JPS63254702A - Manufacture of corrosion resisting permanent magnet - Google Patents

Manufacture of corrosion resisting permanent magnet

Info

Publication number
JPS63254702A
JPS63254702A JP62090046A JP9004687A JPS63254702A JP S63254702 A JPS63254702 A JP S63254702A JP 62090046 A JP62090046 A JP 62090046A JP 9004687 A JP9004687 A JP 9004687A JP S63254702 A JPS63254702 A JP S63254702A
Authority
JP
Japan
Prior art keywords
permanent magnet
atomic
less
magnet
sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62090046A
Other languages
Japanese (ja)
Other versions
JPH0831363B2 (en
Inventor
Atsushi Hamamura
濱村 敦
Shigeki Hamada
隆樹 浜田
Hiroko Nakamura
浩子 中村
Tomoyuki Imai
知之 今井
Toshiki Matsui
敏樹 松井
Nanao Horiishi
七生 堀石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toda Kogyo Corp
Proterial Ltd
Original Assignee
Toda Kogyo Corp
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toda Kogyo Corp, Sumitomo Special Metals Co Ltd filed Critical Toda Kogyo Corp
Priority to JP62090046A priority Critical patent/JPH0831363B2/en
Priority to US07/172,395 priority patent/US4942098A/en
Publication of JPS63254702A publication Critical patent/JPS63254702A/en
Priority to US07/454,451 priority patent/US4968529A/en
Publication of JPH0831363B2 publication Critical patent/JPH0831363B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/026Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets protecting methods against environmental influences, e.g. oxygen, by surface treatment

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Chemically Coating (AREA)
  • Physical Vapour Deposition (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To obtain a permanent magnet having excellent corrosion resistance and extremely stable characteristics by covering a sintered magnet surface containing specific component with a metal coating layer made of noble metal and base metal. CONSTITUTION:A thin metal of at least one type of noble metals selected from Pd, Ag, Pt and Au, etc., is formed by a vapor film growing method on a sintered permanent magnet surface which contains as main ingredients 10-30 atomic % of R (R is made of at least one or Nd, Pr, Dy, Ho, and Tb and further at least one of La, Ce, Sm, Gd, Er, Cu, Tm, Yb, Lu and Y) 2-28 atomic % of B, and 65-80 atomic % of Fe and as main phase tetragonal crystal phase, and then further electrolessly plated with at least one type of base metals selected from Ni, Cu, Sn and Co, etc. Thus, the deterioration from initial magnet characteristics when it is allowed to stand at 80 deg.C and 90% of relative humidity for 500 hrs is 10 % or less, thereby obtaining an Fe-B-R permanent magnet having stably high magnet characteristics.

Description

【発明の詳細な説明】 利用産業分野 この発明は、高磁気特性を有しかつ耐食性にすぐれたF
e−B−R系永久磁石の製造方法に係り、耐食性、特に
80℃、相対湿度90%の雰囲気中に長時間放置した場
合の初期磁石特性からの劣化が少なく、きわめて安定し
た磁石特性を有するFe−B−R系永久磁石の製造方法
に関する。
[Detailed description of the invention] Industrial field of application The present invention is directed to an F material having high magnetic properties and excellent corrosion resistance.
Regarding the manufacturing method of e-B-R series permanent magnets, it has corrosion resistance, especially when left in an atmosphere of 80°C and 90% relative humidity, there is little deterioration from the initial magnetic properties, and it has extremely stable magnetic properties. The present invention relates to a method of manufacturing a Fe-BR permanent magnet.

背景技術 先に、NdやPrを中心とする資源的に豊富な軽希土類
を用いてB、Feを主成分とし、高価なSmやCoを含
有せず、従来の希土類コバルト磁石の最高特性を大幅に
越える新しい高性能永久磁石として、Fe−B−R系永
久磁石が提案されている(特開昭59−46008号公
報、特開昭59−89401号公報)。
Background technology We use resource-rich light rare earths such as Nd and Pr, with B and Fe as the main components, and do not contain expensive Sm or Co, greatly improving the best characteristics of conventional rare earth cobalt magnets. Fe-B-R permanent magnets have been proposed as new high-performance permanent magnets that exceed the above (Japanese Patent Application Laid-open No. 59-46008 and Japanese Patent Application Laid-Open No. 59-89401).

前記磁石合金のキュリ一点は、一般に、300℃〜37
0℃であるが、Feの一部をCoにて置換することによ
り、より高いキュリ一点を有するFe−B−R系永久磁
石(特開昭59−64733号、特開昭59−1321
04号)を得ており、さらに、前記Co含有のFe−B
−R系希土類永久磁石と同等以上のキュリ一点並びによ
り高い(BH)maxを有し、その温度特性、特に、i
Hcを向上させるため、希土類元素(R)としてNdや
Pr等の軽希土類を中心としたCo含有のFe−B−R
系希土類永久磁石のRの一部にDy、 Tb等の重希土
類のうち少なくとも1種を含有することにより、25M
GOe以上の極めて高い(BH)maxを保有したまま
で、iHcをさらに向上させたCo含有のFe−B−R
系希土類永久磁石が提案(特開昭60−34005号)
されている。
The Curie point of the magnetic alloy is generally 300°C to 37°C.
0°C, but by replacing a part of Fe with Co, Fe-B-R permanent magnets with a higher Curie point (JP-A-59-64733, JP-A-59-1321
No. 04), and furthermore, the Co-containing Fe-B
-It has a Curie point equal to or higher than R-based rare earth permanent magnets and a higher (BH) max, and its temperature characteristics, especially i
In order to improve Hc, Fe-B-R containing Co, mainly light rare earths such as Nd and Pr, as rare earth elements (R) is used.
By containing at least one kind of heavy rare earths such as Dy and Tb in a part of R of the rare earth permanent magnet, 25M
Co-containing Fe-B-R that further improves iHc while maintaining an extremely high (BH)max higher than GOe.
Rare earth permanent magnet proposed (Japanese Patent Application Laid-Open No. 60-34005)
has been done.

しかしながら、上記のすぐれた磁気特性を有す1□るF
e−B−R光磁気異方性焼結体からなる永久磁石は主成
分として、空気中で酸化し次第に安定な酸化物を生成し
易い希土類元素及び鉄を含有するため、磁気回路に組込
んだ場合に、磁石表面に生成する酸化物により、磁気回
路の出力低下及び磁気回路間のばらつきを惹起し、また
、表面酸化物の脱落による周辺機器への汚染の問題があ
った。
However, 1□F with the above excellent magnetic properties
Permanent magnets made of e-BR magneto-optical anisotropic sintered bodies contain rare earth elements and iron, which tend to oxidize in the air and gradually form stable oxides, so they cannot be incorporated into magnetic circuits. In this case, oxides generated on the magnet surface cause a decrease in the output of the magnetic circuit and variations between the magnetic circuits, and there is also the problem of contamination of peripheral equipment due to the surface oxide falling off.

そこで、上記のFe−B−R系永久磁石の耐食性の改善
のため、磁石体表面に無電解めっき法あるいは電解めっ
き法により耐食性金属めっき層を被覆した永久磁石(特
願昭58−162350号)が提案されているが、この
めっき法では永久磁石体が焼結体で有孔性のため、この
孔内にめっき前処理での酸性溶液またはアルカリ溶液が
残留し、経年変化とともに腐食する恐れがあり、また磁
石体の耐薬品性が劣るため、めっき時に磁石表面が腐食
されて密着性、防蝕性が劣る問題があった。
Therefore, in order to improve the corrosion resistance of the above-mentioned Fe-B-R permanent magnet, a permanent magnet whose surface is coated with a corrosion-resistant metal plating layer by electroless plating or electrolytic plating (Japanese Patent Application No. 162350/1982) However, in this plating method, since the permanent magnet body is a sintered body and has pores, there is a risk that acidic or alkaline solutions from plating pretreatment may remain in the pores, leading to corrosion over time. Moreover, since the chemical resistance of the magnet body is poor, there is a problem that the magnet surface is corroded during plating, resulting in poor adhesion and corrosion resistance.

従来技術の問題点 前記Fe−B−R系永久磁石表面に耐食性めっきを設け
るが、永久磁石体が焼結体で有孔性のため、密着性、防
蝕性が劣る問題があり、また、温度60℃、相対湿度9
0%の条件下の耐食性試験でも100時間放置にて、磁
石特性は初期磁石特性の10%以上劣化し、非常に不安
定であった。
Problems with the Prior Art Although corrosion-resistant plating is provided on the surface of the Fe-B-R permanent magnet, since the permanent magnet body is a sintered body and porous, there is a problem that adhesion and corrosion resistance are poor, and 60℃, relative humidity 9
Even in the corrosion resistance test under the condition of 0%, the magnetic properties deteriorated by more than 10% of the initial magnetic properties after being left for 100 hours, and were extremely unstable.

発明の目的 この発明は、Fe−B−R系永久磁石の耐食性の改善を
目的とし、特に温度80℃、相対湿度90%の雰囲気条
件下で長時間放置した場合の初期磁石特性からの劣化を
極力少なくし、安定した高磁石特性を有するFe−B−
R系永久磁石を安価に提供できる製造方法を目的とする
Purpose of the Invention The present invention aims to improve the corrosion resistance of Fe-B-R permanent magnets, and in particular to prevent deterioration from the initial magnetic properties when left for a long time under atmospheric conditions of a temperature of 80°C and a relative humidity of 90%. Fe-B-, which has stable and high magnetic properties with as little amount as possible
The purpose of this invention is to provide a manufacturing method that can provide R-based permanent magnets at low cost.

発明の構成 この発明は、すぐれた耐食性、特に、温度80℃、相対
湿度90%の雰囲気条件下で長時間放置した場合におい
ても、その磁石特性が安定したFe−B−R系永久磁石
の製造方法を目的に、永久磁石体の表面処理について種
々研究した結果、特定成分を有するFe−B−R系焼結
磁石体表面に、貴金属と卑金属とからなる金属被覆層を
被着することにより、すぐれた耐食性ときわめて安定し
た磁石特性が得られることを知見し、この発明を完成し
たものである。
Structure of the Invention The present invention is directed to the production of Fe-B-R permanent magnets that have excellent corrosion resistance and, in particular, have stable magnetic properties even when left for long periods of time under atmospheric conditions of a temperature of 80°C and a relative humidity of 90%. As a result of various studies on the surface treatment of permanent magnet bodies with the aim of developing methods, we found that by applying a metal coating layer made of noble metals and base metals to the surface of Fe-BR-based sintered magnets having specific components, This invention was completed after discovering that excellent corrosion resistance and extremely stable magnetic properties could be obtained.

すなわち、この発明は、 R(RはNd、 Pr、 Dy、 Ho、 Tbのうち
少なくとも1種あるいはさらに、La、 Ce、 Sm
、 Gd、 Er5Eu、Tm、 Yb、 Lu、 Y
のうち少なくとも1種からなる)10%〜30原子%、 B22原子〜28原子%、 Fe 65原子%〜80原子%を主成分とし、主相が正
方晶相からなる焼結永久磁石体表面に、 Pd、 Ag、 Pt及びAu等から選ばれた少なくと
も1種の貴金属の薄膜を気相成膜法にて設け、その後さ
らに、Ni、 Cu、 Sn及びCO等から選ばれた少
なくとも1種の卑金属の無電解めっきを施すことにより
、 温度80℃、相対湿度90%の条件下で500時間放置
したときの初期磁石特性からの劣化が10%以下である
ことを特徴とする耐食性永久磁石の製造方法である。
That is, the present invention provides R (R is at least one of Nd, Pr, Dy, Ho, Tb, or furthermore, La, Ce, Sm
, Gd, Er5Eu, Tm, Yb, Lu, Y
(consisting of at least one of the following) 10% to 30 at%, B22 to 28 at%, Fe 65 to 80 at%, and the main phase is a tetragonal phase on the surface of the sintered permanent magnet body. A thin film of at least one noble metal selected from , Pd, Ag, Pt, Au, etc. is provided by a vapor phase deposition method, and then a thin film of at least one noble metal selected from Ni, Cu, Sn, CO, etc. A method for manufacturing a corrosion-resistant permanent magnet, characterized in that the deterioration from the initial magnetic properties is 10% or less when left for 500 hours at a temperature of 80°C and a relative humidity of 90% by applying electroless plating. It is.

この発明による金属被覆層を有するFe−B−R系永久
磁石が、苛酷な雰囲気条件下において、初期磁石特性か
らの劣化が少なく、磁石特性値が極めて安定する理由は
未だ明らかではない。
It is not yet clear why the Fe-B-R permanent magnet having the metal coating layer according to the present invention exhibits little deterioration from the initial magnetic characteristics and extremely stable magnetic characteristic values under severe atmospheric conditions.

しかし、前記Fe−B−R系焼結磁石体表面に、めっき
法によりNi、 Cu、 Sn、及びCo等から選ばれ
た卑金属の少なくとも1種からなる金属層を被着した場
合は、温度60℃、相対湿度90%に100時間放置の
苛酷な耐食性試験条件で、その磁石特性値は劣化し不安
定となるが、これに対して、前記焼結磁石体表面に、気
相成膜法にてPd、 Ag、 Pt、Au等から選ばれ
た少なくとも1種の貴金属層を設け、さらに、Ni、 
Cu、 Sn、及びCo等から選ばれた少なくとも1種
の卑金属の無電解めっきを施したこの発明による金属被
覆層を形成することにより、該金属被覆層は緻密となり
、湿気、ガス等の外部環境の変化に対して、永久磁石を
完全に保護できることが明らかとなった。
However, when a metal layer made of at least one base metal selected from Ni, Cu, Sn, Co, etc. is deposited on the surface of the Fe-B-R based sintered magnet by a plating method, the temperature is 60°C. ℃ and 90% relative humidity for 100 hours, the magnetic properties deteriorate and become unstable.In contrast, the surface of the sintered magnet was At least one noble metal layer selected from Pd, Ag, Pt, Au, etc. is provided, and Ni,
By forming the metal coating layer according to the present invention, which is electroless plated with at least one base metal selected from Cu, Sn, Co, etc., the metal coating layer becomes dense and is free from external environments such as moisture and gas. It has become clear that permanent magnets can be completely protected against changes in

発明の好ましい実施態様 この発明において、焼結磁石体表面に設けたPd、 A
g、 Pt、 Au等から選ばれた少なくとも1種から
なる貴金属層は、真空蒸着法やイオンスパッタ法等、公
知の気相成膜法にて設けるもので、前記貴金属層厚みは
10人〜100人が好ましい。
Preferred Embodiment of the Invention In this invention, Pd, A provided on the surface of the sintered magnet body
The noble metal layer made of at least one selected from g, Pt, Au, etc. is formed by a known vapor phase film forming method such as a vacuum evaporation method or an ion sputtering method, and the thickness of the noble metal layer is 10 to 100%. People are preferred.

また、この発明において、Ni、 Cu、 Sn、及び
Co等から選ばれた少なくとも1種の卑金属層は、無電
解めっきにて、25、以下の厚みに被着されるのが好ま
しく、さらに好ましくは3〜20 pm厚みであり、無
電解めっき法は公知のいずれの方法であっても利用でき
る。
Further, in the present invention, the at least one base metal layer selected from Ni, Cu, Sn, Co, etc. is preferably deposited by electroless plating to a thickness of 25 mm or less, and more preferably. The thickness is 3 to 20 pm, and any known electroless plating method can be used.

永久磁石の成分限定理由 この発明による永久磁石に用いる希土類元素Rは、組成
の10原子%〜30原子%を占めるが、Nd、 Pr、
 Dy、 Ho、 Tbのうち少なくとも1種、あるい
はさらに、La、 Ce、 Sm、 Gd、 Er1E
u、Tm、 Yb、Lu、 Yのうち少なくとも1種を
含むものが好ましい。
Reasons for limiting the composition of permanent magnets The rare earth elements R used in the permanent magnet according to the present invention account for 10 to 30 at% of the composition, and include Nd, Pr,
At least one of Dy, Ho, Tb, or additionally La, Ce, Sm, Gd, Er1E
Preferably, it contains at least one of u, Tm, Yb, Lu, and Y.

また、通常Rのうち1種をもって足りるが、実用上は2
種以上の混合物(ミツシュメタル、ジジム等)を入手上
の便宜等の理由により用いることができる。
Also, normally one type of R is sufficient, but in practice two types are sufficient.
A mixture of more than one species (Mitushmetal, Didim, etc.) can be used for reasons such as availability.

なお、このRは純希土類元素でなくてもよく、工業上人
手可能な範囲で製造上不可避な不純物を含有するもので
も差支えない。
Note that this R does not have to be a pure rare earth element, and may contain impurities that are unavoidable in manufacturing to the extent that it is industrially possible.

Rは、上記系永久磁石における、必須元素であって、1
0原子%未満では、結晶構造がα−鉄と同一構造の立方
晶組織となるため、高磁気特性、特に高保磁力が得られ
ず、3o原子%を越えると、Rリッチな非磁性相が多く
なり、残留磁束密度(Br)が低下して、すぐれた特性
の永久磁石が得られない。よって、希土類元素は、1o
原子%〜3o原子%の範囲とする。
R is an essential element in the above permanent magnet, and 1
If it is less than 0 atomic %, the crystal structure becomes a cubic structure that is the same as α-iron, so high magnetic properties, especially high coercive force, cannot be obtained. Therefore, the residual magnetic flux density (Br) decreases, and a permanent magnet with excellent characteristics cannot be obtained. Therefore, the rare earth element is 1o
The range is from atomic % to 3o atomic %.

Bは、この発明による永久磁石における、必須元素であ
って、2原子%未満では、菱面体構造が主相となり、高
い保磁力(iHc)は得られず、28原子%を越えると
、Bリッチな非磁性相が多くなり、残留磁束密度(Br
)が低下するため、すぐれた永久磁石が得られない。よ
って、Bは、2原子%〜28原子%の範囲とする。
B is an essential element in the permanent magnet according to the present invention. If it is less than 2 at %, the rhombohedral structure becomes the main phase and high coercive force (iHc) cannot be obtained, and if it exceeds 28 at %, B-rich The number of non-magnetic phases increases, and the residual magnetic flux density (Br
) decreases, making it impossible to obtain an excellent permanent magnet. Therefore, B is in the range of 2 atomic % to 28 atomic %.

Feは、上記系永久磁石において、必須元素であり、6
5原子%未満では残留磁束密度(Br)が低下し、80
原子%を越えると、高い保磁力が得られないので、Fe
は65原子%〜80原子%の含有とする。
Fe is an essential element in the above-mentioned permanent magnet, and 6
If it is less than 5 at%, the residual magnetic flux density (Br) decreases, and 80
If it exceeds atomic%, high coercivity cannot be obtained, so Fe
The content is 65 atomic % to 80 atomic %.

また、この発明による永久磁石において、Feの一部を
Coで置換することは、得られる磁石の磁気特性を損う
ことなく、温度特性を改善することができるが、Co置
換量がFeの20%を越えると、逆に磁気特性が劣化す
るため、好ましくない。Coの置換量がFeとcoの合
計量で5原子%〜15原子%の場合は、(Br)は置換
しない場合に比較して増加するため、高磁束密度を得る
ために好ましい。
Furthermore, in the permanent magnet according to the present invention, replacing a part of Fe with Co can improve the temperature characteristics without impairing the magnetic properties of the obtained magnet. If it exceeds %, the magnetic properties will deteriorate, which is not preferable. When the amount of Co substitution is 5 at % to 15 at % in total of Fe and co, (Br) increases compared to the case where no substitution is made, which is preferable in order to obtain a high magnetic flux density.

また、この発明による永久磁石は、R,B、Feの他、
工業的生産上不可避的不純物の存在を許容できるが、B
の一部を4.0原子%以下のC13,5原子%以下のP
、2.5原子%以下のS、3.5原子%以下のCuのう
ち少なくとも1種、合計量で4.0原子%以下で置換す
ることにより、永久磁石の製造性改善、低価格化が可能
である。
In addition to R, B, and Fe, the permanent magnet according to the present invention also includes
Although the presence of unavoidable impurities in industrial production can be tolerated, B
4.0 at% or less of C13, 5 at% or less of P
By replacing at least one of , 2.5 atomic % or less S, and 3.5 atomic % or less Cu, in a total amount of 4.0 atomic % or less, the manufacturability and cost reduction of permanent magnets can be improved. It is possible.

また、下記添加元素のうち少なくとも1種は、R−B−
Fe系永久磁石に対してその保磁力、減磁曲線の角型性
を改善あるいは製造性の改善、低価格化に効果があるた
め添加することができる。
Furthermore, at least one of the following additional elements is R-B-
It can be added to Fe-based permanent magnets because it is effective in improving the coercive force and squareness of the demagnetization curve, improving manufacturability, and reducing costs.

9.5原子%以下のAI、4.5原子%以下のTi、9
.5原子%以下のV、8.5原子%以下のCr、8.0
原子%以下のMn、5.0原子%以下のBi、9.5原
子%以下のNb、 9.5原子%以下のTa。
9.5 atom% or less of AI, 4.5 atom% or less of Ti, 9
.. 5 at% or less V, 8.5 at% or less Cr, 8.0
Mn of atomic% or less, Bi of 5.0 atomic% or less, Nb of 9.5 atomic% or less, and Ta of 9.5 atomic% or less.

9.5原子%以下のMo、9.5原子%以下のW、2.
5原子%以下のsb、7 原子%以下のGe、3.5原
子%以下のSn、5.5原子%以下のZr、9.0原子
%以下のNi、9.0原子%以下のSi、i、i原子%
以下のZn、5,5原子%以下のHf、のうち少なくと
も1種を添加含有、但し、2種以上含有する場合は、そ
の最大含有量は当該添加元素のうち最大値を有するもの
の原子%以下を含有させることにより、永久磁石の高保
磁力化が可能になる。
Mo of 9.5 atomic % or less, W of 9.5 atomic % or less, 2.
5 at % or less sb, 7 at % or less Ge, 3.5 at % or less Sn, 5.5 at % or less Zr, 9.0 at % or less Ni, 9.0 at % or less Si, i, i atomic%
At least one of the following Zn and 5.5 atomic % or less of Hf is added. However, if two or more types are contained, the maximum content is less than or equal to the atomic % of the one with the maximum value among the added elements. By containing , it is possible to increase the coercive force of the permanent magnet.

結晶相は主相が正方晶であることが、微細で均一な合金
粉末より、すぐれた磁気特性を有する焼結永久磁石を作
製するのに不可欠である。
It is essential that the main crystalline phase be tetragonal in order to produce a sintered permanent magnet with superior magnetic properties than a fine and uniform alloy powder.

また、この発明による永久磁石は平均結晶粒径が1〜5
Ofi、、の範囲にある正方晶系の結晶構造を有する化
合物を主相とし、体積比で1%〜50%の非磁性相(酸
化物相を除く)を含むことを特徴とする。
Further, the permanent magnet according to the present invention has an average crystal grain size of 1 to 5.
It is characterized by having a main phase of a compound having a tetragonal crystal structure in the range of .Ofi, and containing a non-magnetic phase (excluding oxide phase) of 1% to 50% by volume.

この発明による永久磁石は、保磁力iHc≧1kOe、
残留磁束密度Br>4kG、を示し、最大エネルギー積
(BH)maxは、(BH)max≧10MGOeを示
し、最大値は25MGOe以上に達する。
The permanent magnet according to the present invention has a coercive force iHc≧1kOe,
The residual magnetic flux density Br>4kG is shown, and the maximum energy product (BH)max is (BH)max≧10MGOe, and the maximum value reaches 25MGOe or more.

また、この発明による永久磁石のRの主成分が、その5
0%以上をNd及びPrを主とする軽希土類金属が占め
る場合で、R12原子%〜2o原子%、B44原子〜2
4原子%、Fe 74原子%〜8o原子%、を主成分と
するとき、(BH)max 35MGOe以上のすぐれ
た磁気特性を示し、特に軽希土類金属がNdの場合には
、その最大値が45MGOe以上に達する。
Further, the main component of R of the permanent magnet according to the present invention is 5
In the case where 0% or more is occupied by light rare earth metals mainly consisting of Nd and Pr, R12 atom% to 2o atom%, B44 atom to 2
When the main component is 4 at% Fe, 74 at% to 80 at% Fe, it exhibits excellent magnetic properties of (BH)max 35MGOe or more, and especially when the light rare earth metal is Nd, the maximum value is 45MGOe. reach more than that.

また、80℃、相対湿度90%の環境に長時間放置する
耐食試験で、極めて高い耐食性を示すこの発明による永
久磁石として、 Nd flat%〜15at%、Dy 0.2at%〜
3.Oat%、かつNdとDyの総量が12at%〜1
7at%であり、B 5at%〜8at%、Co O,
5at%〜13at%、Ae O,5at%〜4at%
、C1000ppm以下を含有し、残部Fe及び不可避
的不純物からなる場合が好ましい。
In addition, as a permanent magnet according to the present invention that shows extremely high corrosion resistance in a corrosion resistance test where it is left in an environment of 80° C. and 90% relative humidity for a long time, Nd flat% ~ 15 at%, Dy 0.2 at% ~
3. Oat%, and the total amount of Nd and Dy is 12at% to 1
7at%, B 5at% to 8at%, CoO,
5at%~13at%, AeO, 5at%~4at%
, C1000 ppm or less, with the remainder being Fe and unavoidable impurities.

実施例 以下に、実施例及び比較例によりこの発明を説明する。Example This invention will be explained below with reference to Examples and Comparative Examples.

去施皿 出発原料として、純度99.9%の電解鉄、819.4
%含有のフェロボロン合金、純度99.7%以上のNd
、 Dyを使用し、これらを配合した後、高周波溶解し
て鋳造し、14Nd−0,5Dy−7B−78,5Fe
なる組成(at%)の鋳塊を得た。
Electrolytic iron with a purity of 99.9%, 819.4
% ferroboron alloy, Nd with a purity of 99.7% or more
, Dy, and after blending these, high frequency melting and casting were performed to obtain 14Nd-0,5Dy-7B-78,5Fe.
An ingot having the following composition (at%) was obtained.

その後、この鋳塊を微粉砕し、平均粒度3pmの微粉砕
粉を得た。
Thereafter, this ingot was finely ground to obtain a finely ground powder with an average particle size of 3 pm.

この微粉砕粉をプレス装置の金型に装入し、12kOe
の磁界中で配向し、磁界に平行方向に1.5tart/
cm2の圧力で成形して、得られた成形体を1100℃
、2時間、舒雰囲気中の条件で焼結後、更にAr雰囲気
中でSOO℃、1時間、次に630”C11,5時間の
時効処理を行い、焼結磁石体を得た。
This finely pulverized powder was charged into a mold of a press machine, and 12 kOe was produced.
Oriented in a magnetic field of 1.5 tart/parallel to the magnetic field.
The molded product obtained by molding at a pressure of cm2 was heated to 1100°C.
After sintering in a So atmosphere for 2 hours, aging treatment was performed at SOO° C. for 1 hour in an Ar atmosphere and then for 5 hours at 630"C11 to obtain a sintered magnet.

得られた永久磁石体から径12mmX厚み2mm寸法の
試験片を得た。
A test piece with a diameter of 12 mm and a thickness of 2 mm was obtained from the obtained permanent magnet body.

この焼結磁石体試験片の磁石特性を第1表に示す。The magnetic properties of this sintered magnet test piece are shown in Table 1.

次に、得られた焼結磁石体を、真空度0.05Torr
の雰囲気でイオンスパッター法により、PdPt合金膜
を厚み50人に被着し、PdPt合金膜を表面に被着し
たNd−Dy−B−Fe系永久磁石を得た。
Next, the obtained sintered magnet body was placed at a vacuum degree of 0.05 Torr.
A PdPt alloy film was deposited to a thickness of 50 mm by ion sputtering in an atmosphere of 100 mL to obtain a Nd-Dy-B-Fe permanent magnet having a PdPt alloy film deposited on its surface.

さらに、Ni濃度0.1rruylle、次亜リン酸ナ
トリウム0.15 mtylle 1クエン酸ナトリウ
ム0.2moL/e 、硫酸アンモニウム0.5rru
yl/eで、pHが9.0のニッケル化学めっき液を用
意し、このニッケル化学めっき液に、前記のPdPt合
金膜を表面に被着したNd−D3r−B−Fe系永久磁
石を、80℃で60分間浸漬した後、水洗乾燥した。
Furthermore, Ni concentration 0.1 rruyl, sodium hypophosphite 0.15 mtyl 1 sodium citrate 0.2 moL/e, ammonium sulfate 0.5 rru
Prepare a nickel chemical plating solution with yl/e and pH of 9.0, and add the Nd-D3r-B-Fe based permanent magnet with the above-mentioned PdPt alloy film on the surface to this nickel chemical plating solution. After being immersed at ℃ for 60 minutes, it was washed with water and dried.

生成Niめっき厚は5.3Prnであり、金属光沢を有
していた。
The resulting Ni plating thickness was 5.3 Prn and had metallic luster.

また、表面処理後のこの発明による永久磁石の磁石特性
を第1表に表す。
Further, the magnetic properties of the permanent magnet according to the present invention after surface treatment are shown in Table 1.

その後、得られたこの発明の永久磁石を、温度80℃、
相対湿度90%の条件下で500時間放置した後の磁石
特性、及びその劣化状況を測定した。その結果を第1表
に表す。
Thereafter, the obtained permanent magnet of the present invention was heated at a temperature of 80°C.
The magnetic properties and the state of deterioration thereof were measured after being left for 500 hours under conditions of relative humidity of 90%. The results are shown in Table 1.

里箆皿 実施例と同一組成、同一製造条件で得られた焼結磁石体
に、実施例1のめっき条件と同一条件で無電解めっきを
行った。生成Niめっき厚は工211rnであり、鈍い
金属光沢を有していた。
Electroless plating was performed under the same plating conditions as in Example 1 on a sintered magnet body obtained under the same composition and manufacturing conditions as in the Satoshi Dish Example. The resulting Ni plating had a thickness of 211 rn and had a dull metallic luster.

この比較焼結磁石体の耐食試験前後の磁石特性の劣化は
、温度60℃、相対湿度90%の条件下で100時間保
持にて、その磁石特性は10.5%の劣化を生じ、その
後、急激に劣化は進行し、500時間では全面に錆が発
生していた。
The deterioration of the magnetic properties of this comparative sintered magnet body before and after the corrosion resistance test was as follows: When held for 100 hours at a temperature of 60°C and a relative humidity of 90%, the magnetic properties deteriorated by 10.5%. Deterioration progressed rapidly, and rust had formed on the entire surface after 500 hours.

この発明による永久磁石は、第1表の耐食試験前後の磁
石特性及び該特性の劣化率に明らかなように、すぐれた
初期磁石特性からの劣化が少なく、すぐれた耐食性と磁
石特性の安定性を有することが明らかである。
The permanent magnet according to the present invention exhibits little deterioration from the excellent initial magnetic properties, and has excellent corrosion resistance and stability of the magnetic properties, as is clear from the magnet properties before and after the corrosion resistance test and the rate of deterioration of the properties in Table 1. It is clear that it has.

第1表 (耐食性試験後磁石特性)−僻効処理後磁石特性)磁気
特性劣化率(%)=□ (時効処理後磁石特性) 発明の効果 この発明によるFe−B−R系永久磁石体は、実施例の
如く、苛酷な耐食試験条件、特に、温度80℃、相対湿
度90%の条件下で、500時間放置した後、その磁石
特性の劣化は初期磁石特性の10%以下の低下にすぎず
、現在、最も要求されている高性能永久磁石として安価
に提供できる。
Table 1 (Magnet properties after corrosion resistance test - Magnet properties after aging treatment) Magnetic property deterioration rate (%) = □ (Magnet properties after aging treatment) Effects of the invention The Fe-B-R permanent magnet body according to the present invention As in the example, after being left for 500 hours under severe corrosion resistance test conditions, particularly at a temperature of 80°C and a relative humidity of 90%, the deterioration of the magnetic properties was only 10% or less of the initial magnetic properties. First, it can be provided at a low cost as a high-performance permanent magnet, which is currently most in demand.

Claims (1)

【特許請求の範囲】 1 R(RはNd、Pr、Dy、Ho、Tbのうち少な
くとも1種あるいはさらに、La、Ce、Sm、Gd、
Er、Eu、Tm、Yb、Lu、Yのうち少なくとも1
種からなる)10原子%〜30原子%、 B2原子%〜28原子%、 Fe65原子%〜80原子%を主成分とし、主相が正方
晶相からなる焼結永久磁石体表面に、 Pd、Ag、Pt及びAu等から選ばれた少なくとも1
種の貴金属の薄膜を気相成膜法にて設け、 その後さらに、Ni、Cu、Sn及びCo等から選ばれ
た少なくとも1種の卑金属の無電解めっきを施すことを
特徴とする耐食性永久磁石の製造方法。
[Claims] 1 R (R is at least one of Nd, Pr, Dy, Ho, Tb, or furthermore, La, Ce, Sm, Gd,
At least one of Er, Eu, Tm, Yb, Lu, Y
Pd, Pd, At least one selected from Ag, Pt, Au, etc.
A corrosion-resistant permanent magnet characterized in that a thin film of a noble metal is formed by a vapor phase deposition method, and then electroless plating of at least one base metal selected from Ni, Cu, Sn, Co, etc. is applied. Production method.
JP62090046A 1987-03-26 1987-04-13 Method for manufacturing corrosion-resistant permanent magnet Expired - Fee Related JPH0831363B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP62090046A JPH0831363B2 (en) 1987-04-13 1987-04-13 Method for manufacturing corrosion-resistant permanent magnet
US07/172,395 US4942098A (en) 1987-03-26 1988-03-24 Corrosion resistant permanent magnet
US07/454,451 US4968529A (en) 1987-03-26 1989-12-21 Process for producing a corrosion resistant permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62090046A JPH0831363B2 (en) 1987-04-13 1987-04-13 Method for manufacturing corrosion-resistant permanent magnet

Publications (2)

Publication Number Publication Date
JPS63254702A true JPS63254702A (en) 1988-10-21
JPH0831363B2 JPH0831363B2 (en) 1996-03-27

Family

ID=13987685

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62090046A Expired - Fee Related JPH0831363B2 (en) 1987-03-26 1987-04-13 Method for manufacturing corrosion-resistant permanent magnet

Country Status (1)

Country Link
JP (1) JPH0831363B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4959273A (en) * 1988-09-20 1990-09-25 Sumitomo Special Metals Co., Ltd. Corrosion-resistant permanent magnet and method for preparing the same
EP2680280A1 (en) 2012-06-25 2014-01-01 Jtekt Corporation Method of manufacturing magnet and magnet
US9601246B2 (en) 2012-02-27 2017-03-21 Jtekt Corporation Method of manufacturing magnet, and magnet

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53114738A (en) * 1977-03-18 1978-10-06 Hitachi Metals Ltd Surface treatment method of rare earth cobalt magnet
JPS6054406A (en) * 1983-09-03 1985-03-28 Sumitomo Special Metals Co Ltd Permanent magnet having excellent oxidation resistance characteristic
JPS61150201A (en) * 1984-12-24 1986-07-08 Sumitomo Special Metals Co Ltd Permanent magnet with excellent anticorrosion property

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53114738A (en) * 1977-03-18 1978-10-06 Hitachi Metals Ltd Surface treatment method of rare earth cobalt magnet
JPS6054406A (en) * 1983-09-03 1985-03-28 Sumitomo Special Metals Co Ltd Permanent magnet having excellent oxidation resistance characteristic
JPS61150201A (en) * 1984-12-24 1986-07-08 Sumitomo Special Metals Co Ltd Permanent magnet with excellent anticorrosion property

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4959273A (en) * 1988-09-20 1990-09-25 Sumitomo Special Metals Co., Ltd. Corrosion-resistant permanent magnet and method for preparing the same
US9601246B2 (en) 2012-02-27 2017-03-21 Jtekt Corporation Method of manufacturing magnet, and magnet
EP2680280A1 (en) 2012-06-25 2014-01-01 Jtekt Corporation Method of manufacturing magnet and magnet

Also Published As

Publication number Publication date
JPH0831363B2 (en) 1996-03-27

Similar Documents

Publication Publication Date Title
US4968529A (en) Process for producing a corrosion resistant permanent magnet
EP0361308B1 (en) Corrosion-resistant permanent magnet and method for preparing the same
US6275130B1 (en) Corrosion-resisting permanent magnet and method for producing the same
JP2791659B2 (en) Manufacturing method of corrosion resistant permanent magnet
JPH0569282B2 (en)
JPS63254702A (en) Manufacture of corrosion resisting permanent magnet
JP2724391B2 (en) Corrosion resistant permanent magnet
JPS63255376A (en) Production of corrosion resistant permanent magnet
JPH0535216B2 (en)
JP3737830B2 (en) Corrosion-resistant permanent magnet and method for manufacturing the same
JP2631479B2 (en) Corrosion resistant permanent magnet and method for producing the same
JPH0554683B2 (en)
JP3234306B2 (en) Corrosion resistant permanent magnet
JP3652816B2 (en) Corrosion-resistant permanent magnet and method for manufacturing the same
JP3676513B2 (en) Corrosion-resistant permanent magnet and method for manufacturing the same
JPS63266020A (en) Manufacture of corrosion-resisting permanent magnet
JPS63266021A (en) Manufacture of corrosion-resisting permanent magnet
JPH069169B2 (en) Fe-BR resin-bonded magnet with excellent corrosion resistance
JPH06140226A (en) Corrosion-resistant permanent magnet
JPH07272922A (en) Manufacture of fe-b-r resin bonded magnet excellent in corrosion resistance
JP2526076B2 (en) Permanent magnet manufacturing method
JP3652818B2 (en) Corrosion-resistant permanent magnet and method for manufacturing the same
JPH0682574B2 (en) Method of manufacturing permanent magnet with excellent corrosion resistance
JPH0752685B2 (en) Corrosion resistant permanent magnet
JPH08264310A (en) Manufacture of rare earth-iron-boron permanent magnet

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees