JPH08702B2 - Method for producing ferromagnetic fine powder for magnetic recording - Google Patents

Method for producing ferromagnetic fine powder for magnetic recording

Info

Publication number
JPH08702B2
JPH08702B2 JP61074066A JP7406686A JPH08702B2 JP H08702 B2 JPH08702 B2 JP H08702B2 JP 61074066 A JP61074066 A JP 61074066A JP 7406686 A JP7406686 A JP 7406686A JP H08702 B2 JPH08702 B2 JP H08702B2
Authority
JP
Japan
Prior art keywords
barium ferrite
mol
precipitate
particles
fine powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61074066A
Other languages
Japanese (ja)
Other versions
JPS62275027A (en
Inventor
和男 中田
正治 平井
伸祐 匠
佐富郎 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ishihara Sangyo Kaisha Ltd
Original Assignee
Ishihara Sangyo Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ishihara Sangyo Kaisha Ltd filed Critical Ishihara Sangyo Kaisha Ltd
Publication of JPS62275027A publication Critical patent/JPS62275027A/en
Publication of JPH08702B2 publication Critical patent/JPH08702B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、高密度磁気記録、特に垂直磁気記録用媒体
に好適なバリウムフェライト結晶粒子よりなる磁気記録
用共磁性微粉末の製造方法に関する。
Description: TECHNICAL FIELD OF THE INVENTION The present invention relates to a method for producing a co-magnetic fine powder for magnetic recording, which comprises barium ferrite crystal particles, which is suitable for a medium for high-density magnetic recording, particularly perpendicular magnetic recording.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

磁気記録は、一般に記録媒体の内面長手方向に磁化す
る方式がとられている。しかるに、この方式による場合
は記録の高密度化を図ると記録媒体内の反磁界が増大し
て十分な高密度記録を達成し難い。このような長手方向
の記録方式に対して記録媒体層の表面に垂直方向に磁化
することによって記録媒体内の反磁界を減少させて高密
度記録を図るいわゆる垂直磁気記録方式が近年とみに注
目されてきている。
Magnetic recording is generally performed by magnetizing the inner surface of the recording medium in the longitudinal direction. However, in the case of this method, if the recording density is increased, the demagnetizing field in the recording medium increases and it is difficult to achieve sufficient high-density recording. In contrast to such a longitudinal recording method, a so-called perpendicular magnetic recording method, which aims at high density recording by reducing the demagnetizing field in the recording medium by magnetizing in the direction perpendicular to the surface of the recording medium layer, has been noticed in recent years. ing.

ところで、前記垂直磁気記録媒体としては、従来から
実用化が試みられてきているCo−Cr系などの合金膜法に
よるもののほか、バリウムフェライトのような六方晶フ
ェライト結晶粒子粉末をバインダーに分散させたものを
ベースフイルム上に塗布するいわゆる塗布型記録媒体が
提案されている。前記塗布型の場合にあっては、従来の
長手記録方式の記録媒体の製造の場合と同様に生産性よ
く経済的にも有利に製造し得るとともに記録媒体の耐久
性が優れているところから、その実用化が急がれてい
る。
By the way, as the perpendicular magnetic recording medium, in addition to those by an alloy film method such as Co-Cr system which has been attempted to be practically used, hexagonal ferrite crystal particle powder such as barium ferrite is dispersed in a binder. A so-called coating type recording medium has been proposed in which a material is coated on a base film. In the case of the coating type, since the durability of the recording medium is excellent as well as the productivity can be economically advantageously produced in the same manner as in the case of the production of the conventional longitudinal recording type recording medium, Its practical application is urgent.

一方、前記の垂直磁気記録媒体に使用される六方晶バ
リウムフェライト結晶粒子よりなる磁性粉末としては、
記録時に磁気ヘッドを飽和せしめない適当な範囲の保磁
力(Hc:400〜2000Oe)と大きな飽和磁化を有しかつ粒子
板面状に対して垂直方向に磁化容易軸をもつものである
とともに、0.3μ以下とりわけ0.2μ以下の微細な粒子径
のものであって磁性層中での分散性が良好なものである
ことが重要であるとされている。しかして近時、前記の
磁性粉末に要求される特性は、高記録密度化の指向とあ
いまって、垂直磁気記録媒体におけるノイズレベルの低
減化及び短波長領域での高出力化を満足し得るものであ
ることが一層望まれてきている。これがため、より微細
な粒子径のものであってしかも粒子径分布もよりシャー
プなものであること、かつ分散性が良好であって塗膜面
の平滑性に優れ、高配向性、高充填性を示すバリウムフ
ェライト粒子粉末の開発がますます急がれている。一
方、バリウムフェライト粒子粉末の製造方法は従来から
種々の方法が知られており、また粒子の微細化について
も数多くの提案がなされているが、一般に粒子の微細化
にともなって分散性や配向性が大幅にそこなわれ易く、
このため未だ前記要望を十分満足されるには至っておら
ずその解決が強く希求されている。
On the other hand, as the magnetic powder composed of hexagonal barium ferrite crystal particles used in the perpendicular magnetic recording medium,
It has a coercive force (Hc: 400 to 2000 Oe) in an appropriate range that does not saturate the magnetic head during recording, has a large saturation magnetization, and has an easy axis of magnetization in the direction perpendicular to the surface of the grain plate. It is considered important that the particles have a fine particle size of μ or less, especially 0.2 μ or less, and have good dispersibility in the magnetic layer. Recently, however, the characteristics required of the above magnetic powder, together with the trend toward higher recording density, can satisfy the reduction of noise level in perpendicular magnetic recording media and the higher output in the short wavelength region. It is becoming more and more desirable. Therefore, the particle size is finer and the particle size distribution is sharper, and the dispersibility is good and the coating surface is excellent in smoothness, high orientation, and high filling property. There is an urgent need to develop barium ferrite particle powders that exhibit On the other hand, various methods have been conventionally known for producing barium ferrite particles, and many proposals have been made for making particles finer, but in general, dispersibility and orientation are accompanied by making particles finer. Is greatly damaged,
For this reason, the above-mentioned demand has not yet been fully satisfied, and a solution thereof is strongly desired.

〔発明の目的〕[Object of the Invention]

本発明は、飽和磁化が十分高く、微細粒子径のもので
あってしかも高分散性の垂直磁化配向性に優れた板状の
バリウムフェライト微粒子粉末よりなる垂直磁気記録用
に好適な強磁性微粉末を、比較的簡潔な手段でもって安
定性よく容易に得られる方法を提供することにある。
The present invention provides a ferromagnetic fine powder suitable for perpendicular magnetic recording, which comprises plate-like barium ferrite fine particle powder having a sufficiently high saturation magnetization, a fine particle size, and excellent high-dispersion perpendicular magnetization orientation. Is to provide a method that is stable and easily obtained by a relatively simple means.

〔発明の概要〕[Outline of Invention]

従来からバリウムフェライト粒子粉末の製造方法の1
つとして、BaとFeとが含まれたアルカリ性懸濁液を例え
ば250℃以上の高温、高圧下で水熱処理する方法が知ら
れているが、この方法は、いわゆる乾式法や共沈−焼成
法に比べて、一般に粗大な固着粒子の形成が比較的少な
い反面、飽和磁化の大きいものが得られにくかったり、
また反応が局部的に進み易く、このために粒度の揃った
ものが得られにくかったり、また前記水熱処理を高温、
高圧下でおこなうことによる装置上の問題や操作上の煩
雑さがさけられなかったりする。またバリウムフェライ
ト沈澱粒子の微細化が進むと、焼成過程での粒子焼結や
粒子形状の崩れが起り易すかったりし、配向性や充填
性、分散性などが必ずしも十分でなかったりする。本発
明者等は前記の目的を達成するべく該水熱法における前
記問題点の解決につき種々検討を進めた結果、BaとFe+
Meの割合が特定のモル比範囲であってかつ一定濃度以上
のアルカリの存在下に比較的低温度範囲下で水熱処理す
ることによって、マグネトプランバイト構造の低結晶化
度のものであって粒度の揃った微細な板状粒子のバリウ
ムフェライト沈澱物を生成させるとともに、次いで該沈
澱物を特定の温度範囲下で焼成することによって、粒子
の粗大化を実質的に回避しつつ微細粒子径のものであっ
てかつ分散性、配向性の優れた所望の磁気特性を有する
バリウムフェライト結晶粒子として得られること、さら
に前記バリウムフェライト沈澱物を焼成するに際し、該
沈澱物に特定の化合物を予め添加処理すると微細なバリ
ウムフェライト沈澱粒子の粒子間焼結や粒子形状の崩れ
を効果的に抑制し得、分散性、配向性のより一層優れた
バリウムフェライト結晶粒子の強磁性微粉末が得られる
ことの知見にもとづいて本発明を完成したものである。
Conventional method 1 for producing barium ferrite particle powder
As one, a method of hydrothermally treating an alkaline suspension containing Ba and Fe, for example, at a high temperature of 250 ° C. or higher under high pressure is known, and this method is a so-called dry method or coprecipitation-calcination method. In general, the formation of coarse fixed particles is relatively small, but it is difficult to obtain a large saturated magnetization,
Further, the reaction is likely to proceed locally, so that it is difficult to obtain a product having a uniform particle size, and the hydrothermal treatment is performed at a high temperature,
In some cases, problems with the device and complexity of operation due to high pressure are inevitable. Further, if the barium ferrite precipitated particles are further miniaturized, the particles may be easily sintered or the shape of the particles may be broken during the firing process, and the orientation, the filling property, the dispersibility, etc. may not always be sufficient. The present inventors have conducted various studies to solve the above problems in the hydrothermal method in order to achieve the above object, and as a result, Ba and Fe +
By hydrothermal treatment in the presence of an alkali with a certain molar ratio of Me in a specific molar ratio range and above a certain concentration, it has a magnetoplumbite structure of low crystallinity and grain size. A barium ferrite precipitate of fine plate-like particles having a uniform particle size, and then firing the precipitate in a specific temperature range to obtain a particle having a fine particle size while substantially avoiding coarsening of the particle. Which is a barium ferrite crystal particles having desired magnetic properties excellent in dispersibility and orientation, further, when firing the barium ferrite precipitate, a specific compound is added to the precipitate in advance. It is possible to effectively suppress the inter-particle sintering of fine barium ferrite precipitate particles and the collapse of the particle shape, and further improve the dispersibility and orientation of barium ferrite. Based on knowledge of the ferromagnetic powder of the crystal grains can be obtained and completed the present invention.

すなわち、本発明は、Baが、モル比でFe+Me(但しMe
はCo、Ti、Ni、Mn、Zr、Zn、Ge、Nb及びVの群から選ば
れた少なくとも1種の元素で、Fe1モルに対して0.2モル
以下)に対して1/6〜1/10の割合となるように選ばれた
各元素を含みかつ遊離OH基濃度が1.5モル/以上であ
るアルカリ性懸濁液を120〜200℃の温度範囲で加熱処理
してバリウムフェライト沈澱物を得、次いで該沈澱物を
650〜950℃の温度範囲で焼成するか、あるいは、前記焼
成に際し該沈澱物に、ケイ素化合物またはナトリウム、
カリウム、リチウムまたはストロンチウムの、塩化物、
硫酸塩、炭酸塩、硝酸塩の少なくとも1種を予め添加処
理して焼成することによってバリウムフェライト結晶粒
子を得ることを特徴とする磁気記録用強磁性微粉末の製
造方法である。本発明方法において、まず、バリウム化
合物と鉄化合物及び保磁力制御のために置換元素Meとし
てCo、Ti、Ni、Mn、Zr、Zn、Ge、Nb、V化合物の少なく
とも1種を、それぞれ所定量含む水溶液を作成する。こ
れらの化合物は種々の水溶液化合物を使用し得るが、好
ましくは塩化物、硝酸塩などである。前記バリウム成分
は、Fe+Meの成分に対してモル比で1/6〜1/10、好まし
くは1/7〜1/9である。該モル比が前記範囲より小さくな
ると得られるフェライト結晶粒子粉末は、粗大化し易く
分散性の低下、記録媒体における配向性、表面平滑性な
どの特性の低下がさけられない。また前記該モル比が、
前記範囲より大きくなるとマグネトプランバイト型結晶
と異なる結晶相が混在したりして、飽和磁化の低下や形
状の不均一化がさけられなかったりし好ましくない。な
お置換成分Meは、Co、Ti、Ni、Mn、Zr、Zn、Ge、Nb、V
の少なくとも1種をFe1モルに対して0.2モル以下好まし
くは0.17モル以下使用し得るが、とりわけFe成分を少な
くともCo及びTi元素で置換することが好ましい。
That is, in the present invention, Ba has a molar ratio of Fe + Me (however, Me
Is at least one element selected from the group consisting of Co, Ti, Ni, Mn, Zr, Zn, Ge, Nb and V, and is 1/6 to 1/10 with respect to 0.2 mol or less per 1 mol of Fe). Alkaline suspension containing each element selected so that the free OH group concentration is 1.5 mol / or more is heat-treated at a temperature range of 120 to 200 ° C. to obtain a barium ferrite precipitate. The precipitate
Calcination in a temperature range of 650 to 950 ° C., or, during the calcination, the precipitate contains a silicon compound or sodium,
Chloride of potassium, lithium or strontium,
A method for producing a ferromagnetic fine powder for magnetic recording, characterized in that barium ferrite crystal particles are obtained by previously adding and burning at least one of sulfate, carbonate and nitrate. In the method of the present invention, first, at least one of Co, Ti, Ni, Mn, Zr, Zn, Ge, Nb and V compounds as a substitution element Me for controlling coercive force is used in a predetermined amount. Make an aqueous solution containing. As these compounds, various aqueous solution compounds can be used, but chlorides, nitrates and the like are preferable. The barium component has a molar ratio of 1/6 to 1/10, preferably 1/7 to 1/9, with respect to the Fe + Me component. When the molar ratio is smaller than the above range, the obtained ferrite crystal particle powder is liable to be coarsened, and the dispersibility is deteriorated, and the characteristics such as orientation in the recording medium and surface smoothness are unavoidable. Further, the molar ratio is
If it is larger than the above range, a crystal phase different from the magnetoplumbite type crystal may be mixed and the decrease of the saturation magnetization and the nonuniformity of the shape may be unavoidable, which is not preferable. The substitution component Me is Co, Ti, Ni, Mn, Zr, Zn, Ge, Nb, V
It is possible to use at least one of 0.2 mol or less, preferably 0.17 mol or less, relative to 1 mol of Fe, and it is particularly preferable to replace the Fe component with at least Co and Ti elements.

次に上記金属化合物水溶液に、例えばNaOH、KOH、NH4
OHなどの水溶液を接触、混合しアルカリ性懸濁液とす
る。前記アルカリ性懸濁液のアルカリ濃度は遊離OH基準
で1.5モル/以上好ましくは2モル/以上であっ
て、前記範囲より低きにすぎると、反応が十分進まず非
板状粒子の生成が多くみられ、このものは焼成過程で焼
結粒子を形成し易く配向性、分散性などの低下がさけら
れない。
Next, in the above metal compound aqueous solution, for example, NaOH, KOH, NH 4
An aqueous solution such as OH is contacted and mixed to make an alkaline suspension. The alkaline concentration of the alkaline suspension is 1.5 mol / mol or more, preferably 2 mol / mol or more on the basis of free OH. If it is lower than the above range, the reaction does not proceed sufficiently and non-plate-like particles are often produced. However, this product easily forms sintered particles during the firing process, and deterioration of orientation, dispersibility, etc. is unavoidable.

次いで前記アルカリ性懸濁液をオートクレーブなどの
圧力容器に入れて、120〜250℃、好ましくは150〜200℃
で水熱反応処理して板状粒子のバリウムフェライト沈澱
物を形成させる。前記の水熱処理時の温度が前記の範囲
より低い場合には、フェライト化反応が十分進まず非板
状粒子の生成が多くみられ、このものは焼結粒子を形成
し易く、そのため均一な形状のバリウムフェライト粒子
粉末が得られにくかったり、配向性の低下がさけられな
かったりする。一方、前記範囲より高い場合には、反応
が急激に進み易く粗大粒子の形成、粒度分布の広がりが
さけられなかったりして好ましくない。
Then put the alkaline suspension in a pressure vessel such as an autoclave, 120 ~ 250 ℃, preferably 150 ~ 200 ℃
And hydrothermal reaction is performed to form a barium ferrite precipitate of plate-like particles. When the temperature during the hydrothermal treatment is lower than the above range, the ferritization reaction does not proceed sufficiently and non-plate-like particles are often generated, which easily forms sintered particles and therefore has a uniform shape. It is difficult to obtain the barium ferrite particle powder, and the decrease in orientation is unavoidable. On the other hand, if it is higher than the above range, the reaction is likely to proceed rapidly, and formation of coarse particles and spread of the particle size distribution are unavoidable, which is not preferable.

本発明方法において、前記のように水熱反応処理して
得られた板状粒子のバリウムフェライト沈澱物を、水
洗、乾燥後、次いで焼成するには普通650〜950℃、望ま
しくは、700〜900℃でおこなう。焼成温度が前記の範囲
より低くなると、バリウムフェライト粒子の結晶化が十
分進まず、飽和磁化が低かったりし、また前記範囲より
高くなるとバリウムフェライト粒子相互の固着や焼結が
おこり凝集塊が形成され易く、塗料化での分散性が大幅
に損なわれ記録媒体の磁気特性や表面平滑性などの低下
がさけられなかったりする。前記焼成は、回転炉、流動
層炉などの種々の型式の装置を使用して通常0.5〜5時
間程度でおこなうことができる。
In the method of the present invention, the barium ferrite precipitate of the plate-like particles obtained by the hydrothermal reaction treatment as described above is washed with water, dried, and then calcined usually at 650 to 950 ° C, preferably 700 to 900. Perform at ℃. If the firing temperature is lower than the above range, the crystallization of the barium ferrite particles does not proceed sufficiently and the saturation magnetization is low, and if the firing temperature is higher than the above range, the barium ferrite particles stick to each other or sinter to form agglomerates. It is easy to do so, and the dispersibility in the form of coating material is greatly impaired, and the magnetic characteristics and surface smoothness of the recording medium are unavoidable. The calcination can be carried out usually for about 0.5 to 5 hours using various types of devices such as a rotary furnace and a fluidized bed furnace.

本発明において、前記のようにして得られた微細粒子
のバリウムフェライト沈澱物の焼成に際して、該沈澱物
にケイ素化合物や、ナトリウム、カリウム、リチウムま
たはストロンチウムの、塩化物、硫酸塩、炭酸塩、硝酸
塩を予め添加処理してから焼成する場合には、微細なバ
リウムフェライト沈澱粒子の焼成時の粒子間焼結や粒子
形状の崩れを抑制する上できわめて有効であって分散
性、配向性のより一層優れたバリウムフェライト結晶粒
子を得ることができる。
In the present invention, when the fine particle barium ferrite precipitate obtained as described above is fired, the precipitate contains a silicon compound, or a chloride, sulfate, carbonate or nitrate of sodium, potassium, lithium or strontium. In the case of firing after the addition treatment in advance, it is extremely effective in suppressing the inter-particle sintering and the collapse of the particle shape during firing of the fine barium ferrite precipitated particles, and is more effective in dispersibility and orientation. It is possible to obtain excellent barium ferrite crystal particles.

前記処理剤として使用するケイ素化合物としては、例
えばオルトケイ酸ナトリウム、メタケイ酸ナトリウム、
メタケイ酸カリウム、メタケイ酸カルシウム、ケイ酸マ
グネシウムなどのケイ酸塩、シリコーンオイル、シリコ
ーンレジン、クロルシラン、アルコキシテンなどのシラ
ンやシロキサン等を挙げることができるが、通常種々の
組成の水ガラスのケイ酸塩水溶液を使用するのが望まし
い。前記ケイ素化合物よりなる処理剤を、バリウムフェ
ライト沈殿物に添加処理するには、種々の方法によって
おこなうことができるが、例えば、前記バリウムフェラ
イト沈殿粒子を含む水性懸濁液中に、ケイ酸塩水溶液を
添加し、これを酸性物質で中和することによって該粒子
表面にケイ酸水和物(SiO2・nH2O)として被覆したり、
あるいは有機ケイ素化合物を有機溶媒に溶解した溶液中
に、前記バリウムフェライト沈殿粒子を懸濁させて該粒
子表面に前記ケイ素化合物を吸着させたり、さらには前
記のケイ酸塩水溶液や有機ケイ素の溶解液をフェライト
沈殿粒子表面に噴霧吸着することによっておこなうこと
ができる。前記ケイ素化合物の添加処理量は、バリウム
フェライト沈殿粒子に対して重量基準でSiとして0.1〜
1.5%、望ましくは0.2〜1%である。添加処理量が、前
記範囲より少なきにすぎると焼結防止等の所望の効果が
十分もたされず、一方前記範囲より多きにすぎると、飽
和磁化の低下をきたすなど磁気特性が損なわれたりして
好ましくない。
Examples of the silicon compound used as the treatment agent include sodium orthosilicate, sodium metasilicate,
Examples thereof include silicates such as potassium metasilicate, calcium metasilicate, and magnesium silicate, silanes such as silicone oil, silicone resin, chlorosilane, and alkoxyten, siloxanes, etc. It is desirable to use an aqueous salt solution. The treatment agent containing the silicon compound may be added to the barium ferrite precipitate by various methods. For example, an aqueous silicate solution may be added to an aqueous suspension containing the barium ferrite precipitate particles. Is added, and the particles are neutralized with an acidic substance to coat the surface of the particles as hydrated silicic acid (SiO 2 · nH 2 O),
Alternatively, in a solution of an organic silicon compound dissolved in an organic solvent, the barium ferrite precipitated particles are suspended to adsorb the silicon compound on the particle surface, and further, a solution of the silicate aqueous solution or the organic silicon solution. Can be carried out by spray adsorption on the surface of the ferrite precipitated particles. The amount of the silicon compound added is 0.1 to 10 as Si on a weight basis with respect to the barium ferrite precipitated particles.
It is 1.5%, preferably 0.2 to 1%. If the addition treatment amount is less than the above range, the desired effects such as sintering prevention cannot be sufficiently exerted, while if it is more than the above range, the magnetic properties may be impaired such as a decrease in saturation magnetization. Is not preferable.

また、前記処理剤として使用するナトリウム、カリウ
ム、リチウムまたはストロンチウムの、塩化物、硫酸
塩、炭酸塩、硝酸塩については、とりわけそれらの塩化
物、硫酸塩が望ましい。前記金属化合物の添加処理は、
種々の方法によっておこなうことができるが、例えば水
熱処理後濾過、洗浄して得られたバリウムフェライト沈
殿粒子の洗浄ケーキを前記金属化合物の水溶液に加えて
懸濁させた後乾燥したり、あるいは、バリウムフェライ
ト沈殿の洗浄ケーキに前記金属化合物の水溶液を加えて
練り込み、必要に応じ乾燥したりすることによっておこ
なうことができる。前記金属化合物の添加処理量は、バ
リウムフェライト沈殿粒子に対して5〜120重量%、望
ましくは5〜20%である。添加処理量が、前記範囲より
少なきにすぎると粒子間焼結の抑制や粒子形状を六角板
状に整えたりする効果が十分でなく、また処理量が前記
範囲より多きにすぎると経済的に有利でない。なお前記
金属化合物の添加処理をおこなう場合には、バリウムフ
ェライト結晶粒子の保磁力を前記した所望の範囲に制御
する上で、置換元素による保磁力低減化を一層効果的に
おこなうことができる。なお、焼成処理剤として前記の
ケイ素化合物とナトリウム化合物、カリウム化合物、リ
チウム化合物、バリウム化合物、ストロンチウム化合物
などの金属化合物を併せ添加処理すると一層望ましい効
果をもたらす場合がある。
Regarding chlorides, sulfates, carbonates and nitrates of sodium, potassium, lithium or strontium used as the treating agent, those chlorides and sulfates are particularly preferable. The addition treatment of the metal compound is
It can be carried out by various methods, for example, after hydrothermal treatment, filtration, washing cake of barium ferrite precipitated particles obtained by washing is added to an aqueous solution of the metal compound and suspended, or dried, or barium. It can be carried out by adding an aqueous solution of the above-mentioned metal compound to a washing cake of the ferrite precipitate, kneading, and drying if necessary. The addition amount of the metal compound is 5 to 120% by weight, preferably 5 to 20% by weight based on the barium ferrite precipitated particles. If the addition treatment amount is less than the above range, the effect of suppressing interparticle sintering or adjusting the particle shape into a hexagonal plate shape is not sufficient, and if the treatment amount is more than the above range, it is economical. Not advantageous. When the addition treatment of the metal compound is performed, the coercive force can be more effectively reduced by the substituting element in controlling the coercive force of the barium ferrite crystal particles in the desired range described above. It should be noted that a more desirable effect may be brought about by adding the silicon compound and a metal compound such as a sodium compound, a potassium compound, a lithium compound, a barium compound or a strontium compound as a baking treatment agent together.

前記のようにして得られたバリウムフェライト粒子粉
末は、水性媒液あるいは必要に応じ酸性水性媒液中に浸
漬処理して過剰のバリウム分や夾雑成分を酸洗除去す
る。なお前記の場合に水性媒液に強酸性媒液を使用して
処理すると、分散性が一層高められる場合がある。
The barium ferrite particle powder obtained as described above is immersed in an aqueous medium or, if necessary, an acidic aqueous medium to remove excess barium and impurities by pickling. In the above case, the dispersibility may be further enhanced by treating the aqueous medium with a strongly acidic medium.

以上詳述したように本発明の製造方法によって得られ
た強磁性微粉末は、飽和磁化ほぼ45〜60emu/g、保磁力
ほぼ400〜2,000Oeを有するマグネトプランバイト型のバ
リウムフェライト結晶粒子粉末で、このものは板状を呈
し平均粒子径がほぼ0.05〜0.15μでかつ粒度分布の広が
りも少なく磁気記録媒体の磁性層中での分散性にきわめ
て優れ、高密度垂直磁気記録用材料として甚だ好適なも
のである。
As described in detail above, the ferromagnetic fine powder obtained by the manufacturing method of the present invention is a magnetoplumbite-type barium ferrite crystal particle powder having a saturation magnetization of about 45 to 60 emu / g and a coercive force of about 400 to 2,000 Oe. , Which has a plate-like shape and has an average particle size of approximately 0.05 to 0.15μ and a small particle size distribution and has excellent dispersibility in the magnetic layer of a magnetic recording medium, and is very suitable as a material for high density perpendicular magnetic recording. It is something.

〔発明の実施例〕Example of Invention

以下に実施例及び比較例を挙げ本願発明をさらに説明
する。
The present invention will be further described below with reference to Examples and Comparative Examples.

実施例1. 1モル/のBaCl2水溶液360ml、1モル/のFeCl3
水溶液2520ml、1モル/のCoCl2水溶液180ml及び1モ
ル/のTiCl4水溶液180mlを混合し、(Ba/Fe+Meモル
比;1/8、Ba/Feモル比;1.5/10.5)、次いでこの混合液を
10モル/のNaOH水溶液2730ml中に添加して共沈物を含
むアルカリ性共沈物懸濁液を調製した。ひきつづいて該
懸濁液をオートクレーブに入れ150℃で3時間加熱して
バリウムフェライト沈殿物を生成させた。(該沈殿物
は、X線回析によればマグネトプランバイト型の結晶構
造のもので、平均粒子径がほぼ0.13μの板状粒子であっ
た) 次いで得られた沈殿物を濾過、水洗し、110℃で乾燥
した後粗砕した。しかる後この粉末を小型回転炉中で80
0℃で1時間焼成してバリウムフェライト結晶粒子粉末
を得た。次いで得られた該粉末を塩酸水溶液中に浸漬し
た後濾過、水洗したものを乾燥して本発明の強磁性微粉
末を得た。(試料A) かくして得られた本発明の強磁性微粉末は、マグネト
プランバイト型のバリウムフェライト板状結晶粒子粉末
であって表1に示すように垂直磁気記録媒体用磁性材料
として望ましいものであった。
Example 1. 360 mol of 1 mol / BaCl 2 aqueous solution, 1 mol / FeCl 3
Aqueous solution 2520 ml, 1 mol / CoCl 2 aqueous solution 180 ml and 1 mol / TiCl 4 aqueous solution 180 ml were mixed (Ba / Fe + Me molar ratio; 1/8, Ba / Fe molar ratio; 1.5 / 10.5), and then this mixed solution To
An alkaline coprecipitate suspension containing a coprecipitate was prepared by adding it to 2730 ml of a 10 mol / aqueous NaOH solution. Subsequently, the suspension was placed in an autoclave and heated at 150 ° C. for 3 hours to form a barium ferrite precipitate. (The precipitate had a magnetoplumbite crystal structure according to X-ray diffraction, and was plate-like particles having an average particle size of approximately 0.13 μ). The precipitate thus obtained was filtered and washed with water. After drying at 110 ° C, it was crushed. Then, this powder was placed in a small rotary furnace for 80
It was baked at 0 ° C. for 1 hour to obtain barium ferrite crystal particle powder. Then, the obtained powder was immersed in an aqueous hydrochloric acid solution, filtered, washed with water and dried to obtain a ferromagnetic fine powder of the present invention. (Sample A) The thus obtained ferromagnetic fine powder of the present invention is a magnetoplumbite type barium ferrite plate crystal grain powder and is desirable as a magnetic material for a perpendicular magnetic recording medium as shown in Table 1. It was

実施例2. 実施例1において、アルカリ性懸濁液中のBa分含有量
がBa/Fe+Meのモル比で1/6となるようにしたことのほか
は、同例の場合と同様の方法で処理して本発明による強
磁性微粉末を得た。(試料B) 実施例3. 実施例1において、アルカリ性懸濁液のBa分含有量が
Ba/Fe+Meのモル比で1/10になるようにしたことのほか
は、同例の場合と同様の方法で処理して本発明による強
磁性微粉末を得た。(試料C) 実施例4. 実施例1において、Ba/Fe:1.5/10.4にしたことおよび
アルカリ性懸濁液の遊離OH基濃度を4モル/に、ま
た、水熱処理を150℃で5時間にしたことのほかは、同
例の場合と同様の方法で処理して本発明による強磁性微
粉末を得た。(焼成温度を800℃としたものを試料D、8
50℃としたものを試料Eとした) 実施例5. 実施例4において得られた水熱反応処理沈殿物を濾
過、水洗し、この洗浄ケーキを水にてリパルプしたスラ
リー(固形分濃度50g/)に水ガラス水溶液(Si濃度10
g/)を添加し撹拌しながら、さらに塩酸(0.1N)にて
PH7.3に調節しバリウムフェライト沈殿粒子表面にケイ
素化合物をSi換算0.5重量%被覆した。処理物は濾過、
水洗し110℃で乾燥した後粗砕した。
Example 2. Treated in the same manner as in Example 1 except that the Ba content in the alkaline suspension was set to 1/6 in terms of the molar ratio Ba / Fe + Me in Example 1. Then, a ferromagnetic fine powder according to the present invention was obtained. (Sample B) Example 3. In Example 1, the Ba content of the alkaline suspension was
A ferromagnetic fine powder according to the present invention was obtained by treating in the same manner as in the case of the same example except that the molar ratio of Ba / Fe + Me was set to 1/10. (Sample C) Example 4. In Example 1, the Ba / Fe ratio was changed to 1.5 / 10.4, the concentration of free OH groups in the alkaline suspension was changed to 4 mol / hour, and the hydrothermal treatment was performed at 150 ° C. for 5 hours. Other than the above, the ferromagnetic fine powder according to the present invention was obtained by the same method as in the case of the same example. (Samples D and 8 with a firing temperature of 800 ° C
A sample obtained at 50 ° C. is referred to as Sample E. Example 5. The hydrothermal reaction treatment precipitate obtained in Example 4 was filtered and washed with water, and the washed cake was repulped with a slurry (solid content concentration 50 g / ) Water glass solution (Si concentration 10
g /) and add it with hydrochloric acid (0.1N) with stirring.
The pH was adjusted to 7.3 and the surface of the barium ferrite precipitated particles was coated with a silicon compound in an amount of 0.5% by weight in terms of Si. The processed product is filtered,
It was washed with water, dried at 110 ° C., and then roughly crushed.

しかる後、前記の被覆処理をおこなったフェライト沈
殿粒子粉末を、実施例4の場合と同様の方法で焼成処理
して本発明による強磁性微粉末を得た。この時焼成温度
を800℃としたものを試料F、850℃としたものを試料G
とした。
Thereafter, the ferrite-precipitated particle powder subjected to the above coating treatment was fired in the same manner as in Example 4 to obtain a ferromagnetic fine powder according to the present invention. At this time, the firing temperature was 800 ° C for sample F, and the firing temperature for 850 ° C was sample G
And

実施例6. 実施例5において、水熱処理沈殿物を濾過、水洗した
洗浄ケーキにNa2SO450gを溶解した水溶液350mlを添加し
よく撹拌後110℃で乾燥して水分を蒸発させた。(バリ
ウムフェライト沈殿粒子に対してNa2SO4添加処理量は10
0重量%) 前記のようにして得られた乾燥状物を焼成温度800℃
で実施例5の場合と同様の方法で焼成処理して本発明に
よる強磁性微粉末を得た。(試料H) 実施例7. 実施例6において、Na2SO4に代えてKClを用いかつそ
の添加量をバリウムフェライト沈澱粒子に対して10重量
%としたことのほかは同例の場合と同様の方法で処理し
て本発明による強磁性微粉末を得た。(試料I) 実施例8. 実施例6において、Na2SO4に代えてNaClを用いた(バ
リウムフェライト沈殿粒子に対して100重量%)ことの
ほかは、同例の場合と同様の方法で処理して本発明によ
る強磁性微粉末を得た。(試料J) 実施例9. 実施例6において、Na2SO4に代えてBaCl2を用いた
(バリウムフェライト沈殿粒子に対して100重量%)こ
とのほかは、同例の場合と同様の方法で処理して本発明
による強磁性微粉末を得た。(試料K) 実施例10. 実施例6において、Na2SO4に代えてSrCl2を用いた
(バリウムフェライト沈殿粒子に対して100重量%)こ
とのほかは、同例の場合と同様の方法で処理して本発明
による強磁性微粉末を得た。(試料L) 実施例11. 実施例6において、Na2SO4に代えてNaClとBaCl2を用
いた(バリウムフェライト沈殿粒子に対して各50重量
%)ことのほかは、同例の場合と同様の方法で処理して
本発明による強磁性微粉末を得た。(試料M) 比較例1. 実施例1.において、アルカリ性懸濁液中のBa分含有量
がBa/Fe+Meのモル比で1/11になるようにしたことのほ
かは、同例の場合と同様の方法で処理して比較試料を得
た。(試料N) 比較例2. 実施例1.において、アルカリ性懸濁液中Ba分含有量が
Ba/Fe+Meのモル比で1/4になるようにしたことのほか
は、同例の場合と同様の方法で処理して比較試料を得
た。(試料P) 比較例3. 実施例1.において、水熱処理時の温度を100℃にした
ことのほかは、同例の場合と同様の方法で処理して比較
試料を得た。(試料Q) 比較例4. 実施例1.において、水熱処理時の温度を300℃にした
ことのほかは、同例の場合と同様の方法で処理して比較
試料を得た。(試料R) 比較例5. 実施例1.において、焼成処理時の温度を600℃にした
ことのほかは、同例の場合と同様の方法で処理して比較
試料を得た。(試料S) 比較例6. 実施例1.において、焼成処理時の温度を1000℃にした
ことのほかは、同例の場合と同様の方法で処理して比較
試料を得た。(試料T) 比較例7. 実施例1.において、アルカリ性懸濁液の遊離OH基濃度
を1モル/にしたことのほかは、同例の場合と同様の
方法で処理して比較試料を得た。(試料U) なお、前記の実施例及び比較例で得られた各試料は、
X線回析の結果、いづれもマグネトプランバイト型バリ
ウムフェライトであった。また前記各試料を電子顕微鏡
で観察すると、粒子形状は板状のものであった。
Example 6. In Example 5, 350 ml of an aqueous solution in which 50 g of Na 2 SO 4 was dissolved was added to the washed cake obtained by filtering and washing the hydrothermally treated precipitate, and after stirring well, the mixture was dried at 110 ° C. to evaporate the water content. (The addition amount of Na 2 SO 4 was 10 per barium ferrite precipitate particles.
0% by weight) The dried product obtained as described above is baked at a temperature of 800 ° C.
Then, firing treatment was carried out in the same manner as in Example 5 to obtain a ferromagnetic fine powder according to the present invention. (Sample H) Example 7. Similar to Example 6 except that KCl was used instead of Na 2 SO 4 and the addition amount was 10% by weight based on the barium ferrite precipitated particles. To obtain a ferromagnetic fine powder according to the present invention. (Sample I) Example 8. By the same method as in Example 6 except that NaCl was used instead of Na 2 SO 4 in Example 6 (100% by weight based on the barium ferrite precipitated particles). After processing, a ferromagnetic fine powder according to the present invention was obtained. (Sample J) Example 9. The same method as in the case of Example 6 except that BaCl 2 was used instead of Na 2 SO 4 in Example 6 (100% by weight based on the barium ferrite precipitated particles). To obtain a ferromagnetic fine powder according to the present invention. (Sample K) Example 10. The same method as in the case of Example 6 except that SrCl 2 was used instead of Na 2 SO 4 in Example 6 (100% by weight based on the barium ferrite precipitated particles). To obtain a ferromagnetic fine powder according to the present invention. (Sample L) Example 11. Compared with the same example as in Example 6, except that NaCl and BaCl 2 were used instead of Na 2 SO 4 (each 50 wt% relative to barium ferrite precipitated particles). The ferromagnetic fine powder according to the present invention was obtained by the same treatment. (Sample M) Comparative Example 1. Compared with the same example as in Example 1, except that the Ba content in the alkaline suspension was set to 1/11 in terms of the molar ratio of Ba / Fe + Me. A comparative sample was obtained by processing in the same manner. (Sample N) Comparative Example 2. In Example 1, the Ba content in the alkaline suspension was
A comparative sample was obtained by treating in the same manner as in the case of the example except that the molar ratio of Ba / Fe + Me was set to 1/4. (Sample P) Comparative Example 3. A comparative sample was obtained in the same manner as in Example 1 except that the temperature during the hydrothermal treatment was 100 ° C. in Example 1. (Sample Q) Comparative Example 4. A comparative sample was obtained by treating in the same manner as in the case of Example 1, except that the temperature during the hydrothermal treatment was 300 ° C. in Example 1. (Sample R) Comparative Example 5. A comparative sample was obtained in the same manner as in the case of Example 1, except that the baking temperature was set to 600 ° C. (Sample S) Comparative Example 6. A comparative sample was obtained in the same manner as in Example 1 except that the baking temperature was set to 1000 ° C. in Example 1. (Sample T) Comparative Example 7. A comparative sample was obtained by the same method as in the case of Example 1, except that the concentration of free OH groups in the alkaline suspension was changed to 1 mol / l in Example 1. It was (Sample U) Each sample obtained in the above-mentioned Examples and Comparative Examples
As a result of X-ray diffraction, all were magnetoplumbite type barium ferrite. When each of the samples was observed with an electron microscope, the particle shape was plate-like.

前記各試料について常法により平均粒子径(Dp:電子
顕微鏡法)、保磁力(Hc)、飽和磁化(σs)を測定
し、さらに次記の配合組成で磁性塗料を調製し、このも
のをポリエステルフィルム上に塗布し、塗布面に垂直に
配向処理して磁気記録媒体を作成した。
The average particle diameter (Dp: electron microscopy), coercive force (Hc), and saturation magnetization (σs) of each sample were measured by a conventional method, and a magnetic coating material was prepared with the following composition, and this was used as a polyester. A magnetic recording medium was prepared by coating on a film and orienting perpendicularly to the coated surface.

磁性粉末 100 重量部 酢ビ−塩ビ共重合体樹脂 16.2 〃 界面活性剤 4 〃 メチルエチルケトン 186 〃 前記記録媒体について、常法により保磁力(Hc⊥:媒
体面に対して垂直方向)、配向比(OR)、角形比(SQ
⊥:媒体面に垂直方向であって、反磁界補正後の値であ
る) これらの結果を表1に示す。
Magnetic powder 100 parts by weight Vinyl acetate / vinyl chloride copolymer resin 16.2 〃 Surfactant 4 〃 Methyl ethyl ketone 186 〃 Coercive force (Hc⊥: perpendicular to the medium surface), orientation ratio (OR ), Squareness ratio (SQ
⊥: It is the direction perpendicular to the medium surface and is the value after demagnetizing field correction.) These results are shown in Table 1.

表1の結果から明らかなように、Ba/Fe+Meのモル
比、遊離OH基濃度、水熱処理温度及び焼成処理温度が本
発明の範囲にある場合には、水熱処理によって大きさの
よく揃ったバリウムフェライト結晶粒子の前駆体沈殿物
が形成されるために、このものを焼成したものは、目的
とする結晶状態のよい板状のマグネプランバイト型の粒
径の小さい均一なバリウムフェライト微粉末が得られ
る。そうして、このものは、飽和磁化が十分高いもので
あるとともに、角形比、配向性特に垂直配向性が優れて
おり分散性の良好なものである。また焼成処理剤を添加
処理したものは、粒子間焼結が抑制され配向性、分散性
が一層優れたものとすることができる。なお、焼成処理
剤として、ナトリウム、カリウム、バリウム、ストロン
チウム等金属化合物を添加処理した場合には、電子顕微
鏡での観察によると粒子成長による粗大化はほとんどみ
られず、とりわけ粒子形状がよく整ったものであって、
かつ粒子間焼結による凝集粒子の形成も抑制されたもの
であり、また置換元素による保磁力制御を一層効果的に
おこなうことができるものである。
As is clear from the results shown in Table 1, when the molar ratio of Ba / Fe + Me, the concentration of free OH groups, the hydrothermal treatment temperature and the calcination treatment temperature are within the ranges of the present invention, barium having a uniform size by hydrothermal treatment is obtained. Since a precursor precipitate of ferrite crystal particles is formed, the product obtained by firing this product is a plate-shaped magneplanbite-type uniform barium ferrite fine powder with a small particle size and a desired crystal state. To be Thus, this product has a sufficiently high saturation magnetization and is excellent in dispersibility because it is excellent in the squareness ratio and the orientation, particularly the vertical orientation. In addition, the one to which the baking treatment agent is added can be made to have more excellent orientation and dispersibility by suppressing inter-particle sintering. When a metal compound such as sodium, potassium, barium, or strontium was added as a baking treatment agent, coarsening due to particle growth was hardly observed by observation with an electron microscope, and the particle shape was particularly well adjusted. The thing
In addition, the formation of agglomerated particles due to interparticle sintering is suppressed, and the coercive force control by the substitution element can be more effectively performed.

〔発明の効果〕〔The invention's effect〕

飽和磁化が大きく、優れた垂直配向性を有する高分散
性のバリウムフェライト結晶粒子よりなる強磁性微粉末
を、比較的簡潔な手段でもって最適条件処理によって容
易に製造し得、垂直磁気記録媒体のノイズレベルの低減
化、高出力化を図る上で甚だ有用なものである。
Ferromagnetic fine powder composed of highly dispersible barium ferrite crystal particles having a large saturation magnetization and excellent perpendicular orientation can be easily produced by the optimum condition treatment by a relatively simple means. This is extremely useful for reducing the noise level and increasing the output.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭59−175707(JP,A) 特開 昭56−160328(JP,A) 特開 昭60−81804(JP,A) 特開 昭60−122725(JP,A) 特開 昭61−168532(JP,A) 特開 昭62−138330(JP,A) 特開 昭62−216921(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (56) Reference JP-A-59-175707 (JP, A) JP-A-56-160328 (JP, A) JP-A-60-81804 (JP, A) JP-A-60- 122725 (JP, A) JP 61-168532 (JP, A) JP 62-138330 (JP, A) JP 62-216921 (JP, A)

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】Baが、モル比でFe+Me(但しMeはCo、Ti、
Ni、Mn、Zr、Zn、Ge、Nb及びVの群から選ばれた少なく
とも1種の元素で、Fe1モルに対して0.2モル以下)に対
して1/6〜1/10の割合となるように選ばれた各元素を含
みかつ遊離OH基濃度が1.5モル/以上であるアルカリ
性懸濁液を120〜200℃の温度範囲で加熱処理して、バリ
ウムフェライト沈澱物を得、次いで該沈澱物を650〜950
℃の温度範囲で焼成してバリウムフェライト結晶粒子と
することを特徴とする磁気記録用強磁性微粉末の製造方
法。
1. Ba is a molar ratio of Fe + Me (where Me is Co, Ti,
At least one element selected from the group consisting of Ni, Mn, Zr, Zn, Ge, Nb, and V, with a ratio of 1/6 to 1/10 to 0.2 mol or less per 1 mol of Fe) An alkaline suspension containing each element selected in 1. and having a free OH group concentration of 1.5 mol / or more is heat-treated in the temperature range of 120 to 200 ° C. to obtain a barium ferrite precipitate, and then the precipitate is 650-950
A method for producing a ferromagnetic fine powder for magnetic recording, comprising firing at a temperature range of ° C to obtain barium ferrite crystal particles.
【請求項2】Baが、モル比でFe+Me(但しMeはCo、Ti、
Ni、Mn、Zr、Zn、Ge、Nb及びVの群から選ばれた少なく
とも1種の元素で、Fe1モルに対して0.2モル以下)に対
して1/6〜1/10の割合となるように選ばれた各元素を含
みかつ遊離OH基濃度が1.5モル/以上であるアルカリ
性懸濁液を120〜200℃の温度範囲で加熱処理して、バリ
ウムフェライト沈澱物を得、次いで該沈澱物を650〜950
℃の温度範囲で焼成してバリウムフェライト結晶粒子と
する方法であって、該沈澱物にケイ素化合物を添加処理
した後焼成することを特徴とする磁気記録用強磁性微粉
末の製造方法。
2. Ba in a molar ratio of Fe + Me (where Me is Co, Ti,
At least one element selected from the group consisting of Ni, Mn, Zr, Zn, Ge, Nb, and V, with a ratio of 1/6 to 1/10 to 0.2 mol or less per 1 mol of Fe) An alkaline suspension containing each element selected in 1. and having a free OH group concentration of 1.5 mol / or more is heat-treated in the temperature range of 120 to 200 ° C. to obtain a barium ferrite precipitate, and then the precipitate is 650-950
A method for producing a ferromagnetic fine powder for magnetic recording, comprising a step of firing in the temperature range of ° C to obtain barium ferrite crystal particles, which comprises adding a silicon compound to the precipitate and then firing.
【請求項3】Baが、モル比でFe+Me(但しMeはCo、Ti、
Ni、Mn、Zr、Zn、Ge、Nb及びVの群から選ばれた少なく
とも1種の元素で、Fe1モルに対して0.2モル以下)に対
して1/6〜1/10の割合となるように選ばれた各元素を含
みかつ遊離OH基濃度が1.5モル/以上であるアルカリ
性共沈物懸濁液を、該共沈物を濾別、水洗することな
く、120〜200℃の温度範囲で加熱処理して、バリウムフ
ェライト沈澱物を得、次いで該沈澱物を650〜950℃の温
度範囲で焼成してバリウムフェライト結晶粒子とする方
法であって、該沈澱物にナトリウム、カリウム、リチウ
ムまたはストロンチウムの、塩化物、硫酸塩、炭酸塩、
硝酸塩の少なくとも1種を添加処理した後焼成すること
を特徴とする磁気記録用強磁性微粉末の製造方法。
3. Ba in a molar ratio of Fe + Me (where Me is Co, Ti,
At least one element selected from the group consisting of Ni, Mn, Zr, Zn, Ge, Nb, and V, with a ratio of 1/6 to 1/10 to 0.2 mol or less per 1 mol of Fe) An alkaline coprecipitate suspension containing each element selected in step 1 and having a free OH group concentration of 1.5 mol / or more, in a temperature range of 120 to 200 ° C., without filtering the coprecipitate and washing with water. A method of heat-treating to obtain a barium ferrite precipitate, and then calcining the precipitate in the temperature range of 650 to 950 ° C. to form barium ferrite crystal particles, which comprises adding sodium, potassium, lithium or strontium to the precipitate. , Chloride, sulfate, carbonate,
A method for producing a ferromagnetic fine powder for magnetic recording, comprising adding and treating at least one nitrate.
JP61074066A 1985-04-04 1986-03-31 Method for producing ferromagnetic fine powder for magnetic recording Expired - Lifetime JPH08702B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP7166085 1985-04-04
JP60-71660 1985-04-04
JP60-209767 1985-09-21

Publications (2)

Publication Number Publication Date
JPS62275027A JPS62275027A (en) 1987-11-30
JPH08702B2 true JPH08702B2 (en) 1996-01-10

Family

ID=13466978

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61074066A Expired - Lifetime JPH08702B2 (en) 1985-04-04 1986-03-31 Method for producing ferromagnetic fine powder for magnetic recording

Country Status (1)

Country Link
JP (1) JPH08702B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0688794B2 (en) * 1986-04-03 1994-11-09 石原産業株式会社 Method for producing ferromagnetic fine powder for magnetic recording
JPS632813A (en) * 1986-06-24 1988-01-07 Toda Kogyo Corp Production of particulate powder of lamellate ba ferrite for magnetic recording
JPS63260110A (en) * 1987-04-17 1988-10-27 Nippon Zeon Co Ltd Magnetic powder for magnetic recording
US5246609A (en) * 1987-07-13 1993-09-21 Ishihara Sangyo Kaisha, Ltd. Process for preparing ferromagnetic fine particles for magnetic recording
JPH01305826A (en) * 1988-06-01 1989-12-11 Sakai Chem Ind Co Ltd Production of laminar barium ferrite fine powder
JP2670895B2 (en) * 1990-10-01 1997-10-29 戸田工業株式会社 Manufacturing method of plate-shaped composite ferrite fine powder for magnetic recording
JP5906214B2 (en) 2013-04-23 2016-04-20 富士フイルム株式会社 Method for producing magnetic particles for magnetic recording
KR102135359B1 (en) * 2013-11-14 2020-07-17 엘지전자 주식회사 A high-crystallinity ferrite magnetic powder and a sintered magnet prepared by using bimodal ferrite powders comprising the same

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6012973B2 (en) * 1980-05-08 1985-04-04 株式会社東芝 Method for producing Ba-ferrite powder
JPS59175707A (en) * 1983-03-26 1984-10-04 Toda Kogyo Corp Flat ba-ferrite fine particle for magnetic recording and manufacture thereof
JPS6081804A (en) * 1983-10-12 1985-05-09 Toda Kogyo Corp Hexagonal plate type ba ferrite fine-grained powder for magnetic recording and manufacture thereof
JPS60122725A (en) * 1983-12-02 1985-07-01 Toda Kogyo Corp Manufacture of finely-divided powder of lamellar barium ferrite for magnetic recording
JPS61168532A (en) * 1984-08-23 1986-07-30 Sakai Chem Ind Co Ltd Production of fine crystal powder of barium ferrite
JPS62138330A (en) * 1985-12-07 1987-06-22 Nippon Zeon Co Ltd Production of magnetic powder for magnetic recording
JPS62216921A (en) * 1986-03-19 1987-09-24 Central Glass Co Ltd Production of hexagonal ferrite powder

Also Published As

Publication number Publication date
JPS62275027A (en) 1987-11-30

Similar Documents

Publication Publication Date Title
JPH08702B2 (en) Method for producing ferromagnetic fine powder for magnetic recording
JPH0688795B2 (en) Method for producing ferromagnetic fine powder for magnetic recording
JPH0688794B2 (en) Method for producing ferromagnetic fine powder for magnetic recording
KR960002626B1 (en) Process for producing microcrystalline co/ti-substituted barium ferrite platelets
JPH0526727B2 (en)
JPS63233017A (en) Magnetic powder of barium ferrite and its production
JPH0688796B2 (en) Method for producing ferromagnetic fine powder for magnetic recording
JPH01282129A (en) Barium ferrite magnetic powder and its production
JPS6259531A (en) Production of barium ferrite powder
JPH02175806A (en) Manufacture of metal magnetic powder for magnetic recorder
JP2950892B2 (en) Method for producing hexagonal plate-like barium ferrite
JPH0717385B2 (en) Method for producing composite ferrite magnetic powder
KR960011787B1 (en) Proces for preparing ferromagnetic fine particles for magnetic recording
JPS62207720A (en) Preparation of barium ferrite powder
JPH0692256B2 (en) Method for manufacturing barium ferrite powder
JPH0614486B2 (en) Plate-shaped composite ferrite fine particle powder for magnetic recording and method for producing the same
JPH06104576B2 (en) Barium ferrite magnetic powder and method for producing the same
JP2651795B2 (en) Method for producing ferromagnetic fine powder for magnetic recording
KR920006822B1 (en) Ba-ferrite magnetic materials and making method thereof
JPH04362020A (en) Ferritic magnetic powder and its production
JPS63195125A (en) Barium ferrite magnetic powder and production thereof
JPS61295236A (en) Production of particular magnet plumbite-type ferrite
JPS60112626A (en) Manufacture of dense rod-shaped iron oxyhydroxide
JPH05214413A (en) Production of magnetic powder for high-density recording medium
JPS60151224A (en) Manufacture of barium ferrite powder