素/窒素=1/1混合ガスを50l/分で流しながら2.
5℃/分で300℃まで昇温した後300℃に保ち、ゲーサイ
トがマグネタイトに変わるまで還元を行った。マグネタ
イトへの反応完了の確認はX線回析によった。
This silicon-containing goethite was placed in a retort furnace (with an internal volume of 30).
In l), while flowing a hydrogen / nitrogen = 1/1 mixed gas at 50 l / min.
After the temperature was raised to 300 ° C. at 5 ° C./min, the temperature was kept at 300 ° C., and reduction was performed until the goethite turned into magnetite. The completion of the reaction with magnetite was confirmed by X-ray diffraction.

ついで、このマグネタイト500gをポイズ530の3%溶
液5lに分散し、ゲーサイトの時と同様にTKホモミキサー
SL型(特殊機化工業(株)製)で約1時間分散・攪拌し
た後、3号ケイソー(SiO2分29%)35gを加え、更に1
時間攪拌を続けた。その後、希硝酸を加え、系のpHを6.
5に下げ、1時間攪拌後、濾過・洗浄・乾燥してケイ素
化合物層を付着せしめた。
Then, 500 g of this magnetite was dispersed in 5 liters of a 3% solution of poise 530, and the TK homomixer was used in the same manner as in the case of goethite.
After dispersing and stirring for about 1 hour with SL type (manufactured by Tokushu Kika Kogyo Co., Ltd.), add 35 g of No. 3 Keiso (SiO 2 min. 29%) and add 1
Stirring was continued for hours. Then, dilute nitric acid was added to raise the pH of the system to 6.
After stirring for 1 hour, the mixture was filtered, washed and dried to attach a silicon compound layer.

以上のようにして得た強磁性金属前駆体を60〜200メ
ッシュに整粒し、内径62mmの流動層炉でガス線速度7cm/
秒の水素気流中330℃で7時間、350℃で10時間、さらに
450℃で3時間還元して強磁性金属粉末とした。
The ferromagnetic metal precursor obtained as above is sized to 60 to 200 mesh, and the gas linear velocity is 7 cm / in a fluidized bed furnace having an inner diameter of 62 mm.
7 hours at 330 ° C, 10 hours at 350 ° C,
It was reduced at 450 ° C. for 3 hours to obtain a ferromagnetic metal powder.

以上の還元終了後、窒素気流中で冷却し350℃とした
後、炭酸ガス/窒素=3/7混合ガスを線速度7cm/秒で4
時間流し炭酸ガスによる酸化を行なった後、反応系を30
℃に冷却し、酸素濃度500ppmから徐々に酸素濃度を上げ
最終的には大気にすることによりさらに空気酸化を行な
い金属粉末1を得た。
After completion of the above reduction, the mixture was cooled in a nitrogen stream to 350 ° C., and a mixed gas of carbon dioxide / nitrogen = 3/7 was applied at a linear velocity of 7 cm / sec.
After oxidizing by flowing carbon dioxide for 30 hours, the reaction system
After cooling to 500 ° C., the oxygen concentration was gradually increased from the oxygen concentration of 500 ppm, and finally the atmosphere was changed to the atmosphere, whereby air oxidation was further performed to obtain metal powder 1.

得られた金属粉末1の特性を表1に示す。 Table 1 shows the properties of the obtained metal powder 1.

比較例1 実施例1で用いたゲーサイトを実施例1と同様に金属
粉末への還元を行ない、炭酸ガス/窒素混合ガスと接触
することなく窒素気流中で30℃まで冷却し、酸素濃度50
0ppmから徐々に酸素濃度を上げ空気酸化を行ない金属粉
末11を得た。
Comparative Example 1 The goethite used in Example 1 was reduced to metal powder in the same manner as in Example 1, cooled to 30 ° C. in a nitrogen stream without contact with a mixed gas of carbon dioxide / nitrogen, and an oxygen concentration of 50%.
The oxygen concentration was gradually increased from 0 ppm, and air oxidation was performed to obtain metal powder 11.

得られた金属粉末11の特性を表1に示す。 Table 1 shows the properties of the obtained metal powder 11.

比較例2 炭酸ガス/窒素混合ガスとの接触を100℃で行なった
ことを除き実施例1と同様の操作により金属粉末12を得
た。
Comparative Example 2 A metal powder 12 was obtained in the same manner as in Example 1 except that the contact with a mixed gas of carbon dioxide / nitrogen was performed at 100 ° C.

得られた金属粉末12の特性を表1に示す。 Table 1 shows the properties of the obtained metal powder 12.

実施例2 実施例1における3号ケイソーに変えて、硫酸バンド
水溶液(Al2O3分2.1%)3lを加え、アンモニア水溶液に
より系のpHを7.0とすること以外は実施例1と同様にし
てアルミニウム化合物層を有するゲーサイトを得、実施
例1と同様にレトルト炉で還元しマグネタイトとした
後、実施例1と同様にケイ素化合物層を形成し、還元
後、炭酸ガス酸化、空気酸化を行ない金属粉末2を得
た。
Example 2 In the same manner as in Example 1 except that 3 l of a sulfuric acid band aqueous solution (Al 2 O, 3 %, 2.1%) was added in place of No. 3 Keiso in Example 1, and the pH of the system was adjusted to 7.0 with an aqueous ammonia solution. After obtaining a goethite having an aluminum compound layer and reducing it in a retort furnace to magnetite in the same manner as in Example 1, a silicon compound layer was formed in the same manner as in Example 1, and after reduction, carbon dioxide oxidation and air oxidation were performed. Metal powder 2 was obtained.

得られた金属粉末2の特性を表1に示す。 Table 1 shows the properties of the obtained metal powder 2.

比較例3 実施例2と同じ操作で得たアルミニウム化合物層含有
ゲーサイトを還元した後、炭酸ガス酸化を行なうことな
く空気酸化を行ない金属粉末13を得た。
Comparative Example 3 After reducing the aluminum compound layer-containing goethite obtained by the same operation as in Example 2, air oxidation was performed without performing carbon dioxide gas oxidation to obtain metal powder 13.

得られた金属粉末13の特性を表1に示す。 Table 1 shows the properties of the obtained metal powder 13.

実施例3 実施例1と同様の操作でケイ素化合物層を有するゲー
サイトを得、マグネタイトに変わるまで還元を行った。
Example 3 A goethite having a silicon compound layer was obtained by the same operation as in Example 1, and reduction was performed until the content became magnetite.

ついで、このマグネタイト500gを苛性ソーダ370gを含
む水溶液2.7lに分散したスラリーに窒素ガスを吹き込み
ながら硫酸第一鉄七水塩175g、硫酸コバルト七水塩70g
を含む水溶液1.3lを加えた後、40℃で6時間反応し、そ
の後温度を上げてリフラックスを6時間行なって表面に
コバルト化合物層を有するマグネタイトとし、洗浄後ポ
イズ530を15g、水ガラスを35g加え充分分散を行なった
後、希硝酸により系のpHを5.5として融着防止剤であるS
iO2を付着せしめた。
Then, while blowing nitrogen gas into a slurry in which 500 g of this magnetite was dispersed in 2.7 L of an aqueous solution containing 370 g of caustic soda, 175 g of ferrous sulfate heptahydrate, 70 g of cobalt sulfate heptahydrate
After adding 1.3 liters of an aqueous solution containing, a reaction was performed at 40 ° C. for 6 hours, and then the temperature was increased and reflux was performed for 6 hours to obtain magnetite having a cobalt compound layer on the surface.After washing, 15 g of poise 530 and water glass were removed. After adding 35 g and sufficiently dispersing, the pH of the system was adjusted to 5.5 with dilute nitric acid, and the anti-fusing agent S
iO 2 was deposited.

以上のようにして得た強磁性金属前駆体を再び実施例
1と同様に還元した。還元終了後窒素気流中で冷却し30
0℃とした後、炭酸ガス/窒素=5/5混合ガスを線速度7c
m/秒で6時間流し、酸化反応を行なった。その後反応炉
を30℃に冷却し、酸素濃度500ppmから徐々に酸素濃度を
上げ空気酸化を行ない金属粉末3を得た。
The ferromagnetic metal precursor obtained as described above was reduced again in the same manner as in Example 1. After completion of reduction, cool in nitrogen stream
After setting the temperature to 0 ° C, a mixed gas of carbon dioxide / nitrogen = 5/5 was used for linear velocity
Oxidation reaction was performed by flowing at m / sec for 6 hours. Thereafter, the reactor was cooled to 30 ° C., and the oxygen concentration was gradually increased from the oxygen concentration of 500 ppm to perform air oxidation to obtain metal powder 3.

得られた金属粉末3の特性を表1に示す。 Table 1 shows the properties of the obtained metal powder 3.

比較例4 実施例3と同様に金属粉末への還元を行ない、炭酸ガ
ス酸化を行なうことなく空気酸化を行ない金属粉末14を
得た。
Comparative Example 4 Reduction to metal powder was performed in the same manner as in Example 3, and air oxidation was performed without performing carbon dioxide gas oxidation to obtain metal powder 14.

得られた金属粉末3の特性を表1に示す。 Table 1 shows the properties of the obtained metal powder 3.

実施例4 実施例2と同様の操作でアルミニウム化合物層を有す
るゲーサイトを得、マグネタイトに変わるまで還元を行
なった。
Example 4 A goethite having an aluminum compound layer was obtained by the same operation as in Example 2, and reduction was performed until the content became magnetite.

ついで、このマグネタイト500gを苛性ソーダ370gを含
む水溶液2.7lに分散したスラリーに窒素ガスを吹き込み
ながら硫酸第一鉄七水塩200g,硫酸コバルト七水塩100g
を含む水溶液1.3lを加えた後、40℃で6時間反応し、そ
の後温度を上げてリフラックスを6時間行なって表面に
コバルト化合物層を有するマグネタイトとし、洗浄後ポ
イズ530を15g、水ガラスを40g加え充分分散を行なった
後、希硝酸により系のpH Hを5.5として融着防止剤であ
るSiO2を付着せしめた。
Then, ferrous sulfate heptahydrate 200 g, cobalt sulfate heptahydrate 100 g while blowing nitrogen gas into a slurry in which 500 g of the magnetite was dispersed in 2.7 l of an aqueous solution containing 370 g of caustic soda.
After adding 1.3 liters of an aqueous solution containing, a reaction was performed at 40 ° C. for 6 hours, and then the temperature was increased and reflux was performed for 6 hours to obtain magnetite having a cobalt compound layer on the surface.After washing, 15 g of poise 530 and water glass were removed. After adding 40 g and sufficiently dispersing, the pH of the system was adjusted to 5.5 with diluted nitric acid, and SiO 2 as an anti-fusing agent was adhered.

以上のようにして得た強磁性金属前駆体を実施例3と
同様に還元、炭酸ガス酸化、空気酸化を行なって金属粉
末4を得た。
The ferromagnetic metal precursor obtained as described above was reduced, carbon dioxide oxidized, and air oxidized in the same manner as in Example 3 to obtain a metal powder 4.

得られた金属粉末4の特性を表1に示す。 Table 1 shows the properties of the obtained metal powder 4.

比較例5 実施例4と同様に金属粉末を製造し、炭酸ガス酸化を
行なうことなく空気酸化を行ない、金属粉末15を得た。
Comparative Example 5 A metal powder was produced in the same manner as in Example 4, and air oxidation was performed without performing carbon dioxide gas oxidation to obtain a metal powder 15.

得られた金属粉末15の特性を表1に示す。 Table 1 shows the properties of the obtained metal powder 15.

〔参考例〕磁気テープの作製 実施例1〜4および比較例1〜5で得られた金属粉末
1〜4および11〜15を用いて、下記塗料配合の配合物を
バッチ式サンドミルで6時間混合後、混合物にコロネー
トL(日本ポリウレタン工業(株)製)2.5重量部を添
加し、さらに15分間混合を行った後、濾過してガラスビ
ーズを分離し、磁性塗料を調製した。
[Reference Example] Preparation of Magnetic Tape Using metal powders 1 to 4 and 11 to 15 obtained in Examples 1 to 4 and Comparative Examples 1 to 5, the following coating composition was mixed for 6 hours in a batch type sand mill. Thereafter, 2.5 parts by weight of Coronate L (manufactured by Nippon Polyurethane Industry Co., Ltd.) was added to the mixture, and the mixture was further mixed for 15 minutes, and then filtered to separate glass beads to prepare a magnetic paint.

塗料配合 強磁性金属 100重量部 レシチン 2 〃 カーボンブラック 3 〃 γ−アルミナ 5 〃 VAGH*1 15 〃 ニッポラン2304*2 10 〃 メチルエチルケトン 150 〃 トルエン 50 〃 シクロヘキサノン 75 〃 (註)*1:ユニオンカーバイド社製 塩化ビニル/酢酸
ビニル/ポリビニルアルコール共重合体 *2:日本ポリウレタン工業(株)製のポリウレタン樹脂 この塗料を10μm厚のPETフィルム上に乾燥膜厚が3
μmになるように塗布し、磁場配向処理後乾燥してPET
フィルム上に磁性層を形成した。次いで、カレンダー処
理により鏡面加工して磁気テープ1〜4および11〜15を
得た。
Paint composition Ferromagnetic metal 100 parts by weight Lecithin 2 カ ー ボ ン Carbon black 3 γ γ-alumina 5 〃 VAGH * 1 15 〃 Nipporan 2304 * 2 10 メ チ ル Methyl ethyl ketone 150 ト ル エ ン Toluene 50 〃 Cyclohexanone 75 〃 (Note) * 1: manufactured by Union Carbide Vinyl chloride / vinyl acetate / polyvinyl alcohol copolymer * 2: Polyurethane resin manufactured by Nippon Polyurethane Industry Co., Ltd. This paint has a dry film thickness of 3 on a 10 μm thick PET film.
μm, dry after magnetic field alignment treatment
A magnetic layer was formed on the film. Then, the tapes were mirror-finished by calendering to obtain magnetic tapes 1 to 4 and 11 to 15.

得られた各テープの静磁気特性を表2に示す。 Table 2 shows the magnetostatic properties of each of the obtained tapes.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】酸化鉄を主とする酸化物粉末を還元性ガス
により還元して金属鉄粉末とした後、250℃〜450℃で、
炭酸ガスのみからなるガス又はアルゴン及び窒素から選
ばれる不活性ガスと炭酸ガスとからなる混合ガスであっ
て、炭酸ガスを10容量%以上含むガスと接触させること
により表面に金属酸化物層を形成させることを特徴とす
る、鉄を主成分とする強磁性金属粉末の製造方法。
An oxide powder mainly composed of iron oxide is reduced with a reducing gas to obtain a metallic iron powder.
A metal oxide layer is formed on the surface by contacting with a gas consisting of only carbon dioxide or a mixed gas consisting of carbon dioxide and an inert gas selected from argon and nitrogen and containing carbon dioxide at least 10% by volume. A method for producing a ferromagnetic metal powder containing iron as a main component.
【請求項2】酸化鉄を主とする酸化物粉末として、表面
に鉄以外の遷移金属元素化合物を含有する層を形成した
酸化物粉末を用いることを特徴とする請求項1記載の強
磁性金属粉末の製造方法。
2. The ferromagnetic metal according to claim 1, wherein the oxide powder mainly containing iron oxide is an oxide powder having a surface containing a layer containing a transition metal element compound other than iron. Powder manufacturing method.
JP1123955A 1989-05-17 1989-05-17 Method for producing ferromagnetic metal powder Expired - Lifetime JP2744641B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1123955A JP2744641B2 (en) 1989-05-17 1989-05-17 Method for producing ferromagnetic metal powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1123955A JP2744641B2 (en) 1989-05-17 1989-05-17 Method for producing ferromagnetic metal powder

Publications (2)

Publication Number Publication Date
JPH02303006A JPH02303006A (en) 1990-12-17
JP2744641B2 true JP2744641B2 (en) 1998-04-28

Family

ID=14873482

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1123955A Expired - Lifetime JP2744641B2 (en) 1989-05-17 1989-05-17 Method for producing ferromagnetic metal powder

Country Status (1)

Country Link
JP (1) JP2744641B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3677141B2 (en) 1997-05-30 2005-07-27 株式会社日立グローバルストレージテクノロジーズ Recording equalizer and magnetic recording / reproducing apparatus using the same
JP4769130B2 (en) * 2006-06-14 2011-09-07 Dowaエレクトロニクス株式会社 Iron nitride magnetic powder, method for producing the same, and magnetic recording medium

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5719301A (en) * 1980-07-09 1982-02-01 Mitsui Toatsu Chem Inc Modifying method of ferromagnetic metallic powder

Also Published As

Publication number Publication date
JPH02303006A (en) 1990-12-17

Similar Documents

Publication Publication Date Title
EP0717397B1 (en) Spindle-shaped magnetic ironbased alloy particles containing cobalt and iron as the main ingredients and process for producing the same
US5185093A (en) Process for producing magnetic metal powder and coating for magnetic recording medium
US4920010A (en) Ferromagnetic metal powder
JP2744641B2 (en) Method for producing ferromagnetic metal powder
JPH0760520B2 (en) Magnetic powder and magnetic recording medium using the same
JP2003059707A (en) Iron-based spindle metal magnetic particle powder and its manufacturing method
JPH10226520A (en) Hydrate iron oxide and production of ferromagnetic iron oxide
US5989516A (en) Spindle-shaped geothite particles
KR0125939B1 (en) Process for producing magnetic iron oxide particles for magnetic recording
JP2843124B2 (en) Method for producing metal magnetic powder
JP2001123207A (en) METHOD FOR PRODUCING SPINDLE-SHAPED ALLOY MAGNETIC PARTICLE POWDER FOR MAGNETIC RECORDING ESSENTIALLY CONSISTING OF Fe and Co
JP3049373B2 (en) Method for producing acicular cobalt-containing iron oxide magnetic powder
JP2740922B2 (en) Method for producing metal magnetic powder for magnetic recording material
JP2805162B2 (en) Method for producing metal magnetic powder for magnetic recording
JPS6349722B2 (en)
JPH0416924B2 (en)
JPS63140005A (en) Production of fine ferromagnetic metal particle powder
JP2807540B2 (en) Method for producing metal magnetic powder
JPH0425687B2 (en)
JPS6187302A (en) Manufacture of magnetic recording medium
JPH11130439A (en) Fusiform goethite particle powder and its production, fusiform hematite particle powder and its production and fusiform metallic magnetic particle powder consisting essentially of iron and its production
JPH07179913A (en) Production of magnetic metal powder and coating film for magnetic recording medium
JPH0312125B2 (en)
JPH06163232A (en) Magnetic powder for high-density magnetic recording medium
JPH0693313A (en) Production of magnetic metal powder