JPH0688795B2 - Method for producing ferromagnetic fine powder for magnetic recording - Google Patents

Method for producing ferromagnetic fine powder for magnetic recording

Info

Publication number
JPH0688795B2
JPH0688795B2 JP61083738A JP8373886A JPH0688795B2 JP H0688795 B2 JPH0688795 B2 JP H0688795B2 JP 61083738 A JP61083738 A JP 61083738A JP 8373886 A JP8373886 A JP 8373886A JP H0688795 B2 JPH0688795 B2 JP H0688795B2
Authority
JP
Japan
Prior art keywords
particles
ferrite
magnetic recording
compound
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61083738A
Other languages
Japanese (ja)
Other versions
JPS62241827A (en
Inventor
和男 中田
正治 平井
伸祐 匠
佐富郎 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ishihara Sangyo Kaisha Ltd
Original Assignee
Ishihara Sangyo Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ishihara Sangyo Kaisha Ltd filed Critical Ishihara Sangyo Kaisha Ltd
Priority to JP61083738A priority Critical patent/JPH0688795B2/en
Publication of JPS62241827A publication Critical patent/JPS62241827A/en
Publication of JPH0688795B2 publication Critical patent/JPH0688795B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compounds Of Iron (AREA)
  • Hard Magnetic Materials (AREA)

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、高密度磁気記録、特に垂直磁気記録用媒体に
好適な六方晶フェライト結晶粒子よりなる磁気記録用強
磁性微粉末の製造方法に関する。
Description: TECHNICAL FIELD OF THE INVENTION The present invention relates to a method for producing a ferromagnetic fine powder for magnetic recording, which is composed of hexagonal ferrite crystal grains and is suitable for a medium for high density magnetic recording, particularly perpendicular magnetic recording.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

磁気記録は、一般に記録媒体の面内長手方向に磁化する
方式がとられている。しかるに、この方式による場合は
記録の高密度化を図ると記録媒体内の反磁界が増大して
十分な高密度記録を達成し難い。このような長手方向の
記録方式に対して記録媒体層の表面に垂直方向に磁化す
ることによって記録媒体内の反磁界を減少させて高密度
記録を図るいわゆる垂直磁気記録方式が近年とみに注目
されきている。
Magnetic recording generally employs a method of magnetizing in the longitudinal direction of the recording medium. However, in the case of this method, if the recording density is increased, the demagnetizing field in the recording medium increases and it is difficult to achieve sufficient high-density recording. In contrast to such a longitudinal recording method, a so-called perpendicular magnetic recording method, which aims at high density recording by reducing the demagnetizing field in the recording medium by magnetizing in the direction perpendicular to the surface of the recording medium layer, has been noticed in recent years. ing.

ところで、前記垂直磁気記録媒体としては、従来から実
用化が試みられてきている。Co−Cr系などの合金膜法に
よるもののほか、バリウムフェライトのような六方晶フ
ェライト結晶粒子粉末をバインダーに分散させたものを
ベースフイルム上に塗布するいわゆる塗布型記録媒体が
提案されている。前記塗布型の場合にあっては、従来の
長手記録方式の記録媒体の製造の場合と同様に生産性よ
く経済的にも有利に製造し得るとともに記録媒体の耐久
性が優れているところから、その実用化が急がれてい
る。
By the way, the perpendicular magnetic recording medium has been attempted to be put into practical use. In addition to the Co-Cr-based alloy film method, a so-called coating type recording medium has been proposed in which hexagonal ferrite crystal particle powder such as barium ferrite is dispersed in a binder and coated on a base film. In the case of the coating type, since the durability of the recording medium is excellent as well as the productivity can be economically advantageously produced in the same manner as in the case of the production of the conventional longitudinal recording type recording medium, Its practical application is urgent.

一方、前記の垂直磁気記録媒体に使用される六方晶フェ
ライト結晶粒子よりなる磁性粉末としては、記録時に磁
気ヘッドを飽和せしめない適当な範囲の保磁力(Hc:400
〜2000Oe)と大きな飽和磁化を有しかつ粒子板面状に対
して垂直方向に磁化容易軸をもつものであるとともに、
0.3μ以下とりわけ0.2μ以下の微細な粒子径のものであ
って磁性層中での分散性が良好なものであることが重要
であるとされている。しかして近時、前記の磁性粉末に
要求される特性は、高記録密度化の指向とあいまって、
垂直磁気記録媒体におけるノイズレベルの低減化及び短
波長領域での高出力化を満足し得るものであることが一
層望まれてきている。これがため、より微細な粒子径の
ものであってしかも粒子径分布もよりシャープなもので
あること、かつ分散性が良好であって塗膜面の平滑性に
優れ、高配向性、高充填性を示す六方晶フェライト粒子
粉末の開発がますます急がれている。
On the other hand, as the magnetic powder composed of hexagonal ferrite crystal particles used for the perpendicular magnetic recording medium, a coercive force (Hc: 400
~ 2000 Oe) and a large saturation magnetization, and has an easy axis of magnetization in the direction perpendicular to the surface of the particle plate,
It is said that it is important that the particles have a fine particle size of 0.3 μm or less, especially 0.2 μm or less, and have good dispersibility in the magnetic layer. Recently, however, the characteristics required for the magnetic powder are, in combination with the trend toward higher recording density,
It is further desired that the perpendicular magnetic recording medium can satisfy the reduction of the noise level and the high output in the short wavelength region. Therefore, the particle size is finer and the particle size distribution is sharper, and the dispersibility is good and the coating surface is excellent in smoothness, high orientation, and high filling property. There is an urgent need to develop hexagonal ferrite particles that exhibit

従来から、六方晶フェライト粒子粉末の製造方法につい
ては、種々の方法が知られており、また粒子の微細化に
ついても数多くの提案がなされているが、一般に粒子の
微細化にともなって分散性や配向性が大巾にそこなわれ
易く、このため未だ前記要望を十分満足されるには至っ
ておらずその解決が強く希求されている。例えば六方晶
フェライト粒子微粉末の製造方法として、六方晶フェラ
イトの構成成分を含む金属塩水溶液とアルカリ水溶液を
混合して得られる前駆体物質懸濁液を一旦加熱処理した
後焼成する方法はよく知られている。この方法は製造が
比較的容易であり、かつ微細で飽和磁化の高いものが得
られ易いものであるが、フェライト前駆体粒子の微細化
が進むと焼成過程での粒子間焼結や粒子形状の崩れが起
り易く、このため配向性、充填性、分散性などの低下が
さけられなかったりする。
Conventionally, various methods have been known for producing hexagonal ferrite particle powder, and many proposals have been made for making the particles finer, but in general, the dispersibility and the fineness of the particles have been improved. The orientation is liable to be greatly damaged, and therefore the above-mentioned demand has not yet been fully satisfied, and a solution thereof is strongly desired. For example, as a method for producing fine powder of hexagonal ferrite particles, a method in which a precursor substance suspension obtained by mixing an aqueous metal salt solution containing constituents of hexagonal ferrite and an aqueous alkali solution is heat-treated and then fired is well known. Has been. This method is relatively easy to produce, and it is easy to obtain fine and highly saturated magnetization, but as the ferrite precursor particles become finer, interparticle sintering and particle shape in the firing process Crumbling is liable to occur, which may prevent reduction in orientation, filling properties, dispersibility, and the like.

また、一般に、六方晶フェライト粒子は保磁力が高く、
このため記録媒体として適当な範囲の保磁力に制御する
必要があり、通常Co、Ti、Ni、Mn、Zr等の元素を適量添
加することによってフェライト構成原子のFe3+の一部を
置換させる方法が行なわれるが、均一に効率良く置換さ
せ且つ焼結を抑制させないと保磁力低減効果が十分でな
く、結局、所望の低保磁力粉末を得ようとすると、これ
ら元素の置換量を多くする必要があり、その結果飽和磁
化の低下や磁化容易軸の垂直異方性が損われ易いという
問題があった。
Generally, hexagonal ferrite particles have high coercive force,
For this reason, it is necessary to control the coercive force within an appropriate range as a recording medium. Usually, by adding an appropriate amount of elements such as Co, Ti, Ni, Mn, and Zr, a part of Fe 3+ of ferrite constituent atoms is replaced. The method is carried out, but the effect of reducing coercive force is not sufficient unless it is uniformly and efficiently replaced and the sintering is not suppressed. In the end, when trying to obtain a desired low coercive force powder, the substitution amount of these elements is increased. However, as a result, there is a problem that the saturation magnetization is lowered and the perpendicular anisotropy of the easy magnetization axis is easily damaged.

〔発明の目的〕[Object of the Invention]

本発明は、粒子間焼結を実質的に回避し得るとともに保
磁力制御が容易な方法であって、飽和磁化が十分高く、
微細粒子径のもので、且つ形状の整った六角板状で垂直
配向性に優れた高分散性の磁気記録用、とりわけ垂直磁
気記録用に好適な六方晶フェライト結晶粉末の製造方法
を提供することを目的とする。
The present invention is a method that can substantially avoid inter-particle sintering and easy control of coercive force, saturation magnetization is sufficiently high,
To provide a method for producing a hexagonal ferrite crystal powder having a fine particle size, a well-shaped hexagonal plate, and excellent in vertical orientation, which is suitable for highly dispersive magnetic recording, particularly for perpendicular magnetic recording. With the goal.

〔発明の概要〕[Outline of Invention]

本発明者等は、かねてより六角板状の六方晶フェライト
結晶粒子の製造における前記問題点を解決すべく種々検
討を進めた結果、微細なフェライト前駆体物質を焼成す
るにあたり特定の組合せの焼成処理剤を使用することに
よって、意外にも、粒子形状がよく整うとともに粒子間
焼結が実質的に回避し得、しかもCo、Ti等による組成の
部分置換を効率よくおこなわしめ、保磁力制御が容易に
なし得られることの知見を得、本発明を完成したもので
ある。
The present inventors have carried out various investigations to solve the above problems in the production of hexagonal plate-shaped hexagonal ferrite crystal particles, and as a result, a specific combination of firing treatments when firing a fine ferrite precursor substance. Surprisingly, the use of the agent makes it possible to arrange the particle shape well and substantially avoid interparticle sintering, and moreover, the partial substitution of the composition by Co, Ti, etc. is efficiently performed, and the coercive force control is easy. The present invention has been completed based on the knowledge that the above can be achieved.

すなわち、本発明は、バリウム、ストロンチウム、鉛の
群から選ばれる1種以上の金属化合物と鉄化合物とを少
なくとも含む水溶液と、アルカリ水溶液とを混合してア
ルカリ性懸濁液とし、次いで該懸濁液を60〜250℃で加
熱処理することによりフェライト前駆体物質を得、得ら
れた該前駆体物質に、ケイ素化合物と、アルカリ金属及
びアルカリ土類金属の、塩化物、硫酸塩、炭酸塩、硝酸
塩の少なくとも1種とを添加処理し、しかる後650〜950
℃の温度範囲で焼成して六方晶フェライト結晶粒子とす
ることを特徴とする磁気記録用強磁性微粉末の製造方法
である。
That is, the present invention is to prepare an alkaline suspension by mixing an aqueous solution containing at least one metal compound selected from the group of barium, strontium, and lead and an iron compound with an alkaline aqueous solution, and then preparing the alkaline suspension. To obtain a ferrite precursor substance by heat treatment at 60 to 250 ° C., and the obtained precursor substance contains a silicon compound, an alkali metal and an alkaline earth metal chloride, a sulfate, a carbonate, and a nitrate. At least one of the above, and then 650-950
A method for producing a ferromagnetic fine powder for magnetic recording, which comprises firing hexagonal ferrite crystal particles in a temperature range of ° C.

本発明方法において、まず、バリウム、ストロンテウ
ム、鉛の群から選ばれる1種以上の金属化合物Maと鉄化
合物及び所望により保磁力制御のための置換元素Mbとし
てCo、Ti、Ni、Mn、Zr、Zn、Ge、Nb、V化合物の少なく
とも1種を、それぞれ所定量含む水溶液を作成する。こ
れらの化合物は種々の水溶性化合物を使用し得るが、好
ましくは塩化物、硝酸塩などである。前記Ma成分は、Fe
+Mb成分に対してモル比で1/4〜1/12、好ましくは1/6〜
1/10である。該モル比が前記範囲より小さくなると得ら
れるフェライト結晶粒子粉末は、粗大化し易く分散性の
低下、記録媒体における配向性、表面平滑性などの特性
の低下がさけられない。また該モル比が、前記範囲より
大きくなるとマグネトプランバイト型結晶と異なる結晶
相が混在したりして、飽和磁化の低下や形状の不均一化
がさけられなかったりし好ましくない。なお置換成分Mb
は、Co、Ti、Ni、Mn、Zr、Zn、Ge、Nb、Vの少なくとも
1種をFe1モルに対して0.2モル以下、好ましくは0.17モ
ル以下使用し得るが、とりわけFe成分を少なくともCo及
びTi元素で置換することが好ましい。
In the method of the present invention, first, at least one metal compound Ma selected from the group consisting of barium, strontium, and lead, an iron compound, and optionally Co, Ti, Ni, Mn, or Zr as a substitution element Mb for controlling coercive force. , Zn, Ge, Nb, and V compound are prepared in an aqueous solution containing respective predetermined amounts. As these compounds, various water-soluble compounds can be used, but chlorides, nitrates and the like are preferable. The Ma component is Fe
1/4 to 1/12, preferably 1/6 to the molar ratio of + Mb component
It is 1/10. When the molar ratio is smaller than the above range, the obtained ferrite crystal particle powder is liable to be coarsened, and the dispersibility is deteriorated, and the characteristics such as orientation in the recording medium and surface smoothness are unavoidable. On the other hand, if the molar ratio is larger than the above range, a crystal phase different from the magnetoplumbite type crystal may be mixed and the saturation magnetization may not be reduced or the shape may not be uniform, which is not preferable. The substitution component Mb
Can use at least one of Co, Ti, Ni, Mn, Zr, Zn, Ge, Nb, and V in an amount of 0.2 mol or less, preferably 0.17 mol or less, based on 1 mol of Fe. Substitution with Ti element is preferred.

次に上記金属化合物水溶液に、例えばNaOH、KOH、NH4OH
などの水溶液を接触、混合してアルカリ性懸濁液とす
る。前記アルカリの添加量は、金属化合物水溶液に含有
される金属塩に対して当量以上、特に微細なフェライト
強磁性粉末を得ようとする場合は、懸濁液のアリカリ濃
度は、遊離OH基準で1.5モル/l、以上好ましくは2モル/
l以上であって、前記範囲より低きにすぎると、反応が
十分進まず非板状粒子の生成が多くみられ、このものは
焼成過程で焼結粒子を形成し易く配向性、分散性などの
低下がさけられない。
Next, in the above metal compound aqueous solution, for example, NaOH, KOH, NH 4 OH
An aqueous solution such as is contacted and mixed to form an alkaline suspension. The amount of the alkali added is equivalent to or more than the metal salt contained in the aqueous metal compound solution, particularly when trying to obtain a fine ferrite ferromagnetic powder, the alkaline concentration of the suspension is 1.5 on the free OH basis. Mol / l, more preferably 2 mol / l
If it is 1 or more and is lower than the above range, the reaction does not proceed sufficiently and non-plate-like particles are often generated, which easily form sintered particles in the firing process, and orientation, dispersibility, etc. I can't help lowering.

次いで前記アルカリ性懸濁液を加熱装置付の反応容器を
使用するかまたはオートクレーブなどの圧力容器に入れ
て、60〜250℃、好ましくは100〜200℃で加熱反応処理
して板状粒子のフェライト前駆体物質を形成させる。前
記の水熱処理時の温度が前記の範囲より低い場合には、
非晶質体を形成し易く、凝集体になり易い。そのため均
一な形状のフェライト粒子粉末が得られにくく、配向性
の低下がさけられなかったりする。一方、前記範囲より
高い場合には、粗大粒子の形成、粒度分布の広がりがさ
けられなかったりして好ましくない。
The alkaline suspension is then used in a reaction vessel equipped with a heating device or placed in a pressure vessel such as an autoclave, and subjected to a heat reaction treatment at 60 to 250 ° C, preferably 100 to 200 ° C to obtain a ferrite precursor of plate-like particles. Form body material. When the temperature during the hydrothermal treatment is lower than the above range,
Amorphous bodies are easily formed and aggregates are easily formed. Therefore, it is difficult to obtain a ferrite particle powder having a uniform shape, and a decrease in orientation is unavoidable. On the other hand, if it is higher than the above range, formation of coarse particles and spread of the particle size distribution are unavoidable, which is not preferable.

本発明において、前記のようにして得られた六方晶フェ
ライト前駆体物質の焼成に際して、予め焼成処理剤とし
て、ケイ素化合物とアルカリ金属及びアルカリ土類金属
の、塩化物,硫酸塩,炭酸塩,硝酸塩の少なくとも1種
とを添加処理するが、前記処理剤として使用するケイ素
化合物としては、例えばオルトケイ酸ナトリウム、メタ
ケイ酸ナトリウム、メタケイ酸カリウム、メタケイ酸カ
ルシウム、ケイ酸マグネシウムなどのケイ酸塩、シリコ
ーンオイル、シリコーンレジン、クロルシラン、アルコ
キシランなどのシランやシロキサン等を挙げることがで
きるが、通常種々の組成の水ガラスのケイ酸塩水溶液を
使用するのが望ましい。前記ケイ素化合物よりなる処理
剤をフェライト前駆体物質に添加処理するには、種々の
方法によっておこなうことができるが、例えば前記フェ
ライト前駆体物質粒子を含む水性懸濁液中に、ケイ酸塩
水溶液を添加し、これを酸性物質で中和することによっ
て該粒子表面にケイ酸水和物(SiO2・nH2O)として被覆
したり、あるいは有機ケイ素化合物を有機溶媒に溶解し
た溶液中に、前記フェライト前駆体物質粒子を懸濁させ
て該粒子表面に前記ケイ素化合物を吸着させたり、さら
には前記のケイ酸塩水溶液や有機ケイ素の溶解液をフェ
ライト前駆体物質粒子表面に噴霧吸着することによって
おこなうことができる。前記ケイ素化合物の添加処理量
は、フェライト前駆体物質に対して重量基準でSiとして
0.1〜1.5%、望ましくは0.2〜1%である。添加処理量
が、前記範囲より少なきにすぎると焼結防止等の所望の
効果が十分もたらされず、一方前記範囲より多きにすぎ
ると飽和磁化の低下をきたすなど磁気特性が損なわれた
して好ましくない。
In the present invention, when the hexagonal ferrite precursor material obtained as described above is fired, a chloride, a sulfate, a carbonate or a nitrate of a silicon compound and an alkali metal or an alkaline earth metal is previously used as a firing treatment agent. At least one of the above compounds is added, and examples of the silicon compound used as the treating agent include sodium orthosilicate, sodium metasilicate, potassium metasilicate, calcium metasilicate, magnesium silicate, and other silicates, and silicone oil. Examples thereof include silicone resins, silanes such as chlorosilanes and alkoxysilanes, siloxanes, and the like, but it is usually preferable to use silicate aqueous solutions of water glass having various compositions. Various methods can be used to add and process the treating agent comprising the silicon compound to the ferrite precursor substance. For example, an aqueous silicate solution is added to an aqueous suspension containing the ferrite precursor substance particles. By adding and neutralizing this with an acidic substance, the surface of the particles is coated with a hydrated silicate (SiO 2 · nH 2 O), or in a solution in which an organic silicon compound is dissolved in an organic solvent, It is carried out by suspending the ferrite precursor substance particles to adsorb the silicon compound on the surface of the particles, and further by spray-adsorbing the solution of the silicate aqueous solution or the organosilicon on the surface of the ferrite precursor substance particles. be able to. The amount of the silicon compound added is Si as a weight basis with respect to the ferrite precursor substance.
It is 0.1 to 1.5%, preferably 0.2 to 1%. If the addition treatment amount is less than the above range, a desired effect such as sintering prevention cannot be sufficiently obtained, while if it is more than the above range, the magnetic properties are deteriorated such as a decrease in saturation magnetization, which is preferable. Absent.

また、前記焼成処理剤として使用するアルカリ金属とし
ては、例えばナトリウム、カリウム、リチウムなどを、
またアルカリ土類金属としては、例えばバリウム、スト
ロンチウムを挙げることができる。これらの金属を塩化
物、硫酸塩、炭酸塩、硝酸塩などとして使用し得る。前
記アルカリ金属およびアルカリ土類金属の、塩化物,硫
酸塩,炭酸塩,硝酸塩の添加処理は、種々の方法によっ
ておこなうことができるが、例えば加熱処理後濾過、洗
浄して得られたフェライト前駆体物質粒子の洗浄ケーキ
を前記金属の塩化物または塩類の水溶液に加えて懸濁さ
せた後乾燥したり、あるいはフェライト前駆体物質の洗
浄ケーキに前記金属の塩化物または塩類の水溶液を加え
て練り込み、必要に応じ乾燥したりすることによってお
こなうことができる。前記金属化合物の添加処理量は、
フェライト前駆体物質に対して5〜120重量%である。
添加処理量が、前記範囲より少なきにすぎると粒子間焼
結の抑制や粒子形状を六角板状に整えたりする効果が十
分でなく、また、処理量が前記範囲より多きにすぎると
経済的にも有利でない。
In addition, examples of the alkali metal used as the baking treatment agent include sodium, potassium and lithium.
Examples of alkaline earth metals include barium and strontium. These metals can be used as chlorides, sulfates, carbonates, nitrates and the like. The alkali metal and alkaline earth metal chlorides, sulfates, carbonates and nitrates can be added by various methods. For example, a ferrite precursor obtained by heating, filtering and washing. A washing cake of the substance particles is added to an aqueous solution of the chloride or salt of the metal and suspended and then dried, or an aqueous solution of the chloride or salt of the metal is added to the washing cake of the ferrite precursor substance and kneaded. It can be carried out by drying if necessary. The processing amount of the metal compound added is
5 to 120% by weight with respect to the ferrite precursor material.
If the addition treatment amount is less than the above range, the effect of suppressing interparticle sintering or adjusting the particle shape into a hexagonal plate shape is not sufficient, and if the treatment amount is too much than the above range, it is economical. Is not even advantageous.

本発明方法において、前記のように加熱反応処理して得
られたフェライト前駆体物質に前記焼成処理剤の添加処
理をおこなった後、次いで焼成するには普通650〜950
℃、望ましくは、700〜900℃でおこなう。焼成温度が前
記の範囲より低くなると、フェライト粒子の結晶化が十
分進まず、飽和磁化が低くかったりし、また、前記範囲
より高くなるとフェライト粒子相互の固着や焼結がおこ
り凝集塊が形成され易く、塗料化での分散性が大巾に損
なわれ記録媒体の磁気特性や表面平滑性などの低下がさ
けられなかったりする。前記焼成は、回転炉、流動層炉
などの種々の型式の装置を使用して通常0.5〜5時間程
度でおこなうことができる。なお、本発明においては、
前記焼成処理剤の添加処理を行なうことによって、粒子
間焼結の抑制と粒子成長抑制効果を併せ得ることができ
るため、比較的高温域で焼成が可能となり、高飽和磁化
であって、かつ微細粒子径のものを得ることができる。
In the method of the present invention, after the ferrite precursor material obtained by the heat reaction treatment as described above is subjected to the addition treatment of the firing treatment agent, it is normally 650 to 950 for firing.
C., preferably 700 to 900.degree. If the firing temperature is lower than the above range, the crystallization of the ferrite particles does not proceed sufficiently and the saturation magnetization is low, and if the firing temperature is higher than the above range, the ferrite particles are fixed to each other or sintered to form agglomerates. It is easy to do so, and the dispersibility in making a coating material is greatly impaired, and the magnetic characteristics and surface smoothness of the recording medium are unavoidably deteriorated. The calcination can be carried out usually for about 0.5 to 5 hours using various types of devices such as a rotary furnace and a fluidized bed furnace. In the present invention,
By performing the addition treatment of the baking treatment agent, it is possible to obtain the effect of suppressing inter-particle sintering and the effect of suppressing particle growth. Therefore, it becomes possible to perform firing in a relatively high temperature range, high saturation magnetization, and fine graining. Particles having a particle size can be obtained.

前記のようにして得られたフェライト結晶粒子粉末は、
水性媒液あるいは必要に応じ酸性水性媒液中に浸漬処理
して過剰のバリウム分や夾雑成分を酸洗除去する。な
お、前記の場合に水性媒液に強酸性媒液を使用して処理
すると、分散性が一層高められる場合がある。
The ferrite crystal particle powder obtained as described above,
The excess barium and impurities are pickled and removed by immersion treatment in an aqueous medium or, if necessary, an acidic aqueous medium. In the above case, the dispersibility may be further enhanced by treating the aqueous medium with a strongly acidic medium.

以上詳述したように、本発明の製造方法によって得られ
た強磁性微粉末は、飽和磁化ほぼ45〜60emu/g、保磁力
ほぼ400〜2,000Oeを有するマグネトプランバイト型のフ
ェライト結晶粒子粉末で、このものは六角板状を呈し平
均粒子径がほぼ0.05〜0.15μでかつ粒度分布の広がりも
少なく磁気記録媒体の磁性層中での分散性にきわめて優
れ、高密度垂直磁気記録用材料として甚だ好適なもので
ある。
As described in detail above, the ferromagnetic fine powder obtained by the manufacturing method of the present invention is a magnetoplumbite-type ferrite crystal particle powder having a saturation magnetization of about 45 to 60 emu / g and a coercive force of about 400 to 2,000 Oe. , Which has a hexagonal plate shape, an average particle size of approximately 0.05 to 0.15μ, and a small particle size distribution, and has excellent dispersibility in the magnetic layer of the magnetic recording medium, and is an excellent material for high density perpendicular magnetic recording. It is suitable.

〔発明の実施例〕Example of Invention

以下に実施例及び比較例を挙げ本発明をさらに説明す
る。
The present invention will be further described below with reference to Examples and Comparative Examples.

実施例1 1モル/lのBaCl2水溶液360ml、1モル/lのFeCl3水溶液2
472ml、1モル/lのCoCl2水溶液204ml及び1モル/lのTiC
l4水溶液204mlを混合し(Ba/(Fe+Co+Ti)モル比:1/8 Ba/Feモル比:1.5/10.3)、次いで、この混合液を10モル
/lのNaOH水溶液5112ml中に添加して褐色沈殿を含むアル
カリ性懸濁液を調整した。このときの遊離OH基濃度は5
モル/lである。ひきつづいて、該懸濁液をオートクレー
ブに入れ、150℃で3時間加熱してフェライト前駆体物
質粒子を生成させた(該前駆体物質粒子は、X線回折に
よれば、結晶化度は低いもののマグネトプランバイト型
構造のもので、平均粒径が0.06μ程度の不定形板状粒子
であった)。
Example 1 360 ml of 1 mol / l BaCl 2 aqueous solution, 1 mol / l FeCl 3 aqueous solution 2
472 ml, 1 mol / l CoCl 2 aqueous solution 204 ml and 1 mol / l TiC
l 4 aqueous solution (204 ml) was mixed (Ba / (Fe + Co + Ti) molar ratio: 1/8 Ba / Fe molar ratio: 1.5 / 10.3), and then this mixed solution was mixed with 10 mol.
An alkaline suspension containing a brown precipitate was prepared by adding it to 5112 ml of a 1 / l NaOH aqueous solution. The free OH group concentration at this time is 5
Mol / l. Subsequently, the suspension was placed in an autoclave and heated at 150 ° C. for 3 hours to produce ferrite precursor material particles (the precursor material particles have low crystallinity according to X-ray diffraction). It has a magnetoplumbite structure, and was an irregular plate-shaped particle with an average particle size of about 0.06μ).

次いで、得られたフェライト前駆体物質粒子を濾過、水
洗し、水にてリパルプしてフェライト前駆体物質粒子50
g/lのスラリーとした。このスラリー2lに水ガラス水溶
液(Si濃度10g/l)を50ml添加し、攪拌しながら塩酸
(0.1N)にて中和pH7.3とした(このとき、粒子に対し
てSi化合物の被覆量はSi換算で0.5重量%)。
Then, the obtained ferrite precursor substance particles are filtered, washed with water, and repulped with water to obtain the ferrite precursor substance particles 50.
It was a slurry of g / l. 50 ml of a water glass aqueous solution (Si concentration 10 g / l) was added to 2 l of this slurry, and neutralized to pH 7.3 with hydrochloric acid (0.1 N) while stirring (at this time, the amount of Si compound coated on the particles was 0.5% by weight in terms of Si).

このようにして得られたSi化合物被覆フェライト前駆体
物質粒子を再び濾過、水洗し、洗浄ケーキ(Si化合物被
覆フェライト前駆体物質粒子50g含有)をNaCl50gを溶解
した水溶液350mlに加え、よく攪拌した後乾燥機に入
れ、110℃で加熱して水分を蒸発させた(Si化合物被覆
フェライト前駆体物質粒子に対しNaClの配合量は100重
量%)。
The Si compound-coated ferrite precursor substance particles thus obtained were again filtered and washed with water, and a washing cake (containing 50 g of the Si compound-coated ferrite precursor substance particles) was added to 350 ml of an aqueous solution in which 50 g of NaCl was dissolved, and after stirring well It was placed in a dryer and heated at 110 ° C. to evaporate the water content (content of NaCl was 100% by weight based on the Si compound-coated ferrite precursor material particles).

このようにして得た乾燥粉末を800℃で1時間焼成し
た。次いで、得られた粉末を希塩酸水溶液中に浸漬した
後濾過、水洗してNaClを除去した後乾燥し、本発明の強
磁性粉末を得た。(試料A) 実施例2 実施例1において、NaClの代りにBaCl2を用いたことの
ほかは実施例1と同様にして本発明の強磁性粉末を得
た。(試料B) 比較例1 実施例1と同じく、150℃で3時間加熱処理して得たフ
ェライト前駆体物質粒子に対し、Si化合物の被覆および
NaClの添加をおこなわなかった以外は実施例1と同様に
処理して比較試料を得た。(試料C) 比較例2 実施例1と同様に、前駆体物質粒子にSi化合物を被覆し
た後濾過、洗浄し、次いで乾燥し、これを800℃で1時
間焼成した。焼成後の粉末は、実施例1と同様に処理し
て比較試料を得た。(試料D) 比較例3 実施例1において、Si化合物を被覆しなかった以外は実
施例1と同様にして比較試料を得た。(試料E) なお、前記の実施例及び比較例で得られた各試料は、X
線回折の結果、いずれもマグネトプランバイト型バリウ
ムフェライトであった。
The dry powder thus obtained was calcined at 800 ° C. for 1 hour. Then, the obtained powder was immersed in a dilute hydrochloric acid aqueous solution, filtered, washed with water to remove NaCl, and then dried to obtain a ferromagnetic powder of the present invention. (Sample A) Example 2 A ferromagnetic powder of the present invention was obtained in the same manner as in Example 1 except that BaCl 2 was used in place of NaCl. (Sample B) Comparative Example 1 Similar to Example 1, the ferrite precursor material particles obtained by heat treatment at 150 ° C. for 3 hours were coated with a Si compound and
A comparative sample was obtained by treating in the same manner as in Example 1 except that NaCl was not added. (Sample C) Comparative Example 2 As in Example 1, the precursor material particles were coated with the Si compound, filtered, washed, and then dried, and then calcined at 800 ° C. for 1 hour. The powder after firing was treated in the same manner as in Example 1 to obtain a comparative sample. (Sample D) Comparative Example 3 A comparative sample was obtained in the same manner as in Example 1 except that the Si compound was not coated. (Sample E) In addition, each sample obtained in the above-mentioned Examples and Comparative Examples is X
As a result of the line diffraction, all were magnetoplumbite type barium ferrite.

前記各試料について常法により平均粒子径(Dp:電子顕
微鏡法)、保磁力(Hc)、飽和磁化(σs)を測定し、
さらに次記の配合組成で磁性塗料を調製し、このものを
ポリエステルフィルム上に塗布し、塗布面に垂直に配向
処理して磁気記録媒体を作成した。
The average particle diameter (Dp: electron microscopy), coercive force (Hc), and saturation magnetization (σs) of each sample were measured by a conventional method,
Further, a magnetic coating material was prepared with the following composition, and the coating material was applied onto a polyester film and subjected to orientation treatment perpendicular to the coated surface to prepare a magnetic recording medium.

磁性粉末 100 重量部 酢ビー塩ビ共重合体樹脂 16.2 〃 界面活性剤 4 〃 メチルエチルケトン 186 〃 前記記録媒体について、常法により保磁力(Hc⊥:媒体
面に対して垂直方向)、配向比(OR)、角形比(SQ⊥:
媒体面に垂直方向であって、反磁界補正後の値である)
を測定した。
Magnetic powder 100 parts by weight vinyl acetate vinyl chloride copolymer resin 16.2 〃 Surfactant 4 〃 Methyl ethyl ketone 186 〃 Coercive force (Hc⊥: perpendicular to the medium surface), orientation ratio (OR) , Squareness ratio (SQ⊥:
It is the direction perpendicular to the medium surface and the value after demagnetizing field correction)
Was measured.

これらの結果を第1表に示す。The results are shown in Table 1.

表1の結果から明らかなように、前駆体物質粒子にSi化
合物と、アルカリ金属化合物あるいはアルカリ土類金属
化合物を添加処理した後焼成することにより、配向性、
分散性が向上し、粒子間焼結による凝集粒子の生成が抑
制されていることがわかる。
As is clear from the results shown in Table 1, the orientation of the precursor substance particles by adding a Si compound and an alkali metal compound or an alkaline earth metal compound to the precursor substance particles, followed by firing,
It can be seen that the dispersibility is improved and the generation of aggregated particles due to interparticle sintering is suppressed.

なお、実施例及び比較例の各試料粉末の形状を電顕写真
にて観察したところ、実施例1及び2のものは、いずれ
も六角板状で粒子間焼結もみられなかった。これに対
し、比較例1のものは、板状粒子ではあるが形状はやや
不定形で、一次粒子径は0.08μ程度であったが粒子間焼
結がみられ、比較例2のものは、共沈物粒子の形状がよ
く保持され、粒子間焼結による凝集粒子は殆んどみられ
なかったが、形状は不定形のものが多く存在していた。
さらに比較例3のものは、六角板状を呈していたものの
粗大化が認められた。
When the shapes of the sample powders of Examples and Comparative Examples were observed by an electron microscope photograph, both of Examples 1 and 2 were hexagonal plate-shaped and no interparticle sintering was observed. On the other hand, in Comparative Example 1, although the particles were plate-shaped, the shape was somewhat irregular and the primary particle diameter was about 0.08 μ, but inter-particle sintering was observed. The shape of the coprecipitate particles was well maintained, and almost no agglomerated particles due to inter-particle sintering were observed, but there were many irregular shapes.
Further, in Comparative Example 3, although it had a hexagonal plate shape, coarsening was observed.

〔発明の効果〕 本発明によれば、粒子間焼結による凝集粒子の生成が抑
制され、形状に優れた六角板状の優れた垂直配向性を有
する高分散性の六方晶フェライト結晶粉末よりなる強磁
性粉末を工業的に容易に製造し得るとともに、しかも、
飽和磁化を損なうことなく保磁力を所望範囲に容易に制
御し得るものであって、高密度記録、特に垂直磁気記録
媒体のノイズレベルの低減化、高出力化を図る上で有用
なものである。
[Effect of the Invention] According to the present invention, generation of aggregated particles due to inter-particle sintering is suppressed, and a hexagonal plate-like powder having excellent shape and having a high dispersibility of hexagonal ferrite crystal powder having excellent vertical orientation Ferromagnetic powder can be easily manufactured industrially, and
The coercive force can be easily controlled within a desired range without impairing the saturation magnetization, and is useful for high density recording, especially for reducing the noise level and increasing the output of a perpendicular magnetic recording medium. .

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭60−81804(JP,A) ─────────────────────────────────────────────────── ─── Continued Front Page (56) References JP-A-60-81804 (JP, A)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】バリウム、ストロンチウム、鉛の群から選
ばれる1種以上の金属化合物と鉄化合物とを少なくとも
含む水溶液とアルカリ水溶液とを混合してアルカリ性懸
濁液とし、次いで該懸濁液を60〜250℃で加熱処理する
ことによりフェライト前駆体物質を得、得られた該前駆
体物質に、ケイ素化合物と、アルカリ金属及びアルカリ
土類金属の、塩化物、硫酸塩、炭酸塩、硝酸塩の少なく
とも1種とを添加処理し、しかる後650〜950℃の温度範
囲で焼成して六方晶フェライト結晶粒子とすることを特
徴とする磁気記録用強磁性微粉末の製造方法
1. An alkaline suspension is prepared by mixing an alkaline solution with an aqueous solution containing at least one metal compound selected from the group consisting of barium, strontium and lead, and an iron compound. A ferrite precursor substance is obtained by heat treatment at ˜250 ° C., and the obtained precursor substance contains at least a chloride, a sulfate, a carbonate and a nitrate of a silicon compound and an alkali metal and an alkaline earth metal. A method for producing a ferromagnetic fine powder for magnetic recording, characterized by adding 1 type and then firing in a temperature range of 650 to 950 ° C. to obtain hexagonal ferrite crystal particles.
JP61083738A 1986-04-11 1986-04-11 Method for producing ferromagnetic fine powder for magnetic recording Expired - Lifetime JPH0688795B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61083738A JPH0688795B2 (en) 1986-04-11 1986-04-11 Method for producing ferromagnetic fine powder for magnetic recording

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61083738A JPH0688795B2 (en) 1986-04-11 1986-04-11 Method for producing ferromagnetic fine powder for magnetic recording

Publications (2)

Publication Number Publication Date
JPS62241827A JPS62241827A (en) 1987-10-22
JPH0688795B2 true JPH0688795B2 (en) 1994-11-09

Family

ID=13810864

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61083738A Expired - Lifetime JPH0688795B2 (en) 1986-04-11 1986-04-11 Method for producing ferromagnetic fine powder for magnetic recording

Country Status (1)

Country Link
JP (1) JPH0688795B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140091501A1 (en) * 2012-09-28 2014-04-03 Fujifilm Corporation Method of manufacturing hexagonal ferrite magnetic particles
US20140151595A1 (en) * 2012-11-30 2014-06-05 Fujifilm Corporation Method of manufacturing hexagonal ferrite magnetic particles, method of manufacturing magnetic coating material, and method of manufacturing magnetic recording medium

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01143306A (en) * 1987-11-30 1989-06-05 Sony Corp Preparation of barium ferrite powder
JP5917452B2 (en) * 2013-07-08 2016-05-18 富士フイルム株式会社 Method for producing hexagonal ferrite magnetic particles and method for producing magnetic recording medium
JP5917453B2 (en) * 2013-07-08 2016-05-18 富士フイルム株式会社 Method for producing hexagonal ferrite magnetic particles and method for producing magnetic recording medium
JP5972255B2 (en) 2013-12-27 2016-08-17 富士フイルム株式会社 Method for producing hexagonal ferrite powder and method for producing magnetic recording medium
JP5978201B2 (en) 2013-12-27 2016-08-24 富士フイルム株式会社 Magnetic powder for magnetic recording, magnetic recording medium, and method for producing magnetic powder for magnetic recording
JP5978200B2 (en) 2013-12-27 2016-08-24 富士フイルム株式会社 Magnetic powder for magnetic recording, magnetic recording medium, and method for producing magnetic powder for magnetic recording

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6081804A (en) * 1983-10-12 1985-05-09 Toda Kogyo Corp Hexagonal plate type ba ferrite fine-grained powder for magnetic recording and manufacture thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140091501A1 (en) * 2012-09-28 2014-04-03 Fujifilm Corporation Method of manufacturing hexagonal ferrite magnetic particles
US9382130B2 (en) * 2012-09-28 2016-07-05 Fujifilm Corporation Method of manufacturing hexagonal ferrite magnetic particles
US20140151595A1 (en) * 2012-11-30 2014-06-05 Fujifilm Corporation Method of manufacturing hexagonal ferrite magnetic particles, method of manufacturing magnetic coating material, and method of manufacturing magnetic recording medium
US9514776B2 (en) * 2012-11-30 2016-12-06 Fujifilm Corporation Method of manufacturing hexagonal ferrite magnetic particles, method of manufacturing magnetic coating material, and method of manufacturing magnetic recording medium

Also Published As

Publication number Publication date
JPS62241827A (en) 1987-10-22

Similar Documents

Publication Publication Date Title
JPH0688795B2 (en) Method for producing ferromagnetic fine powder for magnetic recording
JPH08702B2 (en) Method for producing ferromagnetic fine powder for magnetic recording
JPH0688794B2 (en) Method for producing ferromagnetic fine powder for magnetic recording
KR960002626B1 (en) Process for producing microcrystalline co/ti-substituted barium ferrite platelets
JPH0688796B2 (en) Method for producing ferromagnetic fine powder for magnetic recording
JPH0526727B2 (en)
JPS6135135B2 (en)
JPS6259531A (en) Production of barium ferrite powder
JPH02175806A (en) Manufacture of metal magnetic powder for magnetic recorder
JPH0717385B2 (en) Method for producing composite ferrite magnetic powder
JPH0692256B2 (en) Method for manufacturing barium ferrite powder
JPS62207720A (en) Preparation of barium ferrite powder
JPH0645462B2 (en) Method for manufacturing barium ferrite powder
JPS63156303A (en) Manufacture of planar magnetoplumbite type ferrite fine powder for magnetic recording
JPH06104576B2 (en) Barium ferrite magnetic powder and method for producing the same
JPH0614486B2 (en) Plate-shaped composite ferrite fine particle powder for magnetic recording and method for producing the same
JPS63265823A (en) Method for coating metal compound on fine particles of acicular iron oxyhydroxide or the like
JPH0674146B2 (en) Barium ferrite powder manufacturing method
JPH01168801A (en) Manufacture of metal magnetic powder
JPH0297429A (en) Production of magnetic iron oxide for magnetic recording
JPH05214413A (en) Production of magnetic powder for high-density recording medium
JPH0216248B2 (en)
JPH0524869B2 (en)
JPH0514329B2 (en)
JPH0258322B2 (en)