JPH09326308A - Manufacture of r-fe-b permanent magnet having electric insulation coating with excellent adhesion - Google Patents

Manufacture of r-fe-b permanent magnet having electric insulation coating with excellent adhesion

Info

Publication number
JPH09326308A
JPH09326308A JP8165404A JP16540496A JPH09326308A JP H09326308 A JPH09326308 A JP H09326308A JP 8165404 A JP8165404 A JP 8165404A JP 16540496 A JP16540496 A JP 16540496A JP H09326308 A JPH09326308 A JP H09326308A
Authority
JP
Japan
Prior art keywords
permanent magnet
film
magnet
coating
phosphate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8165404A
Other languages
Japanese (ja)
Inventor
Masayuki Yoshimura
吉村  公志
Masako Suzuki
雅子 鈴木
Fumiaki Kikui
文秋 菊井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to JP8165404A priority Critical patent/JPH09326308A/en
Publication of JPH09326308A publication Critical patent/JPH09326308A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/34Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
    • H01F1/342Oxides
    • H01F1/344Ferrites, e.g. having a cubic spinel structure (X2+O)(Y23+O3), e.g. magnetite Fe3O4

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Dispersion Chemistry (AREA)
  • Power Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide AN R-Fe-B permanent magnet which has a sufficient adhesion only on its local or predetermined area of its surface, on which a polyimide coating having an excellent electrically-insulating property is formed, and which magnet is suitably used for such applications as a relay (electromagnetic switch) to be used for driving an electronic machine or motor requiring a local electrically-isolating property. SOLUTION: A magnet is cleaned on its surface by an ion sputtering process, and then the cleaned surface of the magnet is subjected to such a vapor phase thin-film formation process as a plating process or an ion plating process to form thereon an underlying metallic film made of metal such as Al, Ti, Ni, Zn, Sn or Fe or alloy having a predetermined thickness and a good adhesion to an R-Fe-B permanent magnet. Thereafter, the underlying metallic film is processed with phosphate and then applied with silane coupling agent which has good adhesions to the phosphate film and to polyimide resin. Thereafter polyimide resin is formed on the agent surface by a vapor deposition polymerization process.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、R−Fe−B系
永久磁石の改良に係り、R−Fe−B系永久磁石表面に
所定膜厚みの下地金属層を施し、さらに下地金属膜上に
リン酸塩被膜とシランカップリング剤を積層した後、シ
ランカップリング被膜上に蒸着重合法によりポリイミド
樹脂にて被履した構成により、電子機器やモーターなど
を駆動する場合に使われるリレー(電磁開閉器)等にお
いて、局部的に密着性のすぐれた電気絶縁性が求められ
る用途に適したR−Fe−B系永久磁石とその製造方法
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement of an R-Fe-B system permanent magnet, and an R-Fe-B system permanent magnet is provided with a base metal layer having a predetermined film thickness on the surface thereof, and further on the base metal film. After the phosphate coating and the silane coupling agent are laminated, the silane coupling coating is coated with polyimide resin by vapor deposition polymerization, which is used to drive electronic devices and motors. The present invention relates to an R-Fe-B based permanent magnet suitable for applications in which electrical insulation with excellent local adhesion is required in a container and the like, and a method for producing the same.

【0002】[0002]

【従来の技術】R−Fe−B系永久磁石は、実用化され
ている磁石の中で最もすぐれた磁気特性を有するが、電
気伝導性があり、かつ耐食性および磁気特性の温度特性
が悪いという欠点があるため、発明者らは、前記磁石の
電気絶縁性、耐熱性、および耐食性改善のため磁石表面
に蒸着重合法により、ポリイミド被膜を被着させること
を知見した。
2. Description of the Related Art R-Fe-B permanent magnets have the best magnetic properties among the practically used magnets, but they are electrically conductive and have poor corrosion resistance and temperature characteristics of magnetic properties. Because of the drawbacks, the inventors have discovered that a polyimide coating is applied to the surface of the magnet by vapor deposition polymerization to improve the electrical insulation, heat resistance, and corrosion resistance of the magnet.

【0003】しかし、磁石表面にポリイミド被膜を形成
する際、蒸着重合時およびイミド化処理時に、水を生成
して、ポリイミド被膜の密着性および磁石の耐食性およ
び耐熱性を阻害することを知見し、さらに検討を加えた
結果、発明者は、先に、磁石表面にカーボン膜あるいは
下地金属膜または、下地金属膜がAl膜あるいは、Zn
膜の場合はクロム酸塩被膜を形成後、ポリイミド被膜を
被覆することを提案した(特願平7−43482号、特
願平8−96019号)。
However, it has been found that when forming a polyimide coating on the surface of a magnet, water is generated during vapor deposition polymerization and imidization treatment to impede the adhesion of the polyimide coating and the corrosion resistance and heat resistance of the magnet. As a result of further study, the inventor first found that the carbon film or the underlying metal film or the underlying metal film was an Al film or a Zn film on the surface of the magnet.
In the case of a film, it was proposed to form a chromate film and then a polyimide film (Japanese Patent Application Nos. 7-43482 and 8-96019).

【0004】[0004]

【発明が解決しようとする課題】前記方法では、被処理
物全面にポリイミド被膜を形成する場合は有効である
が、リレー等の用途により、局部的あるいは所要の面の
みにポリイミド被膜を形成することは、磁石とポリイミ
ド被膜間の密着性が十分でないため、局部的あるいは所
要面の端部より剥離を発生する問題があり、適用が不可
能であった。
The above method is effective when a polyimide coating is formed on the entire surface of the object to be treated, but depending on the application such as a relay, the polyimide coating may be formed locally or only on the required surface. However, since the adhesion between the magnet and the polyimide coating is not sufficient, there is a problem that peeling may occur locally or from the end of the required surface, and it was not applicable.

【0005】また最近、耐食性有機被膜と永久磁石体の
密着強度を向上させ、耐食性を改善することを目的とし
て、希土類・鉄系永久磁石体表面にクロム酸塩被膜とシ
ランカップリング剤およびポリパラキシリレンの被膜を
積層する技術が提案されている(特公平7−9846
号)。
Recently, for the purpose of improving the adhesion strength between the corrosion resistant organic coating and the permanent magnet body and improving the corrosion resistance, the chromate coating, the silane coupling agent and the polyparaffin are formed on the surface of the rare earth / iron permanent magnet body. A technique for laminating a film of xylylene has been proposed (Japanese Patent Publication No. 7-9846).
issue).

【0006】しかし、上記に提案されている技術におい
て、確かに耐食性有機被膜と永久磁石体の密着強度は向
上しているが、耐食性有機被膜であるポリパラキシリレ
ンは、ポリイミドに比べて電気絶縁性および耐食性に劣
り、また下地金属膜を介在しないため、密着性および耐
食性が良好ではないという問題があり、この発明の対象
である、局部的あるいは所要の面にきわめて高い電気絶
縁性と良好な耐食性と耐熱性が求められるリレー等の用
途に適用するには、不十分であった。
However, in the technique proposed above, although the adhesion strength between the corrosion-resistant organic coating and the permanent magnet body is certainly improved, polyparaxylylene, which is a corrosion-resistant organic coating, is more electrically insulating than polyimide. And adhesion resistance and corrosion resistance are not good because there is no corrosion resistance and corrosion resistance, and there is no underlying metal film, and there is a very high electrical insulation and good local or desired surface, which is the object of this invention. It was insufficient to be applied to applications such as relays that require corrosion resistance and heat resistance.

【0007】この発明は、電子機器やモーターなどを駆
動する場合に使われる局部的に電気絶縁性が求められる
リレー(電磁開閉器)等の用途に適したR−Fe−B系
永久磁石を目的とし、R−Fe−B系永久磁石体表面
に、局部的あるいは所要面のみに十分な密着性を付与し
て電気絶縁性にすぐれたポリイミド被膜を形成したR−
Fe−B系永久磁石とその製造方法の提供を目的として
いる。
An object of the present invention is to provide an R-Fe-B system permanent magnet suitable for applications such as a relay (electromagnetic switch) which is required to have local electrical insulation when driving an electronic device or a motor. The R-Fe-B system permanent magnet surface is provided with a polyimide coating excellent in electrical insulation by providing sufficient adhesion locally or only on the required surface.
It is an object of the present invention to provide an Fe-B based permanent magnet and a method for manufacturing the same.

【0008】[0008]

【課題を解決するための手段】発明者らは、R−Fe−
B系永久磁石体表面に局部的あるいは所要の面のみに、
密着性を向上させてポリイミド被膜を形成する方法など
について種々検討した結果、R−Fe−B系永久磁石体
表面に、下地金属膜を形成した後、前記金属膜にリン酸
塩処理を行い、その後に、前記リン酸塩被膜と密着性の
良好なシランカップリング剤を施した後、シランカップ
リング面上にポリイミド樹脂を被着することにより、リ
ン酸塩被膜は、多孔性かつ凹凸状の下地金属被膜の孔や
凹部をリン酸塩処理により埋めて表面を均一化し、耐食
性を高める役割と下地金属被膜とシランカップリング剤
の反応を促進させ、ひいては、ポリイミド被膜の密着性
を向上させる役割を兼ね備え、耐食性向上に寄与し、下
地層のリン酸塩被膜とシランカップリングおよびシラン
カップリングとポリイミド被膜との密着性を良好にし、
局部的あるいは所要面にすぐれた電気絶縁性、耐食性お
よび耐熱性のすぐれたポリイミド樹脂をR−Fe−B系
永久磁石表面に被着できることを知見し、この発明を完
成した。
The inventors have found that R-Fe-
On the surface of the B-system permanent magnet body or only on the required surface,
As a result of various studies on a method of forming a polyimide coating film by improving adhesion, a base metal film is formed on the surface of the R—Fe—B based permanent magnet body, and then the metal film is subjected to a phosphate treatment, After that, after applying a silane coupling agent having good adhesion to the phosphate coating, by depositing a polyimide resin on the silane coupling surface, the phosphate coating has a porous and uneven shape. A role to increase the corrosion resistance by filling the holes and recesses of the underlying metal film with a phosphate treatment to improve the corrosion resistance and to promote the reaction between the underlying metal film and the silane coupling agent, which in turn improves the adhesion of the polyimide film. Also contributes to the improvement of corrosion resistance, and improves the adhesion between the phosphate coating and the silane coupling of the underlayer and the silane coupling and the polyimide coating,
The inventors have found that a polyimide resin having excellent electrical insulation, corrosion resistance, and heat resistance, which is excellent locally or on a required surface, can be applied to the surface of the R—Fe—B system permanent magnet, and completed the present invention.

【0009】すなわち、この発明は、主相が、正方晶か
らなるR−Fe−B系永久磁石体表面に、膜厚1.0μ
m〜10μmの下地金属膜を施した後、下地金属膜上に
リン酸塩被膜と、シランカップリング剤および最表面に
膜厚2.0μm〜10μmのポリイミド被膜を積層した
密着性のすぐれた電気絶縁性被膜を有するR−Fe−B
系永久磁石であり、また、上記の構成において、下地金
属層は、Al、Ti、Ni、Zn、Su、Feおよびそ
の合金である密着性のすぐれた電気絶縁性被膜を有する
R−Fe−B系永久磁石を併せて提案する。
That is, according to the present invention, the main phase has a film thickness of 1.0 μm on the surface of the R—Fe—B system permanent magnet body composed of tetragonal crystals.
After applying a base metal film of m to 10 μm, a phosphate coating, a silane coupling agent, and a polyimide coating of 2.0 μm to 10 μm in thickness on the outermost surface are laminated on the base metal film to provide excellent adhesion. R-Fe-B with insulating coating
R-Fe-B which is a system permanent magnet, and in the above structure, the base metal layer has Al, Ti, Ni, Zn, Su, Fe and alloys thereof with an electrically insulating coating having excellent adhesion. System permanent magnets are also proposed.

【0010】また、この発明は、上記のR−Fe−B系
永久磁石の製造方法として、主相が、正方晶からなるR
−Fe−B系永久磁石体表面をイオンスパッター法等に
より清浄化した後、前記磁石体表面にめっき法あるいは
イオンプレーティング法、イオンスパッタリング法、蒸
着等の気相薄膜形成法により、該磁石体と密着性の良好
な膜厚1.0μm〜10μmの下地金属膜を形成後、リ
ン酸塩処理して、リン酸塩被膜上にシランカップリング
剤を施した後、前記磁石体を真空容器内に収容して、蒸
着重合法により最表面に膜厚2.0μm〜10μmのポ
リイミド膜層を積層する、密着性のすぐれた電気絶縁性
被膜を有するR−Fe−B系永久磁石の製造方法を提案
する。
Further, according to the present invention, as a method for producing the above-mentioned R-Fe-B system permanent magnet, the main phase is R composed of a tetragonal crystal.
After cleaning the surface of the —Fe—B-based permanent magnet body by an ion sputtering method or the like, the magnet body is formed on the surface of the magnet body by a vapor deposition method such as a plating method, an ion plating method, an ion sputtering method, or a vapor deposition method. After forming a base metal film having a film thickness of 1.0 μm to 10 μm with good adhesiveness, a phosphate treatment and applying a silane coupling agent on the phosphate coating, the magnet body is placed in a vacuum container. And a polyimide film layer having a film thickness of 2.0 μm to 10 μm on the outermost surface by a vapor deposition polymerization method, and a method for producing an R-Fe-B system permanent magnet having an electrically insulating coating having excellent adhesion. suggest.

【0011】[0011]

【発明の実施の形態】この発明において、清浄化した磁
石表面に設ける下地金属膜の厚みを1.0μm〜10.
0μmに限定した理由は、1.0μm未満では十分なる
高い耐食性は得られず、10.0μmを越えると効果的
には問題ないが、下地膜としてコスト上昇を招来して、
実用的でなく好ましくないので、下地金属膜厚は1.0
μm〜10.0μmとする。好ましい金属膜厚は6μm
〜8μmである。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, the thickness of the base metal film provided on the cleaned magnet surface is 1.0 μm to 10 μm.
The reason for limiting the thickness to 0 μm is that if it is less than 1.0 μm, a sufficiently high corrosion resistance cannot be obtained, and if it exceeds 10.0 μm, there is no problem in terms of effectiveness, but the cost increases as a base film,
Since it is not practical and not preferable, the thickness of the underlying metal film is 1.0
μm to 10.0 μm. Preferred metal film thickness is 6 μm
~ 8 μm.

【0012】また、下地金属膜の成膜方法は、電解めっ
き法や無電解めっき法などのめっき法あるいはイオンプ
レーティング法、イオンスパッタリング法、蒸着等の気
相薄膜形成法でよい。この発明において、下地金属膜に
は、R−Fe−B系永久磁石との密着性の良好なAl、
Ti、Ni、Zn、Sn、Feおよびその合金が好まし
い。
Further, the method of forming the underlayer metal film may be a plating method such as an electrolytic plating method or an electroless plating method, or a vapor phase thin film forming method such as an ion plating method, an ion sputtering method, or vapor deposition. In the present invention, the underlying metal film is made of Al having good adhesion to the R-Fe-B system permanent magnet,
Ti, Ni, Zn, Sn, Fe and alloys thereof are preferred.

【0013】この発明において、リン酸塩被膜は、R−
Fe−B系永久磁石体をリン酸塩処理として、塗装の下
地処理等に一般に用いられているリン酸亜鉛、リン酸マ
ンガン、リン酸亜鉛カルシウム、リン酸鉄、リン酸錫等
含有の処理溶液に浸漬もしくは、スプレー処理して得ら
れる。被膜の膜厚は10nm〜100nmである。
In the present invention, the phosphate coating is R-
A treatment solution containing zinc phosphate, manganese phosphate, zinc calcium phosphate, iron phosphate, tin phosphate, etc., which is generally used as a base treatment for coating, etc., by treating the Fe-B permanent magnet body with a phosphate. It is obtained by dipping in or spraying. The film thickness of the coating film is 10 nm to 100 nm.

【0014】この発明において、シランカップリング処
理は、下地金属膜上にリン酸塩被膜を有する永久磁石体
を、シランカップリング剤またはその溶液中に浸漬した
後、大気乾燥する。シランカップリング剤膜厚は5nm
〜200nmである。また、シランカップリング剤は、
リン酸塩被膜等の酸化物被膜との間で、縮合反応し、強
固に密着するものであり、ビニル基またはγ基を持つ種
々のシランカップリング剤が選択できるが、好ましく
は、下記化学式で示す γ−グリシドプロピルトリメト
キシシランが良い。
In the present invention, in the silane coupling treatment, the permanent magnet body having a phosphate coating on the underlying metal film is dipped in a silane coupling agent or a solution thereof and then dried in the air. Silane coupling agent film thickness is 5 nm
200200 nm. The silane coupling agent is
A silane coupling agent having a vinyl group or a γ group can be selected, which undergoes a condensation reaction and firmly adheres with an oxide coating such as a phosphate coating, but is preferably represented by the following chemical formula. Γ-glycidpropyltrimethoxysilane shown is preferable.

【0015】[0015]

【化1】 Embedded image

【0016】この発明においてポリイミド樹脂の厚みを
2.0μm〜10μmに限定した理由は、2.0μm未
満では被覆が十分でなく、耐食性にすぐれた被膜が得ら
れず、10μmを越えると効果上は問題ないが、製造コ
スト上昇を招来するので実用的でなく、好ましくない。
The reason why the thickness of the polyimide resin is limited to 2.0 μm to 10 μm in the present invention is that if the thickness is less than 2.0 μm, the coating is not sufficient and a coating excellent in corrosion resistance cannot be obtained, and if it exceeds 10 μm, it is effective. There is no problem, but it is not practical and is not preferable because it causes an increase in manufacturing cost.

【0017】さらに、この発明において、蒸着重合法
は、真空度1Pa〜10-3Paの真空容器でポリイミド
膜の原料となる2種類のモノマーを200℃〜250℃
で加熱蒸着して、ポリアミック酸膜を形成後、常圧下、
280℃〜380℃でイミド化処理を行って、ポリイミ
ド膜を生成することが好ましい。
Further, in the present invention, in the vapor deposition polymerization method, two kinds of monomers, which are raw materials for the polyimide film, are put in a vacuum container having a vacuum degree of 1 Pa to 10 -3 Pa at 200 ° C to 250 ° C.
After vapor deposition by heating to form a polyamic acid film, under normal pressure,
It is preferable to perform imidization at 280 ° C. to 380 ° C. to form a polyimide film.

【0018】この発明において、蒸着重合する真空容器
の真空度を1Pa〜10-3Paに限定した理由は、1P
aを越えると重合反応が不均一となり膜質が劣化し、ま
た、10-3Pa未満ではモノマーの蒸発がきわめて少な
く、安定した重合反応が生じないので好ましくないこと
による。さらに、蒸着重合時の基板磁石の温度は、15
0℃〜200℃に設定するのが好ましく、150℃未満
では磁石基板との密着が十分でなく、200℃を越える
と磁石基板上での蒸着重合反応がすみやかに進行しない
ため、基板磁石の温度は150℃〜200℃に設定する
とよい。
In the present invention, the reason why the vacuum degree of the vacuum vessel for vapor deposition polymerization is limited to 1 Pa to 10 -3 Pa is 1 P.
If it exceeds a, the polymerization reaction becomes non-uniform and the film quality deteriorates. If it is less than 10 -3 Pa, the evaporation of the monomer is extremely small and a stable polymerization reaction does not occur, which is not preferable. Furthermore, the temperature of the substrate magnet during vapor deposition polymerization is 15
The temperature is preferably set to 0 ° C. to 200 ° C. When the temperature is lower than 150 ° C., the adhesion to the magnet substrate is insufficient, and when the temperature is higher than 200 ° C., the vapor deposition polymerization reaction on the magnet substrate does not proceed promptly, so that the temperature of the substrate magnet is reduced. Is preferably set to 150 to 200 ° C.

【0019】この発明において、蒸着重合に用いる2種
類の原料モノマーは、芳香族カルボン酸二無水物、芳香
族ジアミンであり、芳香族カルボン酸二無水物としては
ピロメリット酸二無水物等があり、芳香族ジアミンとし
てはジアミノジフェニルエーテル、p−フェニルジアミ
ン等が用いられる。また、真空容器内で2種類の原料モ
ノマーを200℃〜250℃で加速蒸着する理由は、2
00℃未満では蒸発量が十分でなく、250℃を越える
と蒸発速度が大きすぎて膜厚制御が難しく、好ましくな
いことによる。
In the present invention, the two kinds of raw material monomers used for vapor deposition polymerization are aromatic carboxylic acid dianhydrides and aromatic diamines, and aromatic carboxylic acid dianhydrides include pyromellitic dianhydride and the like. As the aromatic diamine, diaminodiphenyl ether, p-phenyldiamine and the like are used. The reason for accelerating vapor deposition of two kinds of raw material monomers at 200 ° C. to 250 ° C. in a vacuum container is 2
This is because if the temperature is less than 00 ° C, the amount of evaporation is not sufficient, and if it exceeds 250 ° C, the evaporation rate is too high to control the film thickness, which is not preferable.

【0020】また、この発明において、ポリイミド樹脂
を生成するイミド化温度は、280℃未満ではイミド化
反応が十分に進行せず、シランカップリング剤との密着
性が十分でなく、380℃を越えるとポリイミド樹脂が
劣化して脆くなり亀裂等が生じて剥離を発生するため2
80℃〜380℃とする。
Further, in the present invention, if the imidization temperature for producing the polyimide resin is less than 280 ° C., the imidization reaction does not proceed sufficiently, the adhesion with the silane coupling agent is insufficient, and the imidization temperature exceeds 380 ° C. And the polyimide resin deteriorates and becomes brittle, causing cracks and peeling. 2
It is set to 80 ° C to 380 ° C.

【0021】この発明の永久磁石に用いる希土類元素R
は、組成の10原子%〜30原子%を占めるが、Nd、
Pr、Dy、Ho、Tbのうち少なくとも1種、あるい
はさらに、La、Ce、Sm、Gd、Er、Eu、T
m、Yb、Lu、Yのうち少なくとも1種を含むものが
好ましい。また、通常Rのうち1種をもって足りるが、
実用上は2種以上の混合物(ミッシュメタル、ジジム
等)を入手上の便宜等の理由により用いることができ
る。なお、このRは純希土類元素でなくてもよく、工業
上入手可能な範囲で製造上不可避な不純物を含有するも
のでも差支えない。
The rare earth element R used in the permanent magnet of the present invention
Accounts for 10 to 30 atomic% of the composition, but Nd,
At least one of Pr, Dy, Ho, and Tb; or La, Ce, Sm, Gd, Er, Eu, T
Those containing at least one of m, Yb, Lu, and Y are preferable. Also, usually one of R is sufficient,
In practice, a mixture of two or more kinds (mish metal, dymium, etc.) can be used for reasons such as convenience in obtaining. It should be noted that this R does not have to be a pure rare earth element, and may contain an impurity that is unavoidable in manufacturing within the industrially available range.

【0022】Rは、R−Fe−B系永久磁石における必
須元素であって、10原子%未満では結晶構造がα−鉄
と同一構造の立方晶組織となるため、高磁気特性、特に
高保磁力が得られず、30原子%を越えるとRリッチな
非磁性相が多くなり、残留磁束密度(Br)が低下して
すぐれた特性の永久磁石が得られない。よって、Rは1
0原子%〜30原子%の範囲が望ましい。
R is an essential element in the R-Fe-B system permanent magnet, and if it is less than 10 atomic%, the crystal structure is a cubic structure having the same structure as α-iron, so that high magnetic properties, especially high coercive force are obtained. If it exceeds 30 atomic%, the R-rich non-magnetic phase increases, the residual magnetic flux density (Br) decreases, and a permanent magnet having excellent characteristics cannot be obtained. Therefore, R is 1
A range of 0 to 30 atomic% is desirable.

【0023】Bは、上記系永久磁石における必須元素で
あって、2原子%未満では菱面体構造が主相となり高い
保磁力(iHc)は得られず、28原子%を越えるとB
リッチな非磁性相が多くなり、残留磁束密度(Br)が
低下するため、すぐれた永久磁石が得られない。よっ
て、Bは2原子%〜28原子%の範囲が望ましい。
B is an essential element in the above-mentioned permanent magnet. When it is less than 2 atomic%, a rhombohedral structure is the main phase and a high coercive force (iHc) cannot be obtained.
Since a rich non-magnetic phase increases and the residual magnetic flux density (Br) decreases, an excellent permanent magnet cannot be obtained. Therefore, B is desirably in the range of 2 to 28 atomic%.

【0024】Feは、上記系永久磁石において必須元素
であり、65原子%未満では残留磁束密度(Br)が低
下し、80原子%を越えると高い保磁力が得られないの
で、Feは65原子%〜80原子%の含有が望ましい。
また、Feの一部をCoで置換することは、得られる磁
石の磁気特性を損うことなく、温度特性を改善すること
ができるが、Co置換量がFeの20%を越えると、逆
に磁気特性が劣化するため好ましくない。Coの置換量
がFeとCoの合計量で5原子%〜15原子%の場合
は、(Br)は置換しない場合に比較して増加するた
め、高磁束密度を得るために好ましい。
Fe is an essential element in the above-mentioned permanent magnets. If it is less than 65 atom%, the residual magnetic flux density (Br) is lowered, and if it exceeds 80 atom%, a high coercive force cannot be obtained. % To 80 atomic% is desirable.
Further, substituting part of Fe with Co can improve the temperature characteristics without impairing the magnetic characteristics of the obtained magnet. However, when the amount of Co exceeds 20% of Fe, the conversely occurs. It is not preferable because the magnetic properties deteriorate. When the amount of substitution of Co is 5 at% to 15 at% in terms of the total amount of Fe and Co, (Br) is increased as compared with the case where no substitution is made, which is preferable for obtaining a high magnetic flux density.

【0025】また、R、B、Feの他、工業的生産上不
可避的不純物の存在を許容でき、例えば、Bの一部を
4.0wt%以下のC、2.0wt%以下のP、2.0
wt%以下のS、2.0wt%以下のCuのうち少なく
とも1種、合計量で2.0wt%以下で置換することに
より、永久磁石の製造性改善、低価格化が可能である。
さらに、Al、Ti、V、Cr、Mn、Bi、Nb、T
a、Mo、W、Sb、Ge、Sn、Zr、Ni、Si、
Zn、Hf、のうち少なくとも1種は、R−Fe−B系
永久磁石に対してその保磁力、減磁曲線の角型性を改善
あるいは製造性の改善、低価格化に効果があるため添加
することができる。なお、添加量の上限は、磁石材料の
(BH)maxを20MGOe以上とするには、(B
r)が少なくとも9kG以上必要となるため、該条件を
満す範囲が望ましい。
In addition to R, B, and Fe, the presence of unavoidable impurities in industrial production can be tolerated. For example, part of B may be 4.0 wt% or less of C, 2.0 wt% or less of P, .0
By replacing at least one of S by wt% or less and Cu by 2.0 wt% or less with a total amount of 2.0 wt% or less, it is possible to improve the productivity and reduce the cost of the permanent magnet.
Furthermore, Al, Ti, V, Cr, Mn, Bi, Nb, T
a, Mo, W, Sb, Ge, Sn, Zr, Ni, Si,
At least one of Zn and Hf is added to the R—Fe—B system permanent magnet because it is effective in improving the coercive force, squareness of demagnetization curve, improving manufacturability, and reducing cost. can do. The upper limit of the addition amount is (BH) max of 20 MGOe or more for the magnet material,
Since r) is required to be at least 9 kG or more, a range satisfying the condition is desirable.

【0026】また、この発明の永久磁石は平均結晶粒径
が1〜80μmの範囲にある正方晶系の結晶構造を有す
る化合物を主相とし、体積比で1%〜50%の非磁性相
(酸化物相を除く)を含むことを特徴とする。この発明
による永久磁石は、保磁力iHc≧1kOe、残留磁束
密度Br>4kG、を示し、最大エネルギー積(BH)
maxは、(BH)max≧10MGOeを示し、最大
値は25MGOe以上に達する。
The permanent magnet of the present invention comprises a compound having a tetragonal crystal structure having an average crystal grain size in the range of 1 to 80 μm as a main phase, and a nonmagnetic phase (1% to 50% by volume). (Excluding the oxide phase). The permanent magnet according to the present invention exhibits a coercive force iHc ≧ 1 kOe, a residual magnetic flux density Br> 4 kG, and a maximum energy product (BH).
max indicates (BH) max ≧ 10 MGOe, and the maximum value reaches 25 MGOe or more.

【0027】[0027]

【実施例】17Nd−1Dy−76Fe−6B組成の鋳
造インゴットを粉砕し、微粉砕後に成形、焼結、熱処理
後に径20mm×7mm寸法の円板状の磁石体試験片を
得た。その磁気特性を表1に示す。真空容器内を1×1
-3Pa以下に真空排気し、Arガス圧10Pa、−5
00Vで15分間表面スパッターを行って、磁石体表面
を清浄化した後、表2に示すイオンプレーティング条件
にて、磁石体表面に表2に示すTi、Al、Zn、S
n、Feの下地金属被膜層を形成した。なお、Ni下地
被膜層は電気めっき法にて形成した。
EXAMPLE A cast ingot having a composition of 17Nd-1Dy-76Fe-6B was crushed, finely crushed, molded, sintered, and heat-treated to obtain a disk-shaped magnet body test piece having a diameter of 20 mm × 7 mm. Table 1 shows the magnetic properties. 1x1 in the vacuum container
Evacuated to 0 -3 Pa or less, Ar gas pressure 10 Pa, -5
After the surface of the magnet body was cleaned by performing surface sputtering at 00 V for 15 minutes, Ti, Al, Zn, and S shown in Table 2 were formed on the surface of the magnet body under the ion plating conditions shown in Table 2.
A base metal coating layer of n and Fe was formed. The Ni undercoat layer was formed by an electroplating method.

【0028】次に、サーフダインSD−2000(日本
ペイント製)の10%溶液に40℃に5分間浸漬し、1
00℃で大気乾燥して、膜厚20nmのリン酸亜鉛被膜
を得、ついでγ−グリシドプロピルトリメトキシシラン
で3分間の浸漬処理し、150℃で30分間乾燥して、
膜厚10nmのシランカップリング被膜を得た。
Next, it was immersed in a 10% solution of Surfdyne SD-2000 (manufactured by Nippon Paint Co., Ltd.) at 40 ° C. for 5 minutes, and 1
Air-dry at 00 ° C. to obtain a zinc phosphate coating with a film thickness of 20 nm, then dip treatment with γ-glycidpropyltrimethoxysilane for 3 minutes, and dry at 150 ° C. for 30 minutes,
A silane coupling film having a film thickness of 10 nm was obtained.

【0029】その後、得られた永久磁石を真空容器に収
容し、真空容器内を1×10-2Paの真空度に設定し、
1つの蒸発源としてピロメリット酸二無水物を220℃
で加熱するとともに、もう1つの蒸発源としてジアミノ
ジフエニルエーテルを210℃で加熱して、さらに磁石
基板を170℃に加熱して、1.5時間処理を行い、原
料モノマーを磁石表面に蒸着重合させてポリアミック酸
被膜を生成させた。
After that, the obtained permanent magnet was housed in a vacuum container, and the inside of the vacuum container was set to a vacuum degree of 1 × 10 -2 Pa.
Pyromellitic dianhydride at 220 ° C as one evaporation source
And diaminodiphenyl ether as another evaporation source at 210 ° C. and the magnet substrate at 170 ° C. for 1.5 hours for the raw material monomer to be vaporized on the surface of the magnet. Then, a polyamic acid film was formed.

【0030】次に常圧下、窒素雰囲気で300℃で1時
間加熱してイミド化処理を行い、ポリイミド樹脂膜を生
成させることにより、ポリイミド樹脂膜を8μm厚に形
成した。こうして得られたポリイミド樹脂膜を表面に有
する永久磁石体を耐食性試験前後の磁気特性ならびに体
積抵抗率測定用の試験片とした。ここで、体積抵抗率と
は、電気絶縁性を評価するものであり、下記(1)式か
ら求める。
Next, under normal pressure, it was heated in a nitrogen atmosphere at 300 ° C. for 1 hour for imidization treatment to form a polyimide resin film, thereby forming a polyimide resin film with a thickness of 8 μm. The permanent magnet body having the polyimide resin film on the surface thus obtained was used as a test piece for measuring magnetic properties and volume resistivity before and after the corrosion resistance test. Here, the volume resistivity is for evaluating electrical insulation and is obtained from the following formula (1).

【0031】[0031]

【数1】 [Equation 1]

【0032】また、ポリイミド樹脂膜を表面に有する永
久磁石体から寸法10mm×10mm×7mmの直方体
形状の上下2面にポリイミド樹脂を有する試験片に切出
し、得られた切出し試験片と切出し以前の試験片を温度
80℃、相対湿度90%の条件下で1000時間放置後
に、ポリイミド膜形成面の表面発錆状況と磁気特性を測
定し、その測定結果を表3に表す。
Further, a permanent magnet having a polyimide resin film on the surface was cut into test pieces each having a rectangular parallelepiped shape with dimensions of 10 mm × 10 mm × 7 mm and having polyimide resin on the upper and lower surfaces. After the piece was left for 1000 hours under the conditions of a temperature of 80 ° C. and a relative humidity of 90%, the surface rusting state and magnetic characteristics of the polyimide film forming surface were measured, and the measurement results are shown in Table 3.

【0033】比較例1 実施例1と同一組成の磁石体試験片を実施例1と同一条
件にてリン酸塩処理およびシランカップリングを施した
後、表面に実施例1と同一条件にてポリイミド樹脂膜を
8μm厚に形成した。その後、実施例1と同一の温度8
0℃、相対湿度90%の条件下で1000時間放置後、
ポリイミド膜形成面の表面発錆状況と磁気特性を測定
し、その結果を表3に示す。
Comparative Example 1 A magnet body test piece having the same composition as in Example 1 was subjected to phosphate treatment and silane coupling under the same conditions as in Example 1, and then the surface was subjected to polyimide under the same conditions as in Example 1. The resin film was formed to a thickness of 8 μm. Then, at the same temperature as in Example 1, 8
After leaving for 1000 hours at 0 ° C and 90% relative humidity,
The surface rusting condition and magnetic property of the polyimide film formation surface were measured, and the results are shown in Table 3.

【0034】比較例2 実施例1と同一組成の磁石体試験片を実施例1と同一条
件にてTiの下地金属被膜層を6.0μm形成し、実施
例1と同一条件にて、シランカップリング剤を施した
後、表面にポリイミド樹脂膜を8μm厚に形成した。そ
の後、実施例1と同一の温度80℃、相対湿度90%の
条件下で1000時間放置後、ポリイミド膜形成面の表
面発錆状況と磁気特性を測定し、その結果を表3に示
す。
Comparative Example 2 A magnet body test piece having the same composition as in Example 1 was formed with a Ti undercoat metal coating layer of 6.0 μm under the same conditions as in Example 1, and the silane cup was subjected to the same conditions as in Example 1. After applying the ring agent, a polyimide resin film having a thickness of 8 μm was formed on the surface. After that, after standing for 1000 hours under the same temperature of 80 ° C. and relative humidity of 90% as in Example 1, the surface rusting state and magnetic characteristics of the polyimide film forming surface were measured, and the results are shown in Table 3.

【0035】比較例3 実施例1と同一組成の磁石体試験片を実施例1と同一条
件にてTiの下地金属被膜層を6.0μm形成し、実施
例1と同一条件にて、リン酸亜鉛処理を施した後、表面
にポリイミド樹脂膜を8μmに形成した。その後、実施
例1と同一の温度80℃、相対湿度90%の条件下で1
000時間放置後のポリイミド膜形成面の表面発錆状況
と磁気特性を測定し、その結果を表3に示す。
Comparative Example 3 A magnet test piece having the same composition as that of Example 1 was formed with a Ti undercoat metal coating layer of 6.0 μm under the same conditions as in Example 1, and phosphoric acid was obtained under the same conditions as in Example 1. After the zinc treatment, a polyimide resin film having a thickness of 8 μm was formed on the surface. Thereafter, under the same conditions as in Example 1 at a temperature of 80 ° C. and a relative humidity of 90%, 1
The surface rusting condition and the magnetic property of the polyimide film formation surface after standing for 000 hours were measured, and the results are shown in Table 3.

【0036】比較例4 実施例1と同一組成の磁石体試験片をアルサーフ600
N(日本ペイント製)の3%溶液に50℃に5分間浸漬
し、リン酸亜鉛処理を施した後、実施例1と同一条件に
て、シランカップリング剤を施し、表面にポリパラキシ
リレンを真空蒸着により8μm厚に形成した。その後、
実施例1と同一の温度80℃、相対湿度90%の条件下
で1000時間放置前後の体積抵抗率を測定し、その結
果を表4に示す。
Comparative Example 4 A magnet body test piece having the same composition as in Example 1 was replaced with Alsurf 600.
After dipping in a 3% solution of N (manufactured by Nippon Paint) at 50 ° C. for 5 minutes and subjecting it to zinc phosphate treatment, a silane coupling agent was applied under the same conditions as in Example 1, and polyparaxylylene was applied to the surface. Was vacuum-deposited to a thickness of 8 μm. afterwards,
The volume resistivity before and after standing for 1000 hours under the same temperature of 80 ° C. and relative humidity of 90% as in Example 1 was measured, and the results are shown in Table 4.

【0037】[0037]

【表1】 [Table 1]

【0038】[0038]

【表2】 [Table 2]

【0039】[0039]

【表3】 [Table 3]

【0040】[0040]

【表4】 [Table 4]

【0041】[0041]

【発明の効果】この発明は、磁石表面をイオンスパッタ
ー法等により清浄化した後、前記磁石体表面にめっき法
あるいはイオンプレーティング法等の気相薄膜形成法に
より、R−Fe−B系永久磁石との密着性の良好な特定
膜厚のAl、Ti、Ni、Zn、Sn、Fe等の金属ま
たは合金被膜による下地金属膜を形成後、下地金属膜上
にリン酸塩処理を行い、リン酸塩被膜との密着性および
ポリイミド樹脂との密着性の良好なシランカップリング
剤を施した後、最表面上にポリイミド樹脂を蒸着重合法
により形成することにより、実施例に示すごとく、目的
とする密着性にすぐれた電気絶縁性被膜が得られ、特に
局部的に電気絶縁性が求められるリレーに使用可能な高
性能R−Fe−B系永久磁石が得られる。
According to the present invention, after the magnet surface is cleaned by an ion sputtering method or the like, an R-Fe-B system permanent is formed on the magnet surface by a vapor phase thin film forming method such as a plating method or an ion plating method. After forming a base metal film of a metal or alloy coating such as Al, Ti, Ni, Zn, Sn, and Fe having a specific film thickness with good adhesion to a magnet, a phosphate treatment is performed on the base metal film. After applying a silane coupling agent having good adhesiveness with an acid salt film and an adhesiveness with a polyimide resin, by forming a polyimide resin on the outermost surface by a vapor deposition polymerization method, as shown in Examples, the purpose and A highly efficient R-Fe-B permanent magnet that can be used for a relay, which is required to have local electrical insulation, is obtained.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 主相が正方晶からなるR−Fe−B系永
久磁石体表面に、膜厚1.0μm〜10μmの下地金属
膜を施した後、下地金属膜上にリン酸塩被膜とシランカ
ップリング剤および最表面に膜厚2.0μm〜10μm
のポリイミドの被膜を積層したことを特徴とする密着性
のすぐれた電気絶縁性被膜を有するR−Fe−B系永久
磁石。
1. A base metal film having a thickness of 1.0 μm to 10 μm is formed on the surface of an R—Fe—B based permanent magnet body whose main phase is tetragonal, and then a phosphate coating is formed on the base metal film. Silane coupling agent and film thickness of 2.0 μm to 10 μm on the outermost surface
An R-Fe-B based permanent magnet having an electrically insulating coating having excellent adhesion, which is obtained by laminating the polyimide coating of 1.
【請求項2】 請求項1において、下地金属層は、A
l、Ti、Ni、Zn、Sn、Feおよびその合金であ
ることを特徴とする密着性のすぐれた電気絶縁性被膜を
有するR−Fe−B系永久磁石。
2. The base metal layer according to claim 1, wherein the base metal layer is A
An R-Fe-B based permanent magnet having an electrically insulating coating having excellent adhesion, which is characterized in that it is 1, Ti, Ni, Zn, Sn, Fe, or an alloy thereof.
【請求項3】 主相が正方晶からなるR−Fe−B系永
久磁石体表面を清浄化した後、めっき法あるいは気相成
膜法により前記磁石体面に膜厚1.0μm〜10.0μ
mの下地金属膜を形成後、前記金属膜にリン酸塩処理を
施し、リン酸塩被膜上にシランカップリング剤を積層し
た後、さらに前記磁石体を真空容器内に収容して蒸着重
合法により、膜厚2.0μm〜10μmのポリイミド膜
層を形成する密着性のすぐれた電気絶縁性被膜を有する
R−Fe−B系永久磁石の製造方法。
3. A film having a thickness of 1.0 .mu.m-10.0 .mu.m formed on the surface of the magnet body by a plating method or a vapor deposition method after cleaning the surface of the R--Fe--B system permanent magnet body whose main phase is tetragonal.
After forming a base metal film of m, the metal film is subjected to a phosphate treatment, a silane coupling agent is laminated on the phosphate film, and then the magnet body is further housed in a vacuum container to perform a vapor deposition polymerization method. A method for producing an R-Fe-B permanent magnet having an electrically insulating coating having excellent adhesion, which forms a polyimide film layer having a thickness of 2.0 μm to 10 μm.
JP8165404A 1996-06-04 1996-06-04 Manufacture of r-fe-b permanent magnet having electric insulation coating with excellent adhesion Pending JPH09326308A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8165404A JPH09326308A (en) 1996-06-04 1996-06-04 Manufacture of r-fe-b permanent magnet having electric insulation coating with excellent adhesion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8165404A JPH09326308A (en) 1996-06-04 1996-06-04 Manufacture of r-fe-b permanent magnet having electric insulation coating with excellent adhesion

Publications (1)

Publication Number Publication Date
JPH09326308A true JPH09326308A (en) 1997-12-16

Family

ID=15811774

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8165404A Pending JPH09326308A (en) 1996-06-04 1996-06-04 Manufacture of r-fe-b permanent magnet having electric insulation coating with excellent adhesion

Country Status (1)

Country Link
JP (1) JPH09326308A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003007521A (en) * 2000-11-13 2003-01-10 Sumitomo Metal Mining Co Ltd High weather-resistant magnet powder and magnet using the same
JP2004327966A (en) * 2003-04-07 2004-11-18 Neomax Co Ltd Iron phosphate based film-coated r-t-b based magnet and its formation treatment method
JP2006013398A (en) * 2004-06-29 2006-01-12 Neomax Co Ltd Corrosion-resistant rare earth-based permanent magnet and manufacturing method thereof
JP2006231134A (en) * 2005-02-22 2006-09-07 Ulvac Japan Ltd Formation method for organic material membrane
JP4873201B2 (en) * 2007-05-30 2012-02-08 信越化学工業株式会社 Method for producing and using high corrosion resistance rare earth permanent magnet
CN109554677A (en) * 2018-12-26 2019-04-02 湖北永磁磁材科技有限公司 A kind of sintered Nd-Fe-B permanent magnet surface Zinc-tin alloy coating and preparation method thereof

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003007521A (en) * 2000-11-13 2003-01-10 Sumitomo Metal Mining Co Ltd High weather-resistant magnet powder and magnet using the same
JP2004327966A (en) * 2003-04-07 2004-11-18 Neomax Co Ltd Iron phosphate based film-coated r-t-b based magnet and its formation treatment method
JP2006013398A (en) * 2004-06-29 2006-01-12 Neomax Co Ltd Corrosion-resistant rare earth-based permanent magnet and manufacturing method thereof
JP4506305B2 (en) * 2004-06-29 2010-07-21 日立金属株式会社 Corrosion-resistant rare earth permanent magnet and method for producing the same
JP2006231134A (en) * 2005-02-22 2006-09-07 Ulvac Japan Ltd Formation method for organic material membrane
JP4617174B2 (en) * 2005-02-22 2011-01-19 株式会社アルバック Formation method of organic material film
JP4873201B2 (en) * 2007-05-30 2012-02-08 信越化学工業株式会社 Method for producing and using high corrosion resistance rare earth permanent magnet
CN109554677A (en) * 2018-12-26 2019-04-02 湖北永磁磁材科技有限公司 A kind of sintered Nd-Fe-B permanent magnet surface Zinc-tin alloy coating and preparation method thereof

Similar Documents

Publication Publication Date Title
US6275130B1 (en) Corrosion-resisting permanent magnet and method for producing the same
JPH0432523B2 (en)
WO1997023884A1 (en) Permanent magnet for ultrahigh vacuum application and method for manufacturing the same
JPH09326308A (en) Manufacture of r-fe-b permanent magnet having electric insulation coating with excellent adhesion
JPH09289108A (en) R-fe-b permanent magnet having electric insulating film excellent in adhesion and its manufacture
JPH0515043B2 (en)
JPH08279407A (en) R-fe-b permanent magnet being excellent in electrical insulating properties, heat resistance and corrosion resistance and manufacture thereof
JPH10340823A (en) Manufacture of r-iron-boron permanent magnet having excellent salt water resistance
JPH0569282B2 (en)
JPH0945567A (en) Rare earth-iron-boron permanent magnet manufacturing method
JP3383338B2 (en) Corrosion-resistant permanent magnet and its manufacturing method
WO1998009300A1 (en) Corrosion-resistant permanent magnet and method for manufacturing the same
JPH07249509A (en) Corrosion-resistant permanent magnet and its manufacture
JPH0535216B2 (en)
JPH09260120A (en) R-fe-b type permanent magnet superior in electric insulation, heat resistance and corrosion resistance and manufacturing method thereof
JPH0554683B2 (en)
JPH09246027A (en) R-fe-b based permanent magnet excellent in resistance to salt water
JP3652816B2 (en) Corrosion-resistant permanent magnet and method for manufacturing the same
JP3676513B2 (en) Corrosion-resistant permanent magnet and method for manufacturing the same
JP3576672B2 (en) R-Fe-B permanent magnet with excellent electrical insulation, heat resistance and corrosion resistance, and method for producing the same
JPH09180922A (en) R-fe-b based permanent magnet having excellent electrical insulation, heat resistance and anti-corrosion properties, and manufacture thereof
JPH0646603B2 (en) Permanent magnet having excellent corrosion resistance and method of manufacturing the same
JPH05226125A (en) Manufacture of highly corrosion-resistant rare-earth magnet
JP3652818B2 (en) Corrosion-resistant permanent magnet and method for manufacturing the same
JPH08264310A (en) Manufacture of rare earth-iron-boron permanent magnet

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050714

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20051108