JPS59157205A - Production of metallic magnetic powder - Google Patents

Production of metallic magnetic powder

Info

Publication number
JPS59157205A
JPS59157205A JP58029781A JP2978183A JPS59157205A JP S59157205 A JPS59157205 A JP S59157205A JP 58029781 A JP58029781 A JP 58029781A JP 2978183 A JP2978183 A JP 2978183A JP S59157205 A JPS59157205 A JP S59157205A
Authority
JP
Japan
Prior art keywords
nickel
iron
powder
magnetic powder
salt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58029781A
Other languages
Japanese (ja)
Inventor
Shigeo Hirai
茂雄 平井
Akinari Hayashi
林 章禮
Toshinobu Sueyoshi
俊信 末吉
Katsunori Tashimo
田下 勝則
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP58029781A priority Critical patent/JPS59157205A/en
Publication of JPS59157205A publication Critical patent/JPS59157205A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Magnetic Record Carriers (AREA)
  • Hard Magnetic Materials (AREA)
  • Paints Or Removers (AREA)

Abstract

PURPOSE:To obtain metallic magnetic powder having excellent oxidative stability by adding an aq. soln. prepd. by adding further a complexing agent to an Ni salt, etc. into an alkaline suspension of powder consisting essentially of iron oxide, metallic iron, etc. CONSTITUTION:A soln. formed by adding a complexing agent to an aq. soln. contg. an Ni salt or the Ni salt and a Cu salt is prepd. Such soln. is added into an alkaline suspension of powder consisting essentially of iron oxyhydroxide, iron oxide or metallic iron. An Ni complex compd. or the Ni complex compd. and a copper complex compd. are stuck on the surface of the above-described powder. The powder is then subjected to a heating reduction treatment and the metallic magnetic powder consisting of the metallic magnetic powder composed essentially of iron and the surface protective layer composed essentially of Ni or Ni and Cu formed on the particle surface thereof is obtd. The metallic magnetic powder having excellent oxidative stability is thus obtd.

Description

【発明の詳細な説明】 この発明は主に磁気記録用として有用な金属磁性粉末の
製造法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing metal magnetic powder mainly useful for magnetic recording.

鉄を主体とする金属磁性粉末は高保磁力を有し、高密度
記録用として賞月きれているが、酸化物系磁性粉末に比
し酸化安定性に劣り、磁気特性が経日的に劣化しゃずい
という欠点がある。この発明者らは、かかる欠点を回避
するために、オキシ水酸化鉄などの粉末のアルカリ性懸
濁液中にニッケル塩またはニッケル塩と銅塩とを含む水
溶液を添加して上記粉末の粒子表面に水酸化ニッケルま
たは水酸化ニッケルと水酸化銅を付着させ、ついで力り
熱遣元処理することlこより、鉄を主体上する金属磁性
粉末とその粒子表面に形成σれたニッケルまたはニッケ
ルと銅とを主体とする表面保護層とからなる金属磁性粉
末を得る方法をすでに提案している。
Metallic magnetic powder, mainly composed of iron, has a high coercive force and has been used for high-density recording, but it has inferior oxidation stability compared to oxide-based magnetic powder, and its magnetic properties tend to deteriorate over time. It has the disadvantage of being wet. In order to avoid such drawbacks, the inventors added an aqueous solution containing a nickel salt or a nickel salt and a copper salt to an alkaline suspension of a powder such as iron oxyhydroxide to coat the surface of the powder particles. By adhering nickel hydroxide or nickel hydroxide and copper hydroxide, and then subjecting it to stress and heat treatment, the metal magnetic powder mainly consisting of iron and the nickel or nickel and copper formed on the surface of the particles are combined. We have already proposed a method for obtaining metal magnetic powder consisting of a surface protective layer mainly composed of .

この方法で得られる金属磁性粉末はニッケルまたはニッ
ケルと蚤同とを主体とする表面保護層によって酸化安定
性が向上し、経日的な磁気特性の劣化の低いものとなる
。この発明は、」二記提案法に係る方法をざらに改良し
て酸化安定性により一段とすぐれる金属磁性粉末を得る
ことを目的としてなてれたもので、特に前記提案法にお
けるニッケル塩またはニッケル塩と銅塩とを含む水溶液
に錯化剤を加えたことをもっとも大きな特徴とするもの
である8 すなわち、この発明は、オキシ水酸化鉄、酸化鉄または
金属鉄を主体とする粉末のアルカリ性懸濁液中にニッケ
ル塩またはニッケル塩と銅塩と妻含む水溶液に錯化剤を
加えてなる液を添加したのち中和して上記粉末の粒子表
面にニッケル錯化合物またはニッケル錯化合物と銅錯化
合物とを付着σせ、ついで加熱還元処理して鉄を主体と
する金属磁性粉末とその粒子表面に形成てれたニッケル
またはニッケルと銅とを主体とする表面保護層とからな
る金属磁性粉末を得ることを特徴とする金属磁性粉末の
製造法に係るものである。
The metal magnetic powder obtained by this method has improved oxidation stability due to the surface protective layer mainly composed of nickel or nickel and nickel, resulting in less deterioration of magnetic properties over time. This invention was developed with the aim of obtaining a metal magnetic powder with even better oxidation stability by roughly improving the method related to the proposed method described in Section 2. The most significant feature of this invention is that a complexing agent is added to an aqueous solution containing a salt and a copper salt. A solution obtained by adding a complexing agent to an aqueous solution containing a nickel salt or a nickel salt and a copper salt is added to the suspension, and then neutralized to form a nickel complex compound or a nickel complex compound and a copper complex compound on the particle surface of the powder. and then heated and reduced to obtain a metal magnetic powder consisting of a metal magnetic powder mainly composed of iron and a surface protective layer mainly composed of nickel or nickel and copper formed on the particle surface. The present invention relates to a method for producing metal magnetic powder characterized by the following.

この発明においてニッケル塩またはニッケル塩と銅塩と
を含む水溶液に錯化剤を加えると水溶性のニッケル錯化
合物またはニッケル錯化合物と1lijl錯化合物とが
形成され、これらの化合物はアルカリに対して安定なた
めオキシ水酸化鉄などの粉末のアルカリ性懸濁液に添加
した時点では結晶析出せず、これに炭酸ガスなどを吹き
込んで液を中和したときに初めて結晶析出して上記粉末
の粒子表面に付着する。このようをこ析出付着するニッ
ケル錯化合物または二、ツケル錯化合物と銅錯化合物と
は粒子表面に対して非諧(こ均一な被膜性を有している
ため、これを最終的に加熱還元処理して形成されるニッ
ケルまたはニッケルと銅とを主体とする表面保護層も均
一なものとなり、これが酸化安定性により好結果をもた
らすものである。
In this invention, when a complexing agent is added to an aqueous solution containing a nickel salt or a nickel salt and a copper salt, a water-soluble nickel complex compound or a nickel complex compound and a 1lijl complex compound are formed, and these compounds are stable against alkalis. Therefore, when it is added to an alkaline suspension of powder such as iron oxyhydroxide, crystals do not precipitate, but only when the liquid is neutralized by blowing carbon dioxide gas etc. into it, crystals precipitate and form on the particle surface of the powder. adhere to. In this way, the nickel complex compound or two, the nickel complex compound and the copper complex compound that are precipitated and adhered to the particle surface have a uniform coating property, so they are finally heated and reduced. The surface protective layer formed mainly of nickel or nickel and copper is also uniform, which provides better oxidation stability.

この発明において出発原料として使用するオキシ水酸化
鉄、酸化鉄または金属鉄を主体とする粉末としては、た
とえはcl −Fe001(、β−F e 001−1
 。
Examples of powders mainly composed of iron oxyhydroxide, iron oxide, or metallic iron used as starting materials in this invention include cl -Fe001(, β-Fe001-1
.

7−Fe001−1.ct−Fc203,1−F’e2
03.Fe30aおよびこれらの中間型に相当するもの
並びに金属鉄のほか、これらにNi 、Go、Cr、M
n、Mg、Ca、Zn。
7-Fe001-1. ct-Fc203,1-F'e2
03. In addition to Fe30a and those corresponding to intermediate types thereof, and metallic iron, these include Ni, Go, Cr, M
n, Mg, Ca, Zn.

Sn、Siなどの金属成分が含まれたものが挙けられ、
特に針状性の良いものが好ましく用いられる。
Examples include those containing metal components such as Sn and Si.
In particular, those with good acicular properties are preferably used.

この発明では、まず上記粉末のl) I−11]以上の
アルカリ性悪l蜀液を調製し、これに硫酸ニッケル、硝
酸ニッケル、塩化ニッケルGどのニッケル塩またはこの
ニッケル塩と硫酸鋼、硝酸銅、塩化銅などの銅塩とを含
む水溶液lこ錯化剤を加えてなる液を添加する。
In this invention, first, an alkaline solution of the above-mentioned powder (1) I-11] or more is prepared, and to this is added nickel salt such as nickel sulfate, nickel nitrate, nickel chloride G, or this nickel salt, steel sulfate, copper nitrate, A solution prepared by adding a complexing agent to an aqueous solution containing a copper salt such as copper chloride is added.

ここで、ニッケル塩を単独で用いるかニッケル塩と銅塩
とを併用するかは、最終目的とする金ノ1り磁性粉末の
酸化安定性の要求度に応じて適宜決めればよい。ニッケ
ル塩単独よりもニッケル塩と銅塩とを併用した方が、最
終的に得られる金属磁性粉末の酸化安定性に好結果が得
られ、また金属換−ノ:でNiとCu  との合計計中
に占めるCuの側合が50重量%以上、特に60〜90
重量%ときれたときに金属磁性粉末の酸化安定性がもつ
とも向上する。
Here, whether to use a nickel salt alone or a combination of a nickel salt and a copper salt may be appropriately determined depending on the required degree of oxidation stability of the final target gold-plated magnetic powder. The combined use of nickel salt and copper salt provides better oxidation stability of the finally obtained metal magnetic powder than the use of nickel salt alone. The side content of Cu is 50% by weight or more, especially 60 to 90% by weight.
The oxidation stability of the metal magnetic powder is improved when the weight percentage is reduced.

これらの塩を含む水溶液に加える錯化剤としてはクエン
酸、酒石酸などのアルカリ金属塩が用いられ、予めその
水溶液を調製しておきこれを上記塩を含む水溶液と混合
する。この混合(こより速やかに相当するニッケル錯化
合物またはこれと銅錯化合物とが形成でれ、これらの化
合物はアルカリ性懸濁液ζこ添加後も安定に溶存する。
As the complexing agent added to the aqueous solution containing these salts, alkali metal salts such as citric acid and tartaric acid are used, and an aqueous solution thereof is prepared in advance and mixed with the aqueous solution containing the above-mentioned salts. As a result of this mixing, a corresponding nickel complex compound or a copper complex compound thereof is rapidly formed, and these compounds remain stably dissolved even after addition of the alkaline suspension.

つぎに、アルカリ性懸濁液中に炭酸ガスを吹き込むかあ
るいは塩酸などの酸を加えて液を中和すると、前記ニッ
ケル錯化合物またはこれと銅錯化合物とが結晶析出して
オキシ水酸化鉄などの粉末の粒子表面に、付着する。こ
の付M量は、金属鉄(こ対し金属ニッケルまたはこれと
金属銅との金属換−痺で01〜10重計%となるように
するのがよい。
Next, when carbon dioxide gas is blown into the alkaline suspension or an acid such as hydrochloric acid is added to neutralize the liquid, the nickel complex compound or the copper complex compound is precipitated into crystals such as iron oxyhydroxide. It adheres to the surface of powder particles. It is preferable that the amount of M applied is 01 to 10% by weight based on metallic iron (compared to metallic nickel or metallic copper).

なお、上記ニッケル錯化合物また(はこれと銅錯化合物
を付着σせたのちあるいは付着させる際に、アルカリ性
態7蜀液中(こオルトけい酸ナトリウム、メタけい酸ナ
トリウム、メタけい酸カリウム、イ重々の組成の水ガラ
スの如き水溶性けい酸塩や、また各種の水溶性アルミニ
ウム塩を添加し、前記錯化合物の場合と同様に中和析出
σせて粉末表面に前記錯化合物と共にけい酸やアルミニ
ウム化合物を沈着σせることか好ましい。特にけい酸被
膜は、後の工程での加熱還元処理に際して、粉末粒子相
互間の焼結を防き、出発原料の粒子形状(針状性)を保
つ働きを有しているため、最終的に得られる金属磁性粉
末の磁気特性(こ好結果を与える。その付着量としては
、金属鉄に対するけい素原子換算重量が01〜15重量
%となるようにするのが望ましくハ。
In addition, after or at the time of adhering the above nickel complex compound or (or this and the copper complex compound), in an alkaline state 7-shu solution (sodium orthosilicate, sodium metasilicate, potassium metasilicate, A water-soluble silicate such as water glass with a heavy composition or various water-soluble aluminum salts are added, and as in the case of the complex compound described above, silicic acid and silicic acid are deposited on the powder surface together with the complex compound. It is preferable to deposit an aluminum compound.In particular, the silicic acid film prevents sintering between powder particles and maintains the particle shape (acicularity) of the starting material during the heat reduction treatment in the subsequent process. As a result, the magnetic properties of the finally obtained metal magnetic powder (gives good results).The amount of adhesion should be such that the weight in terms of silicon atoms relative to metal iron is 0.1 to 15% by weight. It is desirable.

」1記の如くニッケル錯化合物またはこれと銅錯化合物
および好ましく(・まけい酸被膜などを付着形成したの
ち、加熱還元処理するが、≠襠#謔≠≠#ミ#母達=#
キ通諧ばこの還元処理に先立って300〜LOOO℃の
温度で加熱処理するのがよい。水酸化物はこの加熱処理
で酸化物とされる。
``After forming a nickel complex compound or a copper complex compound thereof and preferably a silicic acid film as described in 1, heat reduction treatment is performed.
Prior to the reduction treatment of the tobacco, it is preferable to heat it at a temperature of 300 to LOOO°C. The hydroxide is converted into an oxide by this heat treatment.

またかかる熱処理を行なうと引き続く加熱還元処理で形
成てれる金属ニッケルと鉄とを合金化σせやすく、また
ニッケルと銅との合金化も進められる。加熱処理後の加
熱還元処理は一般には水素ガス中300〜600℃の温
度で実施され、出発原料がオキシ水酸化鉄ないし酸化鉄
を主体とするものであるときはこれが鉄を主体とする粉
末に還元されると共にその表面に付着きれた前記錯化合
物が金属ニッケルまたはこれと銅とに還元され、出発原
料が金属鉄などからなるときはその表面に付着てれたニ
ッケル錯化合物などが同様に還元される。
Further, such heat treatment facilitates alloying σ of metal nickel and iron formed in the subsequent heat reduction treatment, and also promotes alloying of nickel and copper. Thermal reduction treatment after heat treatment is generally carried out at a temperature of 300 to 600°C in hydrogen gas, and when the starting material is mainly composed of iron oxyhydroxide or iron oxide, it is converted into powder mainly composed of iron. At the same time as being reduced, the complex compound attached to the surface is reduced to metallic nickel or nickel and copper, and when the starting material is made of metallic iron, the nickel complex compound attached to the surface is similarly reduced. be done.

このようにして得られる金属磁性粉末は鉄を主体とする
金属磁性粉末とその粒子表面に形成されたニッケルまた
はこれと銅とを主体とする表面保護層とからなるもので
あり、この保護層が非常に均一でまた薄膜状であること
から酸化安定性により一段とすぐれたものとなると共に
初期の磁気特性にも良好な結果が得られる。
The metal magnetic powder obtained in this way consists of a metal magnetic powder mainly composed of iron and a surface protective layer mainly composed of nickel or nickel and copper formed on the surface of the particle. Since it is very uniform and in the form of a thin film, it has better oxidation stability and good initial magnetic properties.

なお、このようにして得られるこの発明の金属磁性粉末
は、その酸化安定性の一層の向上を図るために、前述し
た加熱還元処理後にトルエンなどの有機溶媒中に分散さ
せてこれに空気を吹き込ひなどの方法によって粉末表面
に微細な酸化被膜を設けるのが望ましい。
In addition, in order to further improve the oxidation stability of the metal magnetic powder of the present invention obtained in this way, after the above-mentioned thermal reduction treatment, the powder is dispersed in an organic solvent such as toluene and air is blown thereto. It is desirable to provide a fine oxide film on the powder surface by a method such as mulching.

以下に、この発明の実施例を記載してより具体的に説明
する。
EXAMPLES Below, examples of the present invention will be described in more detail.

実施例1 平均粒子径0.5μm、qt比15のα−オキシ水酸化
鉄粉28gを01規定の苛性ソーダ水溶液3tに懸濁σ
せた。このiL蜀液中に、2モル/lの硫酸ニッケル(
NiSO4)水溶液IQmt (Feに対してNiが6
.6重量%に相当)と2モル/lのクエン酸ナトリウム
水溶液t o +nz とを混合した混合液を添加した
。これをかくはんしながら炭酸力スを吹き込み液のpH
が8以丁となるまで中和してα−オキシ水酸化鉄の粒子
表面にニッケルとクエン酸との錯化合物を析出付着させ
た。
Example 1 28 g of α-iron oxyhydroxide powder with an average particle diameter of 0.5 μm and a qt ratio of 15 was suspended in 3 tons of 01N caustic soda aqueous solution σ
I set it. In this iL Shu solution, 2 mol/l of nickel sulfate (
NiSO4) aqueous solution IQmt (Ni is 6 compared to Fe
.. A mixed solution of 6% by weight) and 2 mol/l aqueous sodium citrate solution t o +nz was added. While stirring this, blow in carbon dioxide to adjust the pH of the liquid.
The mixture was neutralized until it became 8 or more particles, and a complex compound of nickel and citric acid was precipitated and adhered to the surface of the α-iron oxyhydroxide particles.

つぎ(こ、錯化合物が付着きれたα−オキシ水酸化鉄粉
を水洗、乾燥したのち、空気中300 ℃の温度で2時
間加熱処理して酸化鉄粉とした。この酸化鉄粉を再びs
 o o mtの水に懸l蜀させ、これに1モル/lの
オルトけ(ハ酸ソーダ(Na4Si04)水溶液5Qm
tを添加混合したのち炭酸力スを吹き込みpl−I  
L O以Ffこ中和した。しかるのち、夛゛茜濁物を水
洗、乾燥したのち空気中800℃の温度で2時間加熱処
理し、ついでこれを水素気流中500 ’Cで2時間加
熱還元処理した。還元物をトルエン11月と浸漬しかく
はんしながら空気を吹き込んで微細な酸化被膜を形成し
た。
Next, the α-oxyhydroxide powder to which the complex compound had adhered was washed with water, dried, and then heat-treated in air at a temperature of 300°C for 2 hours to obtain iron oxide powder.
Suspended in o o mt of water, 5Qm of 1 mol/l of an aqueous solution of sodium chloride (Na4Si04) was added.
After adding and mixing t, carbonic acid was blown into pl-I.
LO and Ff were neutralized. Thereafter, the madder suspension was washed with water, dried, and then heated in air at 800° C. for 2 hours, and then heated and reduced in a hydrogen stream at 500° C. for 2 hours. A fine oxide film was formed by immersing the reduced product in toluene and stirring while blowing air into it.

このようにして得られたこの発明の金属磁性粉末(・ゴ
、平均粒子径が03μm1軸比が10、飽和磁化44:
がL :32 cmu/g1保磁力が1370二)qス
テッド、角型が0.51であった。
The metal magnetic powder of the present invention thus obtained has an average particle diameter of 03 μm, a uniaxial ratio of 10, and a saturation magnetization of 44:
L: 32 cmu/g1 coercive force was 1370 2) qstead, square shape was 0.51.

実施例2 2モル/1の硫酸ニッケル水溶液と2モル/1のクエン
酸ナトリウム水溶液との混合液を使用する代りに、2モ
ル/Lの硫酸ニッケル水溶液10mt と2モル/lの
酒石酸ナトリウム水溶液10mtとの混合液を用いた以
外は、実施例1と全く同様にしてこの発明の金属磁性粉
末をつくった。
Example 2 Instead of using a mixture of a 2 mol/1 nickel sulfate aqueous solution and a 2 mol/1 sodium citrate aqueous solution, 10 mt of a 2 mol/L nickel sulfate aqueous solution and 10 mt of a 2 mol/l sodium tartrate aqueous solution were used. A metal magnetic powder of the present invention was produced in exactly the same manner as in Example 1, except that a mixed solution of the present invention was used.

この粉末の平均粒子径は0.3μm1軸比は10、飽和
磁化鼠(lす132 emu/g  、保磁力は138
5エルステツド、角型は0.51でaっだ。
The average particle diameter of this powder is 0.3 μm, the uniaxial ratio is 10, the saturation magnetization is 132 emu/g, and the coercive force is 138
5 oersted, square type is 0.51 and a.

実施例3 2モル/7の硫酸ニッケル水溶液と2モル/1゜のクエ
ン酸ナトl)ラム水溶液との混合液を使用する代りに、
030モル/lの硫酸ニッケルと0645モル/l−の
硫jlle銅とを含む水溶液2Qmt(Fe(こ対して
NiとCu  との合計虐が66重癒%に相当し、かつ
NiとCu  との合計喰中に占めるCuの割合が70
重量%である)と0.945モル/lの酒石酸ナトIJ
ウム水溶液20 mA との混合液を用いた以外は、実
施例1と全く同様にしてこの発明の金属磁性粉末を′つ
く・つた。この粉末の平均粒子径は03μITI、l細
化ば10、飽オ(]磁化量は130C111u/g1保
磁力は1400エルステツド、角型は0.51であった
Example 3 Instead of using a mixture of 2 mol/7 nickel sulfate aqueous solution and 2 mol/1° sodium citrate aqueous solution,
An aqueous solution containing 0.30 mol/l of nickel sulfate and 0.645 mol/l of copper sulfate (2Qmt(Fe), whereas the total amount of Ni and Cu corresponds to 66% double healing, and the combination of Ni and Cu corresponds to The proportion of Cu in the total intake is 70
wt%) and 0.945 mol/l of sodium tartrate IJ
A metal magnetic powder of the present invention was prepared in exactly the same manner as in Example 1, except that a mixture with a 20 mA aqueous solution of aluminum was used. The average particle size of this powder was 03 μITI, the fineness was 10, the magnetization was 130 C111 u/g1, the coercive force was 1400 oersted, and the square shape was 0.51.

実施例4 平均粒子径05μm1軸比15のα−オキシ水酸化鉄粉
28gを01規定の苛性・ノーダ水溶液3Lに@7蜀さ
せた。この懸r’!A液中に、2モル/1の硫酸ニッケ
ル水溶液t o mtと2モル/Lのクエン酸ナトl)
ラム水溶液10 mAとの混合液を添加した。ついで、
1モル/1のオルトけい酸ソーダ水溶液50 mtを添
加混合し、これに炭酸ガスを吹き込んで液のpHが10
以下となるまで中和した。
Example 4 28 g of α-oxyhydroxide iron powder having an average particle diameter of 05 μm and a uniaxial ratio of 15 was added to 3 L of 01N caustic/noda aqueous solution @7. This hard work! In solution A, 2 mol/1 nickel sulfate aqueous solution t o mt and 2 mol/L sodium citrate l)
A mixture of 10 mA of rum aqueous solution was added. Then,
50 mt of a 1 mol/1 sodium orthosilicate aqueous solution was added and mixed, and carbon dioxide gas was blown into this to adjust the pH of the liquid to 10.
Neutralized until below.

しかるのち、懸濁物を水洗、乾燥したのち、空気中80
0℃の温度で2時間加熱処理し、さらに水−+:気流中
500℃で2時間加熱還元処理した。
After that, the suspended matter was washed with water and dried, and then 80%
Heat treatment was performed at a temperature of 0°C for 2 hours, and further heat reduction treatment was performed at 500°C for 2 hours in a water-+:air flow.

還元物をトルエン中に浸漬しかくはんしなから磁気を吹
き込んで微細な酸化被膜を形成した。
A fine oxide film was formed by immersing the reduced product in toluene and then blowing a magnet into it.

このようにして得られたこの発明の金属磁性粉末は、そ
の平均粒子径が03μm、軸比が10、飽和磁化量がL
 30 emu/g’、保磁力が1400エルステツド
、角型が0.51.であった。
The metal magnetic powder of the present invention thus obtained has an average particle diameter of 03 μm, an axial ratio of 10, and a saturation magnetization amount of L.
30 emu/g', coercive force 1400 oersted, square shape 0.51. Met.

実施例5 濁液を用いた以外は、実施例4と同様【こしてこの発明
の金属磁性粉末を爾た。この粉末の平均粒子径は030
μm1軸比は8、飽和磁化量は130emu/g 、 
、+呆磁力は1495エルステツド、li 3!i番・
よ051であった。
Example 5 The same as Example 4 except that a suspension was used [Thus, the metal magnetic powder of the present invention was prepared. The average particle size of this powder is 030
μm uniaxial ratio is 8, saturation magnetization is 130 emu/g,
, + dumb magnetic force is 1495 oersted, li 3! i number・
It was 051.

比較例1 2モル/1の硫酸ニッケル水溶液と2モルフtのクエン
酸ナトリウム水溶液きの混合液を1吏用する代りに、2
モル/lの硫酸ニッケル水溶液1(〕mzを徐々に添加
し、かつ添加後の炭酸ガスの吹き込み中和を行なわなか
った以外は、実施例1と同様にして金属磁性粉末を得た
。この粉末の平均粒子径は0.3 Jm 、軸比ば10
、飽和磁化量は135e m u/g 、保磁力は14
10エルステツド、角型H: 052であった。
Comparative Example 1 Instead of using one volume of a mixed solution of 2 mol/1 nickel sulfate aqueous solution and 2 mol/1 sodium citrate aqueous solution,
A metal magnetic powder was obtained in the same manner as in Example 1, except that a mol/l aqueous solution of nickel sulfate 1 (mz) was gradually added and neutralization by blowing carbon dioxide after the addition was not performed. The average particle diameter is 0.3 Jm, and the axial ratio is 10
, the saturation magnetization is 135 em u/g, and the coercive force is 14
10 oersted, square shape H: 052.

比較例2 2モル/Lの硫酸ニッケル水溶液と2モル/lのクエン
酸ナトリウム水溶液との混合液を使用する代りに、2モ
ル/lの硫酸ニッケル水溶液10n1tを徐々に添加す
るようにした以外は、実施例4と同様にして金属磁性粉
末をf仔た。この粉末の平均粒子径は03μm1軸比t
よ10、飽和磁化量ばL32emu/g、保磁力は14
50エルステツド、角型は0.52であった。
Comparative Example 2 Instead of using a mixed solution of a 2 mol/L nickel sulfate aqueous solution and a 2 mol/L sodium citrate aqueous solution, 10 n1t of a 2 mol/L nickel sulfate aqueous solution was gradually added. A metal magnetic powder was prepared in the same manner as in Example 4. The average particle diameter of this powder is 03 μm, uniaxial ratio t
Yo10, the saturation magnetization is L32emu/g, and the coercive force is 14
It was 50 oersted and the square shape was 0.52.

比較例3 α−オキシ水酸化鉄粉の粒子表面にニッケルとクエン酸
との錯化合物を析出形成する工程およびその後の水洗、
乾燥、加熱処理(酸化鉄粉とする)]−稈を6いた以外
は、実施例1と全く同様(こして金1.g5 +fi性
粉米粉末た。この粉末の平均粒子径は03μm1軸比は
10、飽和磁化量はL 2 s emu/g。
Comparative Example 3 Step of precipitating a complex compound of nickel and citric acid on the particle surface of α-oxyiron hydroxide powder and subsequent washing with water,
Drying and heat treatment (to produce iron oxide powder)] - Exactly the same as in Example 1 except that 6 culms were used (1.g of strained gold + fi powdered rice powder. The average particle size of this powder was 03 μm, uniaxial ratio is 10, and the amount of saturation magnetization is L 2 s emu/g.

保磁力は1530エルステツド、角型は0.52であっ
た。
The coercive force was 1530 oersted, and the square shape was 0.52.

上記各実施例および比較例に係る金属磁性粉末を6σ℃
、90%RHの雰囲気中に7日間放置したのちの飽和磁
化量の劣化率;〔(初期の飽和磁化量−経口後の飽和磁
化量)/初期の飽和磁化量)x100%を調べた結果は
、下記のとおりであった。
The metal magnetic powder according to each of the above examples and comparative examples was heated at 6σ℃.
, the deterioration rate of saturation magnetization after being left in an atmosphere of 90% RH for 7 days; the result of examining [(initial saturation magnetization - saturation magnetization after oral administration)/initial saturation magnetization) x 100% is , were as follows.

飽和磁化量の劣化率 実施例1       38% 実施例2       39% 実施例3       26% 実施例4       41% 実施例5       41% 比較例1       48% 比較例2       51% 比較例3      109% 上記の結果から明らかなように、この発明の金属磁性粉
末は酸化安定性によりすぐれ経日保存後の磁気特性の低
丁が少flいものであることがイつかる。
Degradation rate of saturation magnetization Example 1 38% Example 2 39% Example 3 26% Example 4 41% Example 5 41% Comparative example 1 48% Comparative example 2 51% Comparative example 3 109% From the above results As is clear, the metal magnetic powder of the present invention has excellent oxidation stability and exhibits less decline in magnetic properties after storage over time.

Claims (1)

【特許請求の範囲】[Claims] tL)オキシ水酸化鉄、酸化鉄また(は金属鉄を主体と
する粉末のアルカリ性懸濁液l−1月こニッケル塩また
はニッケル塩と銅塩とを含む水溶/P7.に錯化剤を加
えてなる液を添加したのち中和して上記粉末の粒子表面
にニッケル錯化合′吻またはニッケル釦化合物と銅錯化
合物とを付4させ、ついで加熱還元処理して鉄を主体と
する金属磁性粉末とその粒子表面に形成されたニッケル
またはニッケルと鋼とを主体とする表面保護層とからな
る金属磁性粉末を得ることを特徴きする金属磁性粉末の
製造法。
tL) Alkaline suspension of powder mainly composed of iron oxyhydroxide, iron oxide or (metallic iron) l-Adding a complexing agent to an aqueous solution containing nickel salt or nickel salt and copper salt /P7. After adding a solution consisting of iron, it is neutralized to attach a nickel complex compound or a nickel button compound and a copper complex compound to the particle surface of the powder, and then heat reduction treatment is performed to obtain a metal magnetic powder mainly composed of iron. and a surface protective layer mainly composed of nickel or nickel and steel formed on the surface of the particles.
JP58029781A 1983-02-23 1983-02-23 Production of metallic magnetic powder Pending JPS59157205A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58029781A JPS59157205A (en) 1983-02-23 1983-02-23 Production of metallic magnetic powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58029781A JPS59157205A (en) 1983-02-23 1983-02-23 Production of metallic magnetic powder

Publications (1)

Publication Number Publication Date
JPS59157205A true JPS59157205A (en) 1984-09-06

Family

ID=12285553

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58029781A Pending JPS59157205A (en) 1983-02-23 1983-02-23 Production of metallic magnetic powder

Country Status (1)

Country Link
JP (1) JPS59157205A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61160905A (en) * 1985-01-09 1986-07-21 Hitachi Maxell Ltd Magnetic metal powder
US4975333A (en) * 1989-03-15 1990-12-04 Hoeganaes Corporation Metal coatings on metal powders
US5240742A (en) * 1991-03-25 1993-08-31 Hoeganaes Corporation Method of producing metal coatings on metal powders

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61160905A (en) * 1985-01-09 1986-07-21 Hitachi Maxell Ltd Magnetic metal powder
JPH0578926B2 (en) * 1985-01-09 1993-10-29 Hitachi Maxell
US4975333A (en) * 1989-03-15 1990-12-04 Hoeganaes Corporation Metal coatings on metal powders
US5240742A (en) * 1991-03-25 1993-08-31 Hoeganaes Corporation Method of producing metal coatings on metal powders

Similar Documents

Publication Publication Date Title
JPS59157205A (en) Production of metallic magnetic powder
JPS59155106A (en) Manufacture of magnetic metal powder
JPS6021307A (en) Production of ferromagnetic metallic powder
JPH0420241B2 (en)
JP3164355B2 (en) Method for producing acicular alloy magnetic powder
JPS59157204A (en) Manufacture of ferromagnetic metallic fine particle
JPS6122604A (en) Magnetic metal powder and manufacture thereof
JPS6118323B2 (en)
JPS6163921A (en) Magnetic powder and its production
JPS58161725A (en) Production of magnetic metallic iron powder
JPS5919168B2 (en) Manufacturing method of metal magnetic powder
JPS58212104A (en) Magnetic metal fine grain
JPH0644527B2 (en) Magnetic recording medium
JPH0283219A (en) Production of cobalt-containing ferromagnetic iron oxide powder
JPH02175806A (en) Manufacture of metal magnetic powder for magnetic recorder
JPS59154637A (en) Metallic magnetic powder for magnetic recording and its manufacture
JPS59153810A (en) Production of ferromagnetic fine metallic particle
JPS61130407A (en) Production of metallic magnetic powder
JPS6350842B2 (en)
JPS58159311A (en) Manufacture of metallic magnetic powder
JPS5860504A (en) Magnetic powder and method of manufacturing the same
JPH01168801A (en) Manufacture of metal magnetic powder
JPS59172209A (en) Metal magnetic powder and manufacture thereof
JPS61124507A (en) Production of magnetic metallic powder
JPS6163920A (en) Magnetic metallic powder and its production