JPS59153810A - Production of ferromagnetic fine metallic particle - Google Patents

Production of ferromagnetic fine metallic particle

Info

Publication number
JPS59153810A
JPS59153810A JP58028149A JP2814983A JPS59153810A JP S59153810 A JPS59153810 A JP S59153810A JP 58028149 A JP58028149 A JP 58028149A JP 2814983 A JP2814983 A JP 2814983A JP S59153810 A JPS59153810 A JP S59153810A
Authority
JP
Japan
Prior art keywords
iron oxyhydroxide
particles
iron
metal
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58028149A
Other languages
Japanese (ja)
Other versions
JPH0348243B2 (en
Inventor
Masashi Ushiyama
正志 牛山
Takayoshi Yoshizaki
吉崎 孝嘉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JNC Corp
Original Assignee
Chisso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chisso Corp filed Critical Chisso Corp
Priority to JP58028149A priority Critical patent/JPS59153810A/en
Priority to DE8484301141T priority patent/DE3461871D1/en
Priority to EP84301141A priority patent/EP0118253B1/en
Publication of JPS59153810A publication Critical patent/JPS59153810A/en
Publication of JPH0348243B2 publication Critical patent/JPH0348243B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/06Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/065Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder obtained by a reduction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/18Non-metallic particles coated with metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • B22F9/26Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions using gaseous reductors

Abstract

PURPOSE:To obtain ferromagnetic fine metallic particles having uniform particles and an improved magnetic characteristic by adding a different metallic compd. and ferrous salt to a suspension of alpha-iron oxyhydroxide to cause an oxidation reaction and to deposit the compd. thereon then subjecting the suspension to a reduction treatment. CONSTITUTION:An aq. soln. of a compd. of a different metal except iron, for example, NiSO4 and an aq. soln. of ferrous salt such as FeSO4 are added to an aq. suspension of alpha-iron oxhydroxide and the particles of the compd. of the different metal are deposited on the surface of the alpha-iron oxyhydroxide by the oxidation reaction. The particles are then filtered, washed, dried and reduced by heating, etc. and the ferromagnetic fine metallic particles are obtd. Since the fine metallic particles have excellent magnetic characteristics such as high coercive force, high magnetic flux density or the like, the particles contribute to an improvement in the performance of an audio cassette tape, etc. when used for the same.

Description

【発明の詳細な説明】 本発明は強磁性金属微粒子の製造法に関し、より詳しく
はα−オキシ水酸化鉄の水懸濁液に鉄と異なる金属(以
下「異種金属」という。)の塩等を添加し、a−オキシ
水酸化鉄罠異種金属の化合物を被着した後還元して得ら
れる一強磁性金属微粒子の製造法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing ferromagnetic metal fine particles, and more specifically, the present invention relates to a method for producing ferromagnetic metal fine particles, and more specifically, a method for producing ferromagnetic metal particles, and more specifically, a method for producing ferromagnetic metal particles, and more specifically, a method for producing ferromagnetic metal particles, and more specifically, a method for producing ferromagnetic metal fine particles, in which a salt of a metal different from iron (hereinafter referred to as "different metal"), etc. is added to an aqueous suspension of α-iron oxyhydroxide. The present invention relates to a method for producing fine particles of a ferromagnetic metal obtained by adding a-ferromagnetic metal, adhering a compound of a different metal to an a-iron oxyhydroxide trap, and then reducing the compound.

高保磁力、高磁束密度を有する強磁性金属鉄微粒子がオ
ーディオ用カセットテープの高性能化、コンバク)VT
R用ピデオテーグの開発のため罠注目されている。これ
らのテープの高性能化のために磁性粉末は微細化する方
向にある。
Ferromagnetic metallic iron particles with high coercive force and high magnetic flux density improve the performance of audio cassette tapes (Kombaku) VT
It has been attracting attention due to the development of the videotague for R. In order to improve the performance of these tapes, the magnetic powder is becoming finer.

しかるに、磁性粉末の微細化に伴い、保磁力は高くな見
磁性粉末の分散性、耐候性、配向性等は悪化する傾向に
あシ、出発α−オキシ水酸化鉄の微細化によって還元時
に粒子のくずれが生じやすくなる。そこで、磁性粉末の
塗料化、磁気ヘッドとの関係等を考慮しつつ、磁性粉体
の各種特性を改善する目的で、α−オキシ水酸化鉄に異
種金属の化合物を加える方法が知られている。
However, as the magnetic powder becomes finer, the coercive force is higher, and the dispersibility, weather resistance, orientation, etc. of the magnetic powder tend to deteriorate. deterioration is more likely to occur. Therefore, there is a known method of adding different metal compounds to α-iron oxyhydroxide in order to improve the various properties of magnetic powder while taking into consideration the relationship between the magnetic powder and the magnetic head. .

異種金属の化合物を加える方法としては、(1)α−オ
キシ水酸化鉄合成時に水酸化第一鉄と共に異種金属の塩
等を加えて共沈させるか、反応液中に異種金属の塩等を
溶存させて酸化反応を行う方法(以後ドープ法と記す。
Methods of adding a compound of a different metal include (1) adding a salt of a different metal together with ferrous hydroxide during the synthesis of α-iron oxyhydroxide to cause coprecipitation, or adding a salt of a different metal to the reaction solution. A method of dissolving and performing an oxidation reaction (hereinafter referred to as doping method).

)、及υ(2)生成したa−オキシ水酸化鉄の粉末また
は湿潤ケーキを水に懸濁し、必要に応じて酸性又はアル
カリ性にした後異種金属の塩の水溶液を添加し、必要に
応じて懸濁液を中和することによシ沈殿被着する方法(
以後被着法と記す。)等が知られている。、。
), and υ (2) The produced a-iron oxyhydroxide powder or wet cake is suspended in water, made acidic or alkaline as necessary, and then an aqueous solution of a salt of a different metal is added, and as necessary. A method of depositing precipitation by neutralizing a suspension (
Hereinafter, this method will be referred to as the adhesion method. ) etc. are known. ,.

ドープ法では添加した金属化合物の種類、量、添加方法
によシ粒子形状の大きく異ったα−オキシ水酸化鉄が生
成し、これを還元して得られた金属微粒子の特性も異種
金属化合物を加えない場合に比較し、全ての特性におい
て差は大きなものとなる。また、添加する異種金属化合
物の種類によって異なるが添加剤の量によっては枝分か
れ粒子が生じたり、α−オキシ水酸化鉄粒子の剣状性が
くずれる原因となる。ドープ法も金属微粒子の特性を改
善する方法として有望な方法であるが、目的とする特性
を改善するためには被着法が適している。
In the doping method, α-iron oxyhydroxide particles with greatly different particle shapes are produced depending on the type, amount, and method of addition of the metal compound added, and the characteristics of the metal fine particles obtained by reducing this also differ from those of different metal compounds. Compared to the case without adding , the difference in all characteristics is large. Further, depending on the amount of the additive, which varies depending on the type of the different metal compound added, branched particles may be formed or the sword-like shape of the α-iron oxyhydroxide particles may be lost. Although the doping method is also a promising method for improving the properties of metal fine particles, the deposition method is suitable for improving the desired properties.

被着法としては、α−オキシ水酸化鉄の粉末または湿潤
ケーキを水に懸濁した後異種金属の塩等の水溶液を添加
して付着させる方法;該水懸濁液に酸またはアルカリを
加えα−オキシ水酸化鉄の凝集間をいったん十分に分散
した後異種金属の塩等の水溶液を添加し、アルカリまた
は酸を加えて中和することによシ異種金属化合物を被着
した後濾過する方法等がある。これらの方法はα−オキ
シ水酸化鉄と金属化合物との付着が弱く、また還元工程
で粒子がくずれやすい欠点が認められる。α−オキシ水
酸化鉄と金属化合物との付着を強固にし、還元工程にお
ける粒子のくずれを減少させるためには異種金属の塩等
の水溶液を添加後70°C以上好ましくは90°C以上
の熱処理を施す必要がある。熱処理を施すことによって
還元工程における粒子のくずれは減少されるが、共存す
る陰イオンの影響により磁気特性の劣化が認められる。
The adhesion method is to suspend α-iron oxyhydroxide powder or wet cake in water and then add an aqueous solution of a different metal salt, etc.; add an acid or alkali to the aqueous suspension. Once α-iron oxyhydroxide is sufficiently dispersed between aggregates, an aqueous solution such as a salt of a different metal is added, and an alkali or acid is added to neutralize it, thereby depositing a different metal compound, and then filtering. There are methods etc. These methods have the disadvantage that the adhesion between α-iron oxyhydroxide and the metal compound is weak, and the particles tend to break down during the reduction process. In order to strengthen the adhesion between α-iron oxyhydroxide and the metal compound and reduce particle breakage during the reduction process, heat treatment is performed at 70°C or higher, preferably 90°C or higher after adding an aqueous solution of a different metal salt, etc. It is necessary to apply Although the heat treatment reduces particle breakage during the reduction process, deterioration of magnetic properties is observed due to the influence of coexisting anions.

共存する陰イオンは熱処理後水洗を行うことによりある
程度は除かれるが、陰イオンは水洗前の数10%以下が
a−オキシ水酸化鉄に残り、陰イオンの影響を全く除く
ことはできない。熱処理を施さず水洗を行った場合には
被着目的の金属化合物の一部流出が避けられない。また
これらの方法による被着ではNi 、Cot Ct、M
n+ Mg等の限られた金属しか被着できない。
Although the coexisting anions are removed to some extent by washing with water after heat treatment, less than several ten percent of the anions before washing remain in the a-iron oxyhydroxide, and the influence of anions cannot be completely removed. If water washing is performed without heat treatment, some of the metal compound intended for deposition will inevitably flow out. In addition, when deposited by these methods, Ni, Cot Ct, M
Only limited metals such as n+ Mg can be deposited.

これら従来法の欠点に鑑み、本発明者らは、任意の量の
ほとんどの金属を低温でも強固に被着し、磁気特性劣化
の原因となる陰イオンは除かれ、還元過程における粒子
のくずれのほとんど認められない金属微粒子を製造する
方法を見′出すべく鋭意研究の結果、本発明に到達した
In view of these shortcomings of conventional methods, the present inventors have developed a method for firmly adhering arbitrary amounts of most metals even at low temperatures, removing anions that cause deterioration of magnetic properties, and preventing particles from collapsing during the reduction process. The present invention was achieved as a result of intensive research to find a method for producing metal fine particles that are hardly recognized.

すなわち、本発明は、α−オキシ水酸化鉄の水懸濁液に
、異種金属の塩、金属酸塩、酸化物等の化合物の水溶液
(酸性又はアルカリ性の水溶液を包含する。)及び第一
鉄塩水溶液を添加して酸化反応を行い、p過水洗乾燥後
還元を行うことによυ強磁性金属微粒子を製造する方法
を要旨とするものである。
That is, the present invention provides an aqueous solution (including an acidic or alkaline aqueous solution) of a compound such as a salt, a metal acid salt, or an oxide of a different metal, and a ferrous iron aqueous suspension in an aqueous suspension of α-iron oxyhydroxide. The gist is a method for producing ferromagnetic metal fine particles by adding an aqueous salt solution to perform an oxidation reaction, washing with water, drying, and reducing.

前記α−オキシ水酸化鉄の水懸濁液は、α−オキシ水酸
化鉄合成反応生成スラリー及びこれから得られるα−オ
キシ水酸化鉄の湿部ケーキまたは乾燥粉末を水に懸濁し
て得られるものを包含する。この水懸濁液は酸性、アル
カリ性又は中性であってもよい。従って、従来法と相異
して、本発明はα−オキシ水酸化鉄合成反応生成スラリ
ーもそのまま使用しうるという長所を有する。
The aqueous suspension of α-iron oxyhydroxide is obtained by suspending in water an α-iron oxyhydroxide synthesis reaction product slurry and a wet cake or dry powder of α-iron oxyhydroxide obtained therefrom. includes. This aqueous suspension may be acidic, alkaline or neutral. Therefore, unlike the conventional method, the present invention has the advantage that the slurry produced by the α-iron oxyhydroxide synthesis reaction can be used as is.

前記添加する異種金属の塩等の化合物の水溶液は、中性
、酸性又はアルカリ性の水溶液として使用することがで
きる。この場合における中性、酸性及びアルカリ性のう
ちのいずれにするかは前記異種金属の塩等の尚該水溶液
での溶解性、a−オキシ水酸化鉄の水懸濁液に添加した
とき、所望の程反に均一に被着が生ずるか否か等を勘案
して定める。これらの副腎には酸性又はJjM基性吻質
を溶解して行うことができる。
The aqueous solution of the compound such as the salt of a different metal to be added can be used as a neutral, acidic or alkaline aqueous solution. In this case, the choice between neutral, acidic, and alkaline depends on the solubility of the dissimilar metal salt, etc. in the aqueous solution, and the desired level when added to the aqueous suspension of a-iron oxyhydroxide. It is determined by taking into account whether or not adhesion occurs uniformly over the entire surface. These adrenal glands can be treated by dissolving acidic or JjM-based rostrum.

イ45加する異種金属(M)のj温等の化合物と第一鉄
塩の薙比は、「第一鉄(Fe) /異Oi金机(M)」
の原子比(原子斂比をいう。以下同じ。)が0.5以上
となるようにするのがよい。0.5より小さいとσ−オ
キシ水酸化鉄と婦加異チー呟りp机の化合物との付着強
夏が十分でないから好ましくない。
A45 The ratio of the compound such as the temperature of the different metal (M) to be added and the ferrous salt is "ferrous iron (Fe) / different metal (M)"
It is preferable that the atomic ratio (hereinafter referred to as atomic ratio) is 0.5 or more. If it is less than 0.5, the adhesion strength between the σ-iron oxyhydroxide and the chemical compound will not be strong enough, which is not preferable.

この比の上限は特に限定きれるものではないが、3よシ
大きくなれば、蔭加異種金属の量がα−オキシ水酸化鉄
に対し原子分子比で0.1以上になると、[第一鉄(F
e(II)/α−オキシ水酸化鉄(F’e00H)の原
子分子比(「原子数/分子数」をいう。以下同じ。)が
0.3よシ大きくなシ、この場合にはα−オキシ水酸化
鉄粒子の凝集が著しくなるため好祉〔2くない。従って
「第一鉄(Fe) /異種金属(M)」は0.5〜Bが
特に好ましい1 前記異種金属の塩等を加えた後、必要に応じて適当なp
Hに調節すれば、該異種金属の一部分又は大部分が第一
鉄イオンと共に水酸化物、その水和物、酸化物等の化合
物とし°Cα−オキシ水酸化鉄の周一に又は単独に沈殿
し又はゲル化する。しかしこの段階の沈殿物等はα−オ
キシ水酸化鉄に未だ付着しないか又は付着してもイ・」
着強度の小さいものであシ、還元工程における粒子のく
ずれを生じ易い。そこで前記酸化反応を行う。この酸化
反応によ・りて、沈殿した第一鉄が酸化され、α−オキ
シ水酸化鉄の表面にα−オキシ水酸化鉄として析出し、
その際に異種金属をとシ込み、該異種金属のα−オキシ
水酸化鉄との強い付着(被着)が実現されるものと推定
さgる。そして還元工程において、粒子がくずれにくく
なる。
The upper limit of this ratio is not particularly limited, but if it is larger than 3, if the amount of the different metal added is 0.1 or more in terms of atomic and molecular ratio to α-iron oxyhydroxide, [ferrous iron] (F
If the atomic-molecular ratio (referred to as "number of atoms/number of molecules"; the same applies hereinafter) of e(II)/α-iron oxyhydroxide (F'e00H) is greater than 0.3, in this case, α - No good welfare [2] as agglomeration of iron oxyhydroxide particles becomes significant. Therefore, "ferrous iron (Fe)/different metal (M)" is particularly preferably 0.5 to B1. After adding the salt of the different metal, etc., an appropriate p
When adjusted to H, a part or most of the foreign metal becomes a compound such as hydroxide, its hydrate, or oxide together with ferrous ions, and precipitates on the periphery of α-iron oxyhydroxide or alone. Or gel. However, the precipitates at this stage either do not yet adhere to the α-iron oxyhydroxide, or even if they do, they do not adhere to the α-iron oxyhydroxide.
If the adhesion strength is low, the particles tend to collapse during the reduction process. Then, the oxidation reaction is performed. Through this oxidation reaction, the precipitated ferrous iron is oxidized and precipitated as α-iron oxyhydroxide on the surface of α-iron oxyhydroxide.
It is presumed that at that time, a different metal is injected into the material, and strong adhesion (adhesion) of the different metal to the α-iron oxyhydroxide is realized. Then, in the reduction process, the particles become less likely to collapse.

本発明を具体ト°すを挙けて説明すれば、(1)α−オ
キシ水酸化鉄の湿間ケーキまたは粉末を水にJM’濁す
る。この水懸濁液に酢酸などの酸を加えpH4以下とし
て、α−オキシ水酸化鉄を十分に分散するのが好ましい
。これに異種金属の塩等の水溶液(連席は中性又は酸性
の水溶液)をg≦加し、続いて第一鉄塩水溶液を添加す
る。NaOH、アンモニア、 Na2CO,、などの塩
基性物質の水溶液又はアンモニアガスを、加えた酸の中
和量を考慮し、添加(〜た第一鉄塩と異種金属の塩に対
して化学当量以上(式で表わせば「(添加iQ基負)≧
(8中和量)+(添加第一鉄塩量)+(添加金属塩量)
」)となるように加える。続いて、空気などの酸素含有
気体を吹き込むか、li&化剤を添加して酸化反応を行
う。
To specifically explain the present invention, (1) a wet cake or powder of α-iron oxyhydroxide is suspended in water. It is preferable to add an acid such as acetic acid to this aqueous suspension to adjust the pH to 4 or lower to sufficiently disperse α-iron oxyhydroxide. To this, g≦g of an aqueous solution (neutral or acidic aqueous solution) of a different metal salt, etc. is added, and then an aqueous ferrous salt solution is added. Add an aqueous solution of a basic substance such as NaOH, ammonia, Na2CO, etc. or ammonia gas, taking into account the amount of neutralization of the added acid (~chemical equivalent or more for the ferrous salt and the salt of a different metal). Expressed in the formula, “(added iQ group negative)≧
(8 Neutralization amount) + (Additional ferrous salt amount) + (Additional metal salt amount)
”). Subsequently, an oxidation reaction is performed by blowing in an oxygen-containing gas such as air or adding a li&oxidation agent.

酸化終了後、沖過水洗乾燥し、加熱還元して金属微粒子
を製造する。
After the oxidation is completed, it is washed with water, dried, and heated to reduce to produce metal fine particles.

別法として、 (2)α−オギシ水酸化鉄合成反応スラリーに異種金属
の塩等の水溶液(これは酸又は塩基を含んでいてもよい
。)を加え、それと同時又は前もしくは後に第一鉄塩水
溶液を加える。ここで前記金fiA塩等の水溶液および
第一鉄塩水溶液の象加速度は小さい程好オしい。前記金
属塩等と第一鉄塩は、沈殿が生じないかぎシ、混合液と
して’I+;A加しても、第一鉄塩水溶液を添加した後
、金属塩i#(、)水溶液を添加してもよく、粉末磁気
性性的にはほぼ同等の金属微粒子ができる。しかし、こ
れらの場合は微小頼粒が生じやすくなるので、金属塩等
の水溶液を添加した後、第−鉄環水溶液を添加する方法
が好りしい。第−鉄塩水溶液際加後伊気などの酸素含有
気体を吹き込む力1・β化剤と添加してらβ化反応を行
う。酸化終了後、r過水法乾燥し、加熱還元して金属微
粒子を製造する。この方法(2)によっても上記湿?1
′1′5ケーキ等の水懸濁液から被着した場合(1)と
同様の磁気特性を有する金属微粒子が得られる。
As an alternative method, (2) add an aqueous solution of a salt of a different metal (which may contain an acid or a base) to the α-iron hydroxide synthesis reaction slurry, and at the same time, before or after adding ferrous Add salt solution. Here, it is preferable that the elephant acceleration of the aqueous solution of the gold fiA salt and the like and the aqueous ferrous salt solution be as small as possible. The above-mentioned metal salts and ferrous salts can be used in combination without precipitation, even if 'I+;A is added as a mixed solution. It is also possible to produce fine metal particles with almost the same powder magnetic property. However, in these cases, fine grains tend to form, so it is preferable to add an aqueous solution of a metal salt or the like and then add an aqueous solution of ferrous rings. After addition of the ferrous salt aqueous solution, an oxygen-containing gas such as chlorine gas is blown into the aqueous solution and a β-forming agent is added to carry out the β-forming reaction. After the oxidation is completed, the product is dried using an r-hydrogen method and reduced by heating to produce metal fine particles. Can this method (2) also be applied to the above moisture? 1
When deposited from an aqueous suspension such as '1'5 cake, fine metal particles having magnetic properties similar to those in (1) can be obtained.

本発明の方法によシ、水又は酸もしくは塩基の水溶液に
可溶なアルカリ金属以外の金属のJ+t等ならば殆どの
金属の塩等の1種又は2種以上の組合せを用いて、任意
の値でα−オキシ水酸化鉄に被着可能である。被着され
た金属化合物(この化合物−:、添加の時の金属塩等の
化合物とは異なったものとなることが多い。)とσ−オ
キシ水酸化鉄との結合は強固であり、水洗による流出は
認められず、またα−オキシ水酸化鉄への付着力の弱い
磁気特性の劣化の原因となる陰イゴーンが選択的に除か
れる1、還元過程における粒子のくずれ(・オはとんど
β3められす、従来の112着法に比べ両紙t(〕住の
著しい同上が認められる。
According to the method of the present invention, any one or a combination of two or more of salts of most metals such as J+T of metals other than alkali metals that are soluble in water or an aqueous solution of an acid or base can be used. It can be deposited on α-iron oxyhydroxide at a certain value. The bond between the deposited metal compound (this compound is often different from the compound such as metal salt at the time of addition) and σ-iron oxyhydroxide is strong, and it can be easily removed by washing with water. No outflow was observed, and the anion which has a weak adhesion to α-iron oxyhydroxide and causes deterioration of its magnetic properties was selectively removed. β3 is recognized, and compared to the conventional 112-point method, there is a significant difference in both papers t ().

従来法により合成されたσ−オキシ水酸化鉄には、転写
特性、I(c分布の広がりNIJちSFD悪下の原因と
なる平均的なお”L子すイズから大きくはずれた微小粒
子が認められる。本発明の方法によれは、微小粒子はよ
り大きな粒子と結合することにより消失し、jl・2化
反応後の全1,1化合l(/Jを被着したa−オキシ水
1′1セ化鉄粒子の粒度はよ< ツ1iiiつたものと
なる。〕Yヨ元反応によっても結合した微小粒子はよく
大きな粒子から離れることなく、被着後のα−オキシ水
酸化鉄の粒子形状をよく保持した金属微粒子が倚られる
In the σ-iron oxyhydroxide synthesized by the conventional method, microparticles that deviate greatly from the average iron oxide size, which is the cause of the transfer characteristics, the spread of the I(c distribution, and the deterioration of the NIJ and SFD) are observed. According to the method of the present invention, the microparticles disappear by combining with larger particles, and the total 1,1 compound l(/J) coated a-oxywater 1′1 after the jl·2 reaction The particle size of the iron ceride particles is very large. Even through the Y-element reaction, the fine particles bonded to each other do not separate from the larger particles and change the particle shape of the α-iron oxyhydroxide after deposition. Well-held metal particles are swallowed.

以下、本発明を実施レリで説明するが、本発明はこれら
に限られないことは勿論である。。
Hereinafter, the present invention will be explained with reference to actual examples, but it goes without saying that the present invention is not limited to these examples. .

実施例1 6 mat / l NaOH水溶液12.6gに0.
34rnot/ l F’eSO4水1=rtasxi
添加し、空気流t201/minで40°Cに保ってα
−オキシ水酸化鉄7合成し、これをン濾過水洗しで得た
湿潤ケーキ2500g(α−オキシ水酸化鉄乾燥重搦:
10.001に241の水を加え、1時間攪拌後、酢酸
をpl■8.5となるよりに添加し、30分間攪拌した
。、 0.5 mat / II NiSO4水浴液1
水浴液112絖 を添加し、15分1i;j F&拌した後5 moA 
7’ INa O H水浴液1400*l’(H加えた
。30分間間間抜後1 2 (1 / minの流量で
空気全吹き込み、25°Cに保ち5時間酸化反応金行っ
た。反応終了後p過水洗乾燥し、加熱趙元し、強磁性金
属倣粒化鉄に保持され、〃j液および洗液からはNiは
検出されなかった。SO42−およびNa+は沖過およ
び水洗によシ流出し、α−オキシ水酸化鉄にはほとんど
認められなかった。得られたNi被%i (1−オキシ
水酸化鉄には被着前のαーオキシ水fi(化鉄に存任し
た微小粒子は認められず粒度のよ<4Ii11つだもの
となった。還元はNi被被着−オキシ水酸化鉄500g
を水素流量201/min +還元温度500°Cの反
応で5時間行い、Ni被被着−オキシ水酸化鉄の粒子形
状をよく保持した強磁性金鴎微粒子を得た。この磁性粉
の磁気牛ティll7J:Hc  :  1  5880
e.   as  :  1  59emu/f 、 
ar/as’: 0. 5 8またこの磁性粉を用いた
配向シートの特性値はHc:14680e。
Example 1 12.6 g of 6 mat/l NaOH aqueous solution was added with 0.0.
34rnot/ l F'eSO4 water 1=rtasxi
Added and kept at 40°C with air flow t201/min to α
- 2,500 g of wet cake obtained by synthesizing iron oxyhydroxide 7 and washing with water (α-iron oxyhydroxide dry)
10.001 and 241 of water were added, and after stirring for 1 hour, acetic acid was added to a PL of 8.5, and the mixture was stirred for 30 minutes. , 0.5 mat/II NiSO4 water bath solution 1
After adding 112 liters of water bath solution and stirring for 15 minutes, 5 moA
7' INaOH water bath solution 1400 * l' (H) was added. After a 30-minute pause, air was completely blown in at a flow rate of 1/min, and the temperature was kept at 25°C and oxidation reaction was carried out for 5 hours. Reaction completed. After washing with water and drying, it was heated and retained in the ferromagnetic metal granulated iron, and no Ni was detected in the J solution and the washing solution. The obtained Ni coating %i (1-iron oxyhydroxide contains the α-oxyhydroxide fi (microparticles existing in the iron oxide) before adhesion. was not observed, and the particle size was <4Ii11.Reduction was performed using Ni-coated iron oxyhydroxide (500 g).
The reaction was carried out for 5 hours at a hydrogen flow rate of 201/min and a reduction temperature of 500°C to obtain ferromagnetic goldfish fine particles that well maintained the particle shape of Ni-coated iron oxyhydroxide. This magnetic powder magnetic cow tea ll7J:Hc: 1 5880
e. as: 1 59 emu/f,
ar/as': 0. 5 8 The characteristic value of an oriented sheet using this magnetic powder is Hc: 14680e.

Br : 2 9 8 4 gauss 、 Br/B
m : 0. 8 4 6 +SF■) : 0.4 
;3 2てあり、後述する比較例の方法によって得られ
た金属微粒子に比べHeは約1 0 0 0e高くなシ
、SFDは改善された。
Br: 2 9 8 4 gauss, Br/B
m: 0. 8 4 6 + SF■): 0.4
;32, and the He content was about 1000e higher than that of the metal fine particles obtained by the method of the comparative example described later, and the SFD was improved.

実施例2〜10 添加異種金属の塩の種類、量および該異種金属と第一鉄
の原子比を変えた以外は実施例1に準じて磁性粉を作っ
た。実施例1と同様に添加金属はほぼ100%a00%
ミーオキシに保持され、陰イオンおよびNa十はほとん
ど認められず、ネ皮?J a−オキシ水酸化鉄の粒子形
状をよく保持した強(j4j性金属微粒子を得た。
Examples 2 to 10 Magnetic powders were produced according to Example 1, except that the type and amount of the salt of the added different metal and the atomic ratio of the different metal and ferrous iron were changed. Similar to Example 1, the additive metal content is approximately 100%a00%
It is retained in Meoxy, and almost no anions and Na+ are observed. Strong (j4j metal fine particles) which well maintained the particle shape of J a-iron oxyhydroxide were obtained.

得られた微粒子の特性値を、そのツq造条件等と共に後
記光に示す。
The characteristic values of the obtained fine particles are shown below along with the manufacturing conditions, etc.

実施例11 実施例1と同様に合成したα−オキシ水酸化鉄反応スラ
リーに0. 5 mot/ R NiSO4水溶)夜1
290*lを2 0 ml / minの)L速で吊扉
し、続いて0. 5 mat / e Fe5O6水溶
液1290m1’<2 0 11t/minの流速で添
加した。添加後、30分間攪拌して、0. 2 l/ 
minの流量で空気を通じて酸化反応を6時間行い、実
施例1と同様なNi被被着−オキシ水酸化鉄を得た。還
元は実施例1と同様に行い、Ni被被着−オキシ水酸化
鉄の粒子形状全よく保持した強磁性金属微粒子を1けた
Example 11 To α-iron oxyhydroxide reaction slurry synthesized in the same manner as in Example 1, 0. 5 mot/R NiSO4 water soluble) Night 1
290*l was suspended at a speed of 20 ml/min), followed by 0. 5 mat/e Fe5O6 aqueous solution was added at a flow rate of 1290 ml<20 11 t/min. After addition, stir for 30 minutes and reduce to 0. 2 l/
The oxidation reaction was carried out for 6 hours through air at a flow rate of min. to obtain the same Ni-coated iron oxyhydroxide as in Example 1. Reduction was carried out in the same manner as in Example 1, and the ferromagnetic metal fine particles with the particle shape of Ni-coated iron oxyhydroxide well maintained were reduced to one digit.

イ(すられた依Y、′1.子の特付値を、その製造条件
等と共に後記光に示!。
The special values of ``1.'' are shown below along with the manufacturing conditions, etc.

実力f’i j9すJ2〜1フ イr5i力[15°4f・II/つ属1.’)Illの
利、プ貝訃上び1辻iしびに還元温j隻を条えた以外は
実hm例1と同様に行った。実1・i!i例1と同様な
金属iyt A−ンσ−オキシ水酸化鉄が生成され、こ
の粒子形状をよく保持した強磁性金A、ij(4粒子を
靭た。
Ability f'i j9su J2~1 fir5i force [15°4f・II/tsugen 1. ') The procedure was carried out in the same manner as in Example 1, except that a reduction temperature was added at the end of the first step, after the end of the shell, and at the end of the first turn. Real 1・i! A metal σ-iron oxyhydroxide similar to that in Example 1 was produced, and ferromagnetic gold A, ij (4 particles were toughened) which retained its particle shape well.

11tられた微粒子の特性値及び製造末件等を後i、1
2しψに示す。
After checking the characteristic values and manufacturing conditions of the fine particles, etc.
2 and shown in ψ.

I上申2pH 実施13II 1と回じσ−オキシ水t;・ン化鉄湿7
閏ケーキ1250F/(乾燥iii 500 g)に1
24の水ヲ°那え、1時間1・:4拌後f、i’p r
;i2 k加えpi a、 5 トL、30分間)”、
;へ拌(〜だ。0.5 mat / (l NiSO4
水溶液562 yrti fA%加し、30分間攪拌後
、28 ’y’6アンモニア水1rN戊をpl−1!l
、5となるように削加した3、30分間F・2拌佐温度
を90″Cにあげ1時間熟成し、p通抜乾燥して実施例
1と同条件で還元した。
I Report 2 pH Practice 13 II 1 and turn σ-oxy water t;・N iron chloride wet 7
Leap cake 1250F/(dry iii 500 g) 1
24 degrees of water, after stirring for 1 hour 1:4 f, i'p r
; i2 k added pi a, 5 tol, 30 minutes)",
; Stir (~.0.5 mat / (l NiSO4
Add 562 yrti fA% aqueous solution and stir for 30 minutes, then add 28'y'6 ammonia water 1rN to pl-1! l
, 5, the temperature was raised to 90''C for 30 minutes, the temperature was raised to 90''C, the mixture was aged for 1 hour, and the mixture was dried under the same conditions as in Example 1.

Ni被漸°a−オキシ水酸化ゴ失には0,32%のSO
4”−が存在し、還元による粒子のくずれが認められ、
磁性粉の磁気性fトに口(c:14650e;as二1
55 e+nu/7 i ar/rys: 0.51で
あり、また配向シートのSFDは0.612となυ実M
”h Willと比べ著しく態化した。
0.32% SO was added to the Ni gradual loss of a-oxyhydroxide.
4”- is present, and particle collapse due to reduction is observed,
The magnetic properties of magnetic powder (c: 14650e; as21
55 e+nu/7 i ar/rys: 0.51, and the SFD of the oriented sheet is 0.612.
``Her appearance has changed significantly compared to ``h Will.''

比較例2 比敗例1と同様にNiを被殆し、r通抜601の水で洗
浄して乾燥し、実施イクリ1と同条件で還7元した。
Comparative Example 2 Ni was coated in the same manner as in Comparative Example 1, washed with water from r-through-hole 601, dried, and reduced under the same conditions as in Example 1.

被If後水洗したにもかかわらすSO4”−はα−オキ
シ水酸化鉄に0.16%イf在し、蕪元による粒子のく
ずれが認められ、■(cは低重し、SFDは態化した。
Even though it was washed with water after being subjected to IF, 0.16% of SO4''- was present in α-iron oxyhydroxide, and the particles were observed to be broken due to oxidation. It became.

イむられた微粒子の特()1値及び製造秦件熔を後記光
に示す。
The characteristics of the absorbed fine particles and the manufacturing process are shown below.

比中父十クリ3 添加具セj!金机塩をA4(SO<)qとした以外は比
較例Iと同様に行った。
Hichu father ten chestnuts 3 additives sej! The same procedure as Comparative Example I was carried out except that A4(SO<)q was used as the gold salt.

ρj過および水洗中にA/−が流出し、α−オキシ水1
投化鉄にtf、1.添加量の約30%しか保持されず、
SO42−も0.30%翻ぬられた。
A/- flows out during ρj filtration and water washing, and α-oxy water 1
TF to cast iron, 1. Only about 30% of the added amount is retained,
SO42- was also translocated by 0.30%.

得られた微粒子の特性値及びその製造条件等を後記光に
示す。
The characteristic values of the obtained fine particles, the manufacturing conditions, etc. are shown in the section below.

Claims (5)

【特許請求の範囲】[Claims] (1)クーオキシ水酸化鉄の水懸濁液に、鉄と異なる金
属(以下「異種金属」という。)の化合物の水溶液kl
F5加し、α−オキシ水酸化鉄粒子に異種金属の化合物
を被着させた後還元し、強磁性金属微粒子を製造する方
法において、前記α−オキシ水酸化鉄の水懸濁液に前記
異種金属の化合物と共に第一鉄塩を添加し酸化反応を行
うことにより破着を行うことに!+′f徴とす前記方法
(1) An aqueous solution kl of a compound of a metal different from iron (hereinafter referred to as "different metal") in an aqueous suspension of iron oxyhydroxide
In the method of producing ferromagnetic metal fine particles by adding F5 to the α-iron oxyhydroxide particles, depositing a compound of a different metal on the α-iron oxyhydroxide particles, and then reducing the mixture, By adding ferrous salt together with a metal compound and performing an oxidation reaction, we decided to break the bond! +'f characteristic.
(2)前記クーオキシ水酸化鉄の水懸濁液が、α−オキ
シ水酸化鉄合成反応生成スラリーであることを特徴とす
る前記方法。
(2) The method described above, wherein the aqueous suspension of iron oxyhydroxide is a slurry produced by an α-iron oxyhydroxide synthesis reaction.
(3)前記α−オキシ水酸化鉄の水懸濁液がα−オキシ
水酸化鉄合成反応生成スラリーを脱水処理して得られる
a−オキシ水酸化鉄の湿潤ケーキ又は乾燥粉末を水に懸
濁したものであることを特徴とする前記方法。
(3) The aqueous suspension of α-iron oxyhydroxide is a wet cake or dry powder of α-iron oxyhydroxide obtained by dehydrating the slurry produced by the α-iron oxyhydroxide synthesis reaction. The method as described above.
(4)前記異種金属(M)の化合物の添加の量と前記第
一鉄塩のそれとの比をr F’e (1)/M Jの原
子比が0.5以上、好ましくは0.5〜3となるように
することを特徴とする第(1)項記載の方法。
(4) The ratio of the amount of the compound of the different metal (M) added to that of the ferrous salt is such that the atomic ratio of r F'e (1)/M J is 0.5 or more, preferably 0.5. 3. The method according to item (1), characterized in that: -3.
(5)前記第1鉄塩の添加量を前記α−オキシ水酸化鉄
に対し、r Fe (It)/ a −Fe OOHJ
の原子分子比が0.3以下とすることを特徴とする第(
1)項又は第(4)項記載の方法。
(5) The amount of the ferrous salt added to the α-iron oxyhydroxide is calculated as r Fe (It)/ a -Fe OOHJ
The atomic-molecular ratio of (
The method described in paragraph 1) or paragraph (4).
JP58028149A 1983-02-22 1983-02-22 Production of ferromagnetic fine metallic particle Granted JPS59153810A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP58028149A JPS59153810A (en) 1983-02-22 1983-02-22 Production of ferromagnetic fine metallic particle
DE8484301141T DE3461871D1 (en) 1983-02-22 1984-02-22 Fine particles of ferromagnetic metal and process for producing the same
EP84301141A EP0118253B1 (en) 1983-02-22 1984-02-22 Fine particles of ferromagnetic metal and process for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58028149A JPS59153810A (en) 1983-02-22 1983-02-22 Production of ferromagnetic fine metallic particle

Publications (2)

Publication Number Publication Date
JPS59153810A true JPS59153810A (en) 1984-09-01
JPH0348243B2 JPH0348243B2 (en) 1991-07-23

Family

ID=12240703

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58028149A Granted JPS59153810A (en) 1983-02-22 1983-02-22 Production of ferromagnetic fine metallic particle

Country Status (3)

Country Link
EP (1) EP0118253B1 (en)
JP (1) JPS59153810A (en)
DE (1) DE3461871D1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL8601635A (en) * 1986-06-27 1988-01-18 Vmei Lenin Nis HEAT-RESISTANT AMORF PHERROMAGNETIC POWDER AND A METHOD AND APPARATUS FOR PREPARING IT.
US5965194A (en) * 1992-01-10 1999-10-12 Imation Corp. Magnetic recording media prepared from magnetic particles having an extremely thin, continuous, amorphous, aluminum hydrous oxide coating
CN101088672B (en) * 2007-07-18 2010-05-12 重庆扬子粉末冶金有限责任公司 Cu-Sn-Zn-Pb alloy coated composite iron powder and its production process

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2909995C2 (en) * 1978-03-16 1984-06-28 Kanto Denka Kogyo Co., Ltd., Tokyo Method for producing a magnetic powder
DE2909480A1 (en) * 1979-03-10 1980-09-11 Bayer Ag FERROMAGNETIC METAL PIGMENT MADE OF IRON AND METHOD FOR THE PRODUCTION THEREOF
US4251592A (en) * 1979-04-03 1981-02-17 Toda Kogyo Corp. Stabilization treatment of acicular ferromagnetic iron or iron-alloy particles against the oxidation thereof
JPS56109827A (en) * 1980-02-05 1981-08-31 Mitsui Toatsu Chem Inc Manufacture of iron compound particle for magnetic recording medium
DE3026696A1 (en) * 1980-07-15 1982-02-18 Basf Ag, 6700 Ludwigshafen FERROMAGNETIC, PARTICULARLY IRON METAL PARTICLES WITH A SURFACE COVER, METHOD FOR THE PRODUCTION THEREOF AND THEIR USE FOR THE PRODUCTION OF MAGNETIC RECORDING CARRIERS

Also Published As

Publication number Publication date
EP0118253A1 (en) 1984-09-12
DE3461871D1 (en) 1987-02-05
JPH0348243B2 (en) 1991-07-23
EP0118253B1 (en) 1986-12-30

Similar Documents

Publication Publication Date Title
JPS6117773B2 (en)
US4202871A (en) Production of acicular ferric oxide
JPH0217603B2 (en)
US3679398A (en) Process for the preparation of acicular,submicroscopic,permanently magnetizable metal particles
JPS59153810A (en) Production of ferromagnetic fine metallic particle
JPS5919163B2 (en) Method for producing magnetic metal powder
JPS59107924A (en) Manufacture of magnetic iron oxide powder containing cobalt
JPS63140005A (en) Production of fine ferromagnetic metal particle powder
JPS5919169B2 (en) Manufacturing method of metal magnetic powder
JPH10226520A (en) Hydrate iron oxide and production of ferromagnetic iron oxide
JPH0283219A (en) Production of cobalt-containing ferromagnetic iron oxide powder
JPS59155106A (en) Manufacture of magnetic metal powder
JP2660714B2 (en) Method for producing cobalt-containing ferromagnetic iron oxide powder
JPS5947004B2 (en) Manufacturing method of ferromagnetic metal fine particles
JPS6132259B2 (en)
JPH0238504A (en) Manufacture of ferromagnetic metal fine particle having excellent dispersibility
JPS59157205A (en) Production of metallic magnetic powder
JPS6132257B2 (en)
JPS63183111A (en) Production of fine ferromagnetic metal particles
JP3253768B2 (en) Method for producing cobalt-containing magnetic iron oxide having hemimorphite coating
JPS63265823A (en) Method for coating metal compound on fine particles of acicular iron oxyhydroxide or the like
JPS6081026A (en) Manufacture of magnetic iron oxide containing cobalt
JPS6244842B2 (en)
JPS63261805A (en) Manufacture of ferromagnetic metallic fine particle
JPH0676218B2 (en) Method for producing cobalt-containing ferromagnetic iron oxide