JPS62216921A - Production of hexagonal ferrite powder - Google Patents

Production of hexagonal ferrite powder

Info

Publication number
JPS62216921A
JPS62216921A JP61059362A JP5936286A JPS62216921A JP S62216921 A JPS62216921 A JP S62216921A JP 61059362 A JP61059362 A JP 61059362A JP 5936286 A JP5936286 A JP 5936286A JP S62216921 A JPS62216921 A JP S62216921A
Authority
JP
Japan
Prior art keywords
hexagonal ferrite
compd
powder
flux
ferrite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61059362A
Other languages
Japanese (ja)
Inventor
Hidefumi Yamashita
秀文 山下
Masanori Hayakawa
早川 方憲
Noriaki Yamada
山田 憲照
Hiromi Kawamoto
博美 川本
Satoshi Nishimura
智 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Glass Co Ltd
Original Assignee
Central Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Co Ltd filed Critical Central Glass Co Ltd
Priority to JP61059362A priority Critical patent/JPS62216921A/en
Publication of JPS62216921A publication Critical patent/JPS62216921A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compounds Of Iron (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To develop hexagonal ferrite for a magnetic recording medium which is extremely fine and excellent in dispersibility and crystallinity and suitable for high-density recording by adding a specified flux to hexagonal powder which is obtained by subjecting a compd. contg. both trivalent Fe compd. and a specified compd. to hydrothermal treatment and heat-treating the mixture. CONSTITUTION:Both trivalent Fe compd. such as ferric chloride, ferric nitrate and ferric sulfate and a compd. contg. at least one kind of chloride, nitrate, hydroxide and carbonate of Ba, Sr and Pb are subjected to hydrothermal treatment for 1-5hr at 200-300 deg.C together with alkali such as KOH and NaOH and hexagonal ferrite powder having <=0.1mum particle diameter is produced. BaCl2 is individually mixed to this powder or after mixing BaCl2 with alkali halide such as NaCl and KCl, the mixture is mixed thereto in proportion of (1:3)-(1:20) for the hexagonal ferrite and heat-treated in air at 700-900 deg.C for 1-10hr.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は高密度記録に適した磁気記録媒体用の六方晶フ
ェライトの分散性向上のだめの処理方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a treatment method for improving the dispersibility of hexagonal ferrite for magnetic recording media suitable for high-density recording.

(従来の技術) 六方晶系フェライト微粒子の製造方法としてはF’e’
イオンを含む鉄化合物とBa、 Sr、 Pbの一種以
上の元素を含む化合物を混合し、高温で加熱焼成する乾
式法がよく知られる方法であり、他方湿式法としては上
述の原料をアルカリ性懸濁液として水熱処理したのち高
温(600〜900℃)処理する方法が矧られていた。
(Prior art) F'e' is a method for producing hexagonal ferrite fine particles.
A well-known dry method is a method in which an iron compound containing ions and a compound containing one or more elements of Ba, Sr, and Pb are mixed and fired at high temperatures.On the other hand, a wet method involves mixing the above-mentioned raw materials in an alkaline suspension. There have been several methods in which the material is hydrothermally treated as a liquid and then treated at a high temperature (600 to 900°C).

これらの方法で得られる六方晶フェライト粒子間の焼結
や粒子同志の凝集、溶融による結晶形状の変形等が避け
られず垂直磁気記録媒体として用いる場合には、分散性
が悪く、充填密度が向上せず配向性も劣るなどテープ化
した時の特性が劣る場合が往々にしてあり、解決が望l
れていた。
Sintering between hexagonal ferrite particles obtained by these methods, agglomeration of particles, deformation of crystal shape due to melting, etc. are unavoidable, and when used as a perpendicular magnetic recording medium, dispersibility is poor and packing density is improved. There are often cases where the properties when made into tape are inferior, such as poor orientation and poor orientation, and a solution is desired.
It was

このような欠点を解決する手段として、六方晶フェライ
トに融剤を混合させ融剤の融点以上で加熱処理する方法
が多く研究されており、レリえば特開昭、55−145
j(J3号公報、倚開昭56−56200号公報、特開
N 56−125299号公報等が提案てJしている。
As a means to solve these drawbacks, many studies have been carried out on a method of mixing hexagonal ferrite with a flux and heating it above the melting point of the flux, as described in Japanese Patent Application Publication No. 2003-141000, 55-145.
J (J3, No. 56-56200, Japanese Unexamined Patent Publication No. N56-125299, etc.).

しかし乍ら従来提案のこれりの方法では用いられる六方
晶フエライト松末が乾に法で侍らIしる0、1〜6岬の
比較的大粒径の粉末である上、粉砕で微細化されている
ため形が不定形でありその形を整えるため高温処理され
でいる( 900〜1200℃ン。
However, in these conventionally proposed methods, the hexagonal ferrite pine powder used in the dry method is a powder with a relatively large particle size of 0, 1 to 6 capes, and it is finely pulverized by pulverization. Because of this, it has an amorphous shape and is treated at high temperatures (900-1200℃) to adjust its shape.

このように乾式法で得られる粒径の大きい不定形の粉末
をi科とし且つ高温で熱処理されているため、融剤処理
後の粒径は数pzn〜1μmと非常に大きい粒径をもち
、粒成長が不”J避であった。従って磁気記録材料への
用途への言及はあるものの通常は磁石用材料等を指向し
ていることは明らかである。
In this way, since the amorphous powder with a large particle size obtained by the dry method is heat-treated at a high temperature, the particle size after flux treatment is extremely large, ranging from several pzn to 1 μm. Grain growth was unavoidable.Thus, although there are references to its use as a magnetic recording material, it is clear that it is usually intended for magnet materials and the like.

従って、ブシックス甲にフェライトを溶解させ再析出さ
せるため、粒成長を伴なう形状の発達を目的としている
方法であり、磁気記録材料として用いら扛る0、1μm
以下の粒径のフェライトへの適用は不可能でめる。
Therefore, this method aims to develop a shape accompanied by grain growth by dissolving ferrite in Busix A and re-precipitating it.
It is impossible to apply this method to ferrites with particle sizes below.

一方、画直磁気記録課体用六方晶フェフィトの処理方法
としての融剤のに用については、例えば特開昭60−9
0829号公報にはKNO3系、cac1!系、LCi
系等の低融点二成分系融剤が提案さ!しているが低温(
250−450℃)のため凝集、焼結の心配はないもの
の飽オロ磁化、角型比等の静磁気特性が向上しないため
、本質的には効果のうすい方法でるる。
On the other hand, regarding the use of a flux as a treatment method for hexagonal fephite for direct magnetic recording bodies, for example, Japanese Patent Laid-Open No. 60-9
Publication No. 0829 includes KNO3 series, cac1! system, LCi
A low melting point two-component flux such as the system is proposed! However, the temperature is low (
250-450° C.), so there is no fear of agglomeration or sintering, but the magnetostatic properties such as saturated magnetization and squareness ratio are not improved, so this method is essentially a less effective method.

又、特開昭60−161343号公報には、アルカリ金
属化合物を融剤とする方法が提案きれているが、例えば
食塩を融剤とした場合では比六面積の低ドが著しく板状
比の低下を招くと共に、粒成長が進み粒径の増大が押え
られていないなど依然として問題は解決されていない。
In addition, JP-A No. 60-161343 proposes a method using an alkali metal compound as a fluxing agent, but for example, when common salt is used as a fluxing agent, a low area ratio of 6 is significantly lower than the plate-like ratio. In addition to causing a decrease in grain size, grain growth has progressed and the increase in grain size has not been suppressed, and other problems still remain unsolved.

(発明が解決しようとする問題点) 本発明はこれら問題の解決として新規な融剤を混合させ
た六方晶フエフィト((700〜900℃の温度で加熱
処理する六方晶フェライトの改良された処理方法を提供
すx’)ことにあり、結晶粒径の成長を伴わす、かつ焼
結を進行させることなく分散性、配向性を向上させるこ
とにある。
(Problems to be Solved by the Invention) As a solution to these problems, the present invention provides hexagonal ferrite mixed with a novel flux (an improved treatment method for hexagonal ferrite that is heat-treated at a temperature of 700 to 900°C). x') The purpose is to improve dispersibility and orientation without causing growth in crystal grain size and without advancing sintering.

本発明は、六方晶フエラ1゛トに塩化バリヮム単独若し
くは塩化バリクムとハロゲン化アルカリとの混合物を麻
加し70Q −900℃の温度で熱処理することを特徴
とするものでろって、一旦Pa(III)化合物とBa
、 Sr、Pbのうち一種以上の元素を含む化合物をア
ルカリ水溶液中で水熱処理して微粒子状の六方晶フェラ
イト粉末を生成させたのち、この六方晶フェライト粒子
に上記の融剤を加え700〜900℃の温ばて加熱処理
することで粒子間の焼結あるいは粒成長は起こらず、粒
子形状が安定で結晶性が向上でき、飽和磁化の大きい、
分散性、配向性にすぐれた高密度記録媒体用に適合した
六方晶フェライト粒子を得ることができる。
The present invention is characterized in that barium chloride alone or a mixture of barium chloride and an alkali halide is added to a hexagonal crystal ferrite and heat-treated at a temperature of 70Q - 900°C. III) Compound and Ba
, Sr, and Pb are hydrothermally treated in an alkaline aqueous solution to produce fine-particle hexagonal ferrite powder, and then the above-mentioned flux is added to the hexagonal ferrite particles to obtain a powder of 700 to 900 By heating at ℃, sintering or grain growth between particles does not occur, the particle shape is stable, crystallinity is improved, and saturation magnetization is large.
Hexagonal ferrite particles having excellent dispersibility and orientation and suitable for use in high-density recording media can be obtained.

本発明で用いられる六方晶フェライト粉末は、上記のよ
うにFe(Ill)化合物とBa、 Sr、Pbのつち
−m以上の元素を含む化合物をアルカリ水溶液中で水熱
処理して得られる0、1−以上の微粒子状六方晶フェラ
イトが良く、勿論、大方晶フェライトの一部が他の異4
−!II並属で置換させ保磁力を低減化されたものyl
」えばCo%Ti、Sn、 Sb、In。
The hexagonal ferrite powder used in the present invention is obtained by hydrothermally treating a Fe(Ill) compound and a compound containing elements of -m or more of Ba, Sr, and Pb in an aqueous alkaline solution as described above. Fine-grained hexagonal ferrite with a particle size of 1 or more is good, and of course, part of the macrogonal ferrite may be other than 4
-! yl with reduced coercive force by substitution with II parallel
For example, Co%Ti, Sn, Sb, In.

W、Ni、Zn、Mn等でセ゛θの一部を置換されたも
のでも当然適用g 7Lる。Fe(ill)化合物とし
ては、塩化第二鉄、硝酸鉄、硫酸鉄などが、一方Ba、
Etr、Pb化合物としては一般に反応条汗トで、ある
程度の溶解度を示すものであれは良く、塩化物、硝酸塩
、水酸化物、炭酸塩等が用いらnる。
Naturally, it is also applicable to materials in which a portion of the θ is replaced with W, Ni, Zn, Mn, etc. Examples of Fe(ill) compounds include ferric chloride, iron nitrate, iron sulfate, etc., while Ba,
Generally, Etr and Pb compounds that exhibit a certain degree of solubility in reaction mixtures are acceptable, and chlorides, nitrates, hydroxides, carbonates, etc. are used.

異徨金属化合物としては上記元素の塩化物、硝酸塩、炭
酸塩、硫酸塩等が使用される。
As the foreign metal compound, chlorides, nitrates, carbonates, sulfates, etc. of the above elements are used.

又、Fe (III)化合物とBa、 Sr、Pb化合
物と011込み割合としてはBa%Sr%pb化合物の
単独及びこれらの混合の割合を含めてモル比(Fe、O
,/MO)表示(M = Ba、 Sr、 Pb )で
4〜6好ましくは5〜6の範囲である。
In addition, the molar ratio (Fe, O,
, /MO) (M = Ba, Sr, Pb) is in the range of 4 to 6, preferably 5 to 6.

反応に用いられるアルカリとしては、通常N+tOH,
KOH等の苛・註アルカリが用いられMUとしては高濃
匿の方が微細化に役立つが5ONt係以上の添加は不溶
解となる場合があるため、通常3 M/l〜8Mμ程度
が好ましい。水熱反応温度は低温の方が微細化に効果が
あるが、低温では結晶形状の失しいものが得られ畑く微
晶の発生も多いことから2UL] −300℃が好まし
く、反応時間は1〜5時間で十分でめる。このようにし
田p−ヅう て生成された超微1JU7”ライト粒子は・・本発明4
!!。
The alkali used in the reaction is usually N+tOH,
Note: When a caustic alkali such as KOH is used and the MU is highly concentrated, it is more useful for miniaturization, but adding more than 5ONt may result in indissolution, so it is usually preferable to use a concentration of about 3 M/l to 8 Mμ. A hydrothermal reaction temperature of -300°C is preferable, and a reaction time of 1 UL is preferable because lower temperatures are more effective for micronization, but at lower temperatures the crystal shape is lost and there are many occurrences of loose microcrystals. You can finish it in ~5 hours. The ultra-fine 1JU7” light particles generated by Shishita P-ZU in this way...Invention 4
! ! .

に従い特定の融剤を用いることで粒成長を起す;1.4 Cとなく磁気特性の極めて向上したものに改善される。Grain growth is caused by using a specific flux according to; 1.4 It is improved to have extremely improved magnetic properties without C.

本発明で使用される融剤である塩化バリウムと共に用い
られるハロゲン化アルカリとしてはNa(,1、KOI
、NaF 、 KFlNaBr、 KBr 1NaI 
、 KI等が挙げられるが人手の谷易さ、経済性を考慮
すればNaC1、KCl等が好ましい。
The alkali halide used with barium chloride, which is the fluxing agent used in the present invention, is Na(,1, KOI
, NaF , KFlNaBr, KBr 1NaI
, KI, etc., but NaCl, KCl, etc. are preferable in consideration of ease of labor and economy.

融剤の添加量は処理する六方晶フェライト粉末に対しモ
ル比で1=3〜I:20程度が好ましい。1:3以下で
は焼結が起り易(iT表面積の低ドが目立つ、また1:
20以上でも効果はそれ程上昇しないため不経済である
The amount of the flux added is preferably about 1=3 to I:20 in molar ratio to the hexagonal ferrite powder to be treated. If it is less than 1:3, sintering tends to occur (low iT surface area is noticeable, or if it is less than 1:3,
Even if it exceeds 20, the effect will not increase that much, so it is uneconomical.

二成分系での象加割−8−(モル比うはBaC1!+M
X(アルカリハロゲン化物)=I + 1〜3が適当で
ある。二成分融剤の場合の隙加方法は、両者の化物を単
に混合するだけでも艮いし、予め共融物を造って添加し
ても良い。
Dilation in a two-component system -8- (molar ratio is BaC1!+M
X (alkali halide) = I + 1-3 is suitable. In the case of a two-component flux, the gap may be added by simply mixing the two compounds, or by preparing a eutectic mixture in advance and adding it.

六方晶フェライトに融剤を混在させる方法は、乾式で混
合する方法、湿式で混合する方法のいずれでも適用でき
るが、湿式での添加がより効果的である。
The fluxing agent can be mixed into the hexagonal ferrite by either dry mixing or wet mixing, but wet addition is more effective.

融剤を混合式ぜた六方晶フェライトの処理温度は、70
0〜900℃の範囲が好適で、700 ’C以下では結
晶の完全性が十分達成されず飽和磁化の向上が望めない
。−万、900℃をこえる温度では焼結、粒成長がそれ
相応に著しくなるので避けるべきである。なお、塩化バ
リウム単独り場合700〜900℃ではその融点以下で
あるが融剤が浴融しなくても焼結、粒成長は起こらず、
結晶の形状の明確化、磁気特性の向上は十分達成さrし
ており、このことは特記に値する。また加熱処理時間は
1〜10時間で空気雰囲気ドでの処理が好ましい。
The processing temperature for hexagonal ferrite mixed with a flux is 70
A temperature in the range of 0 to 900°C is preferable; below 700'C, sufficient crystal perfection is not achieved and no improvement in saturation magnetization can be expected. -Temperatures exceeding 900°C should be avoided since sintering and grain growth will become correspondingly significant. In addition, in the case of barium chloride alone, it is below its melting point at 700 to 900 °C, but even if the flux is not melted in the bath, sintering and grain growth do not occur.
Clarification of the crystal shape and improvement of magnetic properties have been sufficiently achieved, and this is worthy of special mention. Further, the heat treatment time is preferably 1 to 10 hours, and the treatment is preferably performed in an air atmosphere.

加熱処理さ几た混曾物は融剤が水に浴解し易いため水や
温水、鉱酸水溶液等で処理し洸浄隊去することが出来、
不純物としてバ万晶フェライト中には残留しない。
Since the fluxing agent of heat-treated mixtures is easily dissolved in water, it can be treated with water, warm water, mineral acid aqueous solution, etc., and removed.
It does not remain as an impurity in the bamancrystalline ferrite.

(発明の効果) 本発明の六方晶フェライト微粉末は、粒子間の焼結がな
く粒子−個一個がバラバラで分散性が極めて艮<、粒子
径が極めて小さく且つ結晶性が良く、飽和磁化の高い画
直磁気記録媒体として極めて好適なる六方晶フェライト
粉末がえられる。
(Effects of the Invention) The hexagonal ferrite fine powder of the present invention has extremely low dispersibility since there is no sintering between particles, each particle is disjointed, the particle size is extremely small, the crystallinity is good, and the saturation magnetization is low. A hexagonal ferrite powder is obtained which is extremely suitable as a high directivity magnetic recording medium.

以下本発明を実施例により詳述する。The present invention will be explained in detail below with reference to Examples.

実施例1 (Baフェライト粒子の生成) 塩化第二鉄水溶液(3M ) 100 mlと塩化バリ
ウムニ水塩7,3F、塩化コバルト六水塩5.4 p、
四塩化チタン2.1ノ、スズ緻ンーダニ丞塩3yを苛性
ソーダ50ノ、水50yを加え水酸化鉄と水酸化バリウ
ムを共沈ざぜる。反応混合液を攪拌機1=r万一トル−
プに住込み同時に苛性ソーダ95yを加え1量を300
 rttlとなるより氷を加えた。
Example 1 (Generation of Ba ferrite particles) 100 ml of ferric chloride aqueous solution (3M), 7.3 F of barium chloride dihydrate, 5.4 p of cobalt chloride hexahydrate,
Iron hydroxide and barium hydroxide are co-precipitated by adding 2.1 g of titanium tetrachloride, 3 y of tin powder and 3 y of sodium chloride, and 50 y of caustic soda and 50 y of water. Stir the reaction mixture with a stirrer 1 = r.
At the same time, add 95y of caustic soda to 300ml.
Add ice to reach rttl.

ついでオートクレーフを270 ’Cで2時間反応させ
てBa−フェライト粒子金得た。
Then, the autoclave was reacted at 270'C for 2 hours to obtain Ba-ferrite particle gold.

(融剤処理) 上記Ba−フェライトをpH13以ドまで水洗し、Ba
C11−Na1l (モル比50 : 50 )のフラ
ックス30ノを加えて溶解し蒸発乾固した。このものを
るつばに入れ850Cで2時間処理したのち、温水でフ
ラックスを溶w4除去し乾燥してBa−フェライト粉末
だけを得た。得らrしたBa−フェライトのsiは0.
06−であった。フラックス比(Ba−フェライト:融
剤モル比)中1=10 実施例2 融剤としてBaCl2単独26ノ(フラックス比シ)を
用いた以外は実施例】と同様にした。得られたBa−フ
ェライト粉末の粒径は0.07 linでりった。
(Fluxing agent treatment) The above Ba-ferrite was washed with water until the pH reached 13 or higher, and the Ba-ferrite was
30 g of flux of C11-Na1l (molar ratio 50:50) was added to dissolve and evaporated to dryness. This material was placed in a crucible and treated at 850C for 2 hours, and then the flux was removed with hot water and dried to obtain only Ba-ferrite powder. The si of the obtained Ba-ferrite is 0.
It was 06-. Flux ratio (Ba-ferrite:fluxing agent molar ratio): 1=10 Example 2 The same procedure as in Example 2 was carried out except that BaCl2 alone was used as a fluxing agent of 26 mm (flux ratio). The particle size of the obtained Ba-ferrite powder was 0.07 lin.

実施例3 融剤として13ac12− KCI (モル比50 :
 50 )70ノ(フラックス比20)を用いた以外は
実施列1と同様にした。得られたBa−フェライト粉末
の粒径は0,06βnであった。
Example 3 13ac12-KCI (molar ratio 50:
50) The procedure was the same as in Example 1 except that 70 mm (flux ratio 20) was used. The particle size of the obtained Ba-ferrite powder was 0.06βn.

比較例1 融J−町としてNaC115ノ(フシックス比10)を
用いた以外は実施例1と同様にした。侍l、1ルたBa
−フライト粉末の粒径は0.15 pnであった。
Comparative Example 1 The same procedure as in Example 1 was carried out except that NaC115 (fusix ratio 10) was used as the fused J-cho. Samurai L, 1 Luta Ba
- The particle size of the flight powder was 0.15 pn.

実施例1〜3および比較例1の磁江脣性を第1弄に示す
The magnetic flux properties of Examples 1 to 3 and Comparative Example 1 are shown in the first column.

第   1   表 比較例ではC8、iHc、σr/−の値は良好であるが
、BETの低下が著しく、焼結が起っていることを示し
テープ化の時の充填性の恋いことが予測さlしる。
In the comparative example in Table 1, the values of C8, iHc, and σr/- are good, but the BET decreases significantly, indicating that sintering has occurred, and it is predicted that the filling properties will be poor when forming into a tape. I know.

Claims (1)

【特許請求の範囲】[Claims]  Fe(III)化合物とBa、Sr、Pbの内少くと
も一種以上の元素を含む化合物を、アルカリ水溶液で水
熱処理して六方晶フエライト粉末を生成させたのち、融
剤として塩化バリウム単独若しくは塩化バリウムとハロ
ゲン化アルカリとの混合物を添加し、700〜900℃
の温度で加熱処理することを特徴とする六方晶フェライ
ト粉末の製造方法。
A Fe(III) compound and a compound containing at least one element among Ba, Sr, and Pb are hydrothermally treated with an alkaline aqueous solution to produce hexagonal ferrite powder, and then barium chloride alone or barium chloride is used as a flux. and an alkali halide, and heated to 700-900°C.
A method for producing hexagonal ferrite powder, the method comprising heating at a temperature of .
JP61059362A 1986-03-19 1986-03-19 Production of hexagonal ferrite powder Pending JPS62216921A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61059362A JPS62216921A (en) 1986-03-19 1986-03-19 Production of hexagonal ferrite powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61059362A JPS62216921A (en) 1986-03-19 1986-03-19 Production of hexagonal ferrite powder

Publications (1)

Publication Number Publication Date
JPS62216921A true JPS62216921A (en) 1987-09-24

Family

ID=13111079

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61059362A Pending JPS62216921A (en) 1986-03-19 1986-03-19 Production of hexagonal ferrite powder

Country Status (1)

Country Link
JP (1) JPS62216921A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62275027A (en) * 1985-04-04 1987-11-30 Ishihara Sangyo Kaisha Ltd Production of ferromagnetic fine powder for magnetic recording
JPS632813A (en) * 1986-06-24 1988-01-07 Toda Kogyo Corp Production of particulate powder of lamellate ba ferrite for magnetic recording

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62275027A (en) * 1985-04-04 1987-11-30 Ishihara Sangyo Kaisha Ltd Production of ferromagnetic fine powder for magnetic recording
JPS632813A (en) * 1986-06-24 1988-01-07 Toda Kogyo Corp Production of particulate powder of lamellate ba ferrite for magnetic recording

Similar Documents

Publication Publication Date Title
JPS6140823A (en) Hydrothermal synthesis of magnetoplumbite type ferrite
US4810402A (en) Solid material for producing hexagonal ferrites
JPS62100417A (en) Fine isometric hexaferrite pigments
JPS62216921A (en) Production of hexagonal ferrite powder
JPS62275027A (en) Production of ferromagnetic fine powder for magnetic recording
JPS63233017A (en) Magnetic powder of barium ferrite and its production
JPH0243943A (en) Preparation of ultrafine powder
JPS6259531A (en) Production of barium ferrite powder
JPH0545528B2 (en)
JPS632813A (en) Production of particulate powder of lamellate ba ferrite for magnetic recording
JPS6310094B2 (en)
JPS62216920A (en) Magnetoplumbite type ferrite powder and its production
JPS6313934B2 (en)
JPS60210801A (en) Manufacture of magnetic fine particle
JPH0688794B2 (en) Method for producing ferromagnetic fine powder for magnetic recording
JPS62252324A (en) Production of fine barium ferrite powder
Lee et al. Synthesis of nano‐sized barium ferrite particles using an inorganic dispersing phase
JP2662902B2 (en) Method for producing hexagonal plate-like Ba ferrite fine particle powder for magnetic recording
JPH01143305A (en) Preparation of barium ferrite powder
JPS6312107A (en) Manufacture of superfine barium ferrite superfine grain
JPS6110030A (en) Preparation of magnet plumbite-type ferrite powder
JPS6230626A (en) Production of plate ba ferrite fine particle
JPH04362020A (en) Ferritic magnetic powder and its production
JPS62138330A (en) Production of magnetic powder for magnetic recording
JPH0251204A (en) Production of plate-like barium ferrite minute powder