JP3129823B2 - Method for producing ferromagnetic iron oxide powder for magnetic recording - Google Patents

Method for producing ferromagnetic iron oxide powder for magnetic recording

Info

Publication number
JP3129823B2
JP3129823B2 JP04065874A JP6587492A JP3129823B2 JP 3129823 B2 JP3129823 B2 JP 3129823B2 JP 04065874 A JP04065874 A JP 04065874A JP 6587492 A JP6587492 A JP 6587492A JP 3129823 B2 JP3129823 B2 JP 3129823B2
Authority
JP
Japan
Prior art keywords
iron
zinc
manganese
iron oxide
atomic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP04065874A
Other languages
Japanese (ja)
Other versions
JPH05267029A (en
Inventor
覚 大島
耕司 中田
裕之 江本
清 中原
浩二 黒崎
一 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Titan Kogyo KK
Original Assignee
Titan Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Titan Kogyo KK filed Critical Titan Kogyo KK
Priority to JP04065874A priority Critical patent/JP3129823B2/en
Publication of JPH05267029A publication Critical patent/JPH05267029A/en
Application granted granted Critical
Publication of JP3129823B2 publication Critical patent/JP3129823B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Hard Magnetic Materials (AREA)
  • Compounds Of Iron (AREA)
  • Powder Metallurgy (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、塗布型高記録密度磁気
記録媒体に用いられる改良された磁性粉末に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improved magnetic powder used for a coating type high recording density magnetic recording medium.

【0002】[0002]

【発明が解決しようとする課題】磁気記録再生機器の小
型軽量化及び磁気記録における情報処理量の拡大化に伴
い、近年磁気記録媒体の高記録密度化、高出力化及び低
ノイズ化の指向が益々高まってきている。これとあいま
って、磁気記録媒体に使用される磁性酸化鉄粉末につい
ては、高保磁力化、高飽和磁化量化、微粒子化及び高配
向高充填化などの諸特性の要求が一段と強まっている。
With the reduction in size and weight of magnetic recording / reproducing devices and the increase in the amount of information processing in magnetic recording, the trend toward higher recording density, higher output, and lower noise of magnetic recording media has recently been increasing. Increasingly. In conjunction with this, with respect to the magnetic iron oxide powder used for the magnetic recording medium, demands for various properties such as a high coercive force, a high saturation magnetization, a fine graining, and a high orientation and high filling are further increased.

【0003】これら諸特性のうち、高飽和磁化量化につ
いても種々の試みが既に成されている。コバルト被着強
磁性酸化鉄粉末の出発原料をマグヘマイト粒子から中間
体粒子もしくはマグネタイト粒子に転換して高飽和磁化
量を実現させる方法がその一例である。しかし、その飽
和磁化量は未だ不十分である。
[0003] Among these various properties, various attempts have already been made for increasing the saturation magnetization. One example is a method of converting the starting material of the cobalt-coated ferromagnetic iron oxide powder from maghemite particles to intermediate particles or magnetite particles to achieve a high saturation magnetization. However, the saturation magnetization is still insufficient.

【0004】本発明の目的は、前記の問題点を解決すべ
く塗布型高記録密度磁気記録媒体に好適な高飽和磁化量
を有する強磁性酸化鉄粉末を提供することにある。
[0004] An object of the present invention is to provide a ferromagnetic iron oxide powder having a high saturation magnetization suitable for a coating type high recording density magnetic recording medium in order to solve the above problems.

【0005】[0005]

【課題を解決するための手段】本発明者は、高飽和磁化
である強磁性酸化鉄粉末の製造を実現させるため検討を
進めてきた結果、特願平3−1409において示した様
に、マグヘマイト粒子もしくはマグヘマイト化する前躯
体の水和酸化鉄粒子に、マンガン、亜鉛及び任意に鉄を
含む溶液で処理し、熱処理を施すことにより、それら金
属が粒子内部に固溶し、マンガンと亜鉛の複合効果によ
り飽和磁化量が向上したマグヘマイト粒子を得ることが
できた。
Means for Solving the Problems The present inventor has conducted studies to realize the production of a ferromagnetic iron oxide powder having a high saturation magnetization. As a result, as shown in Japanese Patent Application No. 3-1409, maghemite is disclosed. The hydrated iron oxide particles, which are particles or maghemitized precursors, are treated with a solution containing manganese, zinc and optionally iron, and subjected to heat treatment, so that these metals form a solid solution inside the particles and form a composite of manganese and zinc. As a result, maghemite particles having an improved saturation magnetization can be obtained.

【0006】引き続き検討を進めた結果、前記の飽和磁
化量が向上したマグヘマイト粒子を還元して中間体化
し、再度非酸化性雰囲気下で熱処理を施すことにより、
飽和磁化量がさらに向上することが明らかになった。こ
の原因については、第一鉄共存下において熱処理を施し
た場合、それら金属の拡散が容易になり固溶が促進され
るためと考えられる。また、この製法によれば、マンガ
ン及び亜鉛をさらに増量することが可能である。すなわ
ち、マンガンは単に亜鉛と共存して磁性体の飽和磁化量
を向上させるだけではなく、焼結防止剤としての効果も
有し、亜鉛単独の場合より熱処理温度を高くでき、飽和
磁化量を飛躍的に向上させることが可能となった。
[0006] As a result of continued study, the above-mentioned maghemite particles having an improved saturation magnetization were reduced to an intermediate, and again subjected to a heat treatment in a non-oxidizing atmosphere.
It was found that the saturation magnetization was further improved. It is considered that the reason for this is that when heat treatment is performed in the coexistence of ferrous iron, diffusion of those metals is facilitated and solid solution is promoted. Further, according to this production method, it is possible to further increase the amounts of manganese and zinc. In other words, manganese not only improves the saturation magnetization of the magnetic material by coexisting with zinc, but also has an effect as a sintering inhibitor, so that the heat treatment temperature can be higher than in the case of zinc alone, and the saturation magnetization increases. It became possible to improve it.

【0007】本発明は、鉄総量に対して0.1〜19原
子重量%、好ましくは0.1〜16原子重量%のマンガ
ン、及び鉄総量に対して3〜19原子重量%、好ましく
は3〜16原子重量%の亜鉛を含有する磁気記録用強磁
性酸化鉄粉末を提供するものであり、この磁気記録用強
磁性酸化鉄粉末は鉄総量に対して31原子重量%以下の
第一鉄を含有することができる。さらに、該酸化鉄はコ
バルト塩、またはコバルト塩と第一鉄塩を含む溶液で処
理することができる。
The present invention relates to manganese in an amount of 0.1 to 19 at.%, Preferably 0.1 to 16 at.%, Based on the total amount of iron, and 3 to 19 at.%, Preferably 3 to 19 at. The present invention provides a ferromagnetic iron oxide powder for magnetic recording containing about 16 atomic% by weight of zinc, wherein the ferromagnetic iron oxide powder for magnetic recording contains 31 atomic% by weight or less of ferrous iron based on the total amount of iron. Can be contained. Further, the iron oxide can be treated with a cobalt salt or a solution containing a cobalt salt and a ferrous salt.

【0008】マンガン及び亜鉛が上記範囲の量よりも少
ない場合には本発明の効果を奏することができず、また
上記範囲の量よりも大きくしてももはや飽和磁化量は増
大しない。
If the amount of manganese and zinc is less than the above range, the effect of the present invention cannot be obtained. If the amount is larger than the above range, the saturation magnetization no longer increases.

【0009】また、第一鉄の含有量を鉄総量に対して3
1原子重量%以下としているのは、それより多くなると
マグネタイト(第一鉄の含有量が33.3原子重量%)
近傍領域になるため、酸化安定性が著しく悪化し、室温
でも発火することがあるなど実際的でなくなるためであ
る。
[0009] Further, the content of ferrous iron is 3 to the total amount of iron.
The reason why the content is set to 1 atomic weight% or less is that if the content is more than that, magnetite (the content of ferrous iron is 33.3 atomic weight%)
The reason for this is that, since it is in the vicinity, the oxidation stability is significantly deteriorated, and it becomes impractical, for example, it may ignite even at room temperature.

【0010】本発明にかかる酸化鉄粉末を製造するため
の方法としては種々の方法が考えられるが、以下に好ま
しい方法について説明する。なお、本明細書において
「中間体粒子」とは、マグヘマイトとマグネタイトの中
間体粒子を意味する。又、「tFe」を鉄総量を意味す
る記号として用いる。
Various methods are conceivable as methods for producing the iron oxide powder according to the present invention. Preferred methods will be described below. In this specification, “intermediate particles” mean intermediate particles of maghemite and magnetite. "TFe" is used as a symbol indicating the total amount of iron.

【0011】(1) マグヘマイト粒子の水性懸濁液に
マンガン、亜鉛及び任意に鉄化合物を含む水溶液を添加
する。本発明に用いるマンガン、亜鉛及び鉄成分として
種々の化合物が使用できるが、例えばそれらの硫酸塩、
硝酸塩、塩化物などの水溶性のものが適当である。マン
ガン成分は第一マンガンを用いる必要があるが、鉄成分
については第一鉄もしくは第二鉄のいずれを用いても本
発明の効果は変わらない。マンガンは金属処理後のマグ
ヘマイト粒子中のMn/tFeとして0.1〜19原子
重量%、好ましくは0.1〜16原子重量%を含有し、
一方亜鉛はZn/tFeとして3〜19原子重量%、好
ましくは3〜16原子重量%を含有する様に添加する。
鉄は無添加にするかもくしはモル基準でマンガン及び亜
鉛の総添加量の2倍量までを添加できる。さらにアルカ
リを添加してpHを10〜11に調整し、添加金属を基
体粒子表面上に水酸化物として被着させてから、濾過、
水洗し懸濁液中に残存する余剰のアルカリなどを除去す
る。そして空気中50〜110°Cの乾燥を行なう。引
き続いて公知の方法を適用することにより還元し、第一
鉄の含有量がFe(II)/tFeとして31原子重量
%以下の中間体にする。その方法は、例えば水素ガス流
通下230°Cの還元をする方法であるが、第一鉄の含
有量は還元時間を調整することで所望のレベルにするこ
とができる。さらに非酸化性雰囲気下で熱処理する。雰
囲気を非酸化性にする理由は、第一鉄と第一マンガンの
酸化を防止するためであり、窒素、二酸化炭素及びヘリ
ウム、アルゴンなどの希ガスを用いることができる。熱
処理の温度は400°C〜ヘマタイトへの転移が生じな
い上限温度までとする。好ましくは400〜750°C
である。熱処理の時間は0.5〜24時間、好ましくは
1〜6時間とする。前記の金属被着処理直後の段階にお
いては、添加金属は基体粒子表面上に非磁性の水酸化物
もしくは酸化物として存在するだけであるが、還元及び
熱処理することで結晶内部に固溶し、マンガン及び亜鉛
の複合効果で飽和磁化量が向上するものと考えられる。
(1) An aqueous solution containing manganese, zinc and optionally an iron compound is added to the aqueous suspension of maghemite particles. Various compounds can be used as the manganese, zinc and iron components used in the present invention, for example, their sulfates,
Water-soluble substances such as nitrates and chlorides are suitable. It is necessary to use ferrous manganese for the manganese component, but the effect of the present invention does not change even if ferrous or ferric iron is used for the iron component. Manganese contains 0.1 to 19 atomic weight%, preferably 0.1 to 16 atomic weight% as Mn / tFe in the maghemite particles after the metal treatment,
On the other hand, zinc is added so as to contain 3 to 19 atomic weight%, preferably 3 to 16 atomic weight% as Zn / tFe.
Iron may be added without addition or up to twice the total amount of manganese and zinc added on a molar basis. Further, the pH is adjusted to 10 to 11 by adding an alkali, and the added metal is deposited as a hydroxide on the surface of the base particles.
Washing with water removes excess alkali and the like remaining in the suspension. Then, drying at 50 to 110 ° C. in air is performed. It is subsequently reduced by applying known methods to intermediates having a ferrous iron content of less than 31 at.% By weight as Fe (II) / tFe. The method is, for example, a method of reducing the temperature at 230 ° C. under a flow of hydrogen gas. The content of ferrous iron can be adjusted to a desired level by adjusting the reduction time. Further, heat treatment is performed in a non-oxidizing atmosphere. The reason why the atmosphere is made non-oxidizing is to prevent oxidation of ferrous iron and manganese, and nitrogen, carbon dioxide, and a rare gas such as helium or argon can be used. The temperature of the heat treatment is from 400 ° C. to the upper limit temperature at which the transition to hematite does not occur. Preferably 400-750 ° C
It is. The time of the heat treatment is 0.5 to 24 hours, preferably 1 to 6 hours. At the stage immediately after the metal deposition treatment, the added metal is present only as a non-magnetic hydroxide or oxide on the surface of the base particles, but is solid-solved inside the crystal by reduction and heat treatment, It is considered that the saturation magnetization is improved by the combined effect of manganese and zinc.

【0012】(2) 第1鉄の含有量がFe(II)/
tFeとして31原子重量%以下である中間体粒子の水
性懸濁液にマンガン、亜鉛及び任意に鉄化合物を含む水
溶液を添加する。マンガンは金属処理後の中間体粒子中
のMn/tFeとして0.1〜19原子重量%、好まし
くは0.1〜16原子重量%を含有し、一方亜鉛はZn
/tFeとして3〜19原子重量%、好ましくは3〜1
6原子重量%を含有する様に添加する。鉄は無添加にす
るかもしくはモル基準でマンガン及び亜鉛の総添加量の
2倍量までを添加できる。さらにアルカリを添加してp
Hを10〜11に調整し、添加金属を基体粒子表面上に
水酸化物として被着させてから、濾過、水洗し懸濁液中
に残存する余剰のアルカリなどを除去する。そして非酸
化性雰囲気下で50〜110°Cの乾燥を行ない、引き
続いて同じく非酸化性雰囲気下で熱処理する。熱処理の
温度は400°C〜ヘマタイトへの転移が生じない上限
温度までとする。好ましくは400〜750°Cであ
る。熱処理の時間は0.5〜24時間、好ましくは1〜
6時間とする。
(2) The ferrous iron content is Fe (II) /
An aqueous solution containing manganese, zinc and optionally an iron compound is added to an aqueous suspension of intermediate particles having a tFe of 31 atomic weight% or less. Manganese contains 0.1 to 19 atomic weight%, preferably 0.1 to 16 atomic weight% as Mn / tFe in the intermediate particles after metal treatment, while zinc contains Zn
3 to 19 atomic weight%, preferably 3 to 1
It is added so as to contain 6 atomic weight%. Iron can be left unadded or added up to twice the total amount of manganese and zinc on a molar basis. Add alkali and add p
After adjusting the H to 10 to 11 and attaching the added metal as a hydroxide on the surface of the base particles, filtration and washing with water are performed to remove excess alkali and the like remaining in the suspension. Then, drying is performed at 50 to 110 ° C. in a non-oxidizing atmosphere, followed by heat treatment in the same non-oxidizing atmosphere. The temperature of the heat treatment is from 400 ° C. to the upper limit temperature at which the transition to hematite does not occur. Preferably it is 400-750 degreeC. The heat treatment time is 0.5 to 24 hours, preferably 1 to 24 hours.
6 hours.

【0013】(3) 水和酸化鉄粒子の水性懸濁液にマ
ンガン及び亜鉛化合物を含む水溶液を添加する。マンガ
ンは加熱脱水してヘマタイト化した段階でMn/tFe
として0.1〜19原子重量%、好ましくは0.1〜1
6原子重量%を含有し、一方亜鉛はZn/tFeとして
3〜19原子重量%、好ましくは3〜16原子重量%を
含有する様に添加する。さらにアルカリを添加してpH
を10〜11に調整し、添加金属を基体粒子表面上に水
酸化物として被着させてから、濾過、水洗して懸濁液中
に残存する余剰のアルカリなどを除去し、空気中50〜
110°Cの乾燥を行なう。引き続き500〜650°
C−0.5時間の加熱脱水を行ない、水素ガス流通下3
00〜350°C−3時間の還元、さらに非酸化性雰囲
気下で熱処理をする。熱処理の温度は400°C〜ヘマ
タイトへの転移が生じない上限温度までとする。好まし
くは400〜750°Cである。熱処理の時間は、0.
5〜24時間、好ましくは1〜6時間とする。後工程は
公知の方法で中間体粒子もしくはマグヘマイト粒子に仕
上げる。例えば中間体粒子に仕上げる場合は、空気流通
下で50°C−2時間の酸化をして酸化が完結する前に
取り出す。一方マグヘマイト粒子に仕上げる場合は、空
気流通下250°C−3時間の酸化をしてマグヘマイト
化する。
(3) An aqueous solution containing manganese and zinc compounds is added to the aqueous suspension of hydrated iron oxide particles. Manganese is Mn / tFe when heated and dehydrated to form hematite.
0.1 to 19 atomic weight%, preferably 0.1 to 1
Zinc is added to contain 3 to 19 atomic weight%, preferably 3 to 16 atomic weight% as Zn / tFe. Further add alkali to pH
Is adjusted to 10 to 11 and the added metal is applied as a hydroxide on the surface of the base particles, and then filtered and washed with water to remove excess alkali and the like remaining in the suspension.
Dry at 110 ° C. Continue 500-650 °
C-Perform heat dehydration for 0.5 hour,
Reduction is performed at 00 to 350 ° C. for 3 hours, and heat treatment is performed in a non-oxidizing atmosphere. The temperature of the heat treatment is from 400 ° C. to the upper limit temperature at which the transition to hematite does not occur. Preferably it is 400-750 degreeC. The heat treatment time is 0.
5 to 24 hours, preferably 1 to 6 hours. In the subsequent step, intermediate particles or maghemite particles are finished by a known method. For example, in the case of finishing to intermediate particles, the particles are oxidized at 50 ° C. for 2 hours under a flow of air and taken out before the oxidation is completed. On the other hand, when finishing to maghemite particles, the particles are oxidized at 250 ° C. for 3 hours under air flow to form maghemite.

【0014】(4) 金属の被着処理から還元によるマ
グネタイト化までは(3)と同じである。以降の工程
は、次の通りである。空気流通下50°Cで酸化して中
間体化する。中間体の第一鉄含有量は、酸化時間を調整
することで所望のレベルにすることができる。引き続き
熱処理して、中間体として仕上げる。熱処理の温度は4
00°C〜ヘマタイトの転移が生じない上限温度までと
する。好ましくは400〜750°Cである。熱処理の
時間は0.5〜24時間、好ましくは1〜6時間とす
る。マグヘマイト粒子に仕上げる場合は、さらに空気流
通下250°C−3時間の酸化をする。
(4) The process from the deposition of the metal to the formation of magnetite by reduction is the same as (3). The subsequent steps are as follows. It is oxidized at 50 ° C under air flow to form an intermediate. The ferrous content of the intermediate can be brought to a desired level by adjusting the oxidation time. Subsequently, it is heat-treated and finished as an intermediate. Heat treatment temperature is 4
The temperature is from 00 ° C. to an upper limit temperature at which the transformation of hematite does not occur. Preferably it is 400-750 degreeC. The time of the heat treatment is 0.5 to 24 hours, preferably 1 to 6 hours. When finishing to maghemite particles, oxidation is further performed at 250 ° C. for 3 hours under air flow.

【0015】(5) 前記(3)と(4)で得られた飽
和磁化量が向上したマグヘマイト粒子または中間体粒子
を希薄な酸性溶液で洗浄し、粒子表面に残存する非磁性
のマンガン及び亜鉛の酸化物等を除去する。引き続き、
マグヘマイト粒子は(1)、中間体粒子は(2)と同様
の金属被着処理及び熱処理をすることにより、飽和磁化
量をさらに高めることができる。(1)及び(2)と異
なる点としては、マンガン及び亜鉛と同時に鉄を必ず添
加する必要がある。鉄は、モル基準でマンガン及び亜鉛
の総添加量の1〜2倍量を添加する必要がある。マンガ
ン及び亜鉛の適正含有量は、Mn/tFeとして0.1
〜19原子重量%、好ましくは0.1〜16原子重量
%、一方亜鉛はZn/tFeとして3〜19原子重量
%、好ましくは3〜16原子重量%である。
(5) The maghemite particles or intermediate particles having improved saturation magnetization obtained in (3) and (4) are washed with a dilute acidic solution, and non-magnetic manganese and zinc remaining on the particle surfaces Oxides and the like are removed. Continued
The saturation magnetization can be further increased by subjecting the maghemite particles to (1) and the intermediate particles to the same metal deposition treatment and heat treatment as in (2). The difference from (1) and (2) is that iron must be added simultaneously with manganese and zinc. Iron must be added in an amount of 1 to 2 times the total amount of manganese and zinc on a molar basis. The proper content of manganese and zinc is 0.1 as Mn / tFe.
-19 at%, preferably 0.1-16 at%, while zinc is 3-19 at%, preferably 3-16 at% as Zn / tFe.

【0016】(6) 前記(1)〜(5)で得られた飽
和磁化量が向上したマグヘマイト粒子もしくは中間体粒
子は、公知の方法により粒子表面にコバルト塩もしくは
コバルト塩と第一鉄塩を含む溶液で被着処理することに
より、保磁力を高めて磁気特性をより一層向上させるこ
とができる。被着処理の方法は、例えば以下の通りであ
る。マグヘマイト粒子もしくは中間体粒子の水性懸濁液
に、アルカリ及びコバルト塩もしくはアルカリ,コバル
ト塩及び第一鉄塩を添加して反応させる。コバルトの被
着量は基体粒子基準で1〜9wt%、好ましくは2〜8
wt%、第一鉄塩を併用する場合、第一鉄塩の被着量は
Fe(II)として10wt%以下、好ましくは3〜8
wt%とする。さらに80〜95°Cまで加熱して2〜
7時間の熟成を行う。被着反応後、濾過、水洗、乾燥し
てコバルト被着強磁性酸化鉄粉末にする。
(6) The maghemite particles or intermediate particles having improved saturation magnetization obtained in the above (1) to (5) are prepared by adding a cobalt salt or a cobalt salt and a ferrous salt to the particle surface by a known method. By performing the deposition treatment with the solution containing the magnetic material, the coercive force can be increased and the magnetic characteristics can be further improved. The method of the deposition process is, for example, as follows. Alkali and cobalt salts or alkali, cobalt salts and ferrous salts are added to an aqueous suspension of maghemite particles or intermediate particles and reacted. The coating amount of cobalt is 1 to 9 wt%, preferably 2 to 8 wt%, based on the base particles.
When the ferrous salt is used in combination with the ferrous salt, the amount of the ferrous salt to be applied is 10 wt% or less as Fe (II), preferably 3 to 8%.
wt%. And then heat to 80-95 ° C
Aging for 7 hours. After the deposition reaction, it is filtered, washed with water, and dried to obtain a cobalt-deposited ferromagnetic iron oxide powder.

【0017】以上をまとめると、本発明にかかる酸化鉄
粉末の製造方法の態様としては以下のものが挙げられ
る。
To summarize the above, embodiments of the method for producing iron oxide powder according to the present invention include the following.

【0018】1. マグヘマイト粒子をマンガン、亜鉛
及び任意に鉄を含む溶液で処理し、鉄総量に対して0.
1〜19原子重量%のマンガン、及び鉄総量に対して3
〜19原子重量%の亜鉛を含有させたマグヘマイト粒子
を、還元して鉄総量に対して31原子重量%以下の第一
鉄を含有する中間体粒子とし、さらに非酸化性雰囲気下
にて400°C〜ヘマタイトへの転移が生じない上限温
度で熱処理することを特徴とする磁気記録用強磁性酸化
鉄粉末の製造方法。
1. The maghemite particles are treated with a solution containing manganese, zinc and optionally iron, with a concentration of 0.1% based on the total iron.
1 to 19 atomic% by weight of manganese and 3 based on the total amount of iron
The maghemite particles containing 1919 at.% By weight of zinc are reduced to intermediate particles containing less than 31 at.% By weight of ferrous iron based on the total amount of iron, and further 400 ° C. in a non-oxidizing atmosphere. A method for producing a ferromagnetic iron oxide powder for magnetic recording, comprising performing heat treatment at an upper limit temperature at which a transition from C to hematite does not occur.

【0019】2. 鉄総量に対して31原子重量%以下
の第一鉄を含有する中間体粒子をマンガン、亜鉛及び任
意に鉄を含む溶液で処理し、鉄総量に対して0.1〜1
9原子重量%のマンガン、及び鉄総量に対して3〜19
原子重量%の亜鉛を含有させた中間体粒子とし、さらに
非酸化性雰囲気下にて400°C〜ヘマタイトへの転移
が生じない上限温度で熱処理することを特徴とする磁気
記録用強磁性酸化鉄粉末の製造方法。
2. Intermediate particles containing less than 31 atomic weight percent ferrous iron, based on total iron, are treated with a solution containing manganese, zinc, and optionally iron, with 0.1 to 1 relative to total iron.
9 atomic weight% of manganese and 3 to 19 based on the total amount of iron
A ferromagnetic iron oxide for magnetic recording, comprising: an intermediate particle containing atomic weight% of zinc; and a heat treatment in a non-oxidizing atmosphere at 400 ° C. to an upper limit temperature at which a transition to hematite does not occur. Powder manufacturing method.

【0020】3. 水和酸化鉄粒子をマンガン及び亜鉛
を含む溶液で処理し、加熱脱水、還元し、鉄総量に対し
て0.1〜19原子重量%のマンガン、及び鉄総量に対
して3〜19原子重量%の亜鉛を含有させたマグネタイ
ト粒子とし、その後非酸化性雰囲気下にて400℃〜ヘ
マタイトへの転移が生じない上限温度で熱処理し、さら
に酸化してマグヘマイトとすることを特徴とする磁気記
録用強磁性酸化鉄粉末の製造方法。
3. The hydrated iron oxide particles are treated with a solution containing manganese and zinc, heat dehydrated and reduced, and 0.1 to 19 atomic weight% manganese based on the total iron, and 3 to 19 atomic weight% based on the total iron. A magnetite particle containing zinc, and then heat-treated in a non-oxidizing atmosphere at 400 ° C. to an upper limit temperature at which the transition to hematite does not occur, and further oxidized to maghemite. Manufacturing method of magnetic iron oxide powder.

【0021】4. 前記の酸化が微酸化である、上記3
記載の製造方法。
4. 3. The above-mentioned item 3, wherein the oxidation is slight oxidation.
The manufacturing method as described.

【0022】5. 水和酸化鉄粒子をマンガン及び亜鉛
を含む溶液で処理し、加熱脱水、還元し、微酸化し、鉄
総量に対して0.1〜19原子重量%のマンガン、及び
鉄総量に対して3〜19原子重量%の亜鉛を含有させた
中間体粒子とし、その後非酸化性雰囲気下にて400°
C〜ヘマタイトへの転移が生じない上限温度で熱処理す
ることを特徴とする磁気記録用強磁性酸化鉄粉末の製造
方法。
5. The hydrated iron oxide particles are treated with a solution containing manganese and zinc, thermally dehydrated, reduced, slightly oxidized, and 0.1 to 19 atomic weight% manganese based on the total iron, and 3 to 3 atomic% based on the total iron. Intermediate particles containing 19 atomic% by weight of zinc and then 400 ° C. in a non-oxidizing atmosphere
A method for producing a ferromagnetic iron oxide powder for magnetic recording, comprising performing heat treatment at an upper limit temperature at which a transition from C to hematite does not occur.

【0023】6. 前記熱処理後、さらに酸化してマグ
ヘマイトとすることを特徴とする前記5記載の磁気記録
用強磁性酸化鉄粉末の製造方法。
6. 6. The method for producing a ferromagnetic iron oxide powder for magnetic recording according to the item 5, wherein the heat treatment is further oxidized to maghemite.

【0024】7. 前記マグヘマイトを希薄酸性溶液で
洗浄し、さらにマンガン、亜鉛及び鉄を含む溶液で処理
し、鉄総量に対して0.1〜19原子重量%のマンガ
ン、及び鉄総量に対して3〜19原子重量%の亜鉛を含
有させたマグヘマイト粒子とし、その後還元して中間体
粒子とし、さらに非酸化性雰囲気下にて400℃〜ヘマ
タイトへの転移が生じない上限温度で熱処理する工程を
さらに含むことを特徴とする前記3又は6記載の磁気記
録用強磁性酸化鉄粉末の製造方法。
[7] The maghemite is washed with a dilute acidic solution, further treated with a solution containing manganese, zinc and iron, 0.1 to 19 atomic weight% manganese based on the total iron, and 3 to 19 atomic weight based on the total iron. % Of zinc-containing maghemite particles, and then reduced to intermediate particles, and further subjected to a heat treatment in a non-oxidizing atmosphere at a temperature from 400 ° C. to an upper limit temperature at which transformation to hematite does not occur. 7. The method for producing a ferromagnetic iron oxide powder for magnetic recording according to the above item 3 or 6.

【0025】8. 前記中間体を希薄酸性溶液で洗浄
し、さらにマンガン、亜鉛及び鉄を含む溶液で処理し、
鉄総量に対して0.1〜19原子重量%のマンガン、及
び鉄総量に対して3〜19原子重量%の亜鉛を含有させ
た中間体粒子とし、さらに非酸化性雰囲気下にて400
℃〜ヘマタイトへの転移が生じない上限温度で熱処理す
る工程をさらに含むことを特徴とする前記4又は5記載
の磁気記録用強磁性酸化鉄粉末の製造方法。
8. Washing the intermediate with a dilute acidic solution and further treating with a solution containing manganese, zinc and iron;
Intermediate particles containing 0.1 to 19 atomic% by weight of manganese with respect to the total amount of iron, and 3 to 19 atomic% by weight of zinc with respect to the total amount of iron.
6. The method for producing a ferromagnetic iron oxide powder for magnetic recording according to the above item 4 or 5, further comprising a step of performing a heat treatment at a maximum temperature at which the transition to ℃ to hematite does not occur.

【0026】9. コバルト化合物またはコバルトと第
一鉄塩の化合物を含む溶液で処理する工程をさらに含む
前記1から8のいずれか1項記載の製造方法。
9. The method according to any one of claims 1 to 8, further comprising a step of treating with a solution containing a cobalt compound or a compound of cobalt and a ferrous salt.

【0027】尚上記において「酸化」するとはマグネタ
イトをマグヘマイトまで酸化することを意味し、「微酸
化」するとはマグネタイトとマグヘマイトの中間体まで
酸化することを意味する。
In the above description, "oxidation" means that magnetite is oxidized to maghemite, and "slight oxidation" means that it is oxidized to an intermediate between magnetite and maghemite.

【0028】本発明者らはさらに、鉄総量に対して0.
1〜5原子重量%のマンガン、0.4〜20原子重量%
の亜鉛、0.1〜2.5原子重量%のリンまたはケイ
素、及び31原子重量%以下の第一鉄を含有する磁気記
録用強磁性酸化鉄粉末、及びこれをさらにコバルト塩、
またはコバルト塩と第一鉄塩を含む溶液で処理した酸化
鉄粉末によっても優れた結果がえられることを見いだ
し、請求項2および3に記載された発明を完成した。
The present inventors have further determined that the total iron content is not more than 0.1%.
1-5 atomic weight% manganese, 0.4-20 atomic weight%
A ferromagnetic iron oxide powder for magnetic recording, comprising zinc, 0.1 to 2.5 at.% Phosphorus or silicon, and 31 at.% Or less ferrous iron, and further comprising a cobalt salt;
Alternatively, it has been found that excellent results can be obtained by using iron oxide powder treated with a solution containing a cobalt salt and a ferrous salt, and the inventions described in claims 2 and 3 have been completed.

【0029】かかる磁気記録用強磁性酸化鉄粉末は、水
和酸化鉄生成時にマンガンと亜鉛とを添加した原料を用
いた場合中間体粒子を非酸化性雰囲気で熱処理を施すこ
とにより得られるが、同一金属含有量における飽和磁化
量がさらに向上することが見いだされた。この原因は前
記の方法はマグヘマイト、中間体もしくは水和酸化鉄の
粒子表面にマンガン、亜鉛を被着するのでマンガン及び
亜鉛の分布が不均一になるが、水和酸化鉄生成段階でマ
ンガン及び亜鉛を均一に沈澱させておけば第一鉄存在下
の熱処理においてマンガン及び亜鉛の固溶が容易かつ均
一になる為と考えられる。又、マンガンと亜鉛を共存さ
せると亜鉛単独よりも飽和磁化量の高い中間体粒子を得
ることができ、マンガン、亜鉛の複合効果によるものと
考えられる。
Such a ferromagnetic iron oxide powder for magnetic recording can be obtained by subjecting intermediate particles to a heat treatment in a non-oxidizing atmosphere when using a raw material to which manganese and zinc are added during the formation of hydrated iron oxide. It has been found that the saturation magnetization at the same metal content is further improved. The reason for this is that the above-mentioned method deposits manganese and zinc on the surface of maghemite, intermediate or hydrated iron oxide particles, so that the distribution of manganese and zinc becomes uneven. It is considered that the uniform precipitation of manganese and manganese and zinc in the heat treatment in the presence of ferrous iron becomes easy and uniform if the precipitates are uniformly precipitated. Further, when manganese and zinc coexist, intermediate particles having a higher saturation magnetization than zinc alone can be obtained, which is considered to be due to the combined effect of manganese and zinc.

【0030】本発明は水和酸化鉄中にマンガン並びに亜
鉛を均一に沈澱させた後、マグネタイト化もしくは中間
体化した粒子を熱処理することにより飽和磁化量が向上
した中間体粒子を得ることに特徴をもち、水和酸化鉄の
製造と中間体粒子の製造とに大別される。
The present invention is characterized in that manganese and zinc are uniformly precipitated in hydrated iron oxide, and then the magnetized or intermediate particles are heat-treated to obtain intermediate particles having an improved saturation magnetization. It is roughly divided into production of hydrated iron oxide and production of intermediate particles.

【0031】水和酸化鉄にはいくつかの製造方法がある
が、水和酸化鉄中にマンガン並びに亜鉛を均一に沈澱さ
せようとする場合、添加したマンガンや亜鉛が100%
沈澱しないpH領域で水和酸化鉄の製造を行う方法で
は、マンガンや亜鉛の沈澱量が不安定になりやすく好ま
しくない。これに対し、本発明では水酸化鉄(III)
を主成分とするアルカリ性懸濁液から水和酸化鉄を製造
する方法を用い、水和酸化鉄生成時のpHが酸性側や1
4以上にもなる高アルカリ側に片寄ることがない為、添
加したマンガン並びに亜鉛を100%沈澱させることが
可能であり、特性安定性、製造安定性を得ることができ
る。
There are several production methods for hydrated iron oxide. When it is desired to uniformly precipitate manganese and zinc in hydrated iron oxide, 100% of the added manganese and zinc are added.
In the method of producing hydrated iron oxide in a pH range in which precipitation does not occur, the amount of manganese and zinc precipitated becomes unstable, which is not preferable. On the other hand, in the present invention, iron (III) hydroxide
Using a method for producing hydrated iron oxide from an alkaline suspension containing as a main component the pH of the hydrated iron oxide when the
Since there is no bias toward the high alkali side of 4 or more, it is possible to precipitate 100% of the added manganese and zinc, and it is possible to obtain characteristic stability and production stability.

【0032】水和酸化鉄の製造方法としては水酸化鉄
(III)を主成分とするpH10以上のアルカリ性懸
濁液を室温熟成した後水熱処理する方法(安藤:粉体及
び粉末治金、Vo1.13.No.1.1966)が知
られている。しかし、多量のマンガン並びに亜鉛を含有
する系では熟成速度が小さくなる為、室温熟成から加熱
熟成に変更する必要を生じた。更に、前記の系では加熱
により熟成を行っても水熱処理後にヘマタイトと水和酸
化鉄の2相が生成すると云う欠点があった。水和酸化鉄
の単一相を生成させる条件を種々検討した結果、熟成後
に水溶性ケイ酸塩もしくは水溶性リン酸塩を添加するこ
とによりヘマタイトの生成を抑制できることを見い出し
た。
As a method for producing hydrated iron oxide, a method in which an alkaline suspension containing iron (III) hydroxide as a main component and having a pH of 10 or more is aged at room temperature and then subjected to hydrothermal treatment (Ando: Powder and powder metallurgy, Vo1) .13.No.1.1966) is known. However, in a system containing a large amount of manganese and zinc, the ripening rate becomes low, so that it is necessary to change from room temperature aging to heating aging. Further, the above-mentioned system has a drawback that two phases of hematite and hydrated iron oxide are formed after hydrothermal treatment even when aging is performed by heating. As a result of various studies on the conditions for forming a single phase of hydrated iron oxide, it was found that the formation of hematite can be suppressed by adding a water-soluble silicate or a water-soluble phosphate after aging.

【0033】アルカリ性懸濁液の作製は、水溶性マンガ
ン塩並びに水溶性亜鉛塩を第二鉄塩中に添加、溶解し、
該第二鉄塩溶液とアルカリ性溶液とをpH10〜13の
範囲に保ちながら同時添加し、第二鉄、マンガン並びに
亜鉛を均一かつ同時に沈澱させる。マンガン塩並びに亜
鉛塩を溶解させた第二鉄塩溶液中にアルカリ溶液を添加
する方法、あるいはアルカリ溶液中にマンガン塩並びに
亜鉛塩を溶解させた第二鉄塩溶液を添加する方法では、
各金属の沈澱pHがそれぞれ異なることから不均一な沈
澱となる為好ましくない。又、水溶性マンガン塩並びに
水溶性亜鉛塩の添加量は次工程で得られる飽和磁化量が
向上した中間体粒子において、Mn/tFeとして0.
1〜5原子重量%、好ましくは0.1〜4原子重量%並
びにZn/tFeとして0.4〜20原子重量%、好ま
しくは1〜15原子重量%になる様に添加する。
To prepare an alkaline suspension, a water-soluble manganese salt and a water-soluble zinc salt are added and dissolved in a ferric salt.
The ferric salt solution and the alkaline solution are simultaneously added while maintaining the pH in the range of 10 to 13, to uniformly and simultaneously precipitate ferric iron, manganese and zinc. In a method of adding an alkaline solution to a ferric salt solution in which a manganese salt and a zinc salt are dissolved, or a method of adding a ferric salt solution in which a manganese salt and a zinc salt are dissolved in an alkaline solution,
Since the precipitation pH of each metal is different from each other, the precipitation becomes uneven, which is not preferable. Further, the amount of the water-soluble manganese salt and the water-soluble zinc salt to be added is set to 0.1 as Mn / tFe in the intermediate particles having an improved saturation magnetization obtained in the next step.
It is added in an amount of 1 to 5 atomic weight%, preferably 0.1 to 4 atomic weight%, and 0.4 to 20 atomic weight%, preferably 1 to 15 atomic weight% as Zn / tFe.

【0034】次に50〜100°Cにおいてアルカリ性
懸濁液の熟成を行う。マンガンや亜鉛の割合が多くなる
に従い熟成条件を強化する、即ち熟成温度を高くした
り、熟成時間を長くする等の条件が必要になる。例えば
熟成時におけるマンガン並びに亜鉛の含有量がMn/F
eとして0.5原子重量%、Zn/Feとして5原子重
量%の場合85°C×5H程度の熟成で良いが、Mn/
Feとして3原子重量%、Zn/Feとして15原子重
量%の場合95°C×24H以上の熟成が必要である。
熟成が不充分なときは水熱処理の後に水酸化物のコロイ
ドが残存する。
Next, the alkaline suspension is aged at 50 to 100 ° C. As the proportions of manganese and zinc increase, aging conditions must be strengthened, that is, conditions such as increasing the aging temperature and lengthening the aging time are required. For example, when the content of manganese and zinc during aging is Mn / F
When e is 0.5 atomic weight% and Zn / Fe is 5 atomic weight%, aging at about 85 ° C. × 5H is sufficient, but Mn /
When Fe is 3 atomic weight% and Zn / Fe is 15 atomic weight%, aging at 95 ° C. × 24H or more is required.
When the aging is insufficient, the hydroxide colloid remains after the hydrothermal treatment.

【0035】水熱処理は事前に水溶性ケイ酸塩もしくは
水溶性リン酸塩を添加する。ケイ酸塩もしくはリン酸塩
の添加量は、Si/FeもしくはP/Feとして0.1
〜2.5原子重量%、好ましくは0.2〜2.0原子重
量%である。尚、ケイ酸塩並びにリン酸塩添加の本来の
目的は水熱処理時のヘマタイト生成抑制であるが焼結防
止剤としても作用し好都合である。
In the hydrothermal treatment, a water-soluble silicate or a water-soluble phosphate is added in advance. The amount of silicate or phosphate added is 0.1 / 0.1 as Si / Fe or P / Fe.
To 2.5 at.%, Preferably 0.2 to 2.0 at.%. The original purpose of the addition of the silicate and the phosphate is to suppress the formation of hematite during the hydrothermal treatment, but it advantageously acts as a sintering inhibitor.

【0036】以上の様にして得られた水和酸化鉄は、濾
過、水洗し懸濁液中に残存する余剰のアルカリなどを除
去した後、必要に応じてケイ素化合物、リン化合物など
の焼結防止剤の後処理を施し、再び濾過、水洗した後、
空気中50〜110°Cで乾燥し、飽和磁化量が向上し
た中間体粒子の原料とする。
The hydrated iron oxide thus obtained is filtered and washed with water to remove excess alkali and the like remaining in the suspension, and then, if necessary, sintered with a silicon compound, a phosphorus compound or the like. After the post treatment of the inhibitor, after filtering and washing again,
It is dried at 50 to 110 ° C. in the air, and is used as a raw material for intermediate particles having an improved saturation magnetization.

【0037】飽和磁化量が向上した中間体粒子は、
(i)マグネタイト粒子、(ii)マグネタイト粒子を
微酸化した中間体粒子、(iii)マグネタイト粒子を
酸化して一旦マグヘマイト粒子とした後、再還元した中
間体粒子、のいずれの粒子でも非酸化性雰囲気下で熱処
理をすれば同程度の飽和磁化量を示す。原料の水和酸化
鉄を500〜750°C×0.5時間の加熱脱水を行っ
た後、公知の範囲内で作製した熱処理前のマグネタイト
粒子もしくは中間体粒子、即ち(i)水素ガス流通下3
00〜400°C×2〜6時間の還元をすることにより
得られるマグネタイト粒子、(ii)水素ガス流通下3
00〜400°C×2〜6時間の還元の後、250°C
以下において空気酸化により所望の第一鉄含有率になる
まで微酸化することにより得られる中間体粒子、(ii
i)水素ガス流通下300〜400°C×2〜6時間の
還元後、250°C以下において空気酸化してマグヘマ
イト粒子とし、再び300〜400°Cにおいて所望の
第一鉄含有率になるまで還元することにより得られる中
間体粒子、を非酸化性雰囲気下にて400°C〜ヘマタ
イトへの転移が生じない上限温度、好ましくは400〜
750°Cにおいて0.5〜24時間、好ましくは1〜
6時間の熱処理を施す。その後、前記(i)のマグネタ
イトの状態で熱処理を施した粒子は250°C以下にお
いて空気酸化により所望の第一鉄含有率になるまで微酸
化して、又、中間体の状態で熱処理を施した粒子はその
ままの状態で飽和磁化量が向上した中間体粒子に仕上げ
る。このとき中間体粒子中の第一鉄含有率はFe(I
I)/tFeとして31原子重量%以下に調整する。
The intermediate particles having the improved saturation magnetization are as follows:
Any of (i) magnetite particles, (ii) intermediate particles obtained by slightly oxidizing magnetite particles, and (iii) oxidized magnetite particles into maghemite particles and then re-reduced intermediate particles are non-oxidizing. When heat treatment is performed in an atmosphere, the same saturation magnetization is exhibited. The raw material hydrated iron oxide is heated and dehydrated at 500 to 750 ° C. for 0.5 hour, and then magnetite particles or intermediate particles before heat treatment prepared within a known range, that is, (i) under hydrogen gas flow. 3
Magnetite particles obtained by reduction at 00 to 400 ° C. for 2 to 6 hours, (ii) 3 under hydrogen gas flow
After reduction of 00 to 400 ° C x 2 to 6 hours, 250 ° C
Intermediate particles obtained by micro-oxidation to a desired ferrous content by air oxidation below, (ii)
i) After reducing at 300 to 400 ° C for 2 to 6 hours under flowing hydrogen gas, air oxidation is performed at 250 ° C or lower to form maghemite particles, and the desired ferrous iron content is again obtained at 300 to 400 ° C. The intermediate particles obtained by reduction, under a non-oxidizing atmosphere, at a temperature of 400 ° C. to a maximum temperature at which the transition to hematite does not occur, preferably 400 to 400 ° C.
0.5 to 24 hours at 750 ° C, preferably 1 to
A heat treatment is performed for 6 hours. Thereafter, the particles heat-treated in the state of magnetite (i) are slightly oxidized by air oxidation at 250 ° C. or lower until the desired ferrous iron content is reached, and heat-treated in the state of an intermediate. The finished particles are finished as they are as intermediate particles having an improved saturation magnetization. At this time, the ferrous content in the intermediate particles is Fe (I
I) / tFe is adjusted to 31 atomic weight% or less.

【0038】飽和磁化量が向上した中間体粒子は、公知
の方法により粒子表面にコバルト塩もしくはコバルト塩
と第一鉄塩を含む溶液で被着処理することにより、保磁
力を高めて磁気特性を一層向上させることができる。被
着処理の方法は、例えば以下の通りである。中間体粒子
の水性懸濁液に、アルカリ及びコバルト塩もしくはアル
カリ、コバルト塩及び第一鉄塩を添加して反応させる。
コバルトの被着量は基体粒子基準で1〜9wt%、好ま
しくは2〜8wt%、第一鉄塩を併用する場合、第一鉄
塩の被着量はFe(II)として10wt%以下、好ま
しくは3〜8wt%である。更に80〜95°Cまで加
熱して2〜7時間の熟成を行う。被着反応後、濾過、水
洗、乾燥して、コバルト被着強磁性酸化鉄粉末に仕上げ
る。
The intermediate particles having an improved saturation magnetization are coated on the particle surface with a solution containing a cobalt salt or a cobalt salt and a ferrous salt by a known method to increase the coercive force and improve the magnetic properties. It can be further improved. The method of the deposition process is, for example, as follows. An alkali and a cobalt salt or an alkali, a cobalt salt and a ferrous salt are added to an aqueous suspension of the intermediate particles and reacted.
The deposition amount of cobalt is 1 to 9 wt%, preferably 2 to 8 wt%, based on the base particles. When a ferrous salt is used in combination, the deposition amount of the ferrous salt is preferably 10 wt% or less as Fe (II). Is 3 to 8% by weight. Further, the mixture is heated to 80 to 95 ° C. and aged for 2 to 7 hours. After the deposition reaction, the resultant is filtered, washed with water, and dried to obtain a cobalt-deposited ferromagnetic iron oxide powder.

【0039】本発明によれば、マグヘマイト粒子、中間
体粒子もしくは水和酸化鉄粒子の表面を金属で被着処理
し熱処理して固溶させることにより、飽和磁化量が向上
したマグヘマイト粒子もしくは中間体粒子を得ることが
できる。
According to the present invention, the surface of maghemite particles, intermediate particles or hydrated iron oxide particles is coated with a metal, heat-treated to form a solid solution, and thereby the maghemite particles or intermediate particles having an improved saturation magnetization are obtained. Particles can be obtained.

【0040】又、本発明によれば、金属を均一に沈澱さ
せた水和酸化鉄を原料としたマグネタイト粒子もしくは
中間体粒子を熱処理することにより、飽和磁化が向上し
た中間体粒子を得ることができる。
According to the present invention, intermediate particles having improved saturation magnetization can be obtained by heat-treating magnetite particles or intermediate particles made from hydrated iron oxide in which a metal is uniformly precipitated. it can.

【0041】更にコバルト塩もしくはコバルト塩と第一
鉄塩を被着処理することで磁気特性をより一層好ましい
ものにして高記録密度磁気テープに極めて好適な高飽和
磁化量を有する強磁性酸化鉄粉末を製造することができ
る。本発明の効果については、以下に実施例と比較例を
挙げて具体的に説明する。
Further, a ferromagnetic iron oxide powder having a high saturation magnetization which is further preferable by applying a cobalt salt or a cobalt salt and a ferrous salt so that the magnetic properties are further improved and which is very suitable for a high recording density magnetic tape. Can be manufactured. The effects of the present invention will be specifically described below with reference to examples and comparative examples.

【0042】[0042]

【実施例】【Example】

実施例−1 保磁力Hc=2500e、飽和磁化量σs=68.5e
mu/g、比表面積=62.0m2 /gのマグヘマイト
(γ−Fe23 )粒子100gを、純水1.5リット
ル中に分散させた後、攪拌下でMnとして50g/lの
MnSO4 水溶液106.3ml、Znとして50g/
lのZnSO4 水溶液126.6ml、Feとして50
g/lのFe2 (SO43 水溶液84.0mlの混合
溶液を添加した。次いで120g/lのNaOH水溶液
を徐添加しpH=10.0に調整後30分保持し濾過、
水洗そして110°Cで2時間乾燥した。次いで水素ガ
ス流通下230°Cで3時間還元を行い、窒素ガス流通
下650°Cで3時間熱処理して目的の磁性酸化鉄粉末
を得た。(試料A−1) 比較例−1 実施例−1において50g/lのZnSO4 水溶液12
6.6mlを35.6mlに変更したほかは同様に処理
し、比較試料の磁性酸化鉄粉末を得た。(試料A−2) 実施例−2 実施例−1において50g/lのZnSO4 水溶液12
6.6mlを202.4mlに変更したほかは同様に処
理し、目的の磁性酸化鉄粉末を得た。(試料A−3) 比較例−2 実施例−1において50g/lのZnSO4 水溶液12
6.6mlを337.3mlに変更したほかは同様に処
理し、比較試料の磁性酸化鉄粉末を得た。(試料A−
4) 比較例−3 実施例−1においてMnSO4 水溶液を無添加としZn
SO4 水溶液126.6mlを59.1mlに変更した
ほかは同様に処理し、比較試料の磁性酸化鉄粉末を得
た。(試料A−5) 実施例−3 実施例−1において50g/lのMnSO4 水溶液10
6.3mlを170.1mlに変更したほかは同様に処
理し、目的の磁性酸化鉄粉末を得た。(試料A−6) 実施例−4 実施例−1において50g/lのMnSO4 水溶液10
6.3mlを170.1mlに変更したほかは同様に処
理し、目的の磁性酸化鉄粉末を得た。(試料A−7) 比較例−4 実施例−1においてMnSO4 水溶液、ZnSO4 水溶
液、及びFe2 (SO43 水溶液を無添加としたほか
は同様に処理し、比較試料の磁性酸化鉄粉末を得た。
(試料A−8) 比較例−5 実施例−1において650°Cで3時間の熱処理を35
0°Cで3時間の熱処理に変更したほかは同様に処理
し、比較試料の磁性酸化鉄粉末を得た。(試料A−9) 実施例−5 実施例−1において650°Cで3時間の熱処理を50
0°Cで3時間の熱処理に変更したほかは同様に処理
し、目的の磁性酸化鉄粉末を得た。(試料A−10) 実施例−6 実施例−1において650°Cで3時間の熱処理を75
0°Cで3時間の熱処理に変更したほかは同様に処理
し、目的の磁性酸化鉄粉末を得た。(試料A−11) 比較例−6 実施例−1において650°Cで3時間の熱処理を85
0°Cで3時間の熱処理に変更したほかは同様に処理
し、比較試料の磁性酸化鉄粉末を得た。(試料A−1
2) 実施例−7 実施例−1において650°Cで3時間の熱処理を65
0°Cで1時間の熱処理に変更したほかは同様に処理
し、目的の磁性酸化鉄粉末を得た。(試料A−13) 実施例−8 実施例−1において650°Cで3時間の熱処理を65
0°Cで12時間の熱処理に変更したほかは同様に処理
し、目的の磁性酸化鉄粉末を得た。(試料A−14) 実施例−9 実施例−1において650°Cで3時間の熱処理を65
0°Cで24時間の熱処理に変更したほかは同様に処理
し、目的の磁性酸化鉄粉末を得た。(試料A−15) 実施例−10 保磁力Hc=2500e、飽和磁化量σs=68.5e
mu/g、比表面積=62.0m2 /gのマグヘマイト
(γ−Fe23 )粒子を水素ガス流通下230°Cで
3時間還元し中間体化した後100gを純水1.5リッ
トル中に分散させ攪拌下でMnとして50g/lのMn
SO4 水溶液106.3ml,Znとして50g/lの
ZnSO4 水溶液126.6ml,Feとして50g/
lFe2(SO43 水溶液84.0mlの混合溶液を
添加した。次いで120g/lのNaOH水溶液を徐添
加し、pH=10.0に調整後30分保持し、濾過、水
洗そして窒素ガス流通下50°Cで3時間乾燥した。次
いで窒素ガス流通下650°Cで3時間熱処理して目的
の磁性酸化鉄粉末を得た。
Example 1 Coercive force Hc = 2500 e, saturation magnetization σs = 68.5 e
After dispersing 100 g of maghemite (γ-Fe 2 O 3 ) particles having a specific surface area of 62.0 m 2 / g in 1.5 L of pure water, 50 g / l of MnSO as Mn was stirred under stirring. 4 106.3 ml of aqueous solution, 50 g /
126.6 ml of an aqueous solution of ZnSO 4 , 50 as Fe
A mixed solution of 84.0 ml of a g / l aqueous solution of Fe 2 (SO 4 ) 3 was added. Then, a 120 g / l NaOH aqueous solution was gradually added to adjust the pH to 10.0, and the mixture was held for 30 minutes and filtered.
Washed and dried at 110 ° C for 2 hours. Next, reduction was carried out at 230 ° C. for 3 hours under a flow of hydrogen gas, and heat treatment was carried out at 650 ° C. for 3 hours under a flow of nitrogen gas to obtain a target magnetic iron oxide powder. ZnSO 4 aqueous solution 12 of 50 g / l in (Sample A-1) Comparative Example 1 Example -1
The same treatment was carried out except that 6.6 ml was changed to 35.6 ml, to obtain a magnetic iron oxide powder of a comparative sample. ZnSO 4 aqueous solution 12 of 50 g / l in (Sample A-2) Example -2 Example -1
The same treatment was carried out except that 6.6 ml was changed to 202.4 ml to obtain a target magnetic iron oxide powder. ZnSO 4 aqueous solution 12 of 50 g / l in (Sample A-3) Comparative Example -2 Example -1
The same treatment was carried out except that 6.6 ml was changed to 337.3 ml to obtain a magnetic iron oxide powder of a comparative sample. (Sample A-
4) In Comparative Example -3 Example -1 and no addition of MnSO 4 aqueous Zn
In addition to changing the SO 4 aqueous solution 126.6ml to 59.1ml The same treatment was to obtain a magnetic iron oxide powder of Comparative Sample. MnSO 4 aqueous solution 10 of 50 g / l in (Sample A-5) Example -3 Example -1
The same treatment was carried out except that 6.3 ml was changed to 170.1 ml to obtain a target magnetic iron oxide powder. MnSO 4 aqueous solution 10 of 50 g / l in (Sample A-6) Example -4 Example -1
The same treatment was carried out except that 6.3 ml was changed to 170.1 ml to obtain a target magnetic iron oxide powder. MnSO 4 aqueous solution in (Sample A-7) Comparative Example -4 Example -1, ZnSO 4 solution, and Fe 2 (SO 4) 3 except that the aqueous solution was not added was treated in the same manner, the magnetic iron oxide of Comparative Sample A powder was obtained.
(Sample A-8) Comparative Example-5 The heat treatment at 650 ° C. for 3 hours in Example 1 was performed for 35 hours.
The same treatment was performed except that the heat treatment was performed at 0 ° C. for 3 hours to obtain a magnetic iron oxide powder of a comparative sample. (Sample A-9) Example-5 The heat treatment at 650 ° C. for 3 hours in Example-1 was performed 50 times.
The same treatment was carried out except that the heat treatment was performed at 0 ° C. for 3 hours to obtain a target magnetic iron oxide powder. (Sample A-10) Example-6 The heat treatment at 650 ° C. for 3 hours in Example-1 was carried out for 75 hours.
The same treatment was carried out except that the heat treatment was performed at 0 ° C. for 3 hours to obtain a target magnetic iron oxide powder. (Sample A-11) Comparative Example-6 The heat treatment at 650 ° C. for 3 hours in Example-1 was performed for 85 hours.
The same treatment was performed except that the heat treatment was performed at 0 ° C. for 3 hours to obtain a magnetic iron oxide powder of a comparative sample. (Sample A-1
2) Example-7 In Example-1, the heat treatment at 650 ° C for 3 hours was performed for 65 hours.
The same treatment was carried out except that the heat treatment was performed at 0 ° C. for 1 hour to obtain a target magnetic iron oxide powder. (Sample A-13) Example-8 The heat treatment at 650 ° C. for 3 hours in Example-1 was performed for 65 hours.
The same treatment was carried out except that the heat treatment was performed at 0 ° C. for 12 hours to obtain a target magnetic iron oxide powder. (Sample A-14) Example -9 In Example 1, heat treatment was performed at 650 ° C. for 3 hours for 65 hours.
The same treatment was carried out except that the heat treatment was performed at 0 ° C. for 24 hours to obtain a target magnetic iron oxide powder. (Sample A-15) Example-10 Coercive force Hc = 2500 e, saturation magnetization σs = 68.5 e
maghemite (γ-Fe 2 O 3 ) particles having a specific surface area of 62.0 m 2 / g were reduced at 230 ° C. for 3 hours under a hydrogen gas flow to form an intermediate. Dispersed therein and stirred with Mn of 50 g / l as Mn.
106.3 ml of an aqueous solution of SO 4, 126.6 ml of a 50 g / l aqueous solution of ZnSO 4 as Zn, and 50 g /
mixed solution of lFe 2 (SO 4) 3 aqueous solution 84.0ml was added. Then, a 120 g / l NaOH aqueous solution was gradually added, the pH was adjusted to 10.0, the mixture was kept for 30 minutes, filtered, washed with water, and dried at 50 ° C. for 3 hours under a flow of nitrogen gas. Then, heat treatment was performed at 650 ° C. for 3 hours under a nitrogen gas flow to obtain a target magnetic iron oxide powder.

【0043】(試料B−1) 実施例−11 比表面積109.0m2 /gのゲーサイト(α−FeO
OH)粒子100gを純水3リットル中に分散させた
後、攪拌下でMnとして50g/lのMnSO4水溶液
92.7ml,Znとして50g/lのZnSO4 水溶
液110.4mlの混合溶液を添加した。次いで120
g/lのNaOH水溶液を徐添加しpH=10.0に調
整後リン化合物を処理して、濾過、水洗しアルカリを除
去した後110°Cで2時間乾燥した。このゲーサイト
粒子を620°Cで0.5時間加熱脱水を行い、マンガ
ン及び亜鉛含有ヘマタイト粒子を得た。このヘマタイト
粒子を炭酸ガスを含む水素ガス流通下350°Cで3時
間還元した後、窒素ガス流通下650°Cで3時間熱処
理を行い空気流通下50°Cで2時間酸化を行い中間体
化して目的の磁性酸化鉄粉末を得た。(試料C−1) 比較例−7 実施例11においてMnSO4 水溶液及びZnSO4
溶液を無添加としたほかは同様に処理し、比較試料の磁
性酸化鉄粉末を得た。(試料C−2) 実施例−12 実施例−11において50°Cで2時間の酸化を、25
0°Cで3時間の酸化に変更してマグヘマイト化したほ
かは同様に処理を行い、目的の磁性酸化鉄粉末を得た。
(試料D−1) 実施例−13 実施例−11の炭酸ガスを含む水素ガス流通下350°
Cで3時間還元した後、空気流通下50°Cで2時間酸
化を行い中間体化し、さらに窒素ガス流通下650°C
で3時間の熱処理を行って目的の磁性酸化鉄粉末を得
た。(試料E−1) 実施例−14 実施例−13を行った後、空気流通下で250°Cで3
時間酸化して目的の磁性酸化鉄粉末を得た。(試料F−
1) 実施例−15 実施例−12で得られたマグヘマイト粒子(試料D−
1)200gを20g/lのH2 SO4 2リットルに分
散させ、45°Cに昇温し、5時間保持した。次いで濾
過、水洗そして110°Cで2時間乾燥して、酸洗浄品
を得た。
(Sample B-1) Example-11 Goethite (α-FeO) having a specific surface area of 109.0 m 2 / g
After the OH) particles 100g were dispersed in pure water 3 liters, MnSO 4 aqueous solution 92.7ml as Mn under stirring 50 g / l, was added a mixed solution of ZnSO 4 aqueous solution 110.4ml of 50 g / l as Zn . Then 120
After adjusting the pH to 10.0 by gradually adding a g / l NaOH aqueous solution, the phosphorus compound was treated, filtered, washed with water to remove alkali, and dried at 110 ° C for 2 hours. The goethite particles were dehydrated by heating at 620 ° C. for 0.5 hours to obtain manganese and zinc-containing hematite particles. The hematite particles are reduced at 350 ° C. for 3 hours under a flow of hydrogen gas containing carbon dioxide gas, heat-treated at 650 ° C. for 3 hours under a flow of nitrogen gas, and oxidized at 50 ° C. for 2 hours under a flow of air to form an intermediate. Thus, the desired magnetic iron oxide powder was obtained. (Sample C-1) Comparative Example-7 A magnetic iron oxide powder of a comparative sample was obtained in the same manner as in Example 11, except that the aqueous solution of MnSO 4 and the aqueous solution of ZnSO 4 were not added. (Sample C-2) Example-12 Oxidation at 50 ° C. for 2 hours in Example-11 was carried out for 25 hours.
The same treatment was carried out except that the maghemite was formed by changing the oxidation to 0 ° C. for 3 hours to obtain the desired magnetic iron oxide powder.
(Sample D-1) Example-13 350 ° in flowing hydrogen gas containing carbon dioxide gas of Example-11
C. for 3 hours, oxidize at 50 ° C. for 2 hours under an air stream to form an intermediate, and further 650 ° C. under a nitrogen stream.
For 3 hours to obtain the desired magnetic iron oxide powder. (Sample E-1) Example-14 After performing Example-13, 3 was performed at 250 ° C. under an air flow.
Oxidation was performed for a time to obtain the desired magnetic iron oxide powder. (Sample F-
1) Example-15 Maghemite particles obtained in Example-12 (sample D-
1) 200 g was dispersed in 2 liters of 20 g / l H 2 SO 4 , the temperature was raised to 45 ° C., and kept for 5 hours. Then, it was filtered, washed with water and dried at 110 ° C. for 2 hours to obtain an acid-washed product.

【0044】酸洗浄したマグヘマイト粒子100gを純
水1.5リットル中に分散させた後、攪拌下でMnとし
て50g/lのMnSO4 水溶液35.5ml,Znと
して50g/lのZnSO4 水溶液42.2ml,Fe
として50g/lのFe2 (SO43 水溶液84.0
mlの混合溶液を添加した。次いで120g/lのNa
OH水溶液を徐添加し、pH=10.0に調整後30分
保持し濾過、水洗そして110°Cで2時間乾燥した。
次いで水素ガス流通下230°Cで3時間還元を行い、
窒素ガス流通下650°Cで3時間熱処理して目的の磁
性酸化鉄粉末を得た。(試料G−1) 実施例−16 実施例−11で得られた中間体粒子(試料C−1)20
0gを20g/lのH2 SO4 2リットルに分散させ、
窒素ガスを吹き込みながら45°Cに昇温し、5時間保
持した。次いで濾過、水洗そして窒素ガス流通下50°
Cで3時間乾燥して、酸洗浄品を得た。
[0044] After dispersing the maghemite particles 100g of acid washed in pure water 1.5 l, MnSO 4 aqueous solution 35.5ml as Mn under stirring 50g / l, ZnSO 4 solution of 50 g / l as Zn 42. 2ml, Fe
50 g / l Fe 2 (SO 4 ) 3 aqueous solution 84.0
ml of the mixed solution was added. Then 120 g / l Na
An OH aqueous solution was gradually added, and after adjusting the pH to 10.0, the mixture was maintained for 30 minutes, filtered, washed with water, and dried at 110 ° C for 2 hours.
Next, reduction was carried out at 230 ° C. for 3 hours under flowing hydrogen gas.
Heat treatment was performed at 650 ° C. for 3 hours under a nitrogen gas flow to obtain a target magnetic iron oxide powder. (Sample G-1) Example-16 Intermediate particle (sample C-1) 20 obtained in Example-11
0 g are dispersed in 2 liters of 20 g / l H 2 SO 4 ,
The temperature was raised to 45 ° C. while blowing nitrogen gas, and maintained for 5 hours. Then, filtration, washing and 50 ° under nitrogen gas flow
After drying at C for 3 hours, an acid-washed product was obtained.

【0045】酸洗浄した中間体粒子100gを純水1.
5リットル中に分散させた後、攪拌下でMnとして50
g/lのMnSO4 水溶液35.5ml、Znとして5
0g/lのZnSO4 水溶液42.2ml、Feとして
50g/lのFe2 (SO43 水溶液84.0mlの
混合溶液を添加した。次いで120g/lのNaOH水
溶液を徐添加し、pH10.0に調整後、30分保持し
濾過、水洗そして窒素ガス流通下50°Cで3時間乾燥
した。次いで窒素ガス流通下650°Cで3時間熱処理
して目的の磁性酸化鉄粉末を得た。(試料H−1) 実施例−17 実施例−16において、Mnとして50g/lのMnS
4 水溶液35.5mlを157.1ml、Znとして
50g/lのZnSO4 水溶液42.2mlを184.
0ml、Feとして50g/lのFe2 (SO43
溶液84.0mlを319.5mlに変更したほかは同
様に処理し、目的の磁性酸化鉄粉末を得た。(試料H−
2) 実施例−18 実施例−1において得られたマンガン、亜鉛含有中間体
粒子(試料A−1)100gを純水500mlに分散さ
せた後、窒素ガスを吹き込みながら攪拌下35°Cで2
04.1gのNaOH(純度98%)を溶解し500m
lに調整した溶液を添加した。次いで34.07gのC
oSO4 ・7H2 O(純度98%)を溶解し125ml
に調整した溶液と、35.54gのFeSO4 ・7H2
O(純度98%)を溶解し125mlに調整した溶液を
添加した後、95°Cで5時間熟成した。得られた沈澱
物を濾過、水洗した後、大気中55°Cで3時間乾燥し
て目的のコバルト被着磁性酸化鉄粉末を得た。(試料I
−1) 比較例−8 実施例−1において得られた中間体粒子を比較例−4で
得られた中間体粒子(試料A−8)に変更したことほか
は実施例−21と同様に処理を行い、比較試料のコバル
ト被着磁性酸化鉄粒子を得た。(試料I−2) 前記実施例−1〜18及び比較例−1〜8で作製した磁
性酸化鉄試料(A−1)〜(I−2)について、通常の
方法にて第一鉄含有量(Fe(II)/tFe),及び
飽和磁化量(σs)などを測定した。これらの結果を第
1表と第2表に示す。
100 g of the acid-washed intermediate particles were added to pure water 1.
After dispersing in 5 liters, Mn is 50
g / l MnSO 4 aqueous solution 35.5 ml, Zn 5
A mixed solution of 42.2 ml of a 0 g / l aqueous solution of ZnSO 4 and 84.0 ml of a 50 g / l aqueous solution of Fe 2 (SO 4 ) 3 as Fe was added. Next, a 120 g / l NaOH aqueous solution was gradually added to adjust the pH to 10.0, and the mixture was held for 30 minutes, filtered, washed with water, and dried at 50 ° C. for 3 hours under flowing nitrogen gas. Then, heat treatment was performed at 650 ° C. for 3 hours under a nitrogen gas flow to obtain a target magnetic iron oxide powder. (Sample H-1) Example-17 In Example-16, MnS of 50 g / l as Mn was used.
157.1 ml of an O 4 aqueous solution, and 184.2 ml of a 50 g / l ZnSO 4 aqueous solution of 50 g / l as Zn.
The same treatment was carried out except that 84.0 ml of an aqueous Fe 2 (SO 4 ) 3 solution of 0 ml and 50 g / l Fe was changed to 319.5 ml to obtain the desired magnetic iron oxide powder. (Sample H-
2) Example-18 After dispersing 100 g of the manganese and zinc-containing intermediate particles (sample A-1) obtained in Example 1 in 500 ml of pure water, the dispersion was stirred at 35 ° C while blowing nitrogen gas.
Dissolve 44.1 g of NaOH (98% purity) and 500m
The solution adjusted to 1 was added. Then 34.07 g of C
It was dissolved oSO 4 · 7H 2 O (purity 98%) 125 ml
A solution adjusted to, FeSO of 35.54g 4 · 7H 2
After adding a solution adjusted to 125 ml by dissolving O (purity 98%), the mixture was aged at 95 ° C. for 5 hours. The obtained precipitate was filtered, washed with water, and dried in the air at 55 ° C. for 3 hours to obtain the desired cobalt-coated magnetic iron oxide powder. (Sample I
-1) Comparative Example-8 The same treatment as in Example-21 except that the intermediate particles obtained in Example-1 were changed to the intermediate particles (sample A-8) obtained in Comparative Example-4 Was performed to obtain a cobalt-coated magnetic iron oxide particle of a comparative sample. (Sample I-2) Ferrous iron content of the magnetic iron oxide samples (A-1) to (I-2) prepared in Examples 1-1 to 18 and Comparative Examples -1 to 8 by a usual method. (Fe (II) / tFe), saturation magnetization (σs) and the like were measured. The results are shown in Tables 1 and 2.

【0046】以上の結果において本発明による実施例の
磁性酸化鉄試料は、飽和磁化量が高く優れた磁気特性を
示すことは明かである。
From the above results, it is apparent that the magnetic iron oxide sample of the example according to the present invention has a high saturation magnetization and exhibits excellent magnetic properties.

【0047】 実施例19 Fe(III)として13.96gを含むFe2 (SO
43溶液中に0.440gのMnSO4 ・nH2
(Mn純度31.2%)及び7.34gのZnSO4
7H2 O(純度98%)とを添加、溶解させた後液量を
500mlに調整した溶液と、61.22gのNaOH
(純度98%)を溶解し750mlに調整した溶液と
を、攪拌下の1250ml水溶液中にpH12.5±
0.5を保ちながら同時に添加することにより赤褐色の
懸濁液を調整した。この懸濁液を95°C×24Hの熟
成を行った後、Siとして17.5g/lのSiO2
Na2 O水溶液1.0mlを添加し、150°C×3H
の水熱処理を行い黄色懸濁液を得た。その後、濾過、水
洗、乾燥により黄色の粉末を回収した。(試料J−1)
この黄色粉末は第1図に示す様にX線回折により水和酸
化鉄の単一相であることが確認された。又、X線回折に
よる格子定数測定結果は第3表の通りであり、前記黄色
粉末の格子定数は水和酸化鉄のそれより大きくなってい
ることから、この合成相は水和酸化鉄の結晶格子中にF
e(III)より大きいイオン半径を有するMn(I
I)、Zn(II)が固溶していると解釈され、Mn
(II)並びにZn(II)が均一に沈澱していること
が判る。
[0047] Example 19 Fe 2 (SO 2 ) containing 13.96 g as Fe (III)
4 ) 0.440 g of MnSO 4 .nH 2 O in 3 solutions
(Mn purity 31.2%) and 7.34 g of ZnSO 4.
After adding and dissolving 7H 2 O (purity 98%), the solution was adjusted to 500 ml in volume, and 61.22 g of NaOH
(Purity 98%) was dissolved and adjusted to 750 ml in a 1250 ml aqueous solution with stirring at pH 12.5 ±
A reddish-brown suspension was prepared by simultaneous addition while maintaining 0.5. The suspension was aged at 95 ° C. × 24 H, and then 17.5 g / l of SiO 2.
Na 2 O aqueous solution (1.0 ml) was added, and 150 ° C. × 3H
Was subjected to hydrothermal treatment to obtain a yellow suspension. Thereafter, a yellow powder was recovered by filtration, washing with water and drying. (Sample J-1)
As shown in FIG. 1, the yellow powder was confirmed to be a single phase of hydrated iron oxide by X-ray diffraction. The measurement results of lattice constants by X-ray diffraction are as shown in Table 3. Since the lattice constant of the yellow powder is larger than that of the hydrated iron oxide, this synthetic phase is composed of crystals of the hydrated iron oxide. F in the grid
Mn (I) having an ionic radius larger than e (III)
I) and Zn (II) are interpreted as a solid solution,
It can be seen that (II) and Zn (II) are uniformly precipitated.

【0048】 比較例9 実施例19において、熟成後にSiO2 ・Na2 O水溶
液を添加しなかったほかは実施例19と同様にした。得
られた粉末は黄褐色を呈し、X線回折の結果、第2図に
示す様に水和酸化鉄とヘマタイトの二相が生成していた
(試料J−2)。第2図においては↓印はヘマタイトの
ピークを示す。
[0048] Comparative Example 9 The procedure of Example 19 was repeated, except that the aqueous solution of SiO 2 and Na 2 O was not added after aging. The obtained powder was yellow-brown, and as a result of X-ray diffraction, two phases of hydrated iron oxide and hematite were formed as shown in FIG. 2 (sample J-2). In FIG. 2, the arrow mark indicates the peak of hematite.

【0049】実施例20 実施例19で得られた水和酸化鉄粒子を620°Cで
0.5時間加熱脱水を行い、マンガン、亜鉛及びケイ素
を含有するヘマタイト粒子を得た。このヘマタイト粒子
を炭酸ガスを含む水素ガス流通下350°Cで6時間還
元した後、窒素ガス流通下475°Cで6時間熱処理を
行い、空気流通下70°Cで1時間酸化を行い中間体化
して目的の磁性酸化鉄粉末を得た。(試料K−1) 実施例21 実施例19で得られた水和酸化鉄粒子を620°Cで
0.5時間加熱脱水を行い、マンガン、亜鉛及びケイ素
を含有するヘマタイト粒子を得た。このヘマタイト粒子
を炭酸ガスを含む水素ガス流通下350°Cで6時間還
元した後、空気流通下70°Cで1時間酸化を行い中間
体化し、窒素ガス流通下475°Cで6時間熱処理を行
って目的の磁性酸化鉄粉末を得た。(試料K−2) 実施例22 実施例19で得られた水和酸化鉄粒子を620°Cで
0.5時間加熱脱水を行い、マンガン、亜鉛及びケイ素
を含有するヘマタイト粒子を得た。このヘマタイト粒子
を炭酸ガスを含む水素ガス流通下350°Cで3時間還
元した後、空気流通下250°Cで2時間酸化してマグ
ヘマイト粒子にした。次いで水素ガス流通下300°C
で1.5時間還元した後、窒素ガス流通下475°Cで
6時間熱処理を行って目的の磁性酸化鉄粉末を得た。
(試料K−3) 実施例23 実施例19において、SiO2 −Na2 O水溶液添加の
代りに、Pとして19.3g/lのNa 3PO4 水溶液
1.0mlを添加したほかは同様にして水和酸化鉄の単
一相を得た。つづいて実施例20の条件で中間体粒子に
仕上げて目的の磁性酸化鉄粉末を得た。(試料K−4) 実施例24 実施例19において添加したZnSO4 ・7H2 Oの量
を変えて実験を行った。得られた各水和酸化鉄粒子を実
施例20の条件で中間体粒子に仕上げて目的の磁性酸化
鉄粉末を得た。(試料K−5〜K−8) 実施例25 実施例19において添加したMnSO4 ・nH2 Oの量
を変えた実験を行った。得られた各水和酸化鉄粒子を実
施例20の条件で中間体粒子に仕上げて目的の磁性酸化
鉄粉末を得た。(試料K−9,K−10) 比較例10 実施例19においてMnSO4 ・nH2 Oを添加しなか
ったほかは実施例19と同様にした後、実施例20の条
件で中間体粒子に仕上げて比較試料の磁性酸化鉄粉末を
得た。(試料K−11) 比較例11 実施例19においてZnSO4 ・7H2 Oの添加量を1
1.01gとしたこととMnSO4 ・nH2 Oを添加し
なかったほかは実施例19と同様にした後、実施例20
の条件で中間体粒子に仕上げて比較試料の磁性酸化鉄粉
末を得た。(試料K−12) 比較例12 実施例19でMnSO4 ・nH2 O及びZnSO4 ・7
2 Oを添加しなかったほかは実施例19と同様にした
後、実施例20の条件で中間体粒子に仕上げて比較試料
の磁性酸化鉄粉末を得た。(試料K−13) 実施例26 実施例20及び実施例23において還元温度を400°
Cにしたほかは実施例20の条件で中間体粒子に仕上げ
て目的の磁性酸化鉄粉末を得た。(試料K−14〜K−
18) 実施例27 実施例25の試料K−10で熱処理温度を625°Cに
したほかは同様にして中間体粒子に仕上げて目的の磁性
酸化鉄粉末を得た。(試料K−19) 実施例28 実施例20において得られた中間体粒子(試料K−1)
100gを純水500mlに分散させた後、窒素ガスを
吹き込みながら攪拌下35°Cで204.1gのNaO
H(純度98%)を溶解し500mlに調整した溶液を
添加した。次いで34.07gのCoSO4 ・7H2
(純度98%)を溶解し125mlに調整した溶液と、
35.54gのFeSO4 ・7H2 O(純度98%)を
溶解し125mlに調整した溶液を添加した後、95°
Cで5時間熟成した。得られた沈澱物を濾過、水洗した
後、大気中55°Cで3時間乾燥して目的のコバルト被
着磁性酸化鉄粉末を得た。(試料L−1) 比較例13 実施例20において得られた中間体粒子を比較例12で
得られた中間体粒子に変更したほかは実施例26と同様
に処理し、比較試料のコバルト被着磁性酸化鉄粒子を得
た。(試料L−2) 前記実施例20〜28及び比較例10〜13で得られた
磁性酸化鉄試料(K−1)〜(L−2)について、通常
の方法により、飽和磁化量(σs)、第一鉄含有量(F
e(II)/tFe)等を測定した。これらの結果を第
4表と第5表に示す。
Example 20 The hydrated iron oxide particles obtained in Example 19 were heated and dehydrated at 620 ° C. for 0.5 hours to obtain hematite particles containing manganese, zinc and silicon. The hematite particles are reduced at 350 ° C. for 6 hours under a flow of hydrogen gas containing carbon dioxide, heat-treated at 475 ° C. for 6 hours under a flow of nitrogen gas, and oxidized at 70 ° C. for 1 hour under a flow of air to produce an intermediate. To obtain the desired magnetic iron oxide powder. (Sample K-1) Example 21 The hydrated iron oxide particles obtained in Example 19 were dehydrated by heating at 620 ° C. for 0.5 hour to obtain hematite particles containing manganese, zinc and silicon. The hematite particles are reduced at 350 ° C. for 6 hours under a flow of hydrogen gas containing carbon dioxide gas, oxidized at 70 ° C. for 1 hour under a flow of air to be an intermediate, and heat-treated at 475 ° C. for 6 hours under a flow of nitrogen gas. Then, the desired magnetic iron oxide powder was obtained. (Sample K-2) Example 22 The hydrated iron oxide particles obtained in Example 19 were heated and dehydrated at 620 ° C for 0.5 hours to obtain hematite particles containing manganese, zinc and silicon. The hematite particles were reduced at 350 ° C. for 3 hours under a flow of hydrogen gas containing carbon dioxide gas, and then oxidized at 250 ° C. for 2 hours under a flow of air to form maghemite particles. Then 300 ° C under hydrogen gas flow
And then heat-treated at 475 ° C. for 6 hours under nitrogen gas flow to obtain the desired magnetic iron oxide powder.
(Sample K-3) Example 23 The procedure of Example 19 was repeated, except that 1.0 ml of a 19.3 g / l Na 3 PO 4 aqueous solution was added as P instead of adding the SiO 2 —Na 2 O aqueous solution. A single phase of hydrated iron oxide was obtained. Subsequently, intermediate particles were finished under the conditions of Example 20 to obtain a target magnetic iron oxide powder. Experiments were conducted by changing the amount of ZnSO 4 · 7H 2 O were added in (Sample K-4) Example 24 Example 19. Each of the obtained hydrated iron oxide particles was finished into an intermediate particle under the conditions of Example 20 to obtain a target magnetic iron oxide powder. (Samples K-5 to K-8) Example 25 An experiment was performed in which the amount of MnSO 4 .nH 2 O added in Example 19 was changed. Each of the obtained hydrated iron oxide particles was finished into an intermediate particle under the conditions of Example 20 to obtain a target magnetic iron oxide powder. (Samples K-9 and K-10) Comparative Example 10 The same procedure as in Example 19 was carried out except that MnSO 4 .nH 2 O was not added, and then finished as intermediate particles under the conditions of Example 20. Thus, a magnetic iron oxide powder of a comparative sample was obtained. 1 the amount of ZnSO 4 · 7H 2 O in (Sample K-11) Comparative Example 11 Example 19
Example 20 was carried out in the same manner as in Example 19 except that the amount was 1.01 g and MnSO 4 .nH 2 O was not added.
Under the conditions described above, intermediate particles were finished to obtain a magnetic iron oxide powder of a comparative sample. (Sample K-12) in Comparative Example 12 Example 19 MnSO 4 · nH 2 O and ZnSO 4 · 7
After following the same procedures as in Example 19 except that H 2 O was not added, intermediate particles were finished under the conditions of Example 20 to obtain a magnetic iron oxide powder of a comparative sample. (Sample K-13) Example 26 The reduction temperature was set to 400 ° in Examples 20 and 23.
Except for using C, intermediate particles were finished under the same conditions as in Example 20 to obtain the desired magnetic iron oxide powder. (Samples K-14 to K-
18) Example 27 Intermediate particles were prepared in the same manner as in Example 25 except that the heat treatment temperature was changed to 625 ° C in Sample K-10 to obtain a target magnetic iron oxide powder. (Sample K-19) Example 28 Intermediate particles obtained in Example 20 (Sample K-1)
After dispersing 100 g in 500 ml of pure water, 204.1 g of NaO was added at 35 ° C. with stirring while blowing nitrogen gas.
A solution prepared by dissolving H (purity 98%) to 500 ml was added. Then the 34.07g CoSO 4 · 7H 2 O
(Purity 98%), and adjusted to 125 ml.
After adding the adjusted solution and dissolved 35.54g of FeSO 4 · 7H 2 O (purity 98%) 125ml, 95 °
Aged for 5 hours at C. The obtained precipitate was filtered, washed with water, and dried in the air at 55 ° C. for 3 hours to obtain the desired cobalt-coated magnetic iron oxide powder. (Sample L-1) Comparative Example 13 The same procedure as in Example 26 was carried out except that the intermediate particles obtained in Example 20 were changed to the intermediate particles obtained in Comparative Example 12, to deposit cobalt on the comparative sample. Magnetic iron oxide particles were obtained. (Sample L-2) With respect to the magnetic iron oxide samples (K-1) to (L-2) obtained in Examples 20 to 28 and Comparative Examples 10 to 13, the saturation magnetization (σs) was obtained by an ordinary method. , Ferrous content (F
e (II) / tFe) and the like were measured. The results are shown in Tables 4 and 5.

【0050】以上の結果において本発明による実施例の
磁性酸化鉄試料は、飽和磁化量が高く優れた磁気特性を
示すことは明らかである。
From the above results, it is apparent that the magnetic iron oxide sample of the example according to the present invention has a high saturation magnetization and exhibits excellent magnetic properties.

【0051】 [0051]

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は実施例19で得られた粒子粉末のX線回
析図である。
FIG. 1 is an X-ray diffraction diagram of the particle powder obtained in Example 19.

【図2】図2は比較例9で得られた粒子粉末のX線回析
図である。
FIG. 2 is an X-ray diffraction diagram of the particle powder obtained in Comparative Example 9.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 中原 清 山口県宇部市大字小串1978番地の25 チ タン工業株式会社内 (72)発明者 黒崎 浩二 山口県宇部市大字小串1978番地の25 チ タン工業株式会社内 (72)発明者 渡辺 一 山口県宇部市大字小串1978番地の25 チ タン工業株式会社内 (56)参考文献 特開 昭55−141712(JP,A) 特開 平2−149428(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01F 1/06 C01G 49/06 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Kiyoshi Nakahara Inside of 1925 Kogushi, Ogushi, Ube City, Yamaguchi Prefecture Inside (72) Inventor Koji Kurosaki 25 Titan Industry, 1978 Kogushi, Ube City, Yamaguchi Prefecture Incorporated (72) Inventor Kazu Watanabe 1978 Kogushi, Ube City, Yamaguchi Prefecture Inside 25 Titan Kogyo Co., Ltd. (56) References JP-A-55-141712 (JP, A) JP-A-2-149428 (JP) , A) (58) Field surveyed (Int. Cl. 7 , DB name) H01F 1/06 C01G 49/06

Claims (13)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 マグヘマイト粒子をマンガン及び亜鉛を
含む溶液で処理し、鉄総量に対して0.1〜19原子重
量%のマンガン、及び鉄総量に対して3〜19原子重量
%の亜鉛を含有させたマグヘマイト粒子を、還元して鉄
総量に対して、31原子重量%以下の第一鉄を含有する
中間体粒子とし、さらに非酸化性雰囲気下にて400℃
〜ヘマタイトへの転移が生じない上限温度で熱処理する
ことを特徴とする磁気記録用強磁性酸化鉄粉末の製造方
法。
The maghemite particles are treated with a solution containing manganese and zinc, and contain manganese in an amount of 0.1 to 19 atomic weight% based on the total amount of iron and 3 to 19 atomic% by weight of zinc based on the total amount of iron. The maghemite particles thus reduced are reduced to intermediate particles containing ferrous iron of 31 atomic weight% or less based on the total amount of iron, and further heated to 400 ° C. in a non-oxidizing atmosphere.
A method for producing a ferromagnetic iron oxide powder for magnetic recording, comprising performing heat treatment at an upper limit temperature at which no transition to hematite occurs.
【請求項2】 鉄総量に対して31原子重量%以下の第
一鉄を含有する中間体粒子をマンガン及び亜鉛を含む溶
液で処理し、鉄総量に対して0.1〜19原子重量%の
マンガン、及び鉄総量に対して3〜19原子重量%の亜
鉛を含有させた中間体粒子とし、さらに非酸化性雰囲気
下にて400℃〜ヘマタイトへの転移が生じない上限温
度で熱処理することを特徴とする磁気記録用強磁性酸化
鉄粉末の製造方法。
2. Intermediate particles containing less than 31 at.% Ferrous iron, based on the total amount of iron, are treated with a solution containing manganese and zinc. Intermediate particles containing zinc in an amount of 3 to 19 atomic weight% with respect to the total amount of manganese and iron, and further heat-treating in a non-oxidizing atmosphere at 400 ° C. to an upper limit temperature at which the transition to hematite does not occur. A method for producing a ferromagnetic iron oxide powder for magnetic recording.
【請求項3】 水和酸化鉄粒子をマンガン及び亜鉛を含
む溶液で処理し、加熱脱水、還元し、鉄総量に対して
0.1〜19原子重量%のマンガン、及び鉄総量に対し
て3〜19原子重量%の亜鉛を含有させたマグネタイト
粒子とし、その後非酸化性雰囲気下にて400℃〜ヘマ
タイトへの転移が生じない上限温度で熱処理し、さらに
酸化してマグヘマイトとすることを特徴とする磁気記録
用強磁性酸化鉄粉末の製造方法。
3. The hydrated iron oxide particles are treated with a solution containing manganese and zinc, dehydrated by heating and reduced, and are manganese in an amount of 0.1 to 19 atomic weight% based on the total amount of iron and 3% based on the total amount of iron. A magnetite particle containing up to 19 atomic% by weight of zinc, followed by heat treatment in a non-oxidizing atmosphere at 400 ° C. to an upper limit temperature at which no transition to hematite occurs, and further oxidized to maghemite. Of producing ferromagnetic iron oxide powder for magnetic recording.
【請求項4】 前記の酸化は、マグネタイトとマグヘマ
イトの中間体まで酸化する微酸化であることを特徴とす
る請求項3記載の磁気記録用強磁性酸化鉄粉末の製造方
法。
4. The method for producing a ferromagnetic iron oxide powder for magnetic recording according to claim 3, wherein said oxidation is a slight oxidation in which an intermediate between magnetite and maghemite is oxidized.
【請求項5】 水和酸化鉄粒子をマンガン及び亜鉛を含
む溶液で処理し、加熱脱水、還元し、微酸化し、鉄総量
に対して0.1〜19原子重量%のマンガン、及び鉄総
量に対して3〜19原子重量%の亜鉛を含有させた中間
体粒子とし、その後非酸化性雰囲気下にて400℃〜ヘ
マタイトへの転移が生じない上限温度で熱処理すること
を特徴とする磁気記録用強磁性酸化鉄粉末の製造方法。
5. The hydrated iron oxide particles are treated with a solution containing manganese and zinc, heated, dehydrated, reduced, and slightly oxidized, and the manganese and the total amount of iron are 0.1 to 19 atomic weight% with respect to the total amount of iron. Magnetic particles containing 3 to 19 atomic% by weight of zinc, and then heat-treated in a non-oxidizing atmosphere at 400 ° C. to an upper limit temperature at which the transition to hematite does not occur. Of producing ferromagnetic iron oxide powder for use.
【請求項6】 前記熱処理後、さらに酸化してマグヘマ
イトとすることを特徴とする請求項5記載の磁気記録用
強磁性酸化鉄粉末の製造方法。
6. The method for producing a ferromagnetic iron oxide powder for magnetic recording according to claim 5, wherein after the heat treatment is further oxidized to maghemite.
【請求項7】 前記マグヘマイトを希薄酸性溶液で洗浄
し、さらにマンガン、亜鉛及び鉄を含む溶液で処理し、
鉄総量に対して0.1〜19原子重量%のマンガン、及
び鉄総量に対して3〜19原子重量%の亜鉛を含有させ
たマグヘマイト粒子とし、その後還元して中間体粒子と
し、さらに非酸化性雰囲気下にて400℃〜ヘマタイト
への転移が生じない上限温度で熱処理する工程をさらに
含むことを特徴とする請求項3又は請求項6記載の磁気
記録用強磁性酸化鉄粉末の製造方法。
7. The maghemite is washed with a dilute acidic solution, and further treated with a solution containing manganese, zinc and iron,
Maghemite particles containing manganese in an amount of 0.1 to 19 atomic% by weight based on the total amount of iron and zinc in an amount of 3 to 19 atomic% by weight based on the total amount of iron, and then reduced to intermediate particles, and further non-oxidized 7. The method for producing a ferromagnetic iron oxide powder for magnetic recording according to claim 3, further comprising a step of performing a heat treatment at 400 ° C. to an upper limit temperature at which a transition to hematite does not occur in a neutral atmosphere.
【請求項8】 前記中間体を希薄酸性溶液で洗浄し、さ
らにマンガン、亜鉛及び鉄を含む溶液で処理し、鉄総量
に対して0.1〜19原子重量%のマンガン、及び鉄総
量に対して3〜19原子重量%の亜鉛を含有させた中間
体粒子とし、さらに非酸化性雰囲気下にて400℃〜ヘ
マタイトへの転移が生じない上限温度で熱処理する工程
をさらに含むことを特徴とする請求項4又は請求項5記
載の磁気記録用強磁性酸化鉄粉末の製造方法。
8. The intermediate is washed with a dilute acidic solution, further treated with a solution containing manganese, zinc and iron, and 0.1 to 19 atomic weight% of manganese based on the total amount of iron, and Intermediate particles containing 3 to 19 atomic% by weight of zinc, and a heat treatment in a non-oxidizing atmosphere at 400 ° C. to an upper limit temperature at which the transition to hematite does not occur. A method for producing a ferromagnetic iron oxide powder for magnetic recording according to claim 4 or 5.
【請求項9】 コバルト化合物またはコバルトと第一鉄
塩の化合物を含む溶液で処理する工程をさらに含む請求
項1乃至請求項8のいずれか1項に記載の磁気記録用強
磁性酸化鉄粉末の製造方法。
9. The ferromagnetic iron oxide powder for magnetic recording according to claim 1, further comprising a step of treating with a solution containing a cobalt compound or a compound of cobalt and a ferrous salt. Production method.
【請求項10】 水溶性マンガン塩並びに水溶性亜鉛塩
を第二鉄塩中に添加、溶解し、該第二鉄塩溶液とアルカ
リ性溶液とをpH10〜13の範囲に保ちながら同時添
加して、鉄総量に対して0.1〜5原子重量%のマンガ
ン、及び鉄総量に対して0.4〜20原子重量%の亜鉛
を含有させたアルカリ性懸濁液とし、該アルカリ性懸濁
液を50〜100℃で加熱熟成した後、水溶性ケイ酸塩
もしくは水溶性リン酸塩を添加して、鉄総量に対して
0.1〜2.5原子重量%のケイ素もしくはリンを含有
させ、水熱処理、加熱脱水を行った後、300〜400
℃で還元してマグネタイト粒子とし、さらに非酸化性雰
囲気下にて400℃〜ヘマタイトへの転移が生じない上
限温度で熱処理を施し、その後、250℃以下で微酸化
して鉄総量に対して31原子重量%以下の第一鉄を含有
させることを特徴とする磁気記録用強磁性酸化鉄粉末の
製造方法。
10. A water-soluble manganese salt and a water-soluble zinc salt are added and dissolved in a ferric salt, and the ferric salt solution and the alkaline solution are simultaneously added while maintaining the pH in the range of 10 to 13, An alkaline suspension containing 0.1 to 5 atomic% by weight of manganese with respect to the total amount of iron and 0.4 to 20 atomic% by weight of zinc with respect to the total amount of iron. After heat aging at 100 ° C., a water-soluble silicate or a water-soluble phosphate is added to contain 0.1 to 2.5 atomic% by weight of silicon or phosphorus based on the total amount of iron, and hydrothermal treatment is performed. After performing heat dehydration, 300-400
° C to magnetite particles, and further subjected to a heat treatment in a non-oxidizing atmosphere at 400 ° C to an upper limit temperature at which the transition to hematite does not occur. A method for producing a ferromagnetic iron oxide powder for magnetic recording, characterized by containing ferrous iron of at most atomic weight%.
【請求項11】 水溶性マンガン塩並びに水溶性亜鉛塩
を第二鉄塩中に添加、溶解し、該第二鉄塩溶液とアルカ
リ性溶液とをpH10〜13の範囲に保ちながら同時添
加して、鉄総量に対して0.1〜5原子重量%のマンガ
ン、及び鉄総量に対して0.4〜20原子重量%の亜鉛
を含有させたアルカリ性懸濁液とし、該アルカリ性懸濁
液を50〜100℃で加熱熟成した後、水溶性ケイ酸塩
もしくは水溶性リン酸塩を添加して、鉄総量に対して
0.1〜2.5原子重量%のケイ素もしくはリンを含有
させ、水熱処理、加熱脱水を行った後、300〜400
℃で還元、さらに250℃以下で微酸化して鉄総量に対
して31原子重量%以下の第一鉄を含有させた中間体粒
子とし、該中間体粒子を非酸化性雰囲気下にて400℃
〜ヘマタイトへの転移が生じない上限温度で熱処理を施
すことを特徴とする磁気記録用強磁性酸化鉄粉末の製造
方法。
11. A water-soluble manganese salt and a water-soluble zinc salt are added and dissolved in a ferric salt, and the ferric salt solution and the alkaline solution are simultaneously added while maintaining the pH in the range of 10 to 13, An alkaline suspension containing 0.1 to 5 atomic% by weight of manganese with respect to the total amount of iron and 0.4 to 20 atomic% by weight of zinc with respect to the total amount of iron. After heat aging at 100 ° C., a water-soluble silicate or a water-soluble phosphate is added to contain 0.1 to 2.5 atomic% by weight of silicon or phosphorus based on the total amount of iron, and hydrothermal treatment is performed. After performing heat dehydration, 300-400
Reduced at 250 ° C., and then slightly oxidized at 250 ° C. or less to form intermediate particles containing ferrous iron at 31% by weight or less based on the total amount of iron.
A method for producing a ferromagnetic iron oxide powder for magnetic recording, comprising performing heat treatment at an upper limit temperature at which no transition to hematite occurs.
【請求項12】 水溶性マンガン塩並びに水溶性亜鉛塩
を第二鉄塩中に添加、溶解し、該第二鉄塩溶液とアルカ
リ性溶液とをpH10〜13の範囲に保ちながら同時添
加して、鉄総量に対して0.1〜5原子重量%のマンガ
ン、及び鉄総量に対して0.4〜20原子重量%の亜鉛
を含有させたアルカリ性懸濁液とし、該アルカリ性懸濁
液を50〜100℃で加熱熟成した後、水溶性ケイ酸塩
もしくは水溶性リン酸塩を添加して、鉄総量に対して
0.1〜2.5原子重量%のケイ素もしくはリンを含有
させ、水熱処理、加熱脱水を行った後、300〜400
℃で還元、250℃以下で酸化してマグヘマイト粒子と
し、再び300〜400℃で還元して鉄総量に対して3
1原子重量%以下の第一鉄を含有させた中間体粒子と
し、該中間体粒子を非酸化性雰囲気下にて400℃〜ヘ
マタイトへの転移が生じない上限温度で熱処理を施すこ
とを特徴とする磁気記録用強磁性酸化鉄粉末の製造方
法。
12. A water-soluble manganese salt and a water-soluble zinc salt are added and dissolved in a ferric salt, and the ferric salt solution and the alkaline solution are simultaneously added while maintaining the pH in the range of 10 to 13, An alkaline suspension containing 0.1 to 5 atomic% by weight of manganese with respect to the total amount of iron and 0.4 to 20 atomic% by weight of zinc with respect to the total amount of iron. After heat aging at 100 ° C., a water-soluble silicate or a water-soluble phosphate is added to contain 0.1 to 2.5 atomic% by weight of silicon or phosphorus based on the total amount of iron, and hydrothermal treatment is performed. After performing heat dehydration, 300-400
Reduced at 250 ° C., oxidized at 250 ° C. or less to maghemite particles, reduced again at 300-400 ° C., and reduced to 3
Intermediate particles containing 1 atomic weight% or less of ferrous iron, and subjecting the intermediate particles to heat treatment in a non-oxidizing atmosphere at a temperature of 400 ° C. to an upper limit temperature at which the transition to hematite does not occur. Of producing ferromagnetic iron oxide powder for magnetic recording.
【請求項13】 コバルト化合物またはコバルトと第一
鉄塩の化合物を含む溶液で処理する工程をさらに含む請
求項10乃至請求項12のいずれか1項記載の磁気記録
用強磁性酸化鉄粉末の製造方法。
13. The method for producing a ferromagnetic iron oxide powder for magnetic recording according to claim 10, further comprising a step of treating with a solution containing a cobalt compound or a compound of cobalt and a ferrous salt. Method.
JP04065874A 1992-03-24 1992-03-24 Method for producing ferromagnetic iron oxide powder for magnetic recording Expired - Fee Related JP3129823B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04065874A JP3129823B2 (en) 1992-03-24 1992-03-24 Method for producing ferromagnetic iron oxide powder for magnetic recording

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04065874A JP3129823B2 (en) 1992-03-24 1992-03-24 Method for producing ferromagnetic iron oxide powder for magnetic recording

Publications (2)

Publication Number Publication Date
JPH05267029A JPH05267029A (en) 1993-10-15
JP3129823B2 true JP3129823B2 (en) 2001-01-31

Family

ID=13299566

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04065874A Expired - Fee Related JP3129823B2 (en) 1992-03-24 1992-03-24 Method for producing ferromagnetic iron oxide powder for magnetic recording

Country Status (1)

Country Link
JP (1) JP3129823B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07118704A (en) * 1993-10-25 1995-05-09 Matsushita Electric Ind Co Ltd Hydrogen storage alloy powder, nickel-hydrogen battery having the powder in negative electrode active material and production of the powder
JP6146889B2 (en) * 2012-07-20 2017-06-14 小林 博 Method for producing magnetic powder having an insulated surface
CN103694746B (en) * 2013-12-27 2015-11-18 广东维诺珠光颜料有限公司 A kind of preparation method of multifunctional magnetic synthetic mica pearlescent pigment

Also Published As

Publication number Publication date
JPH05267029A (en) 1993-10-15

Similar Documents

Publication Publication Date Title
US4309459A (en) Process for producing SiO2 coated iron oxide powder for use in the preparation of acicular magnetic iron or iron oxide powder
JP3087825B2 (en) Spindle-shaped goethite particle powder, method for producing the same, spindle-shaped metal magnetic particle powder containing iron as a main component obtained using the goethite particle powder as a starting material, and method for producing the same
JPS608606B2 (en) Manufacturing method of ferromagnetic powder
JP3129823B2 (en) Method for producing ferromagnetic iron oxide powder for magnetic recording
JPH0625702A (en) Magnetic metal powder and its production
US5911905A (en) Processes for producing hydrated iron oxide and ferromagnetic iron oxide
JPS5923505A (en) Magnetic powder
JP3337046B2 (en) Spindle-shaped metal magnetic particles containing cobalt and iron as main components and method for producing the same
JPH0420241B2 (en)
JP2933397B2 (en) Method for producing ferromagnetic iron oxide powder for magnetic recording
EP0371384B1 (en) Process for producing magnetic iron oxide particles for magnetic recording
JPH0585487B2 (en)
JP2852460B2 (en) Method for producing spindle-shaped iron-based metal magnetic particle powder
JPH0461302A (en) Metal magnetic particle powder mainly made of spindle type iron
JP2740922B2 (en) Method for producing metal magnetic powder for magnetic recording material
JP3092649B2 (en) Method for producing spindle-shaped metal magnetic particles containing iron as a main component
JPS63140005A (en) Production of fine ferromagnetic metal particle powder
JP3141907B2 (en) Method for producing spindle-shaped iron-based metal magnetic particle powder
JPH0456709A (en) Manufacture of metallic magnetic particle powder containing iron showing spindle shape as essential component
JPH04132621A (en) Acicular ferromagnetic iron oxide powder and production thereof
JPH0569048B2 (en)
JPH0574533B2 (en)
JPH03257105A (en) Manufacture of magnetic metal powder
JPH0463209A (en) Manufacture of metal magnetic granular powder having fusiform and iron as essential composition
JPH0696922A (en) Manufacture of metallic magnetic powder and film for magnetic recording medium

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees