JPH09260120A - R-fe-b type permanent magnet superior in electric insulation, heat resistance and corrosion resistance and manufacturing method thereof - Google Patents

R-fe-b type permanent magnet superior in electric insulation, heat resistance and corrosion resistance and manufacturing method thereof

Info

Publication number
JPH09260120A
JPH09260120A JP8096019A JP9601996A JPH09260120A JP H09260120 A JPH09260120 A JP H09260120A JP 8096019 A JP8096019 A JP 8096019A JP 9601996 A JP9601996 A JP 9601996A JP H09260120 A JPH09260120 A JP H09260120A
Authority
JP
Japan
Prior art keywords
film
permanent magnet
magnet
corrosion resistance
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8096019A
Other languages
Japanese (ja)
Inventor
Fumiaki Kikui
文秋 菊井
Masayuki Yoshimura
吉村  公志
Masako Suzuki
雅子 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to JP8096019A priority Critical patent/JPH09260120A/en
Publication of JPH09260120A publication Critical patent/JPH09260120A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/026Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets protecting methods against environmental influences, e.g. oxygen, by surface treatment

Abstract

PROBLEM TO BE SOLVED: To provide an R-Fe-B type permanent magnet superior in electric insulation, heat resistance and corrosion resistance by covering a specified Al or Zn surface metal layer of specified thickness on the surface of this magnet with a polyimide resin through a chromate-treated film by the vacuum evaporation polymerization. SOLUTION: An Al or Zn first metal film of 1.0-10.0μm thick is formed on the surface of an R-Fe-B type permanent magnet having a tetragonal main phase and polyimide film of 2.0-10μm thick is formed on this metal film to form a magnet superior in electric insulation, heat resistance and corrosion resistance. The manufacturing method thereof comprises cleaning the surface of this magnet having the tetragonal main phase, forming the Al or Zn metal film of 1.0-10.0μm on the surface of the magnet by the plating or vapor phase forming method, treating the metal film with chromate, and forming a polyimide film layer of 2.0-10μm thick in vacuum by the evaporation polymerization.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、R−Fe−B系
永久磁石の改良とその製造方法に係り、R−Fe−B系
永久磁石表面に形成した所定膜厚みのAlまたはZnの
下地金属膜上にクロム酸塩被膜を設けて、さらに蒸着重
合法によりポリイミド樹脂にて被履し、自動車モーター
用永久磁石等に求められる電気絶縁性、耐熱性並びに耐
食性を達成した電気絶縁性・耐熱性・耐食性にすぐれた
R−Fe−B系永久磁石とその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement of an R—Fe—B system permanent magnet and a manufacturing method thereof, and a base metal of Al or Zn having a predetermined film thickness formed on the surface of the R—Fe—B system permanent magnet. By providing a chromate film on the film and then using a polyimide resin by vapor deposition polymerization method, the electrical insulation, heat resistance and corrosion resistance required for permanent magnets for automobile motors have been achieved. The present invention relates to an R-Fe-B based permanent magnet having excellent corrosion resistance and a method for manufacturing the same.

【0002】[0002]

【従来の技術】R−Fe−B系永久磁石は、実用化され
ている磁石の中で最もすぐれた磁気特性を有するが、こ
れを多磁極型の自動車用モーターの永久磁石に用いるた
めには、まず、前記永久磁石に発生に渦電流発生を防止
するために、電気絶縁性のすぐれた被膜で被履する必要
があり、また、自動車は走行中にかかるモーターを配置
するエンジンルーム温度が200℃になることより、使
用する磁石には耐熱性とともに耐食性を兼備した被履が
要求される。
2. Description of the Related Art R-Fe-B permanent magnets have the best magnetic properties among the practically used magnets, but in order to use them as permanent magnets for multi-pole type motors for automobiles. First, in order to prevent the generation of eddy currents in the permanent magnets, it is necessary to wear a coating having excellent electrical insulation properties. Also, in an automobile, the temperature of the engine room in which the motor is placed during traveling is 200 As the temperature rises to ℃, it is required for the magnet to be used that has both heat resistance and corrosion resistance.

【0003】R−Fe−B系永久磁石は、耐食性及び磁
気特性の温度特性が悪いという欠点があり、そのため耐
食性改善のため磁石表面に樹脂を被履することが提案
(特開昭60−63902号)されているが、前記方法
では耐食性は改善されても、耐熱性が十分でなく、かつ
電気絶縁性が悪いという問題があり、磁気特性のすぐれ
たR−Fe−B系永久磁石が自動車モーター用に使用で
きない原因となっている。
R-Fe-B system permanent magnets have the drawback of poor corrosion resistance and temperature characteristics of magnetic properties. Therefore, it is proposed to coat the magnet surface with a resin in order to improve the corrosion resistance (Japanese Patent Laid-Open No. 60-63902). However, even if the corrosion resistance is improved by the above method, there is a problem that the heat resistance is not sufficient and the electric insulation is poor, and an R-Fe-B permanent magnet having excellent magnetic characteristics is used in automobiles. It is the cause that cannot be used for the motor.

【0004】[0004]

【発明が解決しようとする課題】発明者らは、磁気特性
のすぐれたR−Fe−B系永久磁石を自動車用モーター
に使用するため、耐食性のほか、電気絶縁性および耐熱
性を改善向上するため、種々検討した結果、磁石表面を
ポリイミド樹脂により被履することにより、すぐれた磁
気特性を具備するとともに、耐食性はもちろん、電気絶
縁性および耐熱性を大きく改善向上することを知見し
た。
The inventors of the present invention use R-Fe-B based permanent magnets having excellent magnetic properties in motors for automobiles, and therefore improve and improve not only corrosion resistance but also electric insulation and heat resistance. Therefore, as a result of various studies, it was found that by covering the surface of the magnet with a polyimide resin, excellent magnetic properties are provided, and in addition to corrosion resistance, electric insulation and heat resistance are greatly improved.

【0005】また、磁石表面にポリイミド樹脂を直接蒸
着重合法にて被履する場合、重合反応後、常圧下でイミ
ド化処理時に磁石表面に水分を生成して、前記水分と磁
石表面が反応して磁石表面へのポリイミド樹脂の密着性
を阻害する問題があることを知見し、さらに検討を加え
た結果、磁石表面をイオンスパッター法等により清浄化
した後、前記磁石体表面にめっき法あるいはイオンプレ
ーティング法、イオンスパッタリング法、蒸着等の気相
薄膜形成法により、R−Fe−B系永久磁石との密着性
及びポリイミド樹脂との密着性の良好な特定膜厚のAl
またはZn等の金属または合金被膜による下地金属膜を
形成後、その上にポリイミド樹脂を蒸着重合により形成
することにより、目的とする電気絶縁性・耐熱性・耐食
性にすぐれたR−Fe−B系永久磁石が得られることを
提案(特願平7−354673)した。
When a polyimide resin is directly applied to the surface of a magnet by vapor deposition polymerization, water is generated on the surface of the magnet during the imidization treatment under normal pressure after the polymerization reaction, and the water reacts with the surface of the magnet. It was found that there is a problem that the adhesion of the polyimide resin to the magnet surface is impaired, and as a result of further investigation, the magnet surface was cleaned by an ion sputtering method or the like, and then a plating method or an ion method was applied to the magnet surface. By a vapor phase thin film forming method such as a plating method, an ion sputtering method, or a vapor deposition method, an Al having a specific film thickness with good adhesion to an R-Fe-B system permanent magnet and adhesion to a polyimide resin.
Alternatively, an underlying metal film made of a metal such as Zn or an alloy film is formed, and then a polyimide resin is formed thereon by vapor deposition polymerization to form an R-Fe-B system excellent in electrical insulation, heat resistance and corrosion resistance. It was proposed that a permanent magnet be obtained (Japanese Patent Application No. 7-354673).

【0006】しかしながら、めっき法、あるいは蒸着法
等において被着したAl被膜、Zn被膜は磁石体表面に
堆積して形成されるため、密度不足を生じ、非常に多孔
質でピンホールが多いため、ポリイミド膜生成時のイミ
ド化反応において、水分を生成し、また高温高湿時にポ
リイミド膜を拡散してきた水は界面に達すると前記ピン
ホール部において、R−Fe−B系磁石体と水の反応に
より腐食を生じ、十分なる耐食性が得られない問題があ
ることを知見した。
However, since the Al coating film and the Zn coating film deposited by the plating method or the vapor deposition method are deposited and formed on the surface of the magnet body, the density is insufficient, and it is very porous and has many pinholes. In the imidization reaction at the time of forming the polyimide film, water that has generated water and has diffused through the polyimide film at high temperature and high humidity reaches the interface, and at the pinhole portion, the reaction between the R-Fe-B based magnet body and water. It was found that there is a problem in that sufficient corrosion resistance cannot be obtained due to corrosion.

【0007】この発明は、多磁極型の自動車用モーター
の永久磁石に求められる電気絶縁性、耐熱性を満足し、
かつ耐食性にすぐれたR−Fe−B系永久磁石の提供を
目的に開発した、特定膜厚のAlまたはZn等の金属ま
たは合金被膜による下地金属膜を形成後、その上にポリ
イミド樹脂を蒸着重合により形成したR−Fe−B系永
久磁石における下地金属膜がポーラスである問題を解消
して、十分な耐食性を有し、電気絶縁性・耐熱性にすぐ
れたR−Fe−B系永久磁石とその製造方法を提供する
ことを目的としている。
The present invention satisfies the electric insulation and heat resistance required for a permanent magnet of a multi-pole type motor for an automobile,
In addition, after forming a base metal film of a metal or alloy film such as Al or Zn having a specific film thickness, which was developed for the purpose of providing an R-Fe-B based permanent magnet excellent in corrosion resistance, a polyimide resin is vapor-deposited and polymerized thereon. The R-Fe-B system permanent magnet formed by the method eliminates the problem that the underlying metal film in the R-Fe-B system permanent magnet is porous, and has sufficient corrosion resistance and excellent electric insulation and heat resistance. It is intended to provide a manufacturing method thereof.

【0008】[0008]

【課題を解決するための手段】発明者らは、前記下地金
属膜のAl被膜またはZn被膜の欠点を解消するため、
種々検討した結果、前記下地金属膜のAl被膜面または
Zn被膜面にクロム酸塩処理することにより、Al被膜
またはZn被膜のピンホール内にクロム酸塩が充填さ
れ、クロム酸塩被膜が前記Al被膜面上またはZn被膜
面上に形成されることにより、耐食性は一段と向上する
ことを知見して、この発明を完成した。
In order to solve the drawbacks of the Al coating or Zn coating of the underlying metal film, the inventors have
As a result of various studies, by performing chromate treatment on the Al coating surface or the Zn coating surface of the underlying metal film, chromate is filled in the pinholes of the Al coating or Zn coating, and The present invention has been completed by finding that the corrosion resistance is further improved by being formed on the coating surface or the Zn coating surface.

【0009】すなわち、この発明は、主相が正方晶から
なるR−Fe−B系永久磁石体表面に設けた膜厚1.0
μm〜10.0μmのAlまたはZnの下地金属膜上
に、クロム酸塩処理被膜を介して、膜厚2.0μm〜1
0μmのポリイミド膜を有する電気絶縁性・耐熱性・耐
食性にすぐれたR−Fe−B系永久磁石である。
That is, according to the present invention, the film thickness of 1.0 provided on the surface of the R-Fe-B system permanent magnet body whose main phase is tetragonal.
A film having a thickness of 2.0 μm to 1 is formed on the underlying metal film of Al or Zn having a thickness of μm to 10.0 μm via a chromate treatment film.
It is an R-Fe-B based permanent magnet having a 0 μm polyimide film and excellent in electrical insulation, heat resistance and corrosion resistance.

【0010】また、この発明は、主相が正方晶からなる
R−Fe−B系永久磁石体表面を清浄化した後、めっき
法あるいは気相成膜法により前記磁石体面に膜厚1.0
μm〜10.0μmのAlまたはZnの下地金属膜を形
成後、前記金属膜にクロム酸塩処理を施し、さらに前記
磁石体を真空容器内に収容して蒸着重合法により、膜厚
2.0μm〜10μmのポリイミド膜層を形成する電気
絶縁性・耐熱性・耐食性にすぐれたR−Fe−B系永久
磁石の製造方法である。
Further, according to the present invention, after cleaning the surface of the R-Fe-B system permanent magnet body whose main phase is tetragonal, a film thickness of 1.0 is formed on the surface of the magnet body by a plating method or a vapor deposition method.
After forming a base metal film of Al or Zn having a thickness of μm to 10.0 μm, the metal film is subjected to a chromate treatment, and the magnet body is housed in a vacuum container to form a film having a thickness of 2.0 μm by a vapor deposition polymerization method. It is a method for producing an R-Fe-B based permanent magnet excellent in electrical insulation, heat resistance and corrosion resistance, which forms a polyimide film layer having a thickness of 10 µm.

【0011】[0011]

【発明の実施の形態】この発明は、磁石表面をイオンス
パッター法等により清浄化した後、前記磁石体表面にめ
っき法あるいはイオンプレーティング法等の気相薄膜形
成法により、R−Fe−B系永久磁石との密着性及びポ
リイミド樹脂との密着性の良好な特定膜厚のAl被膜ま
たはZn被膜による下地金属膜を形成後、前記金属膜に
クロム酸塩処理を施し、前記クロム酸塩被膜上にポリイ
ミド樹脂を蒸着重合により形成することにより、目的と
する電気絶縁性、耐熱性、耐食性にすぐれ、特に自動車
用モーターに使用可能な高性能R−Fe−B系永久磁石
が得られることを特徴とする。
BEST MODE FOR CARRYING OUT THE INVENTION According to the present invention, after the magnet surface is cleaned by an ion sputtering method or the like, R-Fe-B is formed on the magnet body surface by a vapor phase thin film forming method such as a plating method or an ion plating method. After forming a base metal film of an Al film or a Zn film of a specific thickness having good adhesion with a permanent magnet and adhesion with a polyimide resin, chromate treatment is applied to the metal film to form the chromate film. By forming a polyimide resin on the above by vapor deposition polymerization, it is possible to obtain a desired high-performance R-Fe-B based permanent magnet having excellent electrical insulation, heat resistance, and corrosion resistance, which can be particularly used for automobile motors. Characterize.

【0012】この発明において、清浄化した磁石表面に
設ける下地金属膜のAl被膜またはZn被膜の厚みを
1.0μm〜10.0μmに限定した理由は、1.0μ
m未満では磁石表面との密着性が十分でなく、10.0
μmを越えると効果的には問題ないが、下地膜としてコ
スト上昇を招来して、実用的でなく好ましくないので、
下地金属膜のAl被膜またはZn被膜厚は1.0μm〜
10.0μmとする。また、下地金属膜の成膜方法は、
電解めっき法や無電解めっき法などのめっき法あるいは
イオンプレーティング法、イオンスパッタリング法、蒸
着等の気相薄膜形成法でよい。
In the present invention, the reason why the thickness of the Al coating or Zn coating of the underlying metal film provided on the cleaned magnet surface is limited to 1.0 μm to 10.0 μm is 1.0 μm.
If it is less than m, the adhesion to the magnet surface is insufficient and 10.0
When the thickness exceeds μm, there is no problem in terms of effectiveness, but the cost of the underlayer increases, which is not practical and preferable.
The Al film or Zn film thickness of the underlying metal film is 1.0 μm
The thickness is 10.0 μm. In addition, the method for forming the underlying metal film is
A plating method such as an electrolytic plating method or an electroless plating method, or a vapor phase thin film forming method such as an ion plating method, an ion sputtering method, or a vapor deposition method may be used.

【0013】この発明において、クロム酸被膜の厚みは
0.01μm〜0.1μmが好ましく、0.01μm未
満では十分な耐食性が得られず、0.1μmを超えると
クロム酸塩被膜内での剥離が起こりやすく好ましくな
い。また、クロム酸塩処理には公知の方法が採用でき、
無水クロム酸またはアルカリクロム酸塩を2〜250g
/l、必要により、添加剤として硫酸、硝酸、弗化物、
タングステン化合物等を含む溶液を用い、浸漬、または
スプレー等により被膜を形成する。
In the present invention, the thickness of the chromic acid coating is preferably 0.01 μm to 0.1 μm. If it is less than 0.01 μm, sufficient corrosion resistance cannot be obtained, and if it exceeds 0.1 μm, peeling in the chromate coating occurs. Is likely to occur and is not preferable. Further, a known method can be adopted for the chromate treatment,
2-250 g of chromic anhydride or alkali chromate
/ L, if necessary, sulfuric acid, nitric acid, fluoride as an additive,
A solution containing a tungsten compound or the like is used to form a film by dipping or spraying.

【0014】この発明において、蒸着重合する真空容器
の真空度は、1Pa〜10-3Paが望ましく、1Paを
越えると重合反応が不均一となり膜質が劣化し、また、
10-3Pa未満ではモノマーの蒸発がきわめて少なく、
安定した重合反応が生じないので好ましくない。また、
蒸着重合時の基板磁石の温度は、150℃〜200℃に
設定するのが好ましく、150℃未満では磁石基板との
密着が十分でなく、200℃を越えると磁石基板上での
蒸着重合反応がすみやかに進行しないため、基板磁石の
温度は150℃〜200℃に設定するとよい。
In the present invention, the vacuum degree of the vacuum vessel for vapor deposition polymerization is preferably 1 Pa to 10 -3 Pa, and when it exceeds 1 Pa, the polymerization reaction becomes non-uniform and the film quality deteriorates.
If it is less than 10 -3 Pa, the evaporation of the monomer is extremely small,
It is not preferable because a stable polymerization reaction does not occur. Also,
The temperature of the substrate magnet during vapor deposition polymerization is preferably set to 150 ° C. to 200 ° C. When the temperature is lower than 150 ° C., the adhesion to the magnetic substrate is not sufficient, and when it exceeds 200 ° C., the vapor deposition polymerization reaction on the magnetic substrate occurs. The temperature of the substrate magnet is preferably set to 150 ° C. to 200 ° C. because it does not proceed promptly.

【0015】この発明において、蒸着重合に用いる2種
類の原料モノマーは、芳香族カルボン酸二無水物、芳香
族ジアミンであり、芳香族カルボン酸二無水物としては
ピロメリット酸無水物、酸二無水物等があり、芳香族ジ
アミンとしてはジアミノジフェニルエーテル、p−フェ
ニルジアミン等が用いられる。また、真空容器内で2種
類の原料モノマーを200℃〜250℃で加速蒸着する
理由は、200℃未満では蒸発量が十分でなく、250
℃を越えると蒸発速度が大きすぎて膜厚制御が難しく、
好ましくないことによる。
In the present invention, the two kinds of raw material monomers used for vapor deposition polymerization are aromatic carboxylic acid dianhydride and aromatic diamine, and as aromatic carboxylic acid dianhydride, pyromellitic acid anhydride and acid dianhydride. As the aromatic diamine, diaminodiphenyl ether, p-phenyldiamine and the like are used. In addition, the reason for accelerating vapor deposition of two types of raw material monomers at 200 ° C. to 250 ° C. in a vacuum container is that the amount of evaporation is insufficient below 200 ° C.
When the temperature exceeds ℃, the evaporation rate is too high and it is difficult to control the film thickness.
Because it is not preferable.

【0016】又、この発明において、ポリイミド樹脂を
生成するイミド化温度は、280℃未満ではイミド化反
応が十分に進行せず、下地金属との密着性が十分でな
く、380℃を越えるとポリイミド樹脂が劣化して脆く
なり亀裂等が生じて剥離を発生するため280℃〜38
0℃とする。
Further, in the present invention, if the imidization temperature for forming the polyimide resin is less than 280 ° C., the imidization reaction does not proceed sufficiently, the adhesion to the underlying metal is not sufficient, and if it exceeds 380 ° C. 280 ° C. to 38 because resin deteriorates and becomes brittle, cracks and the like occur and peeling occurs
Set to 0 ° C.

【0017】この発明の永久磁石に用いる希土類元素R
は、組成の10原子%〜30原子%を占めるが、Nd、
Pr、Dy、Ho、Tbのうち少なくとも1種、あるい
はさらに、La、Ce、Sm、Gd、Er、Eu、T
m、Yb、Lu、Yのうち少なくとも1種を含むものが
好ましい。また、通常Rのうち1種をもって足りるが、
実用上は2種以上の混合物(ミッシュメタル、ジジム
等)を入手上の便宜等の理由により用いることができ
る。なお、このRは純希土類元素でなくてもよく、工業
上入手可能な範囲で製造上不可避な不純物を含有するも
のでも差支えない。
Rare earth element R used in the permanent magnet of the present invention
Accounts for 10 to 30 atomic% of the composition, but Nd,
At least one of Pr, Dy, Ho, and Tb; or La, Ce, Sm, Gd, Er, Eu, T
Those containing at least one of m, Yb, Lu, and Y are preferable. Also, usually one of R is sufficient,
In practice, a mixture of two or more kinds (mish metal, dymium, etc.) can be used for reasons such as convenience in obtaining. Note that R may not be a pure rare earth element, and may contain impurities which are unavoidable in production within the industrially available range.

【0018】Rは、R−Fe−B系永久磁石における必
須元素であって、10原子%未満では結晶構造がα−鉄
を同一構造の立方晶組織となるため、高磁気特性、特に
高保磁力が得られず、30原子%を越えるとRリッチな
非磁性相が多くなり、残留磁束密度(Br)が低下して
すぐれた特性の永久磁石が得られない。よって、Rはl
0原子%〜30原子%の範囲が望ましい。
[0018] R is an essential element in the R-Fe-B system permanent magnet, and if it is less than 10 atomic%, the crystal structure has a cubic crystal structure of α-iron with the same structure, so that high magnetic properties, especially high coercive force are obtained. If it exceeds 30 atomic%, the R-rich non-magnetic phase increases, the residual magnetic flux density (Br) decreases, and a permanent magnet having excellent characteristics cannot be obtained. Therefore, R is l
A range of 0 to 30 atomic% is desirable.

【0019】Bは、上記系永久磁石における必須元素で
あって、2原子%未満では菱面体構造が主相となり高い
保磁力(iHc)は得られず、28原子%を越えるとB
リッチな非磁性相が多くなり、残留磁束密度(Br)が
低下するため、すぐれた永久磁石が得られない。よっ
て、Bは2原子%〜28原子%の範囲が望ましい。
B is an essential element in the above-mentioned permanent magnet, and if it is less than 2 atomic%, a rhombohedral structure is the main phase and a high coercive force (iHc) cannot be obtained.
Since a rich non-magnetic phase increases and the residual magnetic flux density (Br) decreases, an excellent permanent magnet cannot be obtained. Therefore, B is desirably in the range of 2 to 28 atomic%.

【0020】Feは、上記系永久磁石において必須元素
であり、65原子%未満では残留磁束密度(Br)が低
下し、80原子%を越えると高い保磁力が得られないの
で、Feは65原子%〜80原子%の含有が望ましい。
また、Feの一部をCoで置換することは、得られる磁
石の磁気特性を損うことなく、温度特性を改善すること
ができるが、Co置換量がFeの20%を越えると、逆
に磁気特性が劣化するため好ましくない。Coの置換量
がFeとCoの合計量で5原子%〜15原子%の場合
は、(Br)は置換しない場合に比較して増加するた
め、高磁束密度を得るために好ましい。
Fe is an essential element in the above-mentioned permanent magnets. If it is less than 65 atom%, the residual magnetic flux density (Br) is lowered, and if it exceeds 80 atom%, a high coercive force cannot be obtained. % To 80 atomic% is desirable.
Further, substituting part of Fe with Co can improve the temperature characteristics without impairing the magnetic characteristics of the obtained magnet. However, when the amount of Co exceeds 20% of Fe, the conversely occurs. It is not preferable because the magnetic properties deteriorate. When the amount of substitution of Co is 5 at% to 15 at% in terms of the total amount of Fe and Co, (Br) is increased as compared with the case where no substitution is made, which is preferable for obtaining a high magnetic flux density.

【0021】また、R、B、Feの他、工業的生産上不
可避的不純物の存在を許容でき、例えば、Bの一部を
4.0wt%以下のC、2.0wt%以下のP、2.0
wt%以下のS、2.0wt%以下のCuのうち少なく
とも1種、合計量で2.0wt%以下で置換することに
より、永久磁石の製造性改善、低価格化が可能である。
さらに、Al、Ti、V、Cr、Mn、Bi、Nb、T
a、Mo、W、Sb、Ge、Sn、Zr、Ni、Si、
Zn、Hf、のうち少なくとも1種は、R−Fe−B系
永久磁石に対してその保磁力、減磁曲線の角型性を改善
あるいは製造性の改善、低価格化に効果があるため添加
することができる。なお、添加量の上限は、磁石材料の
(BH)maxを20MGOe以上とするには、(B
r)が少なくとも9kG以上必要となるため、該条件を
満す範囲が望ましい。
In addition to R, B, and Fe, it is possible to allow the presence of unavoidable impurities in industrial production. For example, a part of B may be 4.0 wt% or less of C, 2.0 wt% or less of P, .0
By replacing at least one of S by wt% or less and Cu by 2.0 wt% or less with a total amount of 2.0 wt% or less, it is possible to improve the productivity and reduce the cost of the permanent magnet.
Furthermore, Al, Ti, V, Cr, Mn, Bi, Nb, T
a, Mo, W, Sb, Ge, Sn, Zr, Ni, Si,
At least one of Zn and Hf is added to the R—Fe—B system permanent magnet because it is effective in improving the coercive force, squareness of demagnetization curve, improving manufacturability, and reducing cost. can do. The upper limit of the addition amount is (BH) max of 20 MGOe or more for the magnet material,
Since r) is required to be at least 9 kG or more, a range satisfying the condition is desirable.

【0022】また、この発明の永久磁石は平均結晶粒径
が1〜80μmの範囲にある正方晶系の結晶構造を有す
る化合物を主相とし、体積比で1%〜50%の非磁性相
(酸化物相を除く)を含むことを特徴とする。この発明
による永久磁石は、保磁力iHc≧1kOe、残留磁束
密度Br>4kG、を示し、最大エネルギー積(BH)
maxは、(BH)max≧10MGOeを示し、最大
値は25MGOe以上に達する。
Further, the permanent magnet of the present invention comprises a compound having a tetragonal crystal structure having an average crystal grain size in the range of 1 to 80 μm as a main phase and a nonmagnetic phase of 1% to 50% by volume ( (Excluding an oxide phase). The permanent magnet according to the present invention exhibits a coercive force iHc ≧ 1 kOe, a residual magnetic flux density Br> 4 kG, and a maximum energy product (BH).
max indicates (BH) max ≧ 10 MGOe, and the maximum value reaches 25 MGOe or more.

【0023】[0023]

【実施例】17Nd−1Pr−75Fe−7B組成の鋳
造インゴットを粉砕し、微粉砕後に形成、焼結、熱処理
後に径12mm×2mm寸法の磁石体試験片を得た。そ
の磁石特性を表1に示す。
EXAMPLE A cast ingot of 17Nd-1Pr-75Fe-7B composition was crushed, finely crushed, formed, sintered, and heat-treated to obtain a magnet body test piece having a diameter of 12 mm × 2 mm. Table 1 shows the magnet characteristics.

【0024】真空容器内を1×10-3Pa以下に真空排
気し、Arガス圧3Pa、−300Vで20分間表面ス
パッターを行って、磁石体表面を清浄化した後、表2に
示すイオンプレーティング条件にて、磁石体表面に表2
に示すAl(実施例1)またはZn(実施例2)の下地
金属被膜層を形成後、クロム酸塩処理条件として、アル
サーフ600N(商品名 日本ペイント製)2%とし
て、pH2、40℃で3分間浸漬してクロム酸塩被膜を
膜厚0.03μmに成形した。
The inside of the vacuum chamber was evacuated to 1 × 10 −3 Pa or less, and surface sputtering was performed at Ar gas pressure of 3 Pa and −300 V for 20 minutes to clean the surface of the magnet body. Table 2 on the magnet surface under
After forming the underlying metal coating layer of Al (Example 1) or Zn (Example 2) shown in Fig. 3, as chromate treatment conditions, Alsurf 600N (trade name, made by Nippon Paint) 2%, pH 2, 40 ° C 3 It was immersed for a minute to form a chromate film with a thickness of 0.03 μm.

【0025】その後、真空容器内を1×10-2Paの真
空度に設定し、1つの蒸発源としてピロメリット酸二無
水物を220℃で加熱するとともに、もう1つの蒸発源
としてジアミノジフエニルエーテルを210℃で加熱し
て、さらに磁石基板を170℃に加熱して、1時間処理
を行い、原料モノマーを磁石表面に蒸着重合させてポリ
アミック酸被膜を生成させる。次に常圧下、窒素雰囲気
で300℃で1時間加熱してイミド化処理を行い、ポリ
イミド樹脂膜を生成させることにより、ポリイミド樹脂
膜を5μm厚に形成した。
Thereafter, the inside of the vacuum vessel was set to a vacuum degree of 1 × 10 -2 Pa, pyromellitic dianhydride was heated at 220 ° C. as one evaporation source, and diaminodiphenyl as another evaporation source. The ether is heated at 210 ° C., the magnet substrate is further heated at 170 ° C., and the treatment is performed for 1 hour, and the raw material monomer is vapor-deposited and polymerized on the surface of the magnet to form a polyamic acid film. Next, under normal pressure, it was heated in a nitrogen atmosphere at 300 ° C. for 1 hour for imidization treatment to form a polyimide resin film, thereby forming a polyimide resin film with a thickness of 5 μm.

【0026】その後、得られたポリイミド樹脂膜を表面
に有する永久磁石試験片を、温度80℃、相対湿度90
%の条件下で500時間放置後に、その磁気特性および
体積抵抗率、熱変形温度を測定した。その測定結果を表
3に示す。なお、体積抵抗率は電気絶縁性を評価するも
のであり、電極付けを行い、被膜表面と磁石間の抵抗を
測定し、下記(1)式から求める。 ρ=R・S/l (1)式 ただし、ρ:体積抵抗率Ω・cm、R:抵抗Ω、S:電
極面積cm2、l:ポリイミド膜厚さcm また、熱変形温度は耐熱性を評価するものであり、大気
中20時間その温度に放置して被膜の変色、亀裂等が生
じる温度とした。
Thereafter, the permanent magnet test piece having the obtained polyimide resin film on the surface was subjected to a temperature of 80 ° C. and a relative humidity of 90.
%, The magnetic properties, volume resistivity and heat distortion temperature were measured. The measurement results are shown in Table 3. The volume resistivity is used to evaluate the electrical insulation property, and the electrode resistance is measured, and the resistance between the coating surface and the magnet is measured and calculated from the following equation (1). ρ = R · S / l (1) where ρ: volume resistivity Ω · cm, R: resistance Ω, S: electrode area cm 2 , l: polyimide film thickness cm. It was evaluated and was set to a temperature at which discoloration, cracks and the like of the coating film were left in the atmosphere at that temperature for 20 hours.

【0027】比較例1 実施例と同一組成の磁石体試験片を実施例と同一条件に
て表面清浄化した後、実施例と同一条件にて磁石表面に
直接ポリイミド樹脂膜を5μm厚形成した。その後、実
施例と同一の温度80℃、相対湿度90%の条件下で5
00時間放置後の磁気特性および体積抵抗率、熱変形温
度を測定し、その結果を表3に示す。
Comparative Example 1 A magnet test piece having the same composition as that of the example was surface-cleaned under the same conditions as the example, and then a polyimide resin film was directly formed on the surface of the magnet to a thickness of 5 μm under the same conditions as the example. Then, under the same temperature of 80 ° C. and relative humidity of 90% as in the example, 5
The magnetic properties, volume resistivity and heat distortion temperature after standing for 00 hours were measured, and the results are shown in Table 3.

【0028】比較例2 実施例と同一組成の磁石体試験片を実施例と同一条件に
て表面清浄化した後、実施例と同一条件にて磁石表面に
下地金属層としてAl被膜層を形成し、実施例と同一条
件にてポリイミド樹脂を5μm厚形成後、実施例と同一
の温度80℃、相対湿度90%の条件下で500時間放
置後の磁気特性および体積抵抗率、熱変形温度を測定
し、その結果を表3に示す。
Comparative Example 2 A magnet body test piece having the same composition as that of the example was surface-cleaned under the same conditions as those of the example, and then an Al coating layer was formed as a base metal layer on the surface of the magnet under the same conditions as the example. After the polyimide resin was formed to a thickness of 5 μm under the same conditions as in the example, magnetic properties, volume resistivity, and heat distortion temperature were measured after standing for 500 hours under the same temperature of 80 ° C. and relative humidity of 90% as in the example. The results are shown in Table 3.

【0029】比較例3 実施例と同一組成の磁石体試験片を実施例と同一条件に
て表面清浄した後、実施例と同一条件にて磁石表面に下
地金属層としてZn被膜層を形成し、実施例と同一条件
にてポリイミド樹脂膜を5μm厚形成後、実施例と同一
の温度80℃、相対湿度90%の条件下で500時間放
置後の磁気特性および体積抵抗率、熱変形温度を測定
し、その結果を表3に示す。
Comparative Example 3 A magnet body test piece having the same composition as that of the example was surface-cleaned under the same conditions as the example, and then a Zn coating layer was formed on the surface of the magnet as a base metal layer under the same conditions as the example. After forming a polyimide resin film with a thickness of 5 μm under the same conditions as in the example, magnetic properties, volume resistivity, and heat distortion temperature were measured after standing for 500 hours under the same temperature of 80 ° C. and relative humidity of 90% as in the example. The results are shown in Table 3.

【0030】[0030]

【表1】 [Table 1]

【0031】[0031]

【表2】 [Table 2]

【0032】[0032]

【表3】 [Table 3]

【0033】[0033]

【発明の効果】この発明によるR−Fe−B系永久磁石
は、本系永久磁石表面に設けた特定の所定膜厚みのAl
またはZnの下地金属層の上にクロム酸塩処理膜を介し
て、蒸着重合法によりポリイミド樹脂にて被履したこと
により、実施例に示すごとく、すぐれた電気絶縁性、耐
熱性並びに十分な耐食性を達成しており、R−Fe−B
系永久磁石が本来有するすぐれた磁石特性を、多磁極型
自動車モーター用永久磁石等の苛酷な用途に提供でき、
モーターの小型軽量化に寄与することが可能である。
The R-Fe-B system permanent magnet according to the present invention is made of Al having a specific predetermined film thickness provided on the surface of the present system permanent magnet.
Alternatively, as shown in the examples, excellent electrical insulation, heat resistance, and sufficient corrosion resistance can be obtained by coating with a polyimide resin by a vapor deposition polymerization method via a chromate-treated film on a Zn base metal layer. Has been achieved, and R-Fe-B
It can provide excellent magnet characteristics originally possessed by system-based permanent magnets to severe applications such as permanent magnets for multi-pole type automobile motors.
It is possible to contribute to the reduction in size and weight of the motor.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 主相が正方晶からなるR−Fe−B系永
久磁石体表面に設けた膜厚1.0μm〜10.0μmの
AlまたはZnの下地金属膜上に、クロム酸塩処理被膜
を介して、膜厚2.0μm〜10μmのポリイミド膜を
有する電気絶縁性・耐熱性・耐食性にすぐれたR−Fe
−B系永久磁石。
1. A chromate-treated film is formed on an underlying metal film of Al or Zn having a thickness of 1.0 μm to 10.0 μm provided on the surface of an R—Fe—B system permanent magnet body whose main phase is tetragonal. R-Fe excellent in electrical insulation, heat resistance, and corrosion resistance having a polyimide film with a film thickness of 2.0 μm to 10 μm
-B system permanent magnet.
【請求項2】 主相が正方晶からなるR−Fe−B系永
久磁石体表面を清浄化した後、めっき法あるいは気相成
膜法により前記磁石体面に膜厚1.0μm〜10.0μ
mのAlまたはZnの下地金属膜を形成後、前記金属膜
にクロム酸塩処理を施し、さらに前記磁石体を真空容器
内に収容して蒸着重合法により、膜厚2.0μm〜10
μmのポリイミド膜層を形成する電気絶縁性・耐熱性・
耐食性にすぐれたR−Fe−B系永久磁石の製造方法。
2. A film having a thickness of 1.0 .mu.m-10.0 .mu.m formed on the surface of the magnet body by a plating method or a vapor deposition method after cleaning the surface of the R--Fe--B system permanent magnet body whose main phase is tetragonal.
After forming a base metal film of Al or Zn of m, the metal film is subjected to a chromate treatment, and the magnet body is further housed in a vacuum container to form a film having a thickness of 2.0 μm to 10 μm by a vapor deposition polymerization method.
Electrical insulation and heat resistance to form a μm polyimide film layer
A method for manufacturing an R-Fe-B based permanent magnet having excellent corrosion resistance.
JP8096019A 1996-03-25 1996-03-25 R-fe-b type permanent magnet superior in electric insulation, heat resistance and corrosion resistance and manufacturing method thereof Pending JPH09260120A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8096019A JPH09260120A (en) 1996-03-25 1996-03-25 R-fe-b type permanent magnet superior in electric insulation, heat resistance and corrosion resistance and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8096019A JPH09260120A (en) 1996-03-25 1996-03-25 R-fe-b type permanent magnet superior in electric insulation, heat resistance and corrosion resistance and manufacturing method thereof

Publications (1)

Publication Number Publication Date
JPH09260120A true JPH09260120A (en) 1997-10-03

Family

ID=14153572

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8096019A Pending JPH09260120A (en) 1996-03-25 1996-03-25 R-fe-b type permanent magnet superior in electric insulation, heat resistance and corrosion resistance and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JPH09260120A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102041506A (en) * 2009-10-13 2011-05-04 北京中科三环高技术股份有限公司 Surface treatment method of permanent magnet material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102041506A (en) * 2009-10-13 2011-05-04 北京中科三环高技术股份有限公司 Surface treatment method of permanent magnet material

Similar Documents

Publication Publication Date Title
US6275130B1 (en) Corrosion-resisting permanent magnet and method for producing the same
WO1997023884A1 (en) Permanent magnet for ultrahigh vacuum application and method for manufacturing the same
JPH08279407A (en) R-fe-b permanent magnet being excellent in electrical insulating properties, heat resistance and corrosion resistance and manufacture thereof
JPH09289108A (en) R-fe-b permanent magnet having electric insulating film excellent in adhesion and its manufacture
JPH09326308A (en) Manufacture of r-fe-b permanent magnet having electric insulation coating with excellent adhesion
JPH0569282B2 (en)
JPH09260120A (en) R-fe-b type permanent magnet superior in electric insulation, heat resistance and corrosion resistance and manufacturing method thereof
JPH10340823A (en) Manufacture of r-iron-boron permanent magnet having excellent salt water resistance
JPH0945567A (en) Rare earth-iron-boron permanent magnet manufacturing method
JPH07249509A (en) Corrosion-resistant permanent magnet and its manufacture
JP3383338B2 (en) Corrosion-resistant permanent magnet and its manufacturing method
JP3737830B2 (en) Corrosion-resistant permanent magnet and method for manufacturing the same
WO1998009300A1 (en) Corrosion-resistant permanent magnet and method for manufacturing the same
JPH0535216B2 (en)
JPH08306517A (en) R-fe-b permanent magnet excellent in electric insulation, heat resistance, and corrosion resistance, and its manufacture
JP3652816B2 (en) Corrosion-resistant permanent magnet and method for manufacturing the same
JPH09246027A (en) R-fe-b based permanent magnet excellent in resistance to salt water
JPH0554683B2 (en)
JPH1074607A (en) Corrosion-resisting permanent magnet and its manufacture
JP3676513B2 (en) Corrosion-resistant permanent magnet and method for manufacturing the same
JPH09180922A (en) R-fe-b based permanent magnet having excellent electrical insulation, heat resistance and anti-corrosion properties, and manufacture thereof
JPH0831363B2 (en) Method for manufacturing corrosion-resistant permanent magnet
JPH06140226A (en) Corrosion-resistant permanent magnet
JP3652818B2 (en) Corrosion-resistant permanent magnet and method for manufacturing the same
JPH10154611A (en) Excellent insulating and corrosion resistant permanent magnet and its manufacturing method