JPS62188745A - Permanent magnet material and its production - Google Patents

Permanent magnet material and its production

Info

Publication number
JPS62188745A
JPS62188745A JP61029350A JP2935086A JPS62188745A JP S62188745 A JPS62188745 A JP S62188745A JP 61029350 A JP61029350 A JP 61029350A JP 2935086 A JP2935086 A JP 2935086A JP S62188745 A JPS62188745 A JP S62188745A
Authority
JP
Japan
Prior art keywords
layer
thin film
permanent magnet
atom
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61029350A
Other languages
Japanese (ja)
Other versions
JPH0616445B2 (en
Inventor
Satoru Hirozawa
哲 広沢
Setsuo Fujimura
藤村 節夫
Masato Sagawa
佐川 真人
Hitoshi Yamamoto
日登志 山本
Yutaka Matsuura
裕 松浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to JP61029350A priority Critical patent/JPH0616445B2/en
Publication of JPS62188745A publication Critical patent/JPS62188745A/en
Publication of JPH0616445B2 publication Critical patent/JPH0616445B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/026Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets protecting methods against environmental influences, e.g. oxygen, by surface treatment

Abstract

PURPOSE:To prevent deterioration in the magnetic characteristics of an Fe-B-R type sintered magnet body by grinding by forming a thin film of a specified metal as a modifying layer on the surface of the magnet body to be ground and an oxidation inhibiting layer of a specified metal or an alloy thereof on the thin film. CONSTITUTION:A sintered magnet body is composed of, by atom, 12-20% R (R is one or more among Nd, Pr, Dy, Ho and Tb combined optionally with one or more among La, Ce, Sm, Gd, Er, Tm, Yb, Lu and Y), 4-20% B and 65-81% Fe and the principal phase is made tetragonal phase. A thin film of one or more among Ce, La, Nd, Pr, Dy, Ho and Tb as a modifying layer is formed on the surface of the magnet body to be ground. An oxidation inhibiting layer of one or more among Ti, W, Pt, Au, Cr, Ni, Cu, Co, Al, Ta, Ag and Pb or an alloy of such metals is further formed on the thin film.

Description

【発明の詳細な説明】 利用産業分野 この発明は、焼結永久磁石表面の研削加工等に伴なう磁
気特性の劣化を防止し、かつ磁気特性の経年変化を防止
したFe −B −R系永久磁石に係り、特に、厚みが
1.0ITIIT1以下の高性能永久磁石材料及びその
製造方法に関する。
[Detailed description of the invention] Industrial field of application This invention is a Fe-B-R system that prevents deterioration of magnetic properties due to grinding of the surface of a sintered permanent magnet and prevents changes in magnetic properties over time. The present invention relates to permanent magnets, and particularly to a high-performance permanent magnet material having a thickness of 1.0ITIIT1 or less and a method for manufacturing the same.

背景技術 現在、高磁気特性でかつ安価な永久磁石材料が求められ
、さらに資源的に豊富で、今1変の安定供給が可能な組
成元素からなる永久磁石材料が切望されており、本出願
人は先に、高価なSmやらを含有しない新しい高性能永
久磁石としてFa−B−R系(RはYを含む希土類元素
のうち少なくとも1種)永久磁石を提案した(特開昭5
9−46008号、特開昭59−64733号、特開昭
59−89401号、特開昭59−132104号)。
BACKGROUND ART Currently, there is a demand for permanent magnet materials that have high magnetic properties and are inexpensive, and there is also a strong desire for permanent magnet materials that are rich in resources and have compositional elements that can be supplied in an unprecedentedly stable manner. previously proposed an Fa-BR-based permanent magnet (R is at least one rare earth element including Y) as a new high-performance permanent magnet that does not contain expensive Sm (Japanese Patent Application Laid-Open No.
9-46008, JP-A-59-64733, JP-A-59-89401, JP-A-59-132104).

この永久磁石は、Rとして陶や門を中心とする資源的に
豊富な軽希土類を用い、Feを主成分として20MGO
e以上の極めて高いエネルギー積を示す、すぐれた永久
磁石でおる。
This permanent magnet uses light rare earths, which are rich in resources, mainly ceramics and metals, as R, and has Fe as its main component.
It is an excellent permanent magnet that exhibits an extremely high energy product exceeding e.

最近、磁気回路の高性能化、小形化に伴ない、Fe −
B −R系永久磁石材料が益々注目され、さらに、厚み
が1.0mm以下の小物あるいは薄物用Fe −B−R
系永久磁石材料が要望されてきた。
Recently, with the improvement in performance and miniaturization of magnetic circuits, Fe −
B-R permanent magnet materials are attracting more and more attention, and Fe-B-R for small or thin items with a thickness of 1.0 mm or less is attracting more and more attention.
There has been a demand for permanent magnet materials.

かかる用途の永久磁石材料を製造するには、成形焼結し
た小物あるいは極薄物の焼結磁石体を、その表面の凹凸
や歪みを除去するため、おるいは表面酸化層を除去する
ため、さらには磁気回路に組込むために、磁石体の全面
あるいは所要表面を切削加工する必要がある。
In order to manufacture permanent magnet materials for such uses, small or ultra-thin sintered magnets are processed to remove surface irregularities and distortions, or to remove surface oxidation layers. In order to incorporate it into a magnetic circuit, it is necessary to cut the entire surface or the required surface of the magnet body.

しかしながら、かかるFe −B −R系永久磁石材料
(15,5F!117.5 B 77FG >を研削加
工すると、例えば、厚み20mmより11TIIT1以
下の製品厚みに加工すると、第1図〜第3図の曲線すに
示す如く、各磁気特性が劣化する問題があった。
However, when such Fe-B-R permanent magnet material (15,5F!117.5B77FG> As shown in the curve, there was a problem that various magnetic properties deteriorated.

出願人は、先に、かかる加工に伴なう磁気特性の劣化を
防止するため、磁石体の被研削加工面に、R−1膜層(
R′は    Fe、 Pr、 u、 Ho、 T。
The applicant first applied an R-1 film layer (
R' is Fe, Pr, u, Ho, T.

のうち少なくとも1種)を蒸着等にて形成後、熱処理し
て加工変質層による磁気特性の劣化を改善する方法を提
案(特願昭60−216047号)した。
proposed a method (Japanese Patent Application No. 60-216047) in which at least one of these is formed by vapor deposition or the like, and then heat treated to improve the deterioration of magnetic properties caused by the process-affected layer.

しかし、上記のR′薄膜層は、非常に酸化し易いため、
使用環境条件によっては、磁石表面のR’薄膜層が酸化
して磁気特性が再び劣化する恐れがあった。
However, the above R' thin film layer is very easily oxidized, so
Depending on the usage environmental conditions, the R' thin film layer on the magnet surface may be oxidized and the magnetic properties may deteriorate again.

発明の目的 この発明は、希土類・ボロン・鉄を主成分とする新規な
永久磁石材料において、特に小物あるいは極薄物用の焼
結磁石体の切削加工に伴なう磁気特性の劣化を防止する
と共に、磁気特性の経年変化を改善した永久磁石材料及
びその製造方法を目的としている。
Purpose of the Invention The present invention is aimed at preventing deterioration of magnetic properties caused by cutting of sintered magnet bodies, especially for small or ultra-thin objects, in a new permanent magnet material mainly composed of rare earth elements, boron, and iron. The purpose of the present invention is to provide a permanent magnet material with improved magnetic properties over time, and a method for manufacturing the same.

発明の構成と効果 発明者らは、Fa−B−R系永久磁石材料の保磁力につ
いて種々検討した結果、前記磁石体の保磁力の大小は、
結晶粒内よりも粒界構造の差異に基因しており、研摩さ
れた焼結磁石表面を、Kerr効果を用いた光学顕微鏡
で、磁区の反転機構を詳細に調べると、磁石体表面の磁
化反転が磁石体内部の保磁力の172以下の非常に低い
磁界で起り、焼結磁石体の加工された表面第1層の結品
群の保磁力が低い理由は、高保磁力を出現するために必
要な最適の体心立方品構造を有する金属相(以下、体心
立方相という)が存在しないためであることを知見した
Structure and effect of the invention As a result of various studies on the coercive force of Fa-B-R permanent magnet materials, the inventors found that the magnitude of the coercive force of the magnet body is as follows:
This is due to differences in grain boundary structure rather than within crystal grains, and when the polished sintered magnet surface is examined in detail with an optical microscope using the Kerr effect, magnetization reversal on the magnet surface is found. This occurs in a very low magnetic field below the coercive force of 172 inside the magnet, and the reason why the coercive force of the crystals in the first layer on the processed surface of the sintered magnet is low is that it is necessary for a high coercive force to appear. It was found that this is due to the absence of a metal phase having an optimal body-centered cubic structure (hereinafter referred to as a body-centered cubic phase).

発明者が始めて発見した高保磁力を出現させる体心立方
相を、加工された焼結磁石体表面の結晶群上に、最適の
厚みでかつ特殊な体心立方相構造を有する粒界相として
設けることは、通常の方法では容易ではないが、Ce、
 La、 Nc+、 Pr、 Doll、 HO。
The body-centered cubic phase that exhibits high coercive force, which was first discovered by the inventor, is provided as a grain boundary phase with an optimal thickness and a special body-centered cubic phase structure on the crystal group on the surface of the processed sintered magnet. Although this is not easy with normal methods, Ce,
La, Nc+, Pr, Doll, HO.

Tbのうち少なくとも1種を主成分とする薄膜層を形成
し、その後真空あるいは不活性雰囲気中で特定の熱処理
を施すことにより、該焼結体の被研削加工面の保磁力の
低い結晶粒からなる変質層及び格子欠陥を、前記薄膜層
と変質層との拡散反応で改質層となし、さらに、酸化し
易い前記薄膜層上に、T%、 W、 Pt、 Au、 
Cr、 NL、 QL、 Co、 /V、 Ta。
By forming a thin film layer containing at least one type of Tb as a main component and then performing a specific heat treatment in a vacuum or an inert atmosphere, the crystal grains with low coercive force on the surface to be ground of the sintered body are removed. The modified layer and lattice defects are formed into a modified layer by a diffusion reaction between the thin film layer and the modified layer, and further, on the easily oxidized thin film layer, T%, W, Pt, Au,
Cr, NL, QL, Co, /V, Ta.

Al、Pbのうち少なくとも1種からなる金属または合
金層を被着することにより、Fe −B −R系永久磁
石材料の保磁力並びに減磁曲線の角型性を改善向上させ
、かつ磁気特性の経年変化を改善し得ることを知見し、
この発明を完成したものである。
By depositing a metal or alloy layer consisting of at least one of Al and Pb, the coercive force and squareness of the demagnetization curve of the Fe-B-R permanent magnet material can be improved, and the magnetic properties can be improved. We discovered that aging can be improved,
This invention has been completed.

すなわち、この発明は、 R(RはNd、 Pr、 Dy、 Ho、 Tbのうち
少なくとも1種必るいはさらに、La、 Ce、 Sm
、 (A、 Er、 Etl、1m。
That is, this invention provides R (R is at least one of Nd, Pr, Dy, Ho, and Tb, or in addition, La, Ce, and Sm).
, (A, Er, Etl, 1m.

Yb、 Lu、 Yのうち少なくとも1種からなる)1
2原子%〜20原子%、 B44原子〜20原子%、 Fe65原子%〜81原子%を主成分とし、主相が正方
晶相からなる焼結磁石体の被研削加工面に、被着したR
′薄膜IW(R−はCe、 L、I、 Nd、 Pr、
 Dy。
consisting of at least one of Yb, Lu, and Y)1
R adhered to the surface to be ground of a sintered magnet body whose main components are 2 at% to 20 at%, B44 at% to 20 at%, and Fe65 at% to 81 at%, and the main phase is a tetragonal phase.
'Thin film IW (R- is Ce, L, I, Nd, Pr,
Dy.

Ho、Tbのうち少なくとも1種)からなる改質層と、
さらに、R′薄膜層の上に被着した金属層または合金層
(Ti、 W、 Pt、 Au、 Cr、 N5 Cu
、 Co、 Ml。
a modified layer consisting of at least one of Ho and Tb);
Additionally, metal or alloy layers (Ti, W, Pt, Au, Cr, N5 Cu) deposited on the R′ thin film layer.
, Co, Ml.

Ta、 Al、 Pbのうち少なくとも1種)からなる
酸化防止層を有することを特徴とする永久磁石材料であ
る。
The permanent magnet material is characterized by having an oxidation-preventing layer made of at least one of Ta, Al, and Pb.

さらに、前記の主相が正方晶相からなる焼結磁石体の被
研削加工面に、R”1膜1m(R′はCa。
Furthermore, 1m of R''1 films (R' is Ca) are applied to the ground surface of the sintered magnet whose main phase is a tetragonal phase.

La、 Nd、 Pr、 Dy、 Ho、 Tbのうち
少なくとも1種)を被着し、 上記R’薄膜薄膜層接着後あるいは、R−薄膜層上に、
TL、 W、 Pt、 Au、 Cr、 N5 CL、
 Co、 JV、 Ta。
At least one of La, Nd, Pr, Dy, Ho, and Tb) is deposited, and after adhering the R' thin film layer or on the R- thin film layer,
TL, W, Pt, Au, Cr, N5 CL,
Co, JV, Ta.

Al、Pbのうち少なくとも1種からなる金属層または
合金層からなる酸化防止層を被着した後、さらに、真空
あるいは不活性雰囲気中で、400 ’C〜900’C
,1分〜3時間の熱処理を施して、該被研削加工面の加
工変質層を改質層となし、かつ改質層上に酸化防止層を
設けたことを特徴とする永久磁石材′f31の製造方法
でおる。
After depositing an oxidation-preventing layer consisting of a metal layer or an alloy layer consisting of at least one of Al and Pb, it is further heated at 400'C to 900'C in a vacuum or an inert atmosphere.
, a permanent magnet material 'f31 which is characterized in that it is subjected to heat treatment for 1 minute to 3 hours to make the process-affected layer of the surface to be ground into a modified layer, and that an oxidation prevention layer is provided on the modified layer. The manufacturing method is as follows.

また、この発明の永久磁石材料は、平均結品粒径が1〜
80.i7mの範囲にある正方品系の結品&造を有する
化合物を主相とし、体積比で1%〜50%の非磁性相(
酸化物相を除く)を含むことを特徴とする。
Further, the permanent magnet material of the present invention has an average particle size of 1 to 1.
80. The main phase is a compound with a tetragonal crystal structure in the range of i7m, and the non-magnetic phase (1% to 50% by volume) (
(excluding oxide phase).

したがって、この発明は、RとしてNdあるいはさらに
円を中心とする資源的に時富な軽希土類を主に用い、F
il、B、R,を主成分とすることにより、20MGO
8以上の極めて高いエネルギー積並びに、高残留磁束密
度、高保磁力を有し、かつ研削加工による磁気特性の劣
化を防止したFe−BR系永久磁石材料を安価に1ワる
ことができる。
Therefore, this invention mainly uses Nd or even yen-based light rare earths, which are abundant in resources, as R, and F
By using il, B, and R as the main components, 20MGO
A Fe-BR permanent magnet material that has an extremely high energy product of 8 or more, a high residual magnetic flux density, and a high coercive force, and prevents deterioration of magnetic properties due to grinding can be produced at a low cost.

すなわち、この発明により、Fe−B−R系永久磁石材
利(15,5Nd 7.5877Fe )の研削加工に
おいて、例えば、被研削加工面にNd蒸着層を設けて変
質層を改質層にすることにより、厚み20mmより1m
m以下の製品厚みに加工しても、第1図〜第3図の曲線
aに示す如く、陶然着層を設けない比較例(曲線b)に
対して、各磁気特性が改善され、研削加工に伴なう磁気
特性の劣化を防止する効果がある。
That is, according to the present invention, in the grinding process of Fe-B-R permanent magnet material (15,5Nd 7.5877Fe), for example, a Nd vapor deposition layer is provided on the surface to be ground to turn the altered layer into a modified layer. By this, the thickness is 1m from 20mm.
Even when processed to a product thickness of less than m, as shown in curves a in Figs. This has the effect of preventing deterioration of magnetic properties caused by.

さらに、R−薄膜層上に被着した金属あるいは合金層は
、電気化学的に肖で必るため、おるいはその表面に不動
態酸化物層を形成するため、耐酸化性にすぐれかつR−
薄膜層との結合強さもすぐれている。
Furthermore, the metal or alloy layer deposited on the R-thin film layer has excellent oxidation resistance and R- −
The bond strength with the thin film layer is also excellent.

この発明において、焼結磁石体の被研削加工表面に、R
′(R−はCe、 La、 Nd、 Pr、 Dy、 
Ho、 Tbのうち少なくとも1種)からなる薄膜層及
びT、。
In this invention, R
'(R- is Ce, La, Nd, Pr, Dy,
at least one of Ho, Tb) and T.

W 、 Pt、 Au、 Cr、 N5 Cu、 Co
、 AI、 Ta、 Al、 Pbのうち少なくとも1
種からなる金属層または合金層からなる酸化防止層を被
着さぜるには、真空蒸着、イオンスパッタリング、イオ
ンブレーティング、イオン蒸着薄膜形成法()VD)、
プラズマ蒸着薄膜形成法(EV[))等の薄膜形成方法
が適宜選定利用できる。
W, Pt, Au, Cr, N5 Cu, Co
, AI, Ta, Al, and at least one of Pb
In order to deposit the antioxidant layer consisting of a metal layer or an alloy layer consisting of seeds, vacuum evaporation, ion sputtering, ion blating, ion evaporation thin film formation method ()VD),
A thin film forming method such as a plasma vapor deposition thin film forming method (EV[)] can be appropriately selected and used.

また、薄膜層の厚みは、0.11Jm〜301Jrrl
が好ましく、薄膜層厚みが0.1々m未満では、均一な
被膜が形成されず、また熱処理中に薄膜層の希土類金属
が酸化消失するため好ましくなく、また、厚みが301
1mを越えると、蒸着等に長時間を要してコスト高を招
来し、かつ膜厚の増大に伴なって磁気回路に不要のギャ
ップを形成することになって不利であり、表面層の改質
効果も飽和するため好ましくない。
Moreover, the thickness of the thin film layer is 0.11 Jm to 301 Jrrl
is preferable, and if the thickness of the thin film layer is less than 0.1 m, a uniform film will not be formed, and the rare earth metal in the thin film layer will be oxidized and lost during heat treatment, so it is not preferable.
If it exceeds 1 m, it will take a long time for vapor deposition, etc., resulting in high costs, and as the film thickness increases, unnecessary gaps will be formed in the magnetic circuit, which is disadvantageous, and it is difficult to improve the surface layer. This is not desirable because the quality effect is also saturated.

上記薄膜層上に形成する金属または合金層の厚みは、0
.1Jim未満では、均一な被膜形成が困難であり、磁
気特性の経年変化の改善効果がなく、また、30.un
を越えると、蒸着等に長時間を要し、かつ膜厚の増大に
伴なって磁気回路に不要のギャップを形成するため好ま
しくない。
The thickness of the metal or alloy layer formed on the thin film layer is 0.
.. If it is less than 1 Jim, it is difficult to form a uniform film, and there is no effect of improving the aging of magnetic properties. un
Exceeding this is not preferable because it requires a long time for vapor deposition, etc., and an unnecessary gap is formed in the magnetic circuit as the film thickness increases.

また、この発明において、厚み0.1項〜30AImの
Ce、 La、 Nd、 Pr、 Dy、 Ho、 T
bのうち少なくとも1種を主成分とする薄膜層を形成し
た後、あるいは上記金属または合金層からなる酸化防止
層を被着した後、真空あるいは不活性雰囲気中で熱処理
を施すが、熱処理条件は、真空あるいは不活性雰囲気中
、 400 ’C〜900’C,1分〜3時間の熱処理
を、少なくとも1回施す必要があり、熱処理により前記
薄膜層と変質層との拡散反応で改質層となる。
In addition, in this invention, Ce, La, Nd, Pr, Dy, Ho, T with a thickness of 0.1 to 30 Alm
After forming a thin film layer containing at least one of b as a main component or depositing an antioxidation layer made of the above metal or alloy layer, heat treatment is performed in a vacuum or an inert atmosphere, but the heat treatment conditions are It is necessary to perform heat treatment at least once at 400'C to 900'C for 1 minute to 3 hours in a vacuum or inert atmosphere, and the heat treatment causes a diffusion reaction between the thin film layer and the modified layer to form a modified layer. Become.

しかし、400’C未満では、界面での拡散反応が不十
分で、上記効果が得られず、また、900’Cを越える
と薄膜層が酸化しやすく、磁気特性改善効果がなくなる
ため好ましくなく、加熱時間も1分未満では、界面での
拡散反応が不十分で、磁気特性の改善効果が少なく、ま
た、3時間を越えると、薄膜層の酸化により磁気特性の
改善効果がjqられないため好ましくない。
However, if the temperature is less than 400'C, the diffusion reaction at the interface is insufficient and the above effects cannot be obtained, and if it exceeds 900'C, the thin film layer is likely to oxidize and the effect of improving magnetic properties is lost, which is not preferable. If the heating time is less than 1 minute, the diffusion reaction at the interface will be insufficient and the effect of improving magnetic properties will be small; if it exceeds 3 hours, the effect of improving magnetic properties will not be affected due to oxidation of the thin film layer, so it is not preferable. do not have.

また、前記熱処理は、少なくとも1回施すことにより、
所要の効果を得ることができるが、必要に応じて多段熱
処理とするのもよい。
Further, the heat treatment is performed at least once, so that
Although the desired effect can be obtained, multi-stage heat treatment may also be used if necessary.

永久磁石材料の成分限定理由 この発明の永久磁石材料に用いる希土類元素Rは、組成
の12原子%〜20原子%を占めるが、陶。
Reasons for limiting the components of the permanent magnet material The rare earth element R used in the permanent magnet material of the present invention accounts for 12 to 20 at% of the composition.

門、 Dy、 Ho、 Tbのうち少なくとも1種、お
るいはさらに、La、 Ce、 Sm、 cd、 Er
、 Eu、 rm、 Yb、 Lu。
At least one of the following phylum, Dy, Ho, Tb, or furthermore, La, Ce, Sm, cd, Er
, Eu, rm, Yb, Lu.

Yのうち少なくとも1種を含むものが好ましい。Those containing at least one type of Y are preferred.

また、通常Rのうち1種をもって足りるが、実用上は2
種以上の混合物(ミツシュメタル、ジジム等)を入手上
の便宜等の理由により用いることができる。
Also, normally one type of R is sufficient, but in practice two types are sufficient.
A mixture of more than one species (Mitushmetal, Didim, etc.) can be used for reasons such as availability.

なお、このRは純希土類元素でなくてもよく、工業上入
手可能な範囲で製造上不可避な不純物を含有するもので
も差支えない。
Note that this R does not have to be a pure rare earth element, and may contain impurities that are unavoidable in production within an industrially available range.

Rは、新規な上記系永久Ia石材料における、必須元素
であって、12原子%未満では、結品構造がα−鉄と同
一構造の立方品組織が析出するため、高磁気特性、特に
高保磁力が得られず、2o原子%を越えると、Rリッチ
な非磁性相が多くなり、残留磁束密度(Br)が低下し
て、すぐれた特性の永久’/AUiが得られない。よっ
て、希土類元素は、12原子%〜20原子%の範囲とす
る。
R is an essential element in the above-mentioned new permanent Ia stone materials, and if it is less than 12 at%, a cubic structure with the same structure as α-iron will precipitate, resulting in high magnetic properties, especially high stability. If no magnetic force is obtained and the content exceeds 20 atomic %, the R-rich nonmagnetic phase increases, the residual magnetic flux density (Br) decreases, and permanent '/AUi with excellent characteristics cannot be obtained. Therefore, the rare earth element is in the range of 12 atomic % to 20 atomic %.

Bは、この発明による永久磁石材料における、必須元素
であって、4原子%未満では、菱面体構造が主相となり
、高い保磁力(it−(’c)は得られず、20原子%
を越えると、Bリッチな非磁性相が多くなり、残留磁束
密度(Br)が低下するため、すぐれた永久磁石が得ら
れない。よって、Bは、4原子%〜20原子%の範囲と
する。
B is an essential element in the permanent magnet material according to the present invention, and when it is less than 4 atom%, the rhombohedral structure becomes the main phase, and a high coercive force (it-('c) cannot be obtained, and B is less than 20 atom%.
If the value exceeds 100%, the amount of B-rich nonmagnetic phase increases and the residual magnetic flux density (Br) decreases, making it impossible to obtain an excellent permanent magnet. Therefore, B is in the range of 4 at.% to 20 at.%.

Feは、新規な上記系永久磁石において、必須元素であ
り、65原子%未満では残留磁束密度Brが低下し、8
1原子%を越えると、高い保磁力が得られないので、F
eは65原子%〜81原子%の含有とする。
Fe is an essential element in the new above-mentioned permanent magnet, and if it is less than 65 at%, the residual magnetic flux density Br decreases, and the
If it exceeds 1 atomic %, high coercive force cannot be obtained, so F
The content of e is 65 atomic % to 81 atomic %.

また、この発明による永久磁石材料において、FBの一
部をCoで置換することは、得られる磁石の磁気特性を
損うことなく、温度特性を改善することができるが、C
am換但がFeの20%を越えると、逆に磁気特性が劣
化するため、好ましくない。C。
In addition, in the permanent magnet material according to the present invention, replacing a part of FB with Co can improve the temperature characteristics without impairing the magnetic properties of the resulting magnet.
If the am conversion exceeds 20% of Fe, the magnetic properties will deteriorate, which is not preferable. C.

の原子比率がFeとCoの合計量の5%〜15%の場合
は、(Br)は置換しない場合に比較して増加するため
、高磁束密度を得るためには好ましい。
When the atomic ratio of (Br) is 5% to 15% of the total amount of Fe and Co, it is preferable to obtain a high magnetic flux density because (Br) increases compared to the case where no substitution is made.

また、下記添加元素のうち少なくとも1種は、R−BF
a系永久115に対してその保磁力、減磁曲線の角型性
を改善あるいは製造性の改善、低価格化に効果があるた
め添加することができる。
In addition, at least one of the following additional elements is R-BF
It can be added to A-type permanent 115 because it is effective in improving the coercive force and the squareness of the demagnetization curve, improving manufacturability, and reducing cost.

9.5原子%以下のA1.4,5原子%以下のTi、9
.5原子%以下のV、8.5原子%以下のCr。
A1.4 of 9.5 atom% or less, Ti of 5 atom% or less, 9
.. V at 5 atomic % or less, Cr at 8.5 atomic % or less.

8.0原子%以下の)In、  5.0原子%以下のB
i。
8.0 atomic % or less) In, 5.0 atomic % or less B
i.

9.5原子%以下のNb、9.5原子%以下のTa。Nb of 9.5 atomic % or less, Ta of 9.5 atomic % or less.

9.5原子%以下のNo、9.5原子%以下の讐、2.
5原子%以下のsb、7 原子%以下のGe、3.5原
子%以下のSn、  5゜5原子%以下のZr19.0
原子%以下のNi、9.0原子%以下のSi、1.1原
子%以下のZn、5.5原子%以下のHf、のうち少な
くとも1種を添加含有、但し、2種以上含有する場合は
、その最大含有量は当該添加元素のうち最大値を有する
ものの原子%以下の含有させることにより、永久磁石の
高保磁力化が可能になる。
No less than 9.5 atom%, No less than 9.5 atom%, 2.
5 at % or less sb, 7 at % or less Ge, 3.5 at % or less Sn, 5゜5 at % or less Zr19.0
At least one of Ni at % or less, Si at 9.0 atomic % or less, Zn at 1.1 atomic % or less, and Hf at 5.5 atomic % or less is added, however, when two or more types are contained. By containing the maximum content of atomic percent or less of the element having the maximum value among the additive elements, it is possible to increase the coercive force of the permanent magnet.

結品相は主相が正方品でおることが、微細で均一な合金
粉末より、すぐれた磁気特性を有する焼結永久磁石を作
製するのに不可欠である。
It is indispensable that the main phase of the crystalline phase be a square one in order to produce a sintered permanent magnet having superior magnetic properties than a fine and uniform alloy powder.

また、この発明の永久磁石は、磁場中プレス成型するこ
とにより磁気的異方性磁石が得られ、また、無磁界中で
プレス成型することにより、磁気的等方性磁石を得るこ
とかできる。
Further, the permanent magnet of the present invention can be press-molded in a magnetic field to obtain a magnetically anisotropic magnet, and can be press-molded in a non-magnetic field to obtain a magnetically isotropic magnet.

この発明による永久磁石は、保磁力111c≧4kOs
、残光磁束密度Br> 4 k(3、を示し、最大エネ
ルギー積(BH)maxは、好ましい組成範囲では、(
Bt+)max≧20HGOeを示し、最大値は25H
GOa以上に達する。
The permanent magnet according to the present invention has a coercive force of 111c≧4kOs
, the afterglow magnetic flux density Br > 4 k(3), and the maximum energy product (BH) max is (
Bt+)max≧20HGOe, the maximum value is 25H
Reach GOa or higher.

また、この発明の永久磁石材料のRの主成分がその50
%以上を出及び門を主とする軽希土類金属が占める場合
で、R12原子%〜15原子%、B66原子〜9原子%
、Fe  78原子%〜80原子%、の組成範囲のとき
、(BH)maX 35HGOe以上のすぐれた磁気特
性を示し、特に軽希土類金属がNdの場合には、その最
大値が42MGOe以上に達する。
Further, the main component of R in the permanent magnet material of this invention is 50
% or more is occupied by light rare earth metals mainly composed of metals, R12 atomic % to 15 atomic %, B66 atomic % to 9 atomic %
, 78 atomic % to 80 atomic % Fe, exhibits excellent magnetic properties of (BH) ma

実施例 実施例1 出発原料として、純度99.9%の電解鉄、フェロボロ
ン合金、純度99.7%以上のNd、国を使用し、これ
らを配合後に高周波溶解し、その後水冷銅鋳型に鋳造し
、13.5Nd 7B 1.5Dy78Feなる組成の
鋳塊を得た。
Examples Example 1 As starting materials, electrolytic iron with a purity of 99.9%, ferroboron alloy, Nd with a purity of 99.7% or more, and gold were used. After mixing these, they were high-frequency melted, and then cast in a water-cooled copper mold. , 13.5Nd 7B 1.5Dy78Fe was obtained.

その後このインゴットを、H2カス吸蔵ににり脆化させ
たのち、スタンプミルにより粗粉砕し、次にボールミル
により微粉砕し、平均粒度3.0.amの微粉末を得た
Thereafter, this ingot was embrittled by H2 sludge absorption, coarsely ground using a stamp mill, and then finely ground using a ball mill, with an average particle size of 3.0. A fine powder of am was obtained.

この微粉末を金型に挿入し、20 koeの磁界中で配
向し、磁界に垂直方向に、1.5t4の圧力で成形した
This fine powder was inserted into a mold, oriented in a magnetic field of 20 koe, and molded at a pressure of 1.5 t4 in a direction perpendicular to the magnetic field.

得られた成形体を、1100’C,1時間、 Ar雰囲
気中、の条件で焼結し、長ざ20mmX幅10mmX厚
み10man寸法の焼結体を得た。
The obtained molded body was sintered at 1100'C for 1 hour in an Ar atmosphere to obtain a sintered body having dimensions of 20 mm in length, 10 mm in width, and 10 mm in thickness.

そして焼結体より、磁石の配向方向に垂直な方向を面内
に含むように、長さ3mmX幅4mmX厚み0.1mm
寸法の試験片に切出し、さらに同方向に研摩して、厚み
を減少させて、鏡面を有する10.izm厚みの薄板試
験片を得た。
Then, from the sintered body, the length is 3 mm, the width is 4 mm, and the thickness is 0.1 mm, so that the direction perpendicular to the orientation direction of the magnet is included in the plane.
10. Cut out a test piece with the same dimensions and polish it in the same direction to reduce the thickness and give it a mirror surface. A thin plate test piece with a thickness of 1 oz was obtained.

次に、陶金属を陰極ターゲツト材として、下記条件のス
パッタリングを施し、試験片両面に約3βm厚みのNd
薄膜層を被着させた。
Next, using ceramic metal as the cathode target material, sputtering was performed under the following conditions, and a thickness of about 3βm of Nd was applied to both sides of the specimen.
A thin film layer was applied.

その後、3X10−6丁orr真空中で、630°C,
1時間の熱処理を施した。
Thereafter, at 630°C in a 3X10-6 orr vacuum,
Heat treatment was performed for 1 hour.

さらに、同一のスパッタ条件で、第1表に示す金属を1
〃m厚みにスパッタした。
Furthermore, under the same sputtering conditions, the metals shown in Table 1 were
Sputtered to a thickness of 〃m.

また、上記の薄板試験片にNdwj膜層を設け、金属層
を設けることなく直ちに同条件の熱処理を施した比較永
久磁石(比較例15)を作製した。
In addition, a comparative permanent magnet (Comparative Example 15) was prepared by providing an Ndwj film layer on the above thin plate test piece and immediately heat-treating it under the same conditions without providing a metal layer.

得られた各永久磁石材料の[3r、  1l−1c。[3r, 1l-1c of each obtained permanent magnet material.

B1−1c 、 Hc及び(BH)max値を、振動試
お1型磁力計(VS)! )を用いて開回路で測定し、
さらに、室温、空気中で10000時間放置する不可逆
減磁率で評価する減磁率を測定した。これらの測定結果
を第1表に示す。
Test the B1-1c, Hc and (BH) max values using a type 1 magnetometer (VS)! ) is used to measure open circuit,
Furthermore, the demagnetization rate evaluated by the irreversible demagnetization rate after being left in air at room temperature for 10,000 hours was measured. The results of these measurements are shown in Table 1.

なお、第1表における比較例13は、研摩加工したまま
の試験片、比較例14は大型素材のバルク特性である。
In addition, Comparative Example 13 in Table 1 is a test piece as-polished, and Comparative Example 14 is a bulk property of a large material.

くスパッタ条件〉 到達真空度;  2x10−6丁orr高周波スパッタ
リング時のAr圧力 ;  0.2x10−3Torr 〜lX1O−3To
rr入力電圧; 150 W (初スパッタ時及び本ス
パッタ時) 70W(逆スパツタ時) スパッタ時間;初スパッタ 30分 逆スパツタ 30分 本スパッタ 3時間 以下余白 第1表 実施例2 実施例1と同一条件で製造、加工した13.5Nd 7
E31.5Dシフ8Feの組成を有する磁石焼結体試験
片に、実施例1のスパッタ条件でNd層を3.m厚みで
被着し、さらに、実施例1の熱処理を施した薄型磁石に
、第2表に示す組成の合金層を同条件でスパッタし、得
られた各永久磁石材料のBr、  1l−1c。
Sputtering conditions> Ultimate vacuum level: 2x10-6 Torr Ar pressure during high-frequency sputtering: 0.2x10-3 Torr ~ lX1O-3Torr
rr input voltage: 150 W (during initial sputtering and main sputtering) 70 W (during reverse sputtering) Sputtering time: Initial sputtering 30 minutes reverse sputtering 30 minutes main sputtering 3 hours or less Margin Table 1 Example 2 Same conditions as Example 1 13.5Nd manufactured and processed by 7
A sintered magnet specimen having a composition of E31.5D Schiff 8Fe was coated with an Nd layer for 3.5 hours under the sputtering conditions of Example 1. Br of each permanent magnet material obtained by sputtering an alloy layer having the composition shown in Table 2 on the thin magnet coated with a thickness of m and further subjected to the heat treatment of Example 1 under the same conditions. .

Bl−(c 、 )−1c及び(BH)max値を、撮
動試料型磁力計(VSM )を用いて開回路で測定し、
さらに、室温、空気中で10000時間放置する不可逆
減磁率で評価する減磁率を測定した。これらの測定結果
を第2表に示す。
Bl-(c, )-1c and (BH)max values were measured in open circuit using a moving sample magnetometer (VSM),
Furthermore, the demagnetization rate evaluated by the irreversible demagnetization rate after being left in air at room temperature for 10,000 hours was measured. The results of these measurements are shown in Table 2.

なお、合金層形成のためのターゲツト材は、複合型であ
り、組成はその面積比で表示しである。
The target material for forming the alloy layer is a composite type, and the composition is expressed in terms of its area ratio.

以下余白 第2表Margin below Table 2

【図面の簡単な説明】[Brief explanation of drawings]

第1図は永久磁石材料試験片厚みと3rとの関係を示す
グラフである。第2図は永久磁石材$31試験片厚みと
1l−1cとの関係を示すグラフである。 第3図は永久磁石材料試験片厚みと(BH)maxとの
関係を示すグラフである。
FIG. 1 is a graph showing the relationship between the thickness of a permanent magnet material test piece and 3r. FIG. 2 is a graph showing the relationship between the thickness of a permanent magnet material $31 test piece and 1l-1c. FIG. 3 is a graph showing the relationship between the thickness of a permanent magnet material test piece and (BH)max.

Claims (1)

【特許請求の範囲】 1 R(RはNd、Pr、Dy、Ho、Tbのうち少な
くとも1種あるいはさらに、La、Ce、Sm、Gd、
Er、Eu、Tm、Yb、Lu、Yのうち少なくとも1
種からなる)12原子%〜20原子%、B4原子%〜2
0原子%、Fe65原子%〜81原子%を主成分とし、
主相が正方晶相からなる焼結磁石体の被研削加工面に、
被着したR’薄膜層(R’はCe、La、Nd、Pr、
Dy、Ho、Tbのうち少なくとも1種)からなる改質
層と、さらに、R’薄膜層の上に被着した金属層または
合金層(Ti、W、Pt、Au、Cr、Ni、Cu、C
o、Al、Ta、Ag、Pbのうち少なくとも1種)か
らなる酸化防止層を有することを特徴とする永久磁石材
料。 2 R(RはNd、Pr、Dy、Ho、Tbのうち少な
くとも1種あるいはさらに、La、Ce、Sm、Gd、
Er、Eu、Tm、Yb、Lu、Yのうち少なくとも1
種からなる)12原子%〜20原子%、B4原子%〜2
0原子%、Fe65原子%〜81原子%を主成分とし、
主相が正方晶相からなる焼結磁石体を研削加工後、 該被研削加工面に、R’薄膜層(R’はCe、La、N
d、Pr、Dy、Ho、Tbのうち少なくとも1種)を
被着し、 上記R’薄膜層被着後か、あるいは、R’薄膜層上に、
Ti、W、Pt、Au、Cr、Ni、Cu、Co、Al
、Ta、Ag、Pbのうち少なくとも1種からなる金属
層または合金層からなる酸化防止層を被着した後、さら
に、真空あるいは不活性雰囲気中で、400℃〜900
℃、1分〜3時間の熱処理を施して、該被研削加工面の
加工変質層を改質層となし、かつ改質層上に酸化防止層
を形成したことを特徴とする永久磁石材料の製造方法。
[Claims] 1 R (R is at least one of Nd, Pr, Dy, Ho, Tb, or furthermore, La, Ce, Sm, Gd,
At least one of Er, Eu, Tm, Yb, Lu, Y
(consisting of seeds) 12 atom% to 20 atom%, B4 atom% to 2
The main component is 0 at%, Fe65 at% to 81 at%,
On the surface to be ground of a sintered magnet whose main phase is a tetragonal phase,
Deposited R' thin film layer (R' is Ce, La, Nd, Pr,
A modified layer consisting of at least one of Dy, Ho, Tb) and a metal layer or alloy layer (Ti, W, Pt, Au, Cr, Ni, Cu, C
1. A permanent magnet material characterized by having an oxidation-preventing layer made of at least one of the following: 1, Al, Ta, Ag, and Pb. 2 R (R is at least one of Nd, Pr, Dy, Ho, Tb, or furthermore, La, Ce, Sm, Gd,
At least one of Er, Eu, Tm, Yb, Lu, Y
(consisting of seeds) 12 atom% to 20 atom%, B4 atom% to 2
The main component is 0 at%, Fe65 at% to 81 at%,
After grinding a sintered magnet whose main phase is a tetragonal phase, an R' thin film layer (R' is Ce, La, N
d, Pr, Dy, Ho, and Tb), either after the R' thin film layer is deposited or on the R' thin film layer,
Ti, W, Pt, Au, Cr, Ni, Cu, Co, Al
, Ta, Ag, and Pb, and then further heated at 400°C to 900°C in vacuum or an inert atmosphere.
℃, for 1 minute to 3 hours to transform the process-affected layer of the surface to be ground into a modified layer, and to form an oxidation-preventing layer on the modified layer. Production method.
JP61029350A 1986-02-13 1986-02-13 Permanent magnet material and manufacturing method thereof Expired - Lifetime JPH0616445B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61029350A JPH0616445B2 (en) 1986-02-13 1986-02-13 Permanent magnet material and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61029350A JPH0616445B2 (en) 1986-02-13 1986-02-13 Permanent magnet material and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPS62188745A true JPS62188745A (en) 1987-08-18
JPH0616445B2 JPH0616445B2 (en) 1994-03-02

Family

ID=12273767

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61029350A Expired - Lifetime JPH0616445B2 (en) 1986-02-13 1986-02-13 Permanent magnet material and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JPH0616445B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005285859A (en) * 2004-03-26 2005-10-13 Tdk Corp Rare-earth magnet and its manufacturing method
JP2005294558A (en) * 2004-03-31 2005-10-20 Tdk Corp Rare earth magnet and manufacturing method thereof
WO2007088718A1 (en) * 2006-01-31 2007-08-09 Hitachi Metals, Ltd. R-Fe-B RARE-EARTH SINTERED MAGNET AND PROCESS FOR PRODUCING THE SAME
JP2007287875A (en) * 2006-04-14 2007-11-01 Shin Etsu Chem Co Ltd Process for producing rare earth permanent magnet material
JP4915349B2 (en) * 2005-12-28 2012-04-11 日立金属株式会社 Rare earth magnet and manufacturing method thereof
WO2015121915A1 (en) * 2014-02-12 2015-08-20 日東電工株式会社 Rare earth permanent magnet and production method for rare earth permanent magnet
JPWO2015151420A1 (en) * 2014-03-31 2017-04-13 Jfeスチール株式会社 Method for producing atomized metal powder
JP6294533B1 (en) * 2017-04-03 2018-03-14 住友電気工業株式会社 Manufacturing method of iron boride material and iron boride thin film material
CN110993307A (en) * 2019-12-23 2020-04-10 南昌航空大学 Method for improving coercive force and thermal stability of sintered neodymium-iron-boron magnet
CN111292951A (en) * 2020-02-28 2020-06-16 安徽大地熊新材料股份有限公司 Method for improving coercive force of sintered neodymium-iron-boron magnet
JP2022508370A (en) * 2018-12-29 2022-01-19 三環瓦克華(北京)磁性器件有限公司 Plating equipment and plating method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6054406A (en) * 1983-09-03 1985-03-28 Sumitomo Special Metals Co Ltd Permanent magnet having excellent oxidation resistance characteristic
JPS61281850A (en) * 1985-06-07 1986-12-12 Sumitomo Special Metals Co Ltd Permanent magnet material

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6054406A (en) * 1983-09-03 1985-03-28 Sumitomo Special Metals Co Ltd Permanent magnet having excellent oxidation resistance characteristic
JPS61281850A (en) * 1985-06-07 1986-12-12 Sumitomo Special Metals Co Ltd Permanent magnet material

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005285859A (en) * 2004-03-26 2005-10-13 Tdk Corp Rare-earth magnet and its manufacturing method
JP2005294558A (en) * 2004-03-31 2005-10-20 Tdk Corp Rare earth magnet and manufacturing method thereof
JP4915349B2 (en) * 2005-12-28 2012-04-11 日立金属株式会社 Rare earth magnet and manufacturing method thereof
JP4831074B2 (en) * 2006-01-31 2011-12-07 日立金属株式会社 R-Fe-B rare earth sintered magnet and method for producing the same
WO2007088718A1 (en) * 2006-01-31 2007-08-09 Hitachi Metals, Ltd. R-Fe-B RARE-EARTH SINTERED MAGNET AND PROCESS FOR PRODUCING THE SAME
US8038807B2 (en) 2006-01-31 2011-10-18 Hitachi Metals, Ltd. R-Fe-B rare-earth sintered magnet and process for producing the same
JP2011223007A (en) * 2006-01-31 2011-11-04 Hitachi Metals Ltd R-Fe-B-BASED RARE-EARTH SINTERED MAGNET AND METHOD FOR PRODUCING THE SAME
JP4656323B2 (en) * 2006-04-14 2011-03-23 信越化学工業株式会社 Method for producing rare earth permanent magnet material
JP2007287875A (en) * 2006-04-14 2007-11-01 Shin Etsu Chem Co Ltd Process for producing rare earth permanent magnet material
WO2015121915A1 (en) * 2014-02-12 2015-08-20 日東電工株式会社 Rare earth permanent magnet and production method for rare earth permanent magnet
JPWO2015151420A1 (en) * 2014-03-31 2017-04-13 Jfeスチール株式会社 Method for producing atomized metal powder
JP6294533B1 (en) * 2017-04-03 2018-03-14 住友電気工業株式会社 Manufacturing method of iron boride material and iron boride thin film material
JP2022508370A (en) * 2018-12-29 2022-01-19 三環瓦克華(北京)磁性器件有限公司 Plating equipment and plating method
US11920236B2 (en) 2018-12-29 2024-03-05 Sanvac (Beijing) Magnetics Co., Ltd. Coating machine and coating method
CN110993307A (en) * 2019-12-23 2020-04-10 南昌航空大学 Method for improving coercive force and thermal stability of sintered neodymium-iron-boron magnet
CN111292951A (en) * 2020-02-28 2020-06-16 安徽大地熊新材料股份有限公司 Method for improving coercive force of sintered neodymium-iron-boron magnet

Also Published As

Publication number Publication date
JPH0616445B2 (en) 1994-03-02

Similar Documents

Publication Publication Date Title
JPS6274048A (en) Permanent magnet material and its production
JPS62192566A (en) Permanent magnet material and its production
JPH01298704A (en) Rare earth permanent magnet
EP0991085A1 (en) Corrosion-resisting permanent magnet and method for producing the same
JPS62188745A (en) Permanent magnet material and its production
KR100204256B1 (en) Rare-earth-element-fe-b permanent magnet powder excellent in magnetic anisotropy and corrosion resistivity and bonded magnet therefrom
JP3488358B2 (en) Method for producing microcrystalline permanent magnet alloy and permanent magnet powder
US11798716B2 (en) Rare earth sintered magnet
JP2576672B2 (en) Rare earth-Fe-Co-B permanent magnet powder and bonded magnet with excellent magnetic anisotropy and corrosion resistance
JPS61159708A (en) Permanent magnet
JPS62120002A (en) Permanent magnet with excellent corrosion resistance
JPH0561345B2 (en)
WO2021193333A1 (en) Anisotropic rare-earth sintered magnet and method for producing same
JPS61264157A (en) Material for permanent magnet
JP3488354B2 (en) Method for producing microcrystalline permanent magnet alloy and isotropic permanent magnet powder
JPS61281850A (en) Permanent magnet material
JP2586199B2 (en) Rare earth-Fe-Co-B permanent magnet powder and bonded magnet with excellent magnetic anisotropy and corrosion resistance
JPH07283017A (en) Corrosion resistant permanent magnet and production thereof
JPH11214219A (en) Thin film magnet and its manufacture
JP3086334B2 (en) Anisotropic rare earth alloy powder for permanent magnet
JPH07249509A (en) Corrosion-resistant permanent magnet and its manufacture
JPS6247455A (en) Permanent magnet material having high performance
JPH1064710A (en) Isotropic permanent magnet having high magnetic flux density and manufacture thereof
JPH0624163B2 (en) permanent magnet
JP2001217109A (en) Magnet composition and bonded magnet using the same

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term