JPH05214413A - Production of magnetic powder for high-density recording medium - Google Patents

Production of magnetic powder for high-density recording medium

Info

Publication number
JPH05214413A
JPH05214413A JP4048089A JP4808992A JPH05214413A JP H05214413 A JPH05214413 A JP H05214413A JP 4048089 A JP4048089 A JP 4048089A JP 4808992 A JP4808992 A JP 4808992A JP H05214413 A JPH05214413 A JP H05214413A
Authority
JP
Japan
Prior art keywords
magnetic powder
mol
powder
compound
aluminum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4048089A
Other languages
Japanese (ja)
Inventor
Isao Ota
勇夫 太田
Takeshi Iwata
武史 岩田
Yasushi Koshi
康 高子
Yasuhiro Fujii
康博 藤井
Kazuhiro Takahashi
和弘 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Chemical Corp
Original Assignee
Nissan Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Chemical Corp filed Critical Nissan Chemical Corp
Priority to JP4048089A priority Critical patent/JPH05214413A/en
Publication of JPH05214413A publication Critical patent/JPH05214413A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To produce a magnetic powder for the high-density recording medium having high coercive force and dispersibility and excellent corrosion resistance. CONSTITUTION:At least one kind selected from Ni, Cu and Co compds. is incorporated into or deposited on hydrous iron oxide or iron oxide to form the grain. A silicon compd. and/or a phosphorus compd. and an aluminum compd. are deposited on the grain surface and then reduced to obtain a magnetic powder. Consequently, a magnetic powder for the high-density recording medium with the surface potential almost equal to that of aluminum is obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、分散性及び耐食性に優
れた高密度記録媒体用磁性粉末の製造に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to the production of magnetic powder for high density recording media which is excellent in dispersibility and corrosion resistance.

【0002】[0002]

【従来の技術】近年、磁気テープや、磁気ディスク等の
磁気記録媒体は高密度化、高出力化が要求されこれにと
もない、これら磁気記録媒体の磁性層を形成する磁性粉
末は微細化し、また粉末の持つ磁気特性も高保持力、高
飽和磁化の傾向にある。現在使用されている磁性粉末
は、高保持力を得持つ含水酸化鉄や酸化鉄を出発原料と
し、これらの形状異方性を保ちかつ粒子間の焼結を防ぐ
ためにケイ素化合物やアルミニウム化合物を主体に表面
を処理したものを還元して得られるものが主流を占めて
いる。
2. Description of the Related Art In recent years, magnetic recording media such as magnetic tapes and magnetic disks are required to have higher density and higher output, and accordingly, magnetic powders forming the magnetic layer of these magnetic recording media are miniaturized. The magnetic properties of the powder also tend to have high coercive force and high saturation magnetization. The magnetic powder currently used is made of iron oxide hydroxide or iron oxide, which has high coercive force, as a starting material, and mainly contains silicon compounds and aluminum compounds in order to maintain their shape anisotropy and prevent sintering between particles. The mainstream is obtained by reducing the surface-treated product.

【0003】[0003]

【発明が解決しようとする課題】前記のように、記録媒
体の高密度化、高出力化を実現させるためには磁性粉末
の粒子サイズを小さくし、保持力を高めることが、重要
であるが、さらに忘れることのできない因子として、磁
性粒子の分散性があげられる。この点に着目した場合、
ケイ素化合物を主体とした表面処理において、特公昭6
1ー18323、特開平2ー175806をはじめ、数
多くの方法が提言されているがいまだ十分に満足するも
のは得られていない。これはケイ素化合物を処理する
際、酸化鉄に、水ガラス、ケイ酸ナトリウム等を被着さ
せるため、粒子表面に多量の活性シラノール基(Si−
OH)が存在し、このシラノール基が乾燥、アニーリン
グなどの脱水時に縮合を起こし、粒子間凝集を引き起こ
すためである。この現象は、粒子が微細になり、表面エ
ネルギーが大きくなるほど顕著となる。一方、アルミニ
ウム化合物にて表面処理をした場合このような縮合は起
こりにくく、従って粒子間の凝集が少ない分散性に優れ
た磁性粉末が得られる。また、多くの記録媒体には、磁
性粉末とともに研磨材としてアルミナ粒子が混合される
事から、使用される磁性粉末は、表面状態がアルミナに
近いアルミニウム化合物処理が望ましい。更に、耐食性
という点に注目した場合、ケイ素化合物処理は、アルミ
ニウム化合物処理に比べ耐食性は劣り、この点からもア
ルミニウム化合物処理が望ましい。
As described above, in order to realize high density and high output of the recording medium, it is important to reduce the particle size of the magnetic powder and increase the holding power. Another factor that cannot be forgotten is the dispersibility of magnetic particles. Focusing on this point,
In surface treatment mainly composed of silicon compounds, Japanese Patent Publication 6
A number of methods have been proposed, including 1-18323 and Japanese Patent Laid-Open No. 2-175806, but none of them has been sufficiently satisfied. This is because when the silicon compound is treated, iron oxide is coated with water glass, sodium silicate, etc., so that a large amount of active silanol groups (Si-
This is because OH) is present and the silanol groups cause condensation during dehydration such as drying and annealing to cause interparticle aggregation. This phenomenon becomes more remarkable as the particles become finer and the surface energy increases. On the other hand, when the surface treatment is performed with an aluminum compound, such condensation does not easily occur, and therefore, magnetic powder having excellent dispersibility with less aggregation between particles can be obtained. Further, since many recording media contain alumina particles as abrasives together with the magnetic powder, it is desirable that the magnetic powder used be treated with an aluminum compound whose surface state is close to that of alumina. Further, when attention is paid to the corrosion resistance, the silicon compound treatment is inferior in corrosion resistance to the aluminum compound treatment, and the aluminum compound treatment is desirable also from this point.

【0004】しかし、出発原料を同一の酸化鉄とし、ケ
イ素化合物で処理した場合と、アルミニウム化合物で処
理した場合を比べた時、アルミニウム化合物処理の磁気
特性、特に保持力が、ケイ素化合物処理に比べはるかに
劣る。つまり、アルミニウム化合物処理は、保持力の低
下を招くという欠点を有する。従ってアルミニウム化合
物処理においてより高い保持力を得ようとするならば、
より粒子を小さくするか、あるいは細長くしなければな
らない。しかし、粒子を小さくするか、あるいは細長く
する事は粒子間凝集を起こしやすい方向にあり、分散性
という面においてはマイナス効果となる。
However, when the same iron oxide was used as the starting material and the treatment with a silicon compound was compared with the treatment with an aluminum compound, the magnetic properties of the aluminum compound treatment, especially the coercive force, were higher than those of the silicon compound treatment. Much inferior. That is, the treatment with an aluminum compound has a drawback that the holding power is lowered. Therefore, if one wants to obtain higher holding power in the treatment of aluminum compounds,
The particles must be smaller or elongated. However, making the particles smaller or making them elongated tends to cause interparticle agglomeration, which is a negative effect in terms of dispersibility.

【0005】ここで、従来のアルミニウム化合物処理に
関する報告には(特公昭56ー28964、特開平2ー
119104)上記欠点は明確にされておらず依然解決
されない問題である。また、アルミニウム化合物に、さ
らに他元素を添加し保持力を高めるという報告があるが
(特公平2ー71427、特公平2ー107701)表
面状態をアルミナに近づけるという意味から適当ではな
い。
[0005] Here, in the report on the conventional treatment of aluminum compounds (Japanese Patent Publication No. 56-28964, Japanese Patent Laid-Open No. 119104/1990), the above-mentioned drawbacks have not been clarified and are still unsolved problems. Further, there are reports that other elements are further added to the aluminum compound to enhance the holding power (Japanese Patent Publication No. 2-71427, Japanese Patent Publication No. 2-107701), which is not suitable from the viewpoint of bringing the surface state closer to that of alumina.

【0006】更に磁性粉末にとって重要となる耐食性に
関しては、飽和磁化の経時的低下に着目した場合、保磁
力が高い粒子、即ち微粒子の場合は、その比表面積が大
きい(40m2 /g以上)ことも手伝って飽和磁化の経
時的低下が激しい。その中において、アルミニウム化合
物にて処理した磁性粉末は、比較的安定であるが、先に
述べたようにアルミニウム化合物処理の場合は保磁力が
他の化合物による処理に比べ出しにくく、より粒子を小
さくしなければならず、分散性、耐食性における優位性
を生かしきれてない。
Regarding the corrosion resistance, which is important for magnetic powders, when attention is paid to the decrease in saturation magnetization over time, particles having a high coercive force, that is, fine particles, have a large specific surface area (40 m 2 / g or more). Also, the saturation magnetization drastically decreased over time. Among them, the magnetic powder treated with the aluminum compound is relatively stable, but as described above, the coercive force of the aluminum compound treatment is more difficult to obtain than the treatment with other compounds, and the particles are smaller. Therefore, the superiority in dispersibility and corrosion resistance cannot be fully utilized.

【0007】また、アルミニウム化合物とケイ素化合物
を同時に被着させた場合、高い保磁力を持つ優れた磁気
特性の磁性粉末を得ようとするならば、SiがAlに対
してモル比でおおよそ1以上は必要であり、表面状態が
アルミニウム化合物単独処理のものとは異なり適当でな
く、また耐食性においてもアルミニウム化合物単独処理
に比べて劣ってしまう。
Further, when an aluminum compound and a silicon compound are simultaneously deposited, in order to obtain a magnetic powder having a high coercive force and excellent magnetic characteristics, Si is approximately 1 or more in molar ratio with respect to Al. Is required, and the surface condition is not suitable unlike the case where the aluminum compound is treated alone, and the corrosion resistance is inferior to the case where the aluminum compound is treated alone.

【0008】本発明者らは、上記の従来の問題点の無
い、高保持力、高分散性の高密度記録媒体用磁性粉末を
得るべく鋭意検討を行った結果、本発明を完成した。
The present inventors have completed the present invention as a result of intensive studies to obtain a magnetic powder for a high density recording medium having a high coercive force and a high dispersibility without the above-mentioned conventional problems.

【0009】[0009]

【課題を解決するための手段】即ち、本発明は、含水酸
化鉄、または酸化鉄にNi,Cu,Co化合物より選ば
れた少なくとも一種を含有、または被着させた粒子表面
にケイ素化合物及び/またはリン化合物、並びにアルミ
ニウム化合物を被着処理し、還元して磁性粉末を得る方
法において、ケイ素化合物及び/またはリン化合物を被
着させた後、さらにアルミニウム化合物を被着させ、そ
の後還元することを特徴とする高密度記録媒体用磁性粉
末の製造方法に関する。
That is, according to the present invention, iron oxide hydroxide, or iron oxide containing at least one selected from Ni, Cu and Co compounds, or a silicon compound and / Alternatively, in the method for obtaining a magnetic powder by applying a phosphorus compound and an aluminum compound and reducing the same, after depositing a silicon compound and / or a phosphorus compound, further depositing an aluminum compound, and then reducing. The present invention relates to a characteristic method for producing magnetic powder for high-density recording media.

【0010】以下に本発明について詳細に説明する。出
発原料としての含水酸化鉄、酸化鉄に特に限定はない
が、Ni、Cu、Coなどを含有、あるいは被着せしめ
ることが還元を促進させる事から非常に有効であり、そ
の量はFeに対し、0.2〜20mol%が望ましい。
なお、これら化合物をケイ素化合物、リン化合物被着処
理段階、あるいはアルミニウム化合物被着処理段階にお
いて添加しても差し支えない。
The present invention will be described in detail below. There is no particular limitation on the hydrous iron oxide and iron oxide as the starting materials, but it is very effective to contain or deposit Ni, Cu, Co, etc. because they promote the reduction, and the amount thereof is relative to Fe. , 0.2 to 20 mol% is desirable.
It should be noted that these compounds may be added at the silicon compound, phosphorus compound deposition treatment stage, or the aluminum compound deposition treatment stage.

【0011】次に被着させるケイ素化合物としては、シ
リカ、含水シリカ、コロイダルシリカなどの酸化物、ケ
イ酸ナトリウム、ケイ酸カリウム、ケイ酸マグネシウ
ム、ケイ酸カルシウム、ケイ酸バリウム、ケイ酸アルミ
ニウムなどのケイ酸塩化合物、アルコキサイド、シリコ
ーンオイルなどの有機ケイ素化合物などが挙げられる。
これら化合物は、一種あるいは複数でも良い。これらの
化合物を被着させる際に水ガラス等と各種金属塩とを加
えて反応させてケイ酸塩化合物として被着させても良
い。各種金属塩としては、マグネシウム、カルシウム、
アルミニウム等の硫酸塩、塩酸塩、硝酸塩、蓚酸塩、酢
酸塩等が挙げられ、水溶性塩が好ましい。これら金属塩
の量はケイ素との化学量論量にこだわる必要なく、各種
金属塩の元素をMで表して、Feに対して0.05〜2
モル%、0.1〜1モル%が好ましい。ケイ素化合物の
付着量はSiとしてFeに対して0.1〜3モル%、
0.5〜2モル%が好ましい。
As the silicon compound to be deposited next, oxides of silica, hydrous silica, colloidal silica, etc., sodium silicate, potassium silicate, magnesium silicate, calcium silicate, barium silicate, aluminum silicate, etc. Examples thereof include silicate compounds, alkoxides, and organosilicon compounds such as silicone oil.
One or more of these compounds may be used. When depositing these compounds, water glass or the like and various metal salts may be added and reacted to deposit as a silicate compound. Various metal salts include magnesium, calcium,
Examples thereof include sulfates such as aluminum, hydrochlorides, nitrates, oxalates, acetates, and the like, and water-soluble salts are preferable. The amount of these metal salts need not be limited to the stoichiometric amount with silicon, and the element of each metal salt is represented by M, and is 0.05 to 2 with respect to Fe.
Mol% and 0.1-1 mol% are preferable. The amount of silicon compound attached is 0.1 to 3 mol% with respect to Fe as Si,
0.5 to 2 mol% is preferable.

【0012】リン化合物としては、酸化物或いはリン酸
ナトリウム、ヘキサメタリン酸ナトリウム、リン酸カリ
ウム、リン酸マグネシウム、リン酸カルシウム、リン酸
アルミニウム、リン酸ジルコニウム、リン酸クロム、リ
ン酸銅、リン酸ニッケル、リン酸コバルト、リン酸鉄な
どリン酸塩化合物などが挙げられる。これら化合物は、
一種あるいは複数でも良い。このリン酸塩化合物を被着
させる際にリン酸或いはリン酸塩と各種金属塩とを加え
て反応させてリン酸塩化合物として被着させても良い。
各種金属塩としては、マグネシウム、カルシウム、アル
ミニウム、ジルコニウム等の硫酸塩、塩酸塩、硝酸塩、
蓚酸塩、酢酸塩等が挙げられ、水溶性塩が好ましい。こ
れら金属塩の量はリンとの化学量論量にこだわる必要な
く、各種金属塩の元素をMで表して、Feに対して0.
05〜2モル%、好ましくは0.1〜1モル%被着させ
る。
Examples of phosphorus compounds include oxides or sodium phosphate, sodium hexametaphosphate, potassium phosphate, magnesium phosphate, calcium phosphate, aluminum phosphate, zirconium phosphate, chromium phosphate, copper phosphate, nickel phosphate, phosphorus. Examples thereof include phosphate compounds such as cobalt acid and iron phosphate. These compounds are
One or more may be used. When depositing the phosphate compound, phosphoric acid or phosphate and various metal salts may be added and reacted to deposit as the phosphate compound.
As various metal salts, magnesium, calcium, aluminum, zirconium and other sulfates, hydrochlorides, nitrates,
Examples thereof include oxalate and acetate, and water-soluble salts are preferable. The amount of these metal salts need not be limited to the stoichiometric amount with phosphorus, and the elements of various metal salts are represented by M, and the amount of Fe is 0.
05-2 mol%, preferably 0.1-1 mol%.

【0013】リン化合物の被着量はPとしてFeに対し
て0.1〜3モル%、好ましくは0.5〜2モル%であ
る。ケイ素化合物とリン化合物の被着はそれぞれ単独で
被着或いは両方を被着させても良い。以上述べたケイ素
化合物とリン化合物の被着処理はアルミニウム化合物被
着処理前に行う事が重要であり、アルミニウム化合物と
同時に被着させた場合にはその効果は発揮されない。例
えば、アルミニウム化合物とケイ素化合物を同時に被着
処理した場合、まず磁気特性上満足のいく粉末は得られ
ずさらに耐食性においても良い結果は得られない。アル
ミニウム化合物とリン化合物を同時に被着処理した場合
磁気特性的には優れているものの耐食性に劣る。
The amount of the phosphorus compound deposited as P is 0.1 to 3 mol% with respect to Fe, preferably 0.5 to 2 mol%. The silicon compound and the phosphorus compound may be applied individually or both may be applied. It is important to perform the above-mentioned deposition treatment of the silicon compound and the phosphorus compound before the deposition treatment of the aluminum compound, and the effect is not exhibited when the deposition is performed simultaneously with the aluminum compound. For example, when an aluminum compound and a silicon compound are applied at the same time, powder which is satisfactory in magnetic properties is not obtained first, and further good results are not obtained in corrosion resistance. When an aluminum compound and a phosphorus compound are applied at the same time, the magnetic properties are excellent but the corrosion resistance is poor.

【0014】但し、先に述べたリン化合物の被着の際に
リン酸アルミニウムを使用する場合はこのかぎりでな
い。その場合の被着量は先に述べた各種金属塩の元素M
がAlでFeに対して0.05〜2モル%、好ましくは
0.1〜1モル%被着させるのに対応する。尚、特にケ
イ素化合物を被着させた場合は、以下に述べるアルミニ
ウム化合物を処理するまでは、乾燥させないことが重要
である。これは先に述べたように、活性シラノール基を
縮合させることになり、粒子間凝集を起こす為である。
However, this is not the case when aluminum phosphate is used for the above-described deposition of the phosphorus compound. In that case, the deposition amount is the element M of the various metal salts described above.
Corresponds to 0.05 to 2 mol%, preferably 0.1 to 1 mol% of Al with respect to Fe. In particular, when a silicon compound is applied, it is important not to dry it until the aluminum compound described below is treated. This is because, as described above, the active silanol groups are condensed and interparticle aggregation occurs.

【0015】次に被着させるアルミニウム化合物として
は、硝酸アルミニウム、酢酸アルミニウム、塩基性塩化
アルミニウム、水酸化アルミニウム、アルミン酸ナトリ
ウム、アルミナゾル、アルミニウムアルコキサイドなど
が挙げらる。被着量としてはFeに対しAlとして3〜
20モル%、好ましくは3〜15モル%が望ましい。こ
こで、被着量が少ない場合、前段階で被着させたケイ素
化合物をアルミニウム化合物で覆う事が出来ず、表面状
態がアルミナとは異なり好ましくない。また多い場合に
は還元されにくく、非現実的である。また、ケイ素化合
物及び/またはリン化合物のアルミニウム化合物に対す
る被着量の割合はそれぞれSi,Al、PとしてSi/
Alモル比が1以下好ましくは0.03〜0.75、P
/Alモル比が1以下好ましくは0.03〜0.75で
ある。ここでモル比が小さすぎるとその効果が十分に発
揮できず高い保磁力が得にくい。また、大きい場合には
保磁力は十分であるものの劣化特性が劣ってしまう。
Examples of the aluminum compound to be deposited next include aluminum nitrate, aluminum acetate, basic aluminum chloride, aluminum hydroxide, sodium aluminate, alumina sol, and aluminum alkoxide. The amount of deposition is 3 to 3 for Al with respect to Fe.
20 mol%, preferably 3 to 15 mol% is desirable. Here, when the deposition amount is small, the silicon compound deposited in the previous step cannot be covered with the aluminum compound, and the surface state is different from that of alumina, which is not preferable. Also, if it is large, it is difficult to be returned, which is unrealistic. Further, the ratio of the deposited amount of the silicon compound and / or the phosphorus compound to the aluminum compound is Si / Al and P as Si /
Al molar ratio is 1 or less, preferably 0.03 to 0.75, P
/ Al molar ratio is 1 or less, preferably 0.03 to 0.75. If the molar ratio is too small, the effect cannot be fully exerted, and it is difficult to obtain a high coercive force. On the other hand, if it is large, the coercive force will be sufficient, but the deterioration characteristics will be poor.

【0016】還元方法に関しては、限定されるものでは
なく、公知の方法を用いれば良い。このようにして得た
ケイ素化合物及び/またはリン化合物を被着させた後、
さらにアルミニウム化合物を被着させた含水酸化鉄、ま
たは酸化鉄を主体とする粉末粒子を、還元して、保磁力
が1300Oe以上と高く、分散性及び耐食性に優れた
本発明の高密度記録媒体用磁性粉末が得られる。
The reduction method is not limited, and a known method may be used. After depositing the silicon compound and / or the phosphorus compound thus obtained,
Further, powder particles mainly composed of hydrous iron oxide or iron oxide coated with an aluminum compound are reduced to have a high coercive force of 1300 Oe or more, which is excellent in dispersibility and corrosion resistance. A magnetic powder is obtained.

【0017】[0017]

【実施例】以下に実施例及び比較例を示すが、出発原料
として含水酸化鉄(ゲーサイト)を用い、実施例10、
11、12を除いて全て同じものとした。この含水酸化
鉄は、公知の方法にて合成し、あらかじめ還元を促進さ
せるためNiをFeに対して0.9mol%被着させた
もので、その平均長軸径は250nm、軸比10、比表
面積は90m2 /gである。 実施例1 ゲーサイトを水に分散し、2wt%スラリーを調製し
た。このスラリー500gに水ガラス(28%Si
2 )0.25gを強攪拌下にて添加し、硝酸にてPH
を7に調整し、ケイ酸化合物を被着させた。次に硝酸ア
ルミニウム9水和物4gを添加し、水酸化ナトリウムに
てPHを7に調整しアルミニウム化合物を被着させた。
これをろ過、洗浄、乾燥しゲーサイト粉末を得た。得ら
れたゲーサイトのSi被着量及びAl被着量はFeに対
してそれぞれ0.5モル%、6.5モル%であった。
[Examples] Examples and comparative examples will be shown below. In Example 10, iron oxide hydroxide (goethite) was used as a starting material,
All were the same except for 11 and 12. This iron oxide hydroxide was synthesized by a known method, and Ni was deposited on Fe in an amount of 0.9 mol% in advance to promote reduction. The average major axis diameter thereof was 250 nm, the axial ratio was 10, and the ratio was 10. The surface area is 90 m 2 / g. Example 1 Goethite was dispersed in water to prepare a 2 wt% slurry. Water glass (28% Si
0.25 g of O 2 ) was added with vigorous stirring and PH was added with nitric acid.
Was adjusted to 7, and a silicic acid compound was applied. Next, 4 g of aluminum nitrate nonahydrate was added, pH was adjusted to 7 with sodium hydroxide, and an aluminum compound was deposited.
This was filtered, washed and dried to obtain goethite powder. The Si deposition amount and Al deposition amount of the obtained goethite were 0.5 mol% and 6.5 mol% with respect to Fe, respectively.

【0018】この粉末を460℃水素気流中にて還元
し、還元終了後冷却し、窒素と空気の混合ガス中の窒素
と空気の比を段階的に変化させ徐酸化処理を行い目的と
する磁性粉末を得た。得られた磁性粉末の磁気特性は、
Hc 1580 Oe、σs145emu/g、SQ
0.50であった。また、得られた磁性粉末の一部を採
取し60℃、湿度90%の恒温恒湿室で1週間放置し、
耐食性試験を行った。耐食性の評価はσs の低下を指標
とした。得られた粉末の低下率(以下劣化率と呼ぶ)は
11.0%であった。尚、表−1に以下の実施例及び比
較例の結果を併せて一覧表として示す。
This powder is reduced in a hydrogen stream at 460 ° C., cooled after completion of the reduction, and gradually oxidized by gradually changing the ratio of nitrogen to air in the mixed gas of nitrogen and air to obtain the desired magnetic properties. A powder was obtained. The magnetic properties of the obtained magnetic powder are
Hc 1580 Oe, σs 145 emu / g, SQ
It was 0.50. In addition, a part of the obtained magnetic powder was collected and left for 1 week in a constant temperature and humidity chamber at 60 ° C. and a humidity of 90%,
A corrosion resistance test was conducted. The corrosion resistance was evaluated by using the decrease of σs as an index. The reduction rate (hereinafter referred to as deterioration rate) of the obtained powder was 11.0%. In addition, Table-1 shows the results of the following Examples and Comparative Examples together as a list.

【0019】得られた磁性粉末の電顕写真を図1に示
す。また比較のために以下に述べる比較例1及び比較例
2で得られた磁性粉末の電顕写真をそれぞれ図2,図3
に示す。これより本発明法で得られた磁性粉末は、高い
保持力を有しかつ粒子の分散性にも優れている事が解
る。更に、得られた磁性粉末100部、ポリウレタン系
からなるバインダー20部、硬化剤3部、研磨材(アル
ミナ)12部、分散剤3部並びに、トルエン、メチルエ
チルケトンからなる溶剤300部をサンドミルで混合し
て塗料を得た。得られた塗料を、ポリエステルフィルム
上に乾燥塗膜厚4.0mμになるように塗布し磁場配向
後、乾燥し磁気テープを得た。得られた磁気テープの特
性を外部磁場5kOeで測定した。結果を表−2に示
す。
An electron micrograph of the obtained magnetic powder is shown in FIG. For comparison, electron microscope photographs of the magnetic powders obtained in Comparative Example 1 and Comparative Example 2 described below are shown in FIGS. 2 and 3, respectively.
Shown in. From this, it is understood that the magnetic powder obtained by the method of the present invention has a high coercive force and is excellent in the dispersibility of particles. Furthermore, 100 parts of the obtained magnetic powder, 20 parts of a binder made of polyurethane, 3 parts of a curing agent, 12 parts of an abrasive (alumina), 3 parts of a dispersant, and 300 parts of a solvent made of toluene and methyl ethyl ketone are mixed in a sand mill. Got the paint. The obtained coating material was applied on a polyester film so that the dry coating film thickness was 4.0 mμ, and after magnetic field orientation, it was dried to obtain a magnetic tape. The characteristics of the obtained magnetic tape were measured with an external magnetic field of 5 kOe. The results are shown in Table-2.

【0020】また、得られた磁性粉末の表面電位を測定
した、また比較のため研磨材として使用するアルミナ及
び以下に述べる比較例1及び比較例2についても同様に
測定した。結果を図4に示す。図4に示すように本発明
法で得られた磁性粉末の表面電位はアルミナに近く、表
面状態もアルミナに近い事が解る。表面はアルミナ単独
処理と同じで、磁気特性及びテープ特性は従来のアルミ
ニウム化合物単独被着(比較例2)より優れている。 比較例1 ゲーサイトを水に分散し、2wt%スラリーを調製し
た。このスラリー500gに水ガラス(28%SiO
2 )2.50gを強攪拌下にて添加し、硝酸にてPHを
7に調製し、ケイ酸化合物を比着させた。これを、ろ
過、洗浄、乾燥し、ゲーサイト粉末を得た。得られたゲ
ーサイトのSi被着量はFeに対して5.5モル%であ
った。
Further, the surface potential of the obtained magnetic powder was measured, and the alumina used as an abrasive for comparison and Comparative Examples 1 and 2 described below were also measured in the same manner. The results are shown in Fig. 4. As shown in FIG. 4, the surface potential of the magnetic powder obtained by the method of the present invention is close to that of alumina, and the surface state is also close to that of alumina. The surface is the same as the surface treated with alumina alone, and the magnetic properties and tape properties are superior to the conventional aluminum compound alone deposition (Comparative Example 2). Comparative Example 1 Goethite was dispersed in water to prepare a 2 wt% slurry. 500 g of this slurry was mixed with water glass (28% SiO 2
2 ) 2.50 g was added under strong stirring, pH was adjusted to 7 with nitric acid, and a silicic acid compound was adsorbed. This was filtered, washed and dried to obtain goethite powder. The amount of Si deposited on the obtained goethite was 5.5 mol% with respect to Fe.

【0021】この粉末を実施例1と同様に還元、徐酸化
し、ケイ素化合物処理した磁性粉末を得た。得られた磁
性粉末の磁気特性は、Hc 1610 Oe、σs 1
42emu/g、SQ 0.51、劣化率25.0%で
あった。得られた磁性粉末を用いて、実施例1と同様に
して磁気テープを得た。得られた磁気テープの特性を表
−2に示す。 比較例2 比較例1と同様にゲーサイトスラリーを調製し、このス
ラリー500gにアルミン酸ソーダ溶液(21%Al2
3 )3gを強攪拌下にて添加し、硝酸にてPHを7と
し、アルミニウム化合物を被着させた。これをろ過、洗
浄、乾燥しゲーサイト粉末を得た。得られたゲーサイト
のAl被着量はFeに対して6.5モル%であった。
This powder was reduced and gradually oxidized in the same manner as in Example 1 to obtain a silicon compound-treated magnetic powder. The magnetic properties of the obtained magnetic powder are Hc 1610 Oe, σs 1
It was 42 emu / g, SQ 0.51, and the deterioration rate was 25.0%. A magnetic tape was obtained using the obtained magnetic powder in the same manner as in Example 1. The characteristics of the obtained magnetic tape are shown in Table 2. Comparative Example 2 A goethite slurry was prepared in the same manner as in Comparative Example 1, and 500 g of this slurry was added to a sodium aluminate solution (21% Al 2
3 g of O 3 ) was added under strong stirring, the pH was adjusted to 7 with nitric acid, and the aluminum compound was deposited. This was filtered, washed and dried to obtain goethite powder. The amount of Al deposited on the obtained goethite was 6.5 mol% with respect to Fe.

【0022】この粉末を 実施例1と同様に還元、徐酸
化し、アルミニウム化合物処理磁性粉末を得た。得られ
た磁性粉末の磁気特性は、Hc 1400 Oe、σs
139emu/g、SQ 0.49、劣化率12.5
%であった。 実施例2 実施例1と同様にゲーサイトスラリーを調製し、このス
ラリー500gに水ガラス(28%SiO2 )O.25
gを加えた。これに硝酸マグネシウム6水和物0.3g
を添加し、さらに硝酸にてPHを7に調整しケイ酸塩化
合物を被着させた。次に硝酸アルミニウム9水和物4g
を添加し水酸化ナトリウムにてPHを7とした。これを
ろ過、洗浄、乾燥しゲーサイト粉末を得た。得られたゲ
ーサイトのSi、Al及びMgの被着量はFeに対して
それぞれ0.4モル%、6.6モル%、0.2モル%で
あった。
This powder was reduced and gradually oxidized in the same manner as in Example 1 to obtain an aluminum compound-treated magnetic powder. The magnetic properties of the obtained magnetic powder are Hc 1400 Oe, σs
139 emu / g, SQ 0.49, deterioration rate 12.5
%Met. Example 2 A goethite slurry was prepared in the same manner as in Example 1, and 500 g of this slurry was mixed with water glass (28% SiO 2 ) O. 25
g was added. 0.3g of magnesium nitrate hexahydrate
Was further added, and the pH was adjusted to 7 with nitric acid to deposit a silicate compound. Next, 4 g of aluminum nitrate nonahydrate
Was added and the pH was adjusted to 7 with sodium hydroxide. This was filtered, washed and dried to obtain goethite powder. The deposited amounts of Si, Al and Mg of the obtained goethite were 0.4 mol%, 6.6 mol% and 0.2 mol% with respect to Fe, respectively.

【0023】この粉末を実施例1と同様に還元、徐酸化
し、目的とする磁性粉末を得た。得られた磁性粉末の磁
気特性は、Hc 1595 Oe、σs 141emu
/g、SQ 0.50、劣化率12.0%であった。 実施例3 実施例2の硝酸マグネシウム6水和物0.3gを硝酸カ
ルシウム4水和物0.3gに変えた以外は全て実施例2
に従った。得られたゲーサイトのSi、Al及びCaの
被着量はFeに対してそれぞれ0.5モル%、6.8モ
ル%、0.3モル%であった。
This powder was reduced and gradually oxidized in the same manner as in Example 1 to obtain the desired magnetic powder. The magnetic properties of the obtained magnetic powder are Hc 1595 Oe and σs 141 emu.
/ G, SQ 0.50, the deterioration rate was 12.0%. Example 3 All of Example 2 except that 0.3 g of magnesium nitrate hexahydrate of Example 2 was changed to 0.3 g of calcium nitrate tetrahydrate.
Obeyed. The deposited amounts of Si, Al and Ca on the obtained goethite were 0.5 mol%, 6.8 mol% and 0.3 mol% with respect to Fe, respectively.

【0024】この粉末を実施例1と同様に還元、徐酸化
し、目的とする磁性粉末を得た。得られた磁性粉末の磁
気特性は、Hc 1590 Oe、σs 140emu
/g、SQ 0.52、劣化率10.5%であった。 実施例4 実施例2の硝酸マグネシウム6水和物0.3gを硝酸ア
ルミニウム9水和物0.4gに変えた以外は全て実施例
2に従った。得られたゲーサイト粉末のSi、Alの被
着量はFeに対してそれぞれ0.5モル%、6.8モル
%であった。
This powder was reduced and gradually oxidized in the same manner as in Example 1 to obtain the desired magnetic powder. The magnetic properties of the obtained magnetic powder are Hc 1590 Oe and σs 140 emu.
/ G, SQ 0.52, deterioration rate was 10.5%. Example 4 Example 2 was followed except that 0.3 g of magnesium nitrate hexahydrate of Example 2 was replaced with 0.4 g of aluminum nitrate nonahydrate. The deposited amounts of Si and Al of the obtained goethite powder were 0.5 mol% and 6.8 mol% with respect to Fe, respectively.

【0025】この粉末を実施例1と同様に還元、徐酸化
し、目的とする磁性粉末を得た。得られた磁性粉末の磁
気特性は、Hc 1520 Oe、σs 138emu
/g、SQ 0.49、劣化率12.5%であった。 比較例3 比較例1と同様にゲーサイトスラリーを調製し、このス
ラリー500gに水ガラス(28%SiO2 )0.25
g、アルミン酸ソーダ溶液(21%Al2 3)3gを
強攪拌下にて添加し、硝酸にてPHを7とし、ケイ酸化
合物とアルミニウム化合物を同時被着させた。これをろ
過、洗浄、乾燥しゲーサイト粉末を得た。得られたゲー
サイトのSi被着量、Al被着量はそれぞれFeに対し
て0.5モル%、6.5モル%であった。
This powder was reduced and gradually oxidized in the same manner as in Example 1 to obtain the desired magnetic powder. The magnetic properties of the obtained magnetic powder are Hc 1520 Oe, σs 138 emu.
/ G, SQ 0.49, deterioration rate was 12.5%. Comparative Example 3 A goethite slurry was prepared in the same manner as in Comparative Example 1, and 500 g of this slurry was added with water glass (28% SiO 2 ) 0.25.
g, and 3 g of a sodium aluminate solution (21% Al 2 O 3 ) were added under strong stirring, the pH was adjusted to 7 with nitric acid, and the silicic acid compound and the aluminum compound were simultaneously deposited. This was filtered, washed and dried to obtain goethite powder. The Si deposition amount and Al deposition amount of the obtained goethite were 0.5 mol% and 6.5 mol% with respect to Fe, respectively.

【0026】この粉末を 実施例1と同様に還元、徐酸
化し、ケイ素化合物、アルミニウム化合物同時被着処理
磁性粉末を得た。得られた磁性粉末の磁気特性は、Hc
1410 Oe、σs 140emu/g、SQ
0.49、劣化率19.0%であった。 比較例4 比較例3の水ガラス及びアルミン酸ソーダ溶液の量をそ
れぞれ1.75g、1.5gに変えた他は、比較例3に
従って磁性粉末を得た。得られたゲーサイトのSi被着
量、Al被着量はそれぞれFeに対して3.3モル%、
3.1モル%であった。
This powder was reduced and gradually oxidized in the same manner as in Example 1 to obtain a magnetic powder simultaneously treated with a silicon compound and an aluminum compound. The magnetic properties of the obtained magnetic powder are Hc
1410 Oe, σs 140 emu / g, SQ
It was 0.49 and the deterioration rate was 19.0%. Comparative Example 4 A magnetic powder was obtained according to Comparative Example 3 except that the amounts of the water glass and the sodium aluminate solution in Comparative Example 3 were changed to 1.75 g and 1.5 g, respectively. The amount of Si deposited and the amount of Al deposited on the obtained goethite were 3.3 mol% based on Fe,
It was 3.1 mol%.

【0027】この粉末を 実施例1と同様に還元、徐酸
化し、ケイ素化合物、アルミニウム化合物同時被着処理
磁性粉末を得た。得られた磁性粉末の磁気特性は、Hc
1500 Oe、σs 139emu/g、SQ
0.51、劣化率23.0%であった。 比較例5 比較例1と同様にゲーサイトスラリーを調製し、このス
ラリー500gに硝酸アルミニウム水和物3.0gを
強攪拌下にて添加し、リン酸2水アンモニウム0.1g
を加え、更に水酸化ナトリウム水溶液にてPHを9と
し、リン酸化合物とアルミニウム化合物を同時被着させ
た。これをろ過、洗浄、乾燥しゲーサイト粉末を得た。
得られたゲーサイトのP被着量、Al被着量はそれぞれ
Feに対して0.6モル%、6.7モル%であった。
This powder was reduced and gradually oxidized in the same manner as in Example 1 to obtain a magnetic powder for simultaneous deposition of silicon compound and aluminum compound. The magnetic properties of the obtained magnetic powder are Hc
1500 Oe, σs 139 emu / g, SQ
The deterioration rate was 0.51 and the deterioration rate was 23.0%. Similarly goethite slurry Comparative Example 5 Comparative Example 1 was prepared, added at vigorous stirring aluminum nitrate heptahydrate 3.0g To this slurry 500 g, phosphate dihydrate ammonium 0.1g
Was further added, and the pH was adjusted to 9 with an aqueous sodium hydroxide solution to simultaneously deposit the phosphoric acid compound and the aluminum compound. This was filtered, washed and dried to obtain goethite powder.
The P deposition amount and Al deposition amount of the obtained goethite were 0.6 mol% and 6.7 mol% with respect to Fe, respectively.

【0028】この粉末を 実施例1と同様に還元、徐酸
化し、リン酸化合物、アルミニウム化合物同時被着処理
磁性粉末を得た。得られた磁性粉末の磁気特性は、Hc
1580 Oe、σs 140emu/g、SQ
0.50、劣化率18.5%であった。 実施例5 実施例1と同様にゲーサイトスラリーを調製し、このス
ラリー500gにリン酸三ナトリウムを1g加え、強攪
拌下において硝酸マグネシウム6水和物を0.6g添加
し、さらに硝酸にてPHを7に調整し、リン酸塩化合物
を被着させた。次にアルミン酸ソーダ溶液(21%Al
2 3 )3gを添加し、硝酸にてPHを7に調整し、ア
ルミニウム化合物を被着させ、これをろ過、洗浄、乾燥
しゲーサイト粉末を得た。得られたゲーサイトのAl、
P及びMgの被着量はFeに対してそれぞれ6.9モル
%、1.2モル%、1.1モル%であった。
This powder was reduced and gradually oxidized in the same manner as in Example 1 to obtain a phosphoric acid compound / aluminum compound co-deposited magnetic powder. The magnetic properties of the obtained magnetic powder are Hc
1580 Oe, σs 140 emu / g, SQ
It was 0.50 and the deterioration rate was 18.5%. Example 5 A goethite slurry was prepared in the same manner as in Example 1, 1 g of trisodium phosphate was added to 500 g of this slurry, and 0.6 g of magnesium nitrate hexahydrate was added under vigorous stirring. Was adjusted to 7 and the phosphate compound was applied. Next, sodium aluminate solution (21% Al
2 O 3 ) 3 g was added, pH was adjusted to 7 with nitric acid, an aluminum compound was adhered, and this was filtered, washed and dried to obtain goethite powder. The obtained goethite Al,
The deposited amounts of P and Mg were 6.9 mol%, 1.2 mol% and 1.1 mol% with respect to Fe, respectively.

【0029】この粉末を実施例1と同様に還元、徐酸化
し、目的とする磁性粉末を得た。得られた磁性粉末の磁
気特性は、Hc 1570 Oe、σs 142emu
/g、SQ 0.51、劣化率13.5%であった。得
られた磁性粉末を用いて、実施例1と同様にして磁気テ
ープを得た。得られた磁気テープの特性を表−2に示
す。 実施例6 実施例5の硝酸マグネシウム6水和物0.6gを硝酸カ
ルシウム4水和物0.6gに変えた以外は全て実施例5
に従った。得られたゲーサイト粉末のAl、P及びCa
の被着量はFeに対してそれぞれ6.5モル%、1.1
モル%、0.9モル%であった。
This powder was reduced and gradually oxidized in the same manner as in Example 1 to obtain the desired magnetic powder. The magnetic properties of the obtained magnetic powder are Hc 1570 Oe and σs 142 emu.
/ G, SQ 0.51, and deterioration rate was 13.5%. A magnetic tape was obtained using the obtained magnetic powder in the same manner as in Example 1. The characteristics of the obtained magnetic tape are shown in Table 2. Example 6 Example 5 except that 0.6 g of magnesium nitrate hexahydrate of Example 5 was changed to 0.6 g of calcium nitrate tetrahydrate.
Obeyed. Al, P and Ca of the obtained goethite powder
The deposited amounts of Fe are 6.5 mol% and 1.1, respectively, with respect to Fe.
It was mol% and 0.9 mol%.

【0030】この粉末を実施例1と同様に還元、徐酸化
し、目的とする磁性粉末を得た。得られた磁性粉末の磁
気特性は、Hc 1590 Oe、σs 147emu
/g、SQ 0.51、劣化率12.5%であった。 実施例7 実施例5の硝酸マグネシウム6水和物0.6gを硫酸第
一鉄7水和物0.6gに変えた以外は、全て実施例5に
従った。得られたゲーサイト粉末のAl及びPの被着量
はFeに対してそれぞれ6.5モル%、1.1モル%で
あった。
This powder was reduced and gradually oxidized in the same manner as in Example 1 to obtain the desired magnetic powder. The magnetic properties of the obtained magnetic powder are Hc 1590 Oe and σs 147 emu.
/ G, SQ 0.51, and the deterioration rate was 12.5%. Example 7 Example 5 was followed except that 0.6 g of magnesium nitrate hexahydrate of Example 5 was changed to 0.6 g of ferrous sulfate heptahydrate. The deposited amounts of Al and P of the obtained goethite powder were 6.5 mol% and 1.1 mol% with respect to Fe, respectively.

【0031】この粉末を実施例1と同様に還元、徐酸化
し、目的とする磁性粉末を得た。得られた磁性粉末の磁
気特性は、Hc 1530 Oe、σs 146emu
/g、SQ 0.52、劣化率14.0%であった。 実施例8 実施例5の硝酸マグネシウム6水和物0.6gを硝酸ア
ルミニウム9水和物0.8gに変えた以外は、全て実施
例5に従った。得られたゲーサイト粉末のAl及びPの
被着量はFeに対してそれぞれ7.8モル%、1.1モ
ル%であった。
This powder was reduced and gradually oxidized in the same manner as in Example 1 to obtain the desired magnetic powder. The magnetic properties of the obtained magnetic powder are Hc 1530 Oe, σs 146 emu.
/ G, SQ 0.52, deterioration rate was 14.0%. Example 8 All Example 5 was followed except that 0.6 g of magnesium nitrate hexahydrate of Example 5 was changed to 0.8 g of aluminum nitrate nonahydrate. The deposited amounts of Al and P of the obtained goethite powder were 7.8 mol% and 1.1 mol% with respect to Fe, respectively.

【0032】この粉末を実施例1と同様に還元、徐酸化
し、目的とする磁性粉末を得た。得られた磁性粉末の磁
気特性は、Hc 1490 Oe、σs 138emu
/g、SQ 0.48、劣化率13.0%であった。 実施例9 実施例5の硝酸マグネシウム6水和物0.6gを硝酸ジ
ルコニル溶液(13%ZrO2 )2gに変えた以外は全
て実施例5に従った。得られたゲーサイト粉末のAl、
P及びZrの被着量はFeに対してそれぞれ6.7モル
%、1.0モル%、1.0モル%であった。
This powder was reduced and gradually oxidized in the same manner as in Example 1 to obtain the target magnetic powder. The magnetic properties of the obtained magnetic powder are Hc 1490 Oe, σs 138 emu.
/ G, SQ 0.48, deterioration rate was 13.0%. Example 9 Example 5 was followed except that 0.6 g of magnesium nitrate hexahydrate of Example 5 was replaced with 2 g of zirconyl nitrate solution (13% ZrO2). Al of the obtained goethite powder,
The deposited amounts of P and Zr were 6.7 mol%, 1.0 mol% and 1.0 mol% with respect to Fe, respectively.

【0033】この粉末を実施例1と同様に還元、徐酸化
し、目的とする磁性粉末を得た。得られた磁性粉末の磁
気特性は、Hc 1600 Oe、σs 150emu
/g、SQ 0.49、劣化率13.0%であった。 実施例10 公知の方法で合成したゲーサイト(実施例9までのもの
と、粒子形は同じであるが、ニッケル化合物を被着させ
ていない)を水に分散し2wt%スラリーを調製した。
このスラリー500gにリン酸三ナトリウム1gを加え
強攪拌下において硝酸ニッケル6水和物0.7gを添加
し、リン酸塩化合物を被着させた。次にアルミン酸ソー
ダ溶液(21%Al2 3 )3gを添加し、硝酸にてP
Hを7に調整し、アルミニウム化合物を被着させた。こ
れを、ろ過、洗浄、乾燥しゲーサイト粉末を得た。得ら
れた粉末のAl、P及びNiの被着量はFeに対してそ
れぞれ6.7モル%、1.2モル%、1.9モル%であ
った。
This powder was reduced and gradually oxidized in the same manner as in Example 1 to obtain the desired magnetic powder. The magnetic properties of the obtained magnetic powder are Hc 1600 Oe, σs 150 emu.
/ G, SQ 0.49, deterioration rate was 13.0%. Example 10 Goethite synthesized by a known method (the same as in Example 9 but having the same particle shape but not coated with a nickel compound) was dispersed in water to prepare a 2 wt% slurry.
To 500 g of this slurry, 1 g of trisodium phosphate was added, and 0.7 g of nickel nitrate hexahydrate was added under vigorous stirring to deposit a phosphate compound. Next, add 3 g of sodium aluminate solution (21% Al 2 O 3 ) and add P with nitric acid.
The H was adjusted to 7 and the aluminum compound was deposited. This was filtered, washed and dried to obtain goethite powder. The deposited amounts of Al, P and Ni of the obtained powder were 6.7 mol%, 1.2 mol% and 1.9 mol% with respect to Fe, respectively.

【0034】この粉末を実施例1と同様に還元、徐酸化
し、目的とする磁性粉末を得た。得られた磁性粉末の磁
気特性は、Hc 1540 Oe、σs 148emu
/g、SQ 0.50、劣化率12.5%であった。 実施例11 実施例10と同様にゲーサイトを水に分散し2wt%ス
ラリーを500gを調整した。これに水ガラス(28%
SiO2 )1.20g、リン酸三ナトリウム0.5gを
加え強攪拌下において硝酸ニッケル6水和物0.4gを
添加し硝酸にてPHを7に調整し、ケイ酸化合物及びリ
ン化合物を被着させた。次にアルミン酸ソーダ溶液(2
1%Al2 3 )3gを添加し、硝酸にてPHを7に調
整し、アルミニウム化合物を被着させた。これを、ろ
過、洗浄、乾燥しゲーサイト粉末を得た。得られた粉末
のAl、Si、P及びNiの被着量はFeに対してそれ
ぞれ6.6モル%、0.3モル%、0.6モル%、1.
0モル%であった。 この粉末を実施例1と同様に還
元、徐酸化し、目的とする磁性粉末を得た。得られた磁
性粉末の磁気特性は、Hc 1530 Oe、σs 1
31emu/g、SQ0.50、劣化率13.0%であ
った。 実施例12 実施例10の硝酸ニッケル6水和物0.7gを硝酸コバ
ルト6水和物0.7gに変えた以外は、全て実施例10
に従った。得られたゲーサイト粉末のAl、P及びCo
の被着量はFeに対してそれぞれ6.4モル%、1.4
モル%、1.8モル%であった。
This powder was reduced and gradually oxidized in the same manner as in Example 1 to obtain the desired magnetic powder. The magnetic properties of the obtained magnetic powder are Hc 1540 Oe and σs 148 emu.
/ G, SQ 0.50, the deterioration rate was 12.5%. Example 11 In the same manner as in Example 10, goethite was dispersed in water to prepare 500 g of a 2 wt% slurry. Water glass (28%
SiO 2 ) 1.20 g and trisodium phosphate 0.5 g are added, and under strong stirring, 0.4 g of nickel nitrate hexahydrate is added and the pH is adjusted to 7 with nitric acid to remove the silicic acid compound and the phosphorus compound. I put it on. Next, sodium aluminate solution (2
3 % of 1% Al 2 O 3 ) was added, and the pH was adjusted to 7 with nitric acid to deposit an aluminum compound. This was filtered, washed and dried to obtain goethite powder. The deposited amounts of Al, Si, P, and Ni of the obtained powder were 6.6 mol%, 0.3 mol%, 0.6 mol%, and 1.
It was 0 mol%. This powder was reduced and gradually oxidized in the same manner as in Example 1 to obtain the target magnetic powder. The magnetic properties of the obtained magnetic powder are Hc 1530 Oe, σs 1
It was 31 emu / g, SQ 0.50, and the deterioration rate was 13.0%. Example 12 Example 10 was repeated except that 0.7 g of nickel nitrate hexahydrate in Example 10 was replaced with 0.7 g of cobalt nitrate hexahydrate.
Obeyed. Al, P and Co of the obtained goethite powder
The deposited amounts of Fe are 6.4 mol% and 1.4, respectively.
It was 1.8% by mol.

【0035】この粉末を実施例1と同様に還元、徐酸化
し、目的とする磁性粉末を得た。得られた磁性粉末の磁
気特性は、Hc 1510 Oe、σs 132emu
/g、SQ 0.49、劣化率12.0%であった。 実施例13 実施例10の硝酸ニッケル6水和物0.7gを硝酸銅3
水和物0.6gに変えた以外は、全て実施例10に従っ
た。得られたゲーサイト粉末のAl、P及びCuの被着
量はFeに対してそれぞれ6.7モル%、1.3モル
%、1.8モル%であった。
This powder was reduced and gradually oxidized in the same manner as in Example 1 to obtain the desired magnetic powder. The magnetic properties of the obtained magnetic powder were Hc 1510 Oe, σs 132 emu.
/ G, SQ 0.49, deterioration rate was 12.0%. Example 13 0.7 g of nickel nitrate hexahydrate of Example 10 was added to copper nitrate 3
All Example 10 was followed except that the hydrate was changed to 0.6 g. The deposited amounts of Al, P and Cu of the obtained goethite powder were 6.7 mol%, 1.3 mol% and 1.8 mol% with respect to Fe, respectively.

【0036】この粉末を実施例1と同様に還元、徐酸化
し、目的とする磁性粉末を得た。得られた磁性粉末の磁
気特性は、Hc 1480 Oe、σs 135emu
/g、SQ 0.49、劣化率12.5%であった。
This powder was reduced and gradually oxidized in the same manner as in Example 1 to obtain the desired magnetic powder. The magnetic properties of the obtained magnetic powder are Hc 1480 Oe, σs 135 emu.
/ G, SQ 0.49, deterioration rate was 12.5%.

【0037】[0037]

【表1】 [Table 1]

【0038】[0038]

【表2】 これより本発明法にて得られた磁性粉末をテープ化した
ものの物性は、全般的に優れ、特に本発明法で得られた
粒子の特徴、すなわち保持力が高く分散性に優れている
ことが反映され保持力が高く、SFDが低い値を示して
いる。
[Table 2] From this, the physical properties of the magnetic powder obtained by the method of the present invention formed into a tape are generally excellent, and in particular, the characteristics of the particles obtained by the method of the present invention, that is, high retention and excellent dispersibility, Reflected, the holding power is high and the SFD is low.

【0039】[0039]

【発明の効果】このように本発明法にて得られた磁性粉
末は、従来のケイ素化合物処理の欠点である粒子の凝
集、耐食性また、アルミニウム化合物処理の欠点である
保持力の低下を克服し高い保持力を有しながらも分散性
にも優れたものであり、また表面状態もアルミナに近く
塗料化の際に凝集が起こりにくくかつ耐食性に優れる事
から高密度記録媒体用として非常に適している。
As described above, the magnetic powder obtained by the method of the present invention overcomes the drawbacks of conventional silicon compound treatments, namely, particle aggregation and corrosion resistance, and also the reduction of holding power, which is a drawback of aluminum compound treatments. It is highly suitable for high-density recording media because it has high holding power and excellent dispersibility, and its surface condition is close to that of alumina, which does not easily agglomerate during coating and has excellent corrosion resistance. There is.

【図面の簡単な説明】[Brief description of drawings]

【図1】 実施例1で得た磁性粉末の粒子構造を示す透
過型電子顕微鏡写真(倍率4万倍)
FIG. 1 is a transmission electron micrograph (magnification: 40,000 times) showing a particle structure of the magnetic powder obtained in Example 1.

【図2】 比較例1で得た磁性粉末の粒子構造を示す透
過型電子顕微鏡写真(倍率4万倍)
FIG. 2 is a transmission electron microscope photograph (magnification: 40,000 times) showing a particle structure of the magnetic powder obtained in Comparative Example 1.

【図3】 比較例2で得た磁性粉末の粒子構造を示す透
過型電子顕微鏡写真(倍率4万倍)
FIG. 3 is a transmission electron microscope photograph (magnification: 40,000 times) showing a particle structure of the magnetic powder obtained in Comparative Example 2.

【図4】 得られた磁性粉末の表面電位FIG. 4 Surface potential of the obtained magnetic powder

【符号の説明】[Explanation of symbols]

〇 比較例1 ◆ 実施例1 ● 比較例2 ◇ アルミナ 〇 Comparative example 1 ◆ Example 1 ● Comparative example 2 ◇ Alumina

───────────────────────────────────────────────────── フロントページの続き (72)発明者 藤井 康博 富山県婦負郡婦中町笹倉635日産化学工業 株式会社富山工場内 (72)発明者 高橋 和弘 富山県婦負郡婦中町笹倉635日産化学工業 株式会社富山工場内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yasuhiro Fujii 635 Sasara, Menaka-cho, Neragi-gun, Toyama Prefecture Nissan Chemical Industry Co., Ltd.Toyama Plant (72) Inventor Kazuhiro Takahashi 635 Sasakura, Menzaka-cho, Women's County, Toyama Prefecture Nissan Chemical Industry Co., Ltd. Toyama Factory

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 含水酸化鉄、または酸化鉄にNi,C
u,Co化合物より選ばれた少なくとも一種を含有、ま
たは被着させた粒子表面にケイ素化合物及び/またはリ
ン化合物、並びにアルミニウム化合物を被着処理し、還
元して磁性粉末を得る方法において、ケイ素化合物及び
/またはリン化合物を被着させた後、さらにアルミニウ
ム化合物を被着させ、その後還元することを特徴とする
高密度記録媒体用磁性粉末の製造方法。
1. An iron oxide hydroxide or iron oxide containing Ni, C
In the method of obtaining a magnetic powder by applying a silicon compound and / or a phosphorus compound, and an aluminum compound to the surface of particles containing or adhered at least one selected from u and Co compounds, and obtaining a magnetic powder. And / or a phosphorus compound is deposited, and then an aluminum compound is further deposited, and then reduction is performed, and a method for producing a magnetic powder for a high density recording medium.
【請求項2】 ケイ素化合物、リン化合物及びアルミニ
ウム化合物の被着量がFeに対しそれぞれ、Siとして
0.1〜3モル%、Pとして0.1〜3モル%、Alと
して3〜20モル%で、かつSi/Alモル比が1以
下、P/Alモル比が1以下である請求項1記載の高密
度記録媒体用磁性粉末の製造方法。
2. The deposition amount of a silicon compound, a phosphorus compound and an aluminum compound is 0.1 to 3 mol% as Si, 0.1 to 3 mol% as P, and 3 to 20 mol% as Al with respect to Fe. And a Si / Al molar ratio of 1 or less and a P / Al molar ratio of 1 or less.
JP4048089A 1992-02-04 1992-02-04 Production of magnetic powder for high-density recording medium Pending JPH05214413A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4048089A JPH05214413A (en) 1992-02-04 1992-02-04 Production of magnetic powder for high-density recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4048089A JPH05214413A (en) 1992-02-04 1992-02-04 Production of magnetic powder for high-density recording medium

Publications (1)

Publication Number Publication Date
JPH05214413A true JPH05214413A (en) 1993-08-24

Family

ID=12793598

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4048089A Pending JPH05214413A (en) 1992-02-04 1992-02-04 Production of magnetic powder for high-density recording medium

Country Status (1)

Country Link
JP (1) JPH05214413A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997026666A1 (en) * 1996-01-17 1997-07-24 Emtec Magnetics Gmbh Ferromagnetic pigments

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997026666A1 (en) * 1996-01-17 1997-07-24 Emtec Magnetics Gmbh Ferromagnetic pigments
US6024890A (en) * 1996-01-17 2000-02-15 Emtec Magnetics Gmbh Ferromagnetic pigments

Similar Documents

Publication Publication Date Title
EP1085506A1 (en) Spindle-shaped goethite particles containing cobalt and process for producing the same
JPH0722224A (en) Ferromagnetic metal powder
US4804561A (en) Process for producing ferromagnetic metal fine particles
JP2784794B2 (en) Magnetic iron oxide particle powder
JP2004319923A (en) Iron nitride-based magnetic powder
JP3268830B2 (en) Metal magnetic powder and method for producing the same
JPS6242337B2 (en)
JPH059922B2 (en)
JPH08702B2 (en) Method for producing ferromagnetic fine powder for magnetic recording
JPH05214413A (en) Production of magnetic powder for high-density recording medium
JP2001081506A (en) Precursor for producing magnetic powder and ferromagneric metal powder obtained from the same
JP3337046B2 (en) Spindle-shaped metal magnetic particles containing cobalt and iron as main components and method for producing the same
JPH0755832B2 (en) Method for producing cobalt-containing ferromagnetic iron oxide powder
JPH0684625A (en) Production of magnetic metal powder
JPH06163232A (en) Magnetic powder for high-density magnetic recording medium
JP2946375B2 (en) Method for producing composite ferrite magnetic powder
JP2965606B2 (en) Method for producing metal magnetic powder
JPS6118323B2 (en)
JP2933397B2 (en) Method for producing ferromagnetic iron oxide powder for magnetic recording
JP2740922B2 (en) Method for producing metal magnetic powder for magnetic recording material
JP2700828B2 (en) Method for producing α-iron oxyhydroxide
JPH06140222A (en) Magnetic metal powder and manufacture thereof
JP3171223B2 (en) Method for producing acicular magnetic particle powder
JP2982859B2 (en) Magnetic iron oxide particle powder
JP4336786B2 (en) Method for producing ferromagnetic metal powder

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees