JPH08306517A - R-fe-b permanent magnet excellent in electric insulation, heat resistance, and corrosion resistance, and its manufacture - Google Patents

R-fe-b permanent magnet excellent in electric insulation, heat resistance, and corrosion resistance, and its manufacture

Info

Publication number
JPH08306517A
JPH08306517A JP7354674A JP35467495A JPH08306517A JP H08306517 A JPH08306517 A JP H08306517A JP 7354674 A JP7354674 A JP 7354674A JP 35467495 A JP35467495 A JP 35467495A JP H08306517 A JPH08306517 A JP H08306517A
Authority
JP
Japan
Prior art keywords
permanent magnet
film
corrosion resistance
heat resistance
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7354674A
Other languages
Japanese (ja)
Other versions
JP3576672B2 (en
Inventor
Masako Suzuki
雅子 鈴木
Fumiaki Kikui
文秋 菊井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to JP35467495A priority Critical patent/JP3576672B2/en
Publication of JPH08306517A publication Critical patent/JPH08306517A/en
Application granted granted Critical
Publication of JP3576672B2 publication Critical patent/JP3576672B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/026Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets protecting methods against environmental influences, e.g. oxygen, by surface treatment

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE: To enhance the electric insulation, heat resistance, and corrosion resistance by covering the surface of an R-Fe-B permanent magnet with a polyimide resin layer through a carbon layer with a specified thickness by vapor polymerization method. CONSTITUTION: This is an R-Fe-B permanent magnet which has a polyimide layer 2.0μm-10μm thick on the surface of its main body whose main phase consists of tetragonal crystal through a carbon layer 0.005μm-0.1μm thick. And, for the manufacture, a polyimide layer 2.0μm-10μm thick is made by vapor polymerization after formation of carbon layer 0.005μm-0.1μm thick on the surface of a magnet by the PVD film formation method of vapor deposition, sputtering, and ion plating, after cleaning the surface of the R-Fe-B permanent magnet. The vapor polymerization is one which imide processing is performed at 280 deg.C-380 deg.C under normal pressure after formation of a polyamic acid film by heating and deposing two kinds of monomers at 200 deg.C-250 deg.C in a vacuum enclosure where the pressure is 1-10<-3> Pa.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、R−Fe−B系
永久磁石の改良とその製造方法に係り、R−Fe−B系
永久磁石表面に所定膜厚みのカーボン膜層を介して、蒸
着重合法によりポリイミド樹脂層を被履し、自動車モー
ター用永久磁石等に求められる電気絶縁性、耐熱性並び
に耐食性を達成したR−Fe−B系永久磁石とその製造
方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement of an R-Fe-B system permanent magnet and a method for manufacturing the same, and vapor deposition is performed on the surface of an R-Fe-B system permanent magnet through a carbon film layer having a predetermined film thickness. The present invention relates to an R-Fe-B based permanent magnet which is coated with a polyimide resin layer by a polymerization method and achieves the electric insulation, heat resistance and corrosion resistance required for permanent magnets for automobile motors and the like, and a method for producing the same.

【0002】[0002]

【従来の技術】R−Fe−B系永久磁石は、実用化され
ている磁石の中で最もすぐれた磁気特性を有するが、こ
れを多磁極型の自動車用モーターの永久磁石に用いるた
めには、まず、前記永久磁石に発生する渦電流発生を防
止するために、電気絶縁性のすぐれた被膜で被履する必
要があり、また、自動車は走行中にかかるモーターを配
置するエンジンルーム温度が200℃になることより、
使用する磁石には耐熱性とともに耐食性を兼備した被膜
が要求される。
2. Description of the Related Art R-Fe-B permanent magnets have the best magnetic properties among the practically used magnets, but in order to use them as permanent magnets for multi-pole type motors for automobiles. First, in order to prevent the generation of eddy currents generated in the permanent magnets, it is necessary to wear a coating having excellent electrical insulation properties, and an automobile has an engine room temperature of 200 when the motor is installed while traveling. More than ℃
The magnet used is required to have a coating that has both heat resistance and corrosion resistance.

【0003】R−Fe−B系永久磁石は、耐食性及び磁
気特性の温度特性が悪いという欠点があり、そのため耐
食性改善のため磁石表面に樹脂を被履することが提案
(特開昭60−63902号)されているが、前記方法
では耐食性は改善されても、耐熱性が十分でなく、かつ
電気絶縁性が悪いという問題があり、磁気特性のすぐれ
たR−Fe−B系永久磁石が自動車モーター用に使用で
きない原因となっている。
R-Fe-B system permanent magnets have the drawback of poor corrosion resistance and temperature characteristics of magnetic properties. Therefore, it is proposed to coat the magnet surface with a resin in order to improve the corrosion resistance (Japanese Patent Laid-Open No. 60-63902). However, even if the corrosion resistance is improved by the above method, there is a problem that the heat resistance is not sufficient and the electric insulation is poor, and an R-Fe-B permanent magnet having excellent magnetic characteristics is used in automobiles. It is the cause that cannot be used for the motor.

【0004】[0004]

【発明が解決しようとする課題】最近、耐摩耗性の改善
のために、鉄心の磁極面とアクチュエータの磁極面にそ
れぞれNiめっき層上に高耐摩耗性被膜としてポリイミ
ド樹脂を蒸着重合法にて被履することが提案(特開平3
−276532号)されているが、リレーの対向磁極面
の耐摩耗性の改善向上効果は得られるが、多磁極型の自
動車用モーターのR−Fe−B系永久磁石に必要な被膜
強度に優れ、かつ電気絶縁性、耐熱性、耐食性を満足す
るものではない。
Recently, in order to improve wear resistance, a polyimide resin as a high wear resistant coating is formed on the Ni plating layer on the magnetic pole surface of the iron core and the magnetic pole surface of the actuator by vapor deposition polymerization method. Proposed wearing
No. 276532), the abrasion resistance of the opposing magnetic pole surface of the relay can be improved and improved, but the coating strength required for the R-Fe-B permanent magnet of the multi-pole type automobile motor is excellent. In addition, it does not satisfy electrical insulation, heat resistance, and corrosion resistance.

【0005】この発明は、特に、多磁極型の自動車用モ
ーターの永久磁石に求められる電気絶縁性、耐熱性を満
足し、かつ耐食性にすぐれたR−Fe−B系永久磁石と
その製造方法の提供を目的としている。
In particular, the present invention provides an R-Fe-B system permanent magnet excellent in electrical insulation and heat resistance required for a permanent magnet of a multi-pole type motor for an automobile and excellent in corrosion resistance, and a method for producing the same. It is intended to be provided.

【0006】[0006]

【課題を解決するための手段】発明者らは、磁気特性の
すぐれたR−Fe−B系永久磁石を自動車用モーターに
使用するため、耐食性のほか、電気絶縁性および耐熱性
を改善向上するため、種々検討した結果、磁石表面をポ
リイミド樹脂により被履することにより、すぐれた磁気
特性を具備するとともに、耐食性はもちろん、電気絶縁
性および耐熱性を大きく改善向上することを知見した。
The inventors of the present invention use R-Fe-B based permanent magnets having excellent magnetic properties in motors for automobiles, and therefore improve and improve not only corrosion resistance but also electric insulation and heat resistance. Therefore, as a result of various studies, it was found that by covering the surface of the magnet with a polyimide resin, excellent magnetic properties are provided, and in addition to corrosion resistance, electric insulation and heat resistance are greatly improved.

【0007】しかしながら、磁石表面にポリイミド樹脂
を直接蒸着重合法にて被履する場合、重合反応時及びイ
ミド化処理時に磁石表面に水分を生成して、前記水分と
磁石表面が反応して磁石表面へのポリイミド樹脂の密着
性を阻害する問題があることを知見し、さらに検討を加
えた結果、磁石表面をイオンスパッター法等により清浄
化した後、前記磁石体表面に真空蒸着法、プラズマスパ
ッター法、イオンプレーティング等のPVD薄膜形成法
により、カーボン膜層を形成すると、ポリイミド樹脂の
蒸着重合時またはイミド化処理時の加熱により、カーボ
ンがR−Fe−B系永久磁石表面に拡散し、特に、R−
Fe−B系永久磁石表面のBの一部とカーボンが置換す
るものと考えられ、また、カーボン膜層とポリイミド樹
脂がC−C反応を生じて、ポリイミド樹脂膜の密着性が
大きく改善されることにより、目的とする電気絶縁性・
耐熱性・耐食性にすぐれたR−Fe−B系永久磁石が得
られることを知見し、この発明を完成した。
However, when a polyimide resin is directly deposited on the surface of the magnet by vapor deposition polymerization, water is generated on the surface of the magnet during the polymerization reaction and the imidization treatment, and the water reacts with the surface of the magnet to cause the surface of the magnet to react. It was found that there is a problem that the adhesion of the polyimide resin to the above is impaired, and as a result of further study, after cleaning the magnet surface by an ion sputtering method or the like, a vacuum deposition method or a plasma sputtering method was applied to the magnet surface. When the carbon film layer is formed by a PVD thin film forming method such as ion plating, carbon is diffused on the surface of the R-Fe-B permanent magnet by heating during vapor deposition polymerization or imidization treatment of the polyimide resin, and particularly, , R-
It is considered that a part of B on the surface of the Fe-B based permanent magnet is replaced with carbon, and the carbon film layer and the polyimide resin cause a C-C reaction, and the adhesion of the polyimide resin film is greatly improved. As a result, the desired electrical insulation
It was found that an R-Fe-B based permanent magnet excellent in heat resistance and corrosion resistance can be obtained, and the present invention was completed.

【0008】すなわち、この発明は、主相が正方晶から
なるR−Fe−B系永久磁石体表面に、膜厚0.005
μm〜0.1μmのカーボン膜層を介して膜厚2.0μ
m〜10μmのポリイミド膜層を有することを特徴とす
る電気絶縁性・耐熱性・耐食性にすぐれたR−Fe−B
系永久磁石である。
That is, according to the present invention, a film thickness of 0.005 is formed on the surface of the R-Fe-B system permanent magnet body having a tetragonal main phase.
A film thickness of 2.0 μ through a carbon film layer of μm to 0.1 μm
R-Fe-B excellent in electrical insulation, heat resistance, and corrosion resistance, characterized by having a polyimide film layer of m to 10 μm
It is a permanent magnet.

【0009】また、この発明は、上記のR−Fe−B系
永久磁石の製造方法として、主相が正方晶からなるR−
Fe−B系永久磁石体表面を清浄化した後、真空蒸着、
スパッタ、イオンプレーティングのPVD薄膜形成法に
より前記磁石体面に膜厚0.005μm〜0.1μmの
カーボン膜を形成後、前記磁石体を蒸着重合法により膜
厚2.0μm〜10μmのポリイミド膜層を形成するこ
とを特徴とする電気絶縁性・耐熱性・耐食性にすぐれた
R−Fe−B系永久磁石の製造方法を提案する。
Further, according to the present invention, as a method of manufacturing the above-mentioned R-Fe-B system permanent magnet, R- whose main phase is a tetragonal crystal is used.
After cleaning the surface of the Fe-B based permanent magnet, vacuum deposition,
After forming a carbon film having a film thickness of 0.005 μm to 0.1 μm on the surface of the magnet body by a PVD thin film forming method such as sputtering or ion plating, the magnet body is formed by a vapor deposition polymerization method to form a polyimide film layer having a film thickness of 2.0 μm to 10 μm. The present invention proposes a method for producing an R-Fe-B based permanent magnet excellent in electrical insulation, heat resistance, and corrosion resistance, which is characterized by forming

【0010】さらに、この発明は、上記の製造方法にお
いて、蒸着重合法は、真空度1Pa〜10-3Paの真空
容器でポリイミド膜の原料となる2種類のモノマーを2
00℃〜250℃で加熱蒸着してポリアミック酸膜を形
成後、常圧下、280℃〜380℃でイミド化処理を行
ってポリイミド膜を生成する電気絶縁性・耐熱性・耐食
性にすぐれたR−Fe−B系永久磁石の製造方法であ
り、また、蒸着重合法に用いる2種類の原料モノマー
は、芳香族カルボン酸二無水物と芳香族ジアミンである
電気絶縁性・耐熱性・耐食性にすぐれたR−Fe−B系
永久磁石の製造方法、を併せて提案する。
Further, in the invention, in the above-mentioned manufacturing method, the vapor deposition polymerization method comprises using a vacuum container having a degree of vacuum of 1 Pa to 10 -3 Pa to prepare two kinds of monomers which are raw materials for a polyimide film.
After forming a polyamic acid film by heat vapor deposition at 00 ° C to 250 ° C, it is subjected to imidization at 280 ° C to 380 ° C under normal pressure to form a polyimide film. R- which has excellent electrical insulation, heat resistance and corrosion resistance. Fe-B permanent magnet manufacturing method, and the two kinds of raw material monomers used in the vapor deposition polymerization method are aromatic carboxylic dianhydride and aromatic diamine, which have excellent electrical insulation, heat resistance, and corrosion resistance. A method of manufacturing an R-Fe-B based permanent magnet is also proposed.

【0011】[0011]

【発明の実施の形態】この発明において、清浄化した磁
石表面に設けるカーボン膜の厚みを0.005μm〜
0.1μmに限定した理由は、0.005μm未満では
磁石表面との密着性が十分でなく、0.1μmを越える
と効果的には問題ないが、カーボン膜としてコスト上昇
を招来して、実用的でなく好ましくないので、カーボン
膜厚は0.005μm〜0.1μmとする。また、下地
金属膜の成膜方法は、真空蒸着、スパッタ、イオンプレ
ーティングのPVD薄膜形成法がよい。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, the thickness of the carbon film provided on the cleaned magnet surface is 0.005 μm to
The reason for limiting the thickness to 0.1 μm is that if it is less than 0.005 μm, the adhesion to the magnet surface is not sufficient, and if it exceeds 0.1 μm, there is no effective problem. Since it is not desirable and not preferable, the carbon film thickness is set to 0.005 μm to 0.1 μm. Further, the PVD thin film forming method such as vacuum deposition, sputtering, and ion plating is preferable as the method for forming the underlying metal film.

【0012】この発明においてポリイミド樹脂の厚みを
2.0μm〜10μmに限定した理由は、2.0μm未
満では被覆が十分でなく、電気絶縁性、耐熱性、耐食性
にすぐれた被膜が得られず、10μmを越えると効果上
は問題ないが、製造コスト上昇を招来するので実用的で
なく、好ましくない。
The reason why the thickness of the polyimide resin is limited to 2.0 μm to 10 μm in the present invention is that if the thickness is less than 2.0 μm, the coating is not sufficient and a coating excellent in electrical insulation, heat resistance and corrosion resistance cannot be obtained. If it exceeds 10 μm, there is no problem in terms of effect, but it is not preferable because it causes an increase in manufacturing cost and is not practical.

【0013】この発明において、蒸着重合する真空容器
の真空度を1Pa〜10-3Paに限定した理由は、1P
aを越えると重合反応が不均一となり膜質が劣化し、ま
た、10-3Pa未満ではモノマーの蒸発がきわめて少な
く、安定した重合反応が生じないので好ましくないこと
による。
In the present invention, the reason why the vacuum degree of the vacuum vessel for vapor deposition polymerization is limited to 1 Pa to 10 -3 Pa is 1 P.
If it exceeds a, the polymerization reaction becomes non-uniform and the film quality deteriorates. If it is less than 10 -3 Pa, the evaporation of the monomer is extremely small and a stable polymerization reaction does not occur, which is not preferable.

【0014】また、蒸着重合時の基板磁石の温度は、1
50℃〜200℃に設定するのが好ましく、150℃未
満では磁石基板との密着が十分でなく、200℃を越え
ると磁石基板上での蒸着重合反応がすみやかに進行しな
いため、基板磁石の温度は150℃〜200℃に設定す
るとよい。
The temperature of the substrate magnet during vapor deposition polymerization is 1
It is preferable to set the temperature to 50 ° C to 200 ° C. If the temperature is lower than 150 ° C, the adhesion to the magnet substrate is not sufficient, and if the temperature exceeds 200 ° C, the vapor deposition polymerization reaction on the magnet substrate does not proceed promptly. Is preferably set to 150 to 200 ° C.

【0015】この発明において、蒸着重合に用いる2種
類の原料モノマーは、芳香族カルボン酸二無水物、芳香
族ジアミンであり、芳香族カルボン酸二無水物としては
ピロメリット酸二無水物等があり、芳香族ジアミンとし
てはジアミノジフェニルエーテル、p−フェニレンジア
ミン等が用いられる。
In the present invention, the two kinds of raw material monomers used for vapor deposition polymerization are aromatic carboxylic acid dianhydrides and aromatic diamines, and aromatic carboxylic acid dianhydrides include pyromellitic dianhydride. As the aromatic diamine, diaminodiphenyl ether, p-phenylenediamine and the like are used.

【0016】また、真空容器内で2種類の原料モノマー
を200℃〜250℃で加速蒸着する理由は、200℃
未満では蒸発量が十分でなく、250℃を越えると蒸発
速度が大きすぎて膜厚制御が難しく、好ましくない。
The reason for accelerating vapor deposition of two kinds of raw material monomers at 200 ° C. to 250 ° C. in a vacuum container is 200 ° C.
If it is less than 250 ° C, the amount of evaporation is not sufficient, and if it exceeds 250 ° C, the evaporation rate is too high to control the film thickness, which is not preferable.

【0017】また、この発明において、ポリイミド樹脂
を生成するイミド化温度は、280℃未満ではイミド化
反応が十分に進行せず、下地膜との密着性が十分でな
く、380℃を越えるとポリイミド樹脂が劣化して脆く
なり亀裂等が生じて剥離を発生するため280℃〜38
0℃とする。
Further, in the present invention, if the imidization temperature for forming the polyimide resin is less than 280 ° C., the imidization reaction does not proceed sufficiently, the adhesion to the base film is not sufficient, and if it exceeds 380 ° C. 280 ° C. to 38 because resin deteriorates and becomes brittle, cracks and the like occur and peeling occurs
Set to 0 ° C.

【0018】この発明の永久磁石に用いる希土類元素R
は、組成の10原子%〜30原子%を占めるが、Nd、
Pr、Dy、Ho、Tbのうち少なくとも1種、あるい
はさらに、La、Ce、Sm、Gd、Er、Eu、T
m、Yb、Lu、Yのうち少なくとも1種を含むものが
好ましい。
Rare earth element R used in the permanent magnet of the present invention
Occupies 10 atomic% to 30 atomic% of the composition, but Nd,
At least one of Pr, Dy, Ho, Tb, or further La, Ce, Sm, Gd, Er, Eu, T
Those containing at least one of m, Yb, Lu and Y are preferable.

【0019】また、通常Rのうち1種をもって足りる
が、実用上は2種以上の混合物(ミッシュメタル、ジジ
ム等)を入手上の便宜等の理由により用いることができ
る。なお、このRは純希土類元素でなくてもよく、工業
上入手可能な範囲で製造上不可避な不純物を含有するも
のでも差支えない。
Although one of R is usually sufficient, a mixture of two or more kinds (Misch metal, didymium, etc.) can be practically used for the convenience of availability. It should be noted that this R does not have to be a pure rare earth element, and may contain an impurity that is unavoidable in manufacturing within the industrially available range.

【0020】Rは、R−Fe−B系永久磁石における必
須元素であって、10原子%未満では結晶構造がα−鉄
を同一構造の立方晶組織となるため、高磁気特性、特に
高保磁力が得られず、30原子%を越えるとRリッチな
非磁性相が多くなり、残留磁束密度(Br)が低下して
すぐれた特性の永久磁石が得られない。よって、Rはl
0原子%〜30原子%の範囲が望ましい。
[0020] R is an essential element in the R-Fe-B system permanent magnet, and if it is less than 10 atomic%, the crystal structure becomes a cubic crystal structure of α-iron with the same structure, so that high magnetic properties, especially high coercive force are obtained. If it exceeds 30 atomic%, the R-rich non-magnetic phase increases, the residual magnetic flux density (Br) decreases, and a permanent magnet having excellent characteristics cannot be obtained. Therefore, R is l
The range of 0 atom% to 30 atom% is desirable.

【0021】Bは、上記系永久磁石における必須元素で
あって、2原子%未満では菱面体構造が主相となり高い
保磁力(iHc)は得られず、28原子%を越えるとB
リッチな非磁性相が多くなり、残留磁束密度(Br)が
低下するため、すぐれた永久磁石が得られない。よっ
て、Bは2原子%〜28原子%の範囲が望ましい。
B is an essential element in the above-mentioned permanent magnet. If it is less than 2 atomic%, a rhombohedral structure is the main phase and a high coercive force (iHc) cannot be obtained.
Since the rich non-magnetic phase increases and the residual magnetic flux density (Br) decreases, an excellent permanent magnet cannot be obtained. Therefore, B is preferably in the range of 2 atom% to 28 atom%.

【0022】Feは、上記系永久磁石において必須元素
であり、65原子%未満では残留磁束密度(Br)が低
下し、80原子%を越えると高い保磁力が得られないの
で、Feは65原子%〜80原子%の含有が望ましい。
Fe is an essential element in the above-mentioned permanent magnet, and the residual magnetic flux density (Br) decreases if it is less than 65 atom%, and a high coercive force cannot be obtained if it exceeds 80 atom%. % To 80 atomic% is desirable.

【0023】また、Feの一部をCoで置換すること
は、得られる磁石の磁気特性を損うことなく、温度特性
を改善することができるが、Co置換量がFeの20%
を越えると、逆に磁気特性が劣化するため好ましくな
い。Coの置換量がFeとCoの合計量で5原子%〜1
5原子%の場合は、(Br)は置換しない場合に比較し
て増加するため、高磁束密度を得るために好ましい。
Further, substituting a part of Fe with Co can improve the temperature characteristics without deteriorating the magnetic characteristics of the obtained magnet, but the Co substitution amount is 20% of that of Fe.
On the other hand, if it exceeds, the magnetic characteristics are deteriorated, which is not preferable. The substitution amount of Co is 5 atomic% to 1 in the total amount of Fe and Co.
In the case of 5 atom%, (Br) is increased as compared with the case of not substituting, which is preferable for obtaining a high magnetic flux density.

【0024】また、R、B、Feの他、工業的生産上不
可避的不純物の存在を許容でき、例えば、Bの一部を
4.0wt%以下のC、2.0wt%以下のP、2.0
wt%以下のS、2.0wt%以下のCuのうち少なく
とも1種、合計量で2.0wt%以下で置換することに
より、永久磁石の製造性改善、低価格化が可能である。
In addition to R, B and Fe, the presence of impurities that are unavoidable in industrial production can be tolerated. For example, part of B is 4.0 wt% or less of C, 2.0 wt% or less of P, 2 .0
By substituting at least one of S of 2.0 wt% or less and Cu of 2.0 wt% or less with a total amount of 2.0 wt% or less, it is possible to improve the manufacturability of the permanent magnet and reduce the cost.

【0025】さらに、Al、Ti、V、Cr、Mn、B
i、Nb、Ta、Mo、W、Sb、Ge、Sn、Zr、
Ni、Si、Zn、Hf、のうち少なくとも1種は、R
−Fe−B系永久磁石に対してその保磁力、減磁曲線の
角型性を改善あるいは製造性の改善、低価格化に効果が
あるため添加することができる。なお、添加量の上限
は、磁石材料の(BH)maxを20MGOe以上とす
るには、(Br)が少なくとも9kG以上必要となるた
め、該条件を満す範囲が望ましい。
Further, Al, Ti, V, Cr, Mn, B
i, Nb, Ta, Mo, W, Sb, Ge, Sn, Zr,
At least one of Ni, Si, Zn, and Hf is R
It can be added to the -Fe-B based permanent magnet because it is effective in improving the coercive force, squareness of demagnetization curve, improving manufacturability, and lowering the cost. The upper limit of the addition amount is such that (Br) needs to be at least 9 kG or more in order to set the (BH) max of the magnet material to 20 MGOe or more.

【0026】また、この発明の永久磁石は平均結晶粒径
が1〜80μmの範囲にある正方晶系の結晶構造を有す
る化合物を主相とし、体積比で1%〜50%の非磁性相
(酸化物相を除く)を含むことを特徴とする。この発明
による永久磁石は、保磁力iHc≧1kOe、残留磁束
密度Br>4kG、を示し、最大エネルギー積(BH)
maxは、(BH)max≧10MGOeを示し、最大
値は25MGOe以上に達する。
The permanent magnet of the present invention comprises a compound having a tetragonal crystal structure having an average crystal grain size in the range of 1 to 80 μm as a main phase, and a volume ratio of 1% to 50% of a nonmagnetic phase ( (Excluding an oxide phase). The permanent magnet according to the present invention exhibits a coercive force iHc ≧ 1 kOe, a residual magnetic flux density Br> 4 kG, and a maximum energy product (BH).
max indicates (BH) max ≧ 10 MGOe, and the maximum value reaches 25 MGOe or more.

【0027】この発明は、磁石表面をイオンスパッター
法等により清浄化した後、前記磁石体表面に真空蒸着、
スパッタ、イオンプレーティングのPVD薄膜形成法に
より、R−Fe−B系永久磁石との密着性及びポリイミ
ド樹脂との密着性の良好な特定膜厚のカーボン膜を形成
後、その上にポリイミド樹脂を蒸着重合により形成する
ことにより、目的とする電気絶縁性、耐熱性、耐食性に
すぐれ、特に自動車用モーターに使用可能な高性能R−
Fe−B系永久磁石が得られることを特徴とする。
According to the present invention, the surface of the magnet is cleaned by an ion sputtering method or the like, and then the surface of the magnet is vacuum-deposited,
After forming a carbon film having a specific film thickness with good adhesion to the R-Fe-B permanent magnet and good adhesion to the polyimide resin by a PVD thin film forming method such as sputtering or ion plating, a polyimide resin is formed on the carbon film. By forming by vapor deposition polymerization, it has excellent electrical insulation, heat resistance, and corrosion resistance, and it is a high-performance R-type that can be used especially for motors for automobiles.
A Fe-B based permanent magnet is obtained.

【0028】[0028]

【実施例】15Nd−77Fe−8B(at%)組成の
鋳造インゴットを粉砕し、微粉砕後に成形、焼結、熱処
理後に径12mm×2mm寸法の磁石体試験片を得た。
その磁石特性を表1に示す。真空容器内を1×10-3
a以下に真空排気し、Arガス圧10Pa、−500V
で15分間表面スパッターを行って、磁石体表面を清浄
化した後、再度、真空容器内を1×10-3Pa以下に真
空排気し、100V、40Aでカーボン棒を加熱して蒸
発させ、磁石表面に0.02μm厚にカーボン膜を形成
した。
EXAMPLE A cast ingot having a composition of 15Nd-77Fe-8B (at%) was pulverized, finely pulverized, molded, sintered and heat-treated to obtain a magnet test piece having a diameter of 12 mm × 2 mm.
The magnet characteristics are shown in Table 1. 1 × 10 -3 P inside the vacuum container
Vacuum exhaust to a or less, Ar gas pressure 10Pa, -500V
After cleaning the surface of the magnet body by performing surface sputtering for 15 minutes, the inside of the vacuum vessel is evacuated again to 1 × 10 −3 Pa or less, and the carbon rod is heated at 100 V and 40 A to evaporate the magnet. A carbon film having a thickness of 0.02 μm was formed on the surface.

【0029】真空容器内を1×10-2Paの真空度に設
定し、1つの蒸発源としてピロメリット酸二無水物を2
20℃で加熱するとともに、もう1つの蒸発源としてジ
アミノジフエニルエーテルを210℃で加熱して、さら
に磁石基板を170℃に加熱して、1時間処理を行い、
原料モノマーを磁石表面に蒸着重合させてポリアミック
酸被膜を生成させる。
The inside of the vacuum vessel was set to a vacuum degree of 1 × 10 -2 Pa, and two pyromellitic dianhydrides were used as one evaporation source.
While heating at 20 ° C., diaminodiphenyl ether as another evaporation source is heated at 210 ° C., the magnet substrate is further heated to 170 ° C., and treatment is performed for 1 hour.
A raw material monomer is vapor-deposited and polymerized on the surface of the magnet to form a polyamic acid film.

【0030】次に常圧下、窒素雰囲気で300℃で1時
間加熱してイミド化処理を行い、ポリイミド樹脂膜を生
成させることにより、ポリイミド樹脂膜を5μm厚に形
成した。
Next, the polyimide resin film was formed to a thickness of 5 μm by heating at 300 ° C. for 1 hour in a nitrogen atmosphere under normal pressure for imidization to form a polyimide resin film.

【0031】その後、得られたポリイミド樹脂膜を表面
に有する永久磁石試験片を、温度80℃、相対湿度90
%の条件下で500時間放置後に、その磁気特性および
体積抵抗率、熱変形温度を測定した。その測定結果を表
2に示す。なお、体積抵抗率は電気絶縁性を評価するも
のであり、電極付けを行い、被膜表面と磁石間の抵抗を
測定し、下記(1)式から求める。
Thereafter, the permanent magnet test piece having the obtained polyimide resin film on the surface was placed at a temperature of 80 ° C. and a relative humidity of 90.
%, The magnetic properties, volume resistivity and heat distortion temperature were measured. The measurement results are shown in Table 2. The volume resistivity is used to evaluate the electrical insulation property, and the electrode resistance is measured, and the resistance between the coating surface and the magnet is measured and calculated from the following equation (1).

【0032】ρ=R・S/l (1)式 ただし、ρ:体積抵抗率Ω・cm、R:抵抗Ω、S:電
極面積cm2、l:ポリイミド膜厚さcm また、熱変形温度は耐熱性を評価するものであり、大気
中20時間その温度に放置して被膜の変色、亀裂等が生
じる温度とした。
Ρ = R · S / l (1) where ρ: volume resistivity Ω · cm, R: resistance Ω, S: electrode area cm 2 , l: polyimide film thickness cm. The heat resistance was evaluated, and the temperature was set to the temperature at which the film was discolored, cracked, and the like by leaving it at that temperature for 20 hours.

【0033】比較例1 実施例1と同一組成の磁石体試験片を実施例1と同一条
件にて表面清浄化した後、実施例1と同一条件にて磁石
表面に直接ポリイミド樹脂膜を5μm厚形成した。その
後、実施例1と同一の温度80℃、相対湿度90%の条
件下で500時間放置後の磁気特性および体積抵抗率、
熱変形温度を測定し、その結果を表3に示す。
Comparative Example 1 A magnet body test piece having the same composition as in Example 1 was surface-cleaned under the same conditions as in Example 1, and then a polyimide resin film having a thickness of 5 μm was directly formed on the magnet surface under the same conditions as in Example 1. Formed. After that, the magnetic properties and the volume resistivity after standing for 500 hours under the same temperature of 80 ° C. and relative humidity of 90% as in Example 1,
The heat distortion temperature was measured, and the results are shown in Table 3.

【0034】[0034]

【表1】 [Table 1]

【0035】[0035]

【表2】 [Table 2]

【0036】[0036]

【発明の効果】この発明によるR−Fe−B系永久磁石
は、本系永久磁石表面に特定の所定膜厚みのカーボン層
を介して、蒸着重合法によりポリイミド樹脂層にて被履
したことにより、実施例に示すごとく、すぐれた電気絶
縁性、耐熱性並びに十分な耐食性を達成しており、R−
Fe−B系永久磁石が本来有するすぐれた磁石特性を、
多磁極型自動車モーター用永久磁石等の苛酷な用途に提
供でき、モーターの小型軽量化に寄与することが可能で
ある。
The R-Fe-B system permanent magnet according to the present invention is formed by depositing a polyimide resin layer on the surface of the system permanent magnet through a carbon layer having a specific predetermined film thickness by a vapor deposition polymerization method. As shown in the examples, excellent electrical insulation, heat resistance and sufficient corrosion resistance are achieved.
Fe-B system permanent magnet has the excellent magnetic properties originally possessed by
It can be provided for severe applications such as permanent magnets for multi-pole type automobile motors, and can contribute to downsizing and weight reduction of motors.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 主相が正方晶からなるR−Fe−B系永
久磁石体表面に、膜厚0.005μm〜0.1μmのカ
ーボン膜層を介して膜厚2.0μm〜10μmのポリイ
ミド膜層を有することを特徴とする電気絶縁性・耐熱性
・耐食性にすぐれたR−Fe−B系永久磁石。
1. A polyimide film having a film thickness of 2.0 μm to 10 μm on the surface of an R—Fe—B system permanent magnet body having a tetragonal main phase with a carbon film layer having a film thickness of 0.005 μm to 0.1 μm interposed therebetween. An R-Fe-B based permanent magnet excellent in electrical insulation, heat resistance, and corrosion resistance, which is characterized by having a layer.
【請求項2】 主相が正方晶からなるR−Fe−B系永
久磁石体表面を清浄化した後、真空蒸着、スパッタ、イ
オンプレーティングのPVD薄膜形成法により前記磁石
体面に膜厚0.005μm〜0.1μmのカーボン膜層
を形成後、前記磁石体を蒸着重合法により膜厚2.0μ
m〜10μmのポリイミド膜層を形成することを特徴と
する請求項1に記載の電気絶縁性・耐熱性・耐食性にす
ぐれたR−Fe−B系永久磁石の製造方法。
2. After cleaning the surface of an R—Fe—B based permanent magnet body having a tetragonal main phase, a film thickness of 0.1 μm is formed on the surface of the magnet body by a PVD thin film forming method such as vacuum deposition, sputtering and ion plating. After forming a carbon film layer having a thickness of 005 μm to 0.1 μm, the magnet body is formed into a film having a thickness of 2.0 μm by a vapor deposition polymerization method.
The method for producing an R-Fe-B based permanent magnet excellent in electrical insulation, heat resistance, and corrosion resistance according to claim 1, wherein a polyimide film layer having a thickness of m to 10 m is formed.
【請求項3】 蒸着重合法は、真空度1Pa〜10-3
aの真空容器でポリイミド膜の原料となる2種類のモノ
マーを200℃〜250℃で加熱蒸着してポリアミック
酸膜を形成後、常圧下、280℃〜380℃でイミド化
処理を行ってポリイミド膜層を生成することを特徴とす
る請求項2に記載の電気絶縁性・耐熱性・耐食性にすぐ
れたR−Fe−B系永久磁石の製造方法。
3. A vacuum degree of 1 Pa to 10 −3 P is used in the vapor deposition polymerization method.
In the vacuum container of a, two kinds of monomers that are raw materials of the polyimide film are heated and vapor-deposited at 200 ° C. to 250 ° C. to form a polyamic acid film, and then an imidization treatment is performed at 280 ° C. to 380 ° C. under normal pressure to perform the polyimide film The method for producing an R-Fe-B based permanent magnet excellent in electrical insulation, heat resistance and corrosion resistance according to claim 2, wherein a layer is formed.
【請求項4】 蒸着重合法に用いる2種類の原料モノマ
ーは、芳香族カルボン酸二無水物と芳香族ジアミンであ
ることを特徴とする請求項3に記載の電気絶縁性・耐熱
性・耐食性にすぐれたR−Fe−B系永久磁石の製造方
法。
4. The electrical insulation, heat resistance and corrosion resistance according to claim 3, wherein the two kinds of raw material monomers used in the vapor deposition polymerization method are an aromatic carboxylic acid dianhydride and an aromatic diamine. An excellent method for producing an R-Fe-B based permanent magnet.
JP35467495A 1995-03-03 1995-12-25 R-Fe-B permanent magnet with excellent electrical insulation, heat resistance and corrosion resistance, and method for producing the same Expired - Lifetime JP3576672B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35467495A JP3576672B2 (en) 1995-03-03 1995-12-25 R-Fe-B permanent magnet with excellent electrical insulation, heat resistance and corrosion resistance, and method for producing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP7-70896 1995-03-03
JP7089695 1995-03-03
JP35467495A JP3576672B2 (en) 1995-03-03 1995-12-25 R-Fe-B permanent magnet with excellent electrical insulation, heat resistance and corrosion resistance, and method for producing the same

Publications (2)

Publication Number Publication Date
JPH08306517A true JPH08306517A (en) 1996-11-22
JP3576672B2 JP3576672B2 (en) 2004-10-13

Family

ID=26412019

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35467495A Expired - Lifetime JP3576672B2 (en) 1995-03-03 1995-12-25 R-Fe-B permanent magnet with excellent electrical insulation, heat resistance and corrosion resistance, and method for producing the same

Country Status (1)

Country Link
JP (1) JP3576672B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112662939A (en) * 2020-12-16 2021-04-16 太原理工大学 Ultrathin permanent magnet with surface deposited coating

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112662939A (en) * 2020-12-16 2021-04-16 太原理工大学 Ultrathin permanent magnet with surface deposited coating
CN112662939B (en) * 2020-12-16 2022-03-25 太原理工大学 Ultrathin permanent magnet with surface deposited coating

Also Published As

Publication number Publication date
JP3576672B2 (en) 2004-10-13

Similar Documents

Publication Publication Date Title
US6275130B1 (en) Corrosion-resisting permanent magnet and method for producing the same
JPH0742553B2 (en) Permanent magnet material and manufacturing method thereof
JP4700578B2 (en) Method for producing high resistance rare earth permanent magnet
WO1997023884A1 (en) Permanent magnet for ultrahigh vacuum application and method for manufacturing the same
JP3781094B2 (en) Corrosion resistant rare earth magnet
JPH0616445B2 (en) Permanent magnet material and manufacturing method thereof
JPH08279407A (en) R-fe-b permanent magnet being excellent in electrical insulating properties, heat resistance and corrosion resistance and manufacture thereof
JP2001160508A (en) R-Fe-B PERMANENT MAGNET AND ITS MANUFACTURING METHOD
JPH09289108A (en) R-fe-b permanent magnet having electric insulating film excellent in adhesion and its manufacture
JPH08306517A (en) R-fe-b permanent magnet excellent in electric insulation, heat resistance, and corrosion resistance, and its manufacture
JPH09326308A (en) Manufacture of r-fe-b permanent magnet having electric insulation coating with excellent adhesion
JPH10340823A (en) Manufacture of r-iron-boron permanent magnet having excellent salt water resistance
JPH0569282B2 (en)
JP3234448B2 (en) Manufacturing method of high corrosion resistant permanent magnet
WO1998009300A1 (en) Corrosion-resistant permanent magnet and method for manufacturing the same
JP3737830B2 (en) Corrosion-resistant permanent magnet and method for manufacturing the same
JPH09260120A (en) R-fe-b type permanent magnet superior in electric insulation, heat resistance and corrosion resistance and manufacturing method thereof
JPH09180922A (en) R-fe-b based permanent magnet having excellent electrical insulation, heat resistance and anti-corrosion properties, and manufacture thereof
JPH07249509A (en) Corrosion-resistant permanent magnet and its manufacture
JPH09246027A (en) R-fe-b based permanent magnet excellent in resistance to salt water
JP3652816B2 (en) Corrosion-resistant permanent magnet and method for manufacturing the same
JPH0535216B2 (en)
JPH1074607A (en) Corrosion-resisting permanent magnet and its manufacture
JPH04206805A (en) Manufacture of rare earth element-fe-b based magnet excellent in magnetic characteristics and corrosion resistance
JP2724391B2 (en) Corrosion resistant permanent magnet

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040610

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040617

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040708

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080716

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080716

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090716

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100716

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110716

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120716

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130716

Year of fee payment: 9

EXPY Cancellation because of completion of term