WO2015121915A1 - Rare earth permanent magnet and production method for rare earth permanent magnet - Google Patents

Rare earth permanent magnet and production method for rare earth permanent magnet Download PDF

Info

Publication number
WO2015121915A1
WO2015121915A1 PCT/JP2014/053114 JP2014053114W WO2015121915A1 WO 2015121915 A1 WO2015121915 A1 WO 2015121915A1 JP 2014053114 W JP2014053114 W JP 2014053114W WO 2015121915 A1 WO2015121915 A1 WO 2015121915A1
Authority
WO
WIPO (PCT)
Prior art keywords
permanent magnet
magnet
sintered body
rare earth
earth permanent
Prior art date
Application number
PCT/JP2014/053114
Other languages
French (fr)
Japanese (ja)
Inventor
山本 貴士
克也 久米
利昭 奥野
出光 尾関
孝志 尾崎
智弘 大牟礼
啓介 太白
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Priority to PCT/JP2014/053114 priority Critical patent/WO2015121915A1/en
Publication of WO2015121915A1 publication Critical patent/WO2015121915A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/06Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/08Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
    • H01F1/086Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together sintered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0266Moulding; Pressing

Definitions

  • the present invention relates to a rare earth permanent magnet and a method for producing a rare earth permanent magnet.
  • Permanent magnet motors used in hybrid cars, hard disk drives, and the like have been required to be smaller, lighter, higher in output, and more efficient. Further, in order to realize a reduction in size and weight, an increase in output, and an increase in efficiency in the permanent magnet motor, further improvement in magnetic characteristics is required for the permanent magnet embedded in the permanent magnet motor.
  • Permanent magnets include ferrite magnets, Sm—Co magnets, Nd—Fe—B magnets, Sm 2 Fe 17 N x magnets, and Nd—Fe—B magnets with particularly high residual magnetic flux density. Used as a permanent magnet for a permanent magnet motor.
  • Nd-based magnets such as Nd—Fe—B have a problem that the heat-resistant temperature is low. Therefore, when an Nd magnet is used for a permanent magnet motor, the residual magnetic flux density of the magnet gradually decreases when the motor is continuously driven. In addition, irreversible demagnetization has also occurred. Therefore, as a means for improving the coercive force of the Nd-based magnet, a trace amount of Cu has been conventionally added.
  • Nd-based magnets have a very high reactivity between Nd and carbon, and therefore, if a carbon-containing material remains at a high temperature in the sintering process, carbide is formed. As a result, there is a problem in that voids are formed between the main phase and the grain boundary phase of the magnet after sintering due to the formed carbide, and the entire magnet cannot be sintered densely, resulting in a significant decrease in magnetic performance.
  • reaction (1) when the calcination treatment is performed in a hydrogen atmosphere, the following reaction (1) may occur in the rare earth magnet. Nd 2 Fe 14 B + 2H 2 ⁇ 2NdH 2 + 12Fe + Fe 2 B (1)
  • the reaction (1) proceeds to the right side, the main phase (Nd 2 Fe 14 B) of the rare earth magnet is decomposed, and ⁇ Fe is precipitated, which causes a decrease in magnet characteristics. Although it is considered that a part of the main phase decomposed by the subsequent sintering treatment is recovered, ⁇ Fe remains.
  • FIG. 12 pulverizes, molds and sinters a permanent magnet manufactured by previously crushing, forming and sintering a magnet raw material containing Cu as in Patent Document 1 and a magnet raw material not containing Cu. It is the figure which changed the conditions of calcination processing and compared the coercive force about the permanent magnet manufactured by this.
  • the present invention has been made to solve the problems in the prior art, and it is possible to improve the coercive force by Cu, and even when calcination is performed in a hydrogen atmosphere, It is an object of the present invention to provide a rare earth permanent magnet and a method for producing a rare earth permanent magnet, in which phase decomposition and ⁇ Fe precipitation are suppressed and magnetic properties are not deteriorated.
  • a rare earth permanent magnet includes a step of pulverizing a magnet raw material into magnet powder, a step of forming a molded body by molding the pulverized magnet powder, and molding the magnet powder.
  • the rare earth permanent magnet according to the present invention is manufactured by a process of diffusing Cu sputtered on the surface of the sintered body into the sintered body by heating the sintered body on which Cu is sputtered. It is characterized by being.
  • the rare earth permanent magnet according to the present invention is characterized in that when the sintered body sputtered with Cu is heated, it is heated at a temperature lower than the firing temperature.
  • Cu is sputtered on the surface of the sintered body. It is characterized by.
  • the rare earth permanent magnet according to the present invention is obtained by adding Al, Dy, Tb, Nd, V, Mo, Zr, Ta, Ti, W, Ag, Ga, Co, Bi, Zn, Mg or the like to the pulverized magnet powder.
  • an organometallic compound that contains Nb and does not contain oxygen and nitrogen atoms By adding an organometallic compound that contains Nb and does not contain oxygen and nitrogen atoms, the organometallic compound is adhered to the particle surface of the magnet powder, and the organometallic compound is adhered to the particle surface.
  • a molded body is formed by molding the material.
  • the rare earth permanent magnet according to the present invention is a metal whose central metal is Al, Dy, Tb, Nd, V, Mo, Zr, Ta, Ti, W, Ag, Ga, Co, Bi, Zn, Mg, or Nb. It is characterized by being a complex or diisobutylaluminum hydride.
  • the rare earth permanent magnet in the step of forming the magnet powder into a molded body, a mixture in which the magnet powder and a binder are mixed is generated, and the mixture is formed into a sheet shape. A green sheet is produced as a body.
  • the method for producing a rare earth permanent magnet includes a step of pulverizing a magnet raw material into magnet powder, a step of forming a molded body by molding the pulverized magnet powder, and a step of forming the magnet powder before molding.
  • a step of calcining in a hydrogen atmosphere or a mixed gas atmosphere of hydrogen and an inert gas and sintering by holding the molded body at a firing temperature to obtain a sintered body
  • a step of sputtering Cu on the surface of the sintered body is a step of sputtering Cu on the surface of the sintered body.
  • the method for producing a rare earth permanent magnet according to the present invention diffuses Cu sputtered on the surface of the sintered body by heating the sintered body on which Cu is sputtered. It has the process.
  • the method for producing a rare earth permanent magnet according to the present invention is characterized in that when the sintered body sputtered with Cu is heated, the sintered body is heated at a temperature lower than the firing temperature.
  • a rare earth permanent magnet in the method of manufacturing a rare earth permanent magnet according to the present invention, in the step of sputtering Cu on the surface of the sintered body, after sputtering Nd on the surface of the sintered body, Cu is applied to the surface of the sintered body. It is characterized by sputtering.
  • the method for producing a rare earth permanent magnet according to the present invention includes adding Al, Dy, Tb, Nd, V, Mo, Zr, Ta, Ti, W, Ag, Ga, Co, Bi, Zn to the pulverized magnet powder.
  • an organometallic compound that contains Mg or Nb and does not contain oxygen and nitrogen atoms By adding an organometallic compound that contains Mg or Nb and does not contain oxygen and nitrogen atoms, the organometallic compound is adhered to the particle surface of the magnet powder, and the organometallic compound is adhered to the particle surface.
  • a compact is formed by molding the magnet powder.
  • the organometallic compound has a central metal of Al, Dy, Tb, Nd, V, Mo, Zr, Ta, Ti, W, Ag, Ga, Co, Bi. , Zn, Mg or Nb, or diisobutylaluminum hydride.
  • a mixture in which the magnet powder and a binder are mixed is generated, and the mixture is formed into a sheet shape. To produce a green sheet as the molded body.
  • the rare earth permanent magnet of the present invention having the above-described configuration, it is possible to improve the coercive force due to Cu, and even when calcining is performed in a hydrogen atmosphere, It is possible to suppress the precipitation of ⁇ Fe and prevent the magnetic properties from deteriorating.
  • the surface area of the magnet to be calcined can be increased compared to the case of calcining the molded magnet particles. . That is, the amount of carbon in the calcined body can be reduced more reliably.
  • the Cu sputtered on the surface of the sintered body is diffused into the sintered body by heating the sintered body on which Cu is sputtered.
  • Cu sputtered after sintering can be appropriately distributed with respect to the grain boundary. That is, the effect of improving the coercive force by Cu can be obtained without previously including Cu in the magnet raw material.
  • the rare earth permanent magnet of the present invention when the sintered body on which Cu is sputtered is heated, it is heated at a temperature lower than the firing temperature, so that the sputtered Cu is diffused inside the sintered body. It can prevent that the particle growth of a magnet particle arises in the process to make.
  • the rare earth permanent magnet of the present invention after sputtering Nd on the surface of the sintered body, Cu is sputtered on the surface of the sintered body, so that the sputtered Cu is diffused inside the sintered body.
  • the process can be performed at a lower temperature.
  • the rare earth permanent magnet according to the present invention Al, Dy, Tb, Nd, V, Mo, Zr, Ta, Ti, W, Ag, Ga, Co, Bi, Zn, Mg contained in the organometallic compound are included.
  • Nb can be efficiently distributed with respect to the grain boundaries of the magnet.
  • the magnetic performance of the permanent magnet can be improved.
  • the amount of addition of Al, Dy, Tb, Nd, V, Mo, Zr, Ta, Ti, W, Ag, Ga, Co, Bi, Zn, Mg, or Nb can be reduced compared to the conventional case, the residual magnetic flux A decrease in density can be suppressed.
  • the central metal is Cu, Al, Dy, Tb, Nd, V, Mo, Zr, Ta, Ti, W, Ag, Ga, Co, Bi, Zn, Mg or Since the metal complex that is Nb or diisobutylaluminum hydride is used as the organometallic compound, the organometallic compound can be easily thermally decomposed in the subsequent heating step, and the metal contained in the organometallic compound can be separated from the grain boundary. It is possible to make it unevenly distributed. In addition, the amount of carbon remaining in the magnet can be reduced by performing thermal decomposition.
  • the permanent magnet is composed of a magnet obtained by mixing magnet powder and a binder and sintering a molded green sheet. Deformation such as warping and dent after binding does not occur, and pressure unevenness at the time of pressing is eliminated, so that it is not necessary to perform correction processing after sintering, which can be performed conventionally, and the manufacturing process can be simplified. . Thereby, a permanent magnet can be formed with high dimensional accuracy.
  • the method for producing a rare earth permanent magnet according to the present invention it becomes possible to improve the coercive force due to Cu, and even when calcination is performed in a hydrogen atmosphere, the main phase is decomposed. And ⁇ Fe precipitation can be suppressed, and the magnetic characteristics can be prevented from deteriorating.
  • the surface area of the magnet to be calcined can be increased compared to the case of calcining the molded magnet particles. . That is, the amount of carbon in the calcined body can be reduced more reliably.
  • Cu sputtered on the surface of the sintered body is diffused inside the sintered body by heating the sintered body on which Cu is sputtered.
  • Cu that has been sputtered after sintering can be appropriately unevenly distributed with respect to the grain boundaries without previously including Cu in the magnet raw material. That is, the effect of improving the coercive force by Cu can be obtained without previously including Cu in the magnet raw material.
  • the sintered body with Cu sputtered when the sintered body with Cu sputtered is heated, it is heated at a temperature lower than the firing temperature. It is possible to prevent the grain growth of the magnet particles from occurring in the step of diffusing inside.
  • the method for producing a rare earth permanent magnet according to the present invention, Al, Dy, Tb, Nd, V, Mo, Zr, Ta, Ti, W, Ag, Ga, Co, Bi, contained in the organometallic compound, Zn, Mg, or Nb can be efficiently distributed with respect to the grain boundaries of the magnet. As a result, the magnetic performance of the permanent magnet can be improved.
  • the amount of addition of Al, Dy, Tb, Nd, V, Mo, Zr, Ta, Ti, W, Ag, Ga, Co, Bi, Zn, Mg, or Nb can be reduced compared to the conventional case, the residual magnetic flux A decrease in density can be suppressed.
  • the central metal is Cu, Al, Dy, Tb, Nd, V, Mo, Zr, Ta, Ti, W, Ag, Ga, Co, Bi, Zn. , Mg or Nb metal complex, or diisobutylaluminum hydride is used as the organometallic compound, so that the pyrolysis of the organometallic compound can be easily performed in the subsequent heating step, and the metal contained in the organometallic compound is granulated. It becomes possible to make it unevenly distributed with respect to the field. In addition, the amount of carbon remaining in the magnet can be reduced by performing thermal decomposition.
  • a permanent magnet is constituted by a magnet obtained by mixing magnet powder and a binder and sintering a molded green sheet, so that the shrinkage due to sintering becomes uniform.
  • deformation such as warping and dent after sintering does not occur, and pressure unevenness at the time of pressing is eliminated, so that it is not necessary to carry out correction processing after sintering, which is conventionally performed, and simplifies the manufacturing process. be able to.
  • a permanent magnet can be formed with high dimensional accuracy.
  • FIG. 1 is an overall view showing a permanent magnet according to the present invention.
  • FIG. 2 is an enlarged schematic view showing the vicinity of the grain boundary of the permanent magnet according to the present invention.
  • FIG. 3 is an enlarged schematic view showing the vicinity of the grain boundary of the permanent magnet according to the present invention.
  • FIG. 4 is an explanatory view showing a manufacturing process of the permanent magnet according to the present invention.
  • FIG. 5 is an explanatory view showing a manufacturing process of the permanent magnet according to the present invention.
  • FIG. 6 is an explanatory view showing a green sheet forming step, in particular, among the manufacturing steps of the permanent magnet according to the present invention.
  • FIG. 7 is an explanatory view showing a green sheet heating process and a magnetic field orientation process in the manufacturing process of the permanent magnet according to the present invention.
  • FIG. 1 is an overall view showing a permanent magnet according to the present invention.
  • FIG. 2 is an enlarged schematic view showing the vicinity of the grain boundary of the permanent magnet according to the present invention.
  • FIG. 8 is a diagram showing an example in which the magnetic field is oriented in the in-plane vertical direction of the green sheet.
  • FIG. 9 is a diagram illustrating a heating device using a heat medium (silicone oil).
  • FIG. 10 is a schematic view showing the pressure-sintering step of the green sheet, among the manufacturing steps of the permanent magnet according to the present invention.
  • FIG. 11 is a diagram showing various measurement results for the magnets of the example and the comparative example.
  • FIG. 12 is a diagram for explaining the problems of the prior art.
  • FIG. 1 is an overall view showing a permanent magnet 1 according to the present invention.
  • the permanent magnet 1 shown in FIG. 1 has a fan shape, but the shape of the permanent magnet 1 varies depending on the punched shape.
  • the permanent magnet 1 according to the present invention is an Nd—Fe—B anisotropic magnet.
  • Cu, Al, Dy (dysprosium), Tb (terbium), Nb (niobium), V for enhancing the magnetic performance of the permanent magnet 1 are provided at the interfaces (grain boundaries) of the crystal grains forming the permanent magnet 1.
  • each component is Nd: 25 to 37 wt%, Cu, Al, Dy, Tb, Nb, V, Mo, Zr, Ta, Ti, W, Ag, Ga, Co, Bi, Zn, Mg (However, at least Cu is included.
  • Cu or the like 0.01 to 5 wt%
  • B 0.8 to 2 wt%
  • Fe electrolytic iron
  • a small amount of other elements such as Si may be included to improve the magnetic characteristics.
  • the permanent magnet 1 according to the present invention includes a layer containing Cu or the like in the surface portion (outer shell) of the crystal grains of the Nd crystal particles (main phase) 2 constituting the permanent magnet 1 as shown in FIG. 3 (hereinafter referred to as the unevenly distributed metal layer 3) causes Cu or the like to be unevenly distributed with respect to the grain boundaries of the Nd crystal particles 2.
  • FIG. 2 is an enlarged view showing Nd crystal particles 2 constituting the permanent magnet 1.
  • the metal uneven distribution layer 3 is preferably non-magnetic.
  • Cu is sputtered on the surface of the sintered body as will be described later in order to generate the metal uneven distribution layer 3 containing Cu in particular.
  • the sintered body is set in a sputtering apparatus, Cu is sputtered onto the surface of the sintered body, and then the sputtered sintered body is heated.
  • the sputtered Cu diffuses and penetrates into the sintered body to form the unevenly distributed metal layer 3 shown in FIG.
  • Nd is sputtered before Cu is sputtered
  • Cu can be diffused and penetrated in a state of an Nd—Cu alloy (melting point 459 ° C.) having a melting point lower than that of Cu alone. It is possible to diffuse and penetrate into the sintered body.
  • an organometallic compound containing Dy and the like is formed before forming the pulverized magnet powder. Adding to the powder is performed. Specifically, when the magnet powder to which the organometallic compound containing Dy or the like is added is sintered, the Dy or the like in the organometallic compound uniformly adhered to the particle surface of the Nd crystal particles 2 by wet dispersion is Nd. Replacement is performed by diffusing and penetrating into the crystal growth region of the crystal grain 2 to form the unevenly distributed metal layer 3 shown in FIG.
  • the Nd crystal particles 2 are made of, for example, an Nd 2 Fe 14 B intermetallic compound
  • the metal uneven distribution layer 3 is made of, for example, an Nd—Cu intermetallic compound, an Nd—Fe—Cu intermetallic compound, an NbFeB intermetallic compound, (Dy x Nd 1-x) 2 Fe 14 composed of B intermetallic compound.
  • an Nd-rich phase or the like is also formed at the grain boundary.
  • an organometallic compound containing Dy or the like and Nd and not containing an oxygen atom and a nitrogen atom more specifically, a metal complex or diisobutyl hydride whose central metal is Dy or the like and Nd.
  • Aluminum (DIBAL) is added to the organic solvent and mixed with the magnet powder in a wet state.
  • the metal complex it is particularly desirable to use a metal alkyl complex whose ligand is an alkyl group. Especially cyclopentadienyl, methyl, benzyl, isobutyl, phenyl, octyl, ethylcyclopentadienyl, isopropylcyclopentadienyl, tetramethylcyclopentadienyl or pentamethylcyclopentadienyl A metal complex containing a group or a metal acetylide complex is desirable.
  • metal complexes include tris (ethylcyclopentadienyl) Dy (III), tris (isopropylcyclopentadienyl) Tb (III), bis (cyclopentadienyl) Mg (II), bis ( Cyclopentadienyl) dibenzyl Nb (IV), trihydridobis (pentamethyldicyclopentadienyl) Nb (V), bis (cyclopentadienyl) dimethyl Ti (IV), bis (cyclopentadienyl) dimethyl Zr (IV), dihydridobis (cyclopentadienyl) Zr (IV), tris (tetramethylcyclopentadienyl) Nd (III), trioctyl Al (III), diphenyl Zn (II), triphenyl Bi (III), Ag (I) t-butyl acetylide, mesityl Ag (I), triscyclopentadienyl Ga
  • the compact of the magnet powder to which the organometallic compound is added is fired under appropriate firing conditions, Dy and the like can be prevented from diffusing and penetrating (solid solution) into the Nd crystal particles 2.
  • Dy etc. can be unevenly distributed only to a grain boundary after sintering.
  • the core Nd 2 Fe 14 B intermetallic compound phase occupies a high volume ratio.
  • the sintered Nd crystal particles 2 are in a dense state, it is considered that exchange interaction propagates between the Nd crystal particles 2.
  • the magnetization reversal of each crystal particle easily occurs, and even if each sintered crystal particle can have a single domain structure, the coercive force decreases.
  • the exchange interaction between the Nd crystal particles 2 is separated by the nonmagnetic metal uneven distribution layer 3 coated on the surface of the Nd crystal particles 2, and each crystal particle is applied even when a magnetic field is applied from the outside. Prevents the reversal of magnetization.
  • the metal uneven distribution layer 3 is composed of a layer containing at least Cu, it functions as a means for uniformly dispersing the Nd-rich phase in the sintered permanent magnet 1 and increasing the coercive force.
  • the metal uneven distribution layer 3 is constituted by a layer containing V, Mo, Zr, Ta, Ti, W or Nb, which is a particularly high melting point metal, the metal uneven distribution layer 3 coated on the surface of the Nd crystal particles 2 When the permanent magnet 1 is sintered, it also functions as a means for suppressing so-called grain growth in which the average grain size of the Nd crystal grains 2 increases.
  • the metal uneven distribution layer 3 is composed of a layer containing Dy or Tb having a particularly high magnetic anisotropy, it also functions as means for suppressing the generation of reverse magnetic domains and increasing the coercive force (preventing magnetization reversal).
  • the metal uneven distribution layer 3 is composed of a layer containing Al in particular, it also functions as a means for uniformly dispersing the Nd-rich phase in the sintered permanent magnet 1 together with Cu and increasing the coercive force.
  • the metal uneven distribution layer 3 is composed of a layer containing other Ag, Ga, Co, Bi, Zn, or Mg, the magnetic performance of the permanent magnet is improved, such as coercivity improvement by grain boundary control or grain growth suppression. Can be expected.
  • the Nd-rich phase can be uniformly dispersed in the sintered permanent magnet 1. Further, even if the rare earth element is combined with oxygen or carbon in the manufacturing process, the rare earth element is not deficient with respect to the stoichiometric composition, and ⁇ Fe is prevented from being generated in the sintered permanent magnet 1. It becomes possible.
  • the particle diameter D of the Nd crystal particles 2 is 0.2 ⁇ m to 1.2 ⁇ m, preferably about 0.3 ⁇ m.
  • the thickness d of the metal uneven distribution layer 3 is about 2 nm, it becomes possible to obtain the effects (grain growth suppression, exchange interaction division, coercive force improvement, etc.) due to the metal uneven distribution layer 3.
  • the thickness d of the metal uneven distribution layer 3 becomes too large, the content of non-magnetic components that do not exhibit magnetism increases, so that the residual magnetic flux density decreases.
  • the unevenly distributed metal layer 3 is composed of Cu compound, Al compound, Dy compound, Tb compound, Nb compound, V compound, Mo compound, Zr compound, Ta compound, Ti compound, Ag compound, Ga compound, Co compound, Bi compound, Zn. It is not necessary to be a layer composed only of a compound, Mg compound or W compound (hereinafter referred to as a compound such as Cu), and may be a layer composed of a mixture of a compound such as Cu and an Nd compound. In that case, a layer made of a mixture of a compound such as Cu and an Nd compound is formed. As a result, liquid phase sintering during the sintering of the Nd magnet powder can be promoted.
  • a compound such as Cu Mg compound or W compound
  • the permanent magnet 1 is a thin-film permanent magnet having a thickness of, for example, 0.05 mm to 10 mm (for example, 1 mm).
  • the permanent magnet 1 is manufactured by sintering a molded body (green body) formed by compacting as described below, or a molded body (green body) formed by mixing a mixture of magnet powder and a binder. Further, the green body is produced by forming a mixture (slurry or compound) in which magnet powder and a binder are mixed into a predetermined shape (for example, a sheet shape, a block shape, a final product shape, etc.) as described later. .
  • a resin, a long-chain hydrocarbon, a fatty acid ester, a mixture thereof, or the like is used as the binder mixed with the magnet powder.
  • a resin it is preferable to use a polymer that does not contain an oxygen atom in the structure and has a depolymerization property.
  • a thermoplastic resin is used.
  • the polymer which consists of 1 type, or 2 or more types of polymers or copolymers chosen from the monomer shown by the following general formula (1) corresponds.
  • R1 and R2 represent a hydrogen atom, a lower alkyl group, a phenyl group or a vinyl group.
  • polystyrene resin examples include polyisobutylene (PIB), which is a polymer of isobutylene, polyisoprene (isoprene rubber, IR), which is a polymer of isoprene, and polybutadiene (butadiene) that is a polymer of 1,3-butadiene.
  • PIB polyisobutylene
  • IR polyisoprene rubber
  • IR isoprene rubber
  • IR isoprene rubber
  • butadiene butadiene
  • Rubber, BR polystyrene as a polymer of styrene, styrene-isoprene block copolymer (SIS) as a copolymer of styrene and isoprene, butyl rubber (IIR) as a copolymer of isobutylene and isoprene, styrene and butadiene
  • SIS styrene-isoprene block copolymer
  • IIR butyl rubber
  • SBS styrene-butadiene block copolymer which is a copolymer of 2-methyl-1-pentene, a polymer of 2-methyl-1-pentene, and a polymer of 2-methyl-1-butene.
  • a 2-methyl-1-butene polymer resin a polymer of ⁇ -methylstyrene That there is ⁇ - methyl styrene polymer resin.
  • the resin used for the binder may include a small amount of a polymer or copolymer of a monomer containing an oxygen atom (for example, polybutyl methacrylate, polymethyl methacrylate, etc.).
  • a monomer that does not correspond to the general formula (1) may be partially copolymerized. Even in that case, it is possible to achieve the object of the present invention.
  • thermoplastic resin that softens at 250 ° C. or lower, more specifically a thermoplastic resin having a glass transition point or a melting point of 250 ° C. or lower in order to appropriately perform magnetic field orientation. .
  • a long chain hydrocarbon when used for the binder, it is preferable to use a long chain saturated hydrocarbon (long chain alkane) that is solid at room temperature and liquid at room temperature or higher. Specifically, it is preferable to use a long-chain saturated hydrocarbon having 18 or more carbon atoms. Then, when the mixture of the magnetic powder and the binder is magnetically oriented as described later, the magnetic field orientation is performed in a state where the mixture is heated and softened at a temperature equal to or higher than the melting point of the long-chain hydrocarbon.
  • a long chain saturated hydrocarbon long chain alkane
  • a fatty acid ester when used as the binder, it is also preferable to use methyl stearate or methyl docosanoate which is solid at room temperature and liquid at room temperature or higher. And, as will be described later, when the magnetic powder and binder mixture is magnetically oriented, the magnetic field orientation is performed in a state where the mixture is heated and softened above the melting point of the fatty acid ester.
  • the amount of carbon and oxygen contained in the magnet can be reduced.
  • the amount of carbon remaining in the magnet after sintering is 2000 ppm or less, more preferably 1000 ppm or less.
  • the amount of oxygen remaining in the magnet after sintering is set to 5000 ppm or less, more preferably 2000 ppm or less.
  • the amount of the binder added is an amount that appropriately fills the gaps between the magnet particles in order to improve the thickness accuracy of the molded body when molding a slurry or a heated and melted compound.
  • the ratio of the binder to the total amount of magnet powder and binder is 1 wt% to 40 wt%, more preferably 2 wt% to 30 wt%, and even more preferably 3 wt% to 20 wt%.
  • FIGS. 4 and 5 are explanatory views showing the manufacturing process of the permanent magnet 1 according to this embodiment.
  • an ingot made of a predetermined fraction of Nd—Fe—B (eg, Nd: 32.7 wt%, Fe (electrolytic iron): 65.96 wt%, B: 1.34 wt%) is manufactured. Thereafter, the ingot is roughly pulverized to a size of about 200 ⁇ m by a stamp mill or a crusher. Alternatively, the ingot is melted, flakes are produced by strip casting, and coarsely pulverized by hydrogen crushing. Thereby, coarsely pulverized magnet powder 10 is obtained.
  • Nd—Fe—B eg, Nd: 32.7 wt%, Fe (electrolytic iron): 65.96 wt%, B: 1.34 wt
  • the coarsely pulverized magnet powder 10 is finely pulverized by a wet method using a bead mill 11 or a dry method using a jet mill.
  • the coarsely pulverized magnet powder 10 is finely pulverized in a solvent to a predetermined particle size (for example, 0.1 ⁇ m to 5.0 ⁇ m) and the magnet powder is dispersed in the solvent. .
  • Alcohols such as isopropyl alcohol, ethanol, methanol, Esters, such as ethyl acetate, Lower hydrocarbons, such as pentane and hexane, Aromatics, such as benzene, toluene, xylene , Ketones, mixtures thereof and the like.
  • the solvent which does not contain an oxygen atom in a solvent is used.
  • coarsely pulverized magnet powder is (a) in an atmosphere composed of an inert gas such as nitrogen gas, Ar gas, and He gas having substantially 0% oxygen content.
  • finely pulverized by a jet mill in an atmosphere made of an inert gas such as nitrogen gas, Ar gas, and He gas having an oxygen content of 0.0001 to 0.5%, A fine powder having an average particle diameter of 0.7 ⁇ m to 5.0 ⁇ m.
  • the oxygen concentration of substantially 0% is not limited to the case where the oxygen concentration is completely 0%, but may contain oxygen in such an amount that a very small amount of oxide film is formed on the surface of the fine powder. Means good.
  • the organometallic compound to be dissolved includes an organometallic compound containing Dy or the like and Nd and not containing an oxygen atom and a nitrogen atom, more specifically, a metal complex having a central metal of Dy or the like or Nd
  • the organometallic compound to be dissolved includes an organometallic compound containing Dy or the like and Nd and not containing an oxygen atom and a nitrogen atom, more specifically, a metal complex having a central metal of Dy or the like or Nd
  • the amount of the organometallic compound to be dissolved is not particularly limited, but the amount is such that the content of Dy or the like in the sintered magnet is 0.001 wt% to 10 wt%, preferably 0.01 wt% to 5 wt%. Is preferred.
  • the organometallic compound may be added to the solvent before the pulverization step, and pulverization and mixing may be performed simultaneously.
  • the organometallic compound is made to adhere to the particle
  • the magnet powder with the organometallic compound attached to the particle surface is molded into a desired shape.
  • molding of magnet powder there exist compacting which shape
  • the mixture in green body molding, may be directly molded into the final product shape, or the mixture is once molded into a shape other than the final product shape and magnetic field orientation is performed, and then punching, cutting, deformation, etc. are performed. It is good also as a final product shape by doing.
  • the mixture is once formed into a sheet shape (hereinafter referred to as a green sheet) and then processed into a final product shape.
  • a green sheet a sheet shape
  • the mixture when the mixture is formed into a sheet shape, for example, hot melt coating that forms a sheet shape after heating a compound in which a magnet powder and a binder are mixed, or a slurry containing a magnet powder, a binder, and an organic solvent.
  • hot melt coating that forms a sheet shape after heating a compound in which a magnet powder and a binder are mixed, or a slurry containing a magnet powder, a binder, and an organic solvent.
  • slurry coating or the like that forms a sheet by coating the
  • a powdery mixture (compound) 12 composed of magnet powder and binder is prepared by mixing a binder with magnet powder.
  • a binder a resin, a long-chain hydrocarbon, a fatty acid ester, a mixture thereof, or the like is used as described above.
  • a resin a thermoplastic resin made of a depolymerizable polymer that does not contain an oxygen atom in the structure is used.
  • a long-chain hydrocarbon when a long-chain hydrocarbon is used, the resin is solid at room temperature or above It is preferable to use a long-chain saturated hydrocarbon (long-chain alkane) that is liquid.
  • the amount of the binder added is such that the ratio of the binder to the total amount of the magnet powder and the binder in the compound 12 after the addition is 1 wt% to 40 wt%, more preferably 2 wt% to 30 wt%, still more preferably 3 wt%. % To 20 wt%.
  • an additive for promoting orientation may be added to the compound 12 in order to improve the degree of orientation in a magnetic field orientation step performed later.
  • a hydrocarbon-based additive is used, and it is particularly preferable to use an additive having polarity (specifically, an acid dissociation constant pKa of less than 41).
  • the addition amount of the additive depends on the particle diameter of the magnet powder, and it is necessary to increase the addition amount as the particle diameter of the magnet powder is smaller.
  • the specific addition amount is 0.1 to 10 parts, more preferably 1 to 8 parts, with respect to the magnet powder.
  • the additive added to the magnet powder adheres to the surface of the magnet particles and has a role of assisting the rotation of the magnet particles in the magnetic field orientation process described later.
  • orientation is easily performed when a magnetic field is applied, and the easy magnetization axis directions of the magnet particles can be aligned in the same direction (that is, the degree of orientation can be increased).
  • the frictional force at the time of orientation is increased and the orientation of the particles is lowered, so that the effect of adding the additive is further increased.
  • the binder is added in an atmosphere made of an inert gas such as nitrogen gas, Ar gas, or He gas.
  • the mixing of the magnet powder and the binder is performed, for example, by putting the magnet powder and the binder in an organic solvent and stirring with a stirrer. In addition, heating and stirring may be performed to promote kneading properties.
  • the compound 12 is extracted by heating the organic solvent containing magnet powder and a binder after stirring, and vaporizing an organic solvent.
  • the mixing of the magnet powder and the binder is preferably performed in an atmosphere made of an inert gas such as nitrogen gas, Ar gas, or He gas.
  • the binder is added to the solvent without kneading the magnet powder from the solvent used for pulverization, and then the solvent is volatilized. It is good also as a structure to obtain.
  • a green sheet is formed by forming the compound 12 into a sheet shape.
  • the compound 12 in hot melt coating, the compound 12 is heated to melt the compound 12 to form a fluid, and then the coating is applied on the support substrate 13 such as a separator. Then, the long sheet-like green sheet 14 is formed on the support base material 13 by heat dissipation and solidifying.
  • the temperature at which the compound 12 is heated and melted is 50 to 300 ° C., although it varies depending on the type and amount of the binder used. However, the temperature needs to be higher than the melting point of the binder to be used.
  • magnet powder and a binder are dispersed in a large amount of organic solvent, and the slurry is placed on a support substrate 13 such as a separator. Apply. Then, the green sheet 14 of a long sheet shape is formed on the support substrate 13 by drying and volatilizing the organic solvent.
  • the coating method of the melted compound 12 is preferably a method having excellent layer thickness controllability such as a slot die method or a calendar roll method.
  • a die method or comma coating method that is particularly excellent in layer thickness controllability that is, a method capable of applying a high-accuracy thickness layer on the surface of a substrate
  • coating is performed by extruding a heated compound 12 in a fluid state by a gear pump and inserting the compound 12 into a die.
  • the calendar roll method a certain amount of the compound 12 is charged into the gap between the two heated rolls, and the compound 12 melted by the heat of the roll is applied onto the support base 13 while rotating the roll.
  • the support base material 13 for example, a silicone-treated polyester film is used.
  • the green sheet is formed on the support substrate 13 by molding the compound 12 melted by extrusion molding or injection molding into a sheet shape and extruding the support substrate 13 instead of coating on the support substrate 13. 14 may be formed.
  • FIG. 6 is a schematic view showing a process of forming the green sheet 14 by the slot die method.
  • the die 15 used in the slot die system is formed by superimposing the blocks 16 and 17 on each other, and a slit 18 and a cavity (liquid reservoir) 19 are formed by a gap between the blocks 16 and 17. Form.
  • the cavity 19 communicates with a supply port 20 provided in the block 17.
  • the supply port 20 is connected to a coating liquid supply system constituted by a gear pump (not shown) or the like, and the metered fluid-like compound 12 is quantified in the cavity 19 via the supply port 20. Supplied by a pump or the like.
  • the fluid-like compound 12 supplied to the cavity 19 is fed to the slit 18 and discharged from the discharge port 21 of the slit 18 with a predetermined application width with a uniform amount in the width direction at a constant amount per unit time.
  • the support base material 13 is continuously conveyed at a preset speed as the coating roll 22 rotates.
  • the ejected fluid compound 12 is applied to the support base material 13 with a predetermined thickness, and then heat-radiating and solidifying to form a long sheet-like green sheet 14 on the support base material 13. Is done.
  • the sheet thickness of the green sheet 14 after coating is measured, and the gap D between the die 15 and the support base 13 is feedback-controlled based on the measured value. desirable. Further, the fluctuation of the amount of the fluid compound 12 supplied to the die 15 is reduced as much as possible (for example, suppressed to fluctuation of ⁇ 0.1% or less), and the fluctuation of the coating speed is reduced as much as possible (for example, ⁇ 0. It is desirable to suppress the fluctuation to 1% or less. Thereby, it is possible to further improve the thickness accuracy of the green sheet 14.
  • the thickness accuracy of the formed green sheet 14 is within ⁇ 10%, more preferably within ⁇ 3%, and even more preferably within ⁇ 1% with respect to the design value (for example, 1 mm).
  • the design value for example, 1 mm.
  • the set thickness of the green sheet 14 is desirably set in the range of 0.05 mm to 20 mm. When the thickness is less than 0.05 mm, the productivity must be reduced because multiple layers must be stacked.
  • the green sheet 14 is first softened by heating the green sheet 14 that is continuously conveyed together with the support base material 13. Specifically, the green sheet 14 is softened until the viscosity becomes 1 to 1500 Pa ⁇ s, more preferably 1 to 500 Pa ⁇ s. Thereby, the magnetic field orientation can be appropriately performed.
  • the temperature and time for heating the green sheet 14 vary depending on the type and amount of the binder used, but for example, 100 to 250 ° C. and 0.1 to 60 minutes. However, in order to soften the green sheet 14, it is necessary to set the temperature to be equal to or higher than the glass transition point or melting point of the binder used.
  • a heating method for heating the green sheet 14 for example, there are a heating method using a hot plate and a heating method using a heat medium (silicone oil) as a heat source.
  • a heat medium silicone oil
  • magnetic field orientation is performed by applying a magnetic field to the in-plane direction and the length direction of the green sheet 14 softened by heating.
  • the intensity of the applied magnetic field is 5000 [Oe] to 150,000 [Oe], preferably 10,000 [Oe] to 120,000 [Oe].
  • the C axis (easy magnetization axis) of the magnet crystal included in the green sheet 14 is oriented in one direction.
  • the magnetic field may be applied in the in-plane direction and the width direction of the green sheet 14.
  • it is good also as a structure which orientates a magnetic field simultaneously with respect to the several green sheet 14.
  • a configuration in which a magnetic field is applied at the same time as the heating process may be performed, or a magnetic field may be applied after the heating process and before the green sheet solidifies. It is good also as performing the process to perform. Moreover, it is good also as a structure which magnetic field orientates before the green sheet 14 apply
  • FIG. 7 is a schematic view showing a heating process and a magnetic field orientation process of the green sheet 14.
  • FIG. 7 an example in which the magnetic field orientation process is performed simultaneously with the heating process will be described.
  • heating and magnetic field orientation on the green sheet 14 coated by the slot die method described above are performed on the long green sheet 14 in a state of being continuously conveyed by a roll. That is, an apparatus for performing heating and magnetic field orientation is disposed on the downstream side of the coating apparatus (die or the like), and is performed by a process continuous with the above-described coating process.
  • the solenoid 25 is disposed on the downstream side of the die 15 and the coating roll 22 so that the transported support base material 13 and the green sheet 14 pass through the solenoid 25.
  • the hot plates 26 are arranged in a pair above and below the green sheet 14 in the solenoid 25.
  • the green sheet 14 is heated by a pair of upper and lower hot plates 26 and an electric current is passed through the solenoid 25, so that the in-plane direction of the long green sheet 14 (that is, the sheet surface of the green sheet 14).
  • a magnetic field in the longitudinal direction Thereby, the continuously conveyed green sheet 14 is softened by heating, and a magnetic field is applied to the in-plane direction and the length direction (in the direction of arrow 27 in FIG. 7) of the softened green sheet 14.
  • the surface of the green sheet 14 can be prevented from standing upright by setting the direction in which the magnetic field is applied to the in-plane direction. Moreover, it is preferable that the heat dissipation and solidification of the green sheet 14 performed after the magnetic field orientation is performed in a transported state. Thereby, the manufacturing process can be made more efficient.
  • a pair of magnetic field coils are arranged on the left and right of the green sheet 14 that is conveyed instead of the solenoid 25. And it becomes possible to generate a magnetic field in the in-plane direction and the width direction of the long sheet-like green sheet 14 by passing a current through each magnetic field coil.
  • the magnetic field application device 30 using a pole piece or the like includes two ring-shaped coil portions 31 and 32 arranged in parallel so that the central axes are the same, and the coil portion 31. , 32 and two substantially cylindrical pole pieces 33, 34 respectively disposed in the ring holes, and are spaced apart from the conveyed green sheet 14 by a predetermined distance.
  • a magnetic field is produced
  • the film 35 is also formed on the opposite surface of the green sheet 14 on which the support base material 13 is laminated as shown in FIG. Are preferably laminated. Accordingly, it is possible to prevent the surface of the green sheet 14 from standing upside down.
  • FIG. 9 is a diagram showing an example of a heating device 37 using a heat medium.
  • the heating device 37 forms a substantially U-shaped cavity 39 inside a flat plate member 38 serving as a heating element, and heat heated to a predetermined temperature (for example, 100 to 300 ° C.) in the cavity 39. It is set as the structure which circulates the silicone oil which is a medium.
  • the heating device 37 is disposed in a pair above and below the green sheet 14 in the solenoid 25.
  • the continuously conveyed green sheet 14 is heated and softened through the flat plate member 38 that is heated by the heat medium.
  • the flat plate member 38 may be brought into contact with the green sheet 14 or may be arranged at a predetermined interval.
  • a magnetic field is applied to the in-plane direction and the length direction of the green sheet 14 (in the direction of the arrow 27 in FIG. 7) by the solenoid 25 arranged around the softened green sheet 14.
  • An appropriate uniform magnetic field can be oriented.
  • the heating device 37 using the heat medium as shown in FIG. 9 does not have a heating wire inside unlike the general hot plate 26, so even if it is placed in a magnetic field, There is no possibility that the heating wire vibrates or is cut, and the green sheet 14 can be appropriately heated.
  • when performing control by electric current there is a problem that causes fatigue failure due to vibration of the heating wire when the power is turned on or off, but by using the heating device 37 using a heat medium as a heat source, Such a problem can be solved.
  • the green sheet 14 when the green sheet 14 is formed from a liquid material having high fluidity such as slurry by a general slot die method or doctor blade method without using hot melt molding, a magnetic field gradient is generated.
  • the magnetic powder contained in the green sheet 14 is attracted toward the stronger magnetic field, so that the slurry forming the green sheet 14 is closer to the liquid, that is, the thickness of the green sheet 14 is uneven. May occur.
  • the compound 12 when the compound 12 is molded into the green sheet 14 by hot melt molding as in the present invention, the viscosity near room temperature reaches several tens of thousands to several hundred thousand Pa ⁇ s, and the magnetism when passing through the magnetic field gradient is reached. There is no powder slippage. Furthermore, the viscosity of the binder is lowered by being transported and heated in a uniform magnetic field, and uniform C-axis orientation is possible only by the rotational torque in the uniform magnetic field.
  • the thickness exceeds 1 mm.
  • a liquid material having high fluidity such as a slurry containing an organic solvent by a general slot die method or doctor blade method without using hot melt molding
  • the thickness exceeds 1 mm.
  • foaming due to vaporization of the organic solvent contained in the slurry or the like during drying becomes a problem.
  • the drying time is prolonged to suppress foaming, the magnet powder is settled, and accordingly, the density distribution of the magnet powder is biased with respect to the direction of gravity, which causes warping after firing. Therefore, in the molding from the slurry, the upper limit value of the thickness is substantially regulated, so it is necessary to mold the green sheet with a thickness of 1 mm or less and then laminate it.
  • the green sheet 14 subjected to the magnetic field orientation is punched into a desired product shape (for example, a fan shape shown in FIG. 1), and a formed body 40 is formed.
  • a non-oxidizing atmosphere in which the molded body 40 is pressurized to atmospheric pressure, or a pressure higher or lower than atmospheric pressure (for example, 1.0 Pa or 1.0 MPa).
  • atmospheric pressure or a pressure higher or lower than atmospheric pressure (for example, 1.0 Pa or 1.0 MPa).
  • a binder decomposition temperature in a mixed gas atmosphere of an inert gas and an inert gas a temperature satisfying a condition equal to or higher than the thermal decomposition temperature of the additive if an additive that promotes orientation is added
  • the calcining process is performed by holding for 5 hours.
  • the supply amount of hydrogen during calcination is set to 5 L / min.
  • an organic compound such as a binder can be decomposed into a monomer by a depolymerization reaction or the like and scattered to be removed. Also, carbon can be removed while pyrolyzing the organometallic compound and leaving the metal element at the grain boundary. That is, so-called decarbonization for reducing the amount of carbon in the molded body 40 is performed.
  • the calcining treatment is performed under the condition that the carbon content in the molded body 40 is 2000 ppm or less, more preferably 1000 ppm or less. Accordingly, the entire permanent magnet 1 can be densely sintered by the subsequent sintering process, and the residual magnetic flux density and coercive force are not reduced.
  • the pressurizing condition is a pressure higher than atmospheric pressure, more specifically 0.2 MPa or more, the effect of reducing the carbon amount can be expected.
  • the binder decomposition temperature is determined based on the analysis results of the binder decomposition product and decomposition residue. Specifically, a temperature range is selected in which decomposition products of the binder are collected, decomposition products other than the monomers are not generated, and products due to side reactions of the remaining binder components are not detected even in the analysis of the residues. Although it varies depending on the kind of the binder, it is set to 200 ° C. to 900 ° C., more preferably 400 ° C. to 600 ° C. (eg, 450 ° C.).
  • the thermal decomposition temperature of the organometallic compound is determined depending on the kind of the organometallic compound to be added, but basically the thermal decomposition of the organometallic compound can be performed at the binder decomposition temperature.
  • a calcination process is performed at the thermal decomposition temperature of an organometallic compound.
  • the magnet raw material is pulverized by wet pulverization in an organic solvent
  • the calcining treatment is performed at the thermal decomposition temperature and binder decomposition temperature of the organic compound constituting the organic solvent. Thereby, the remaining organic solvent can be removed.
  • the thermal decomposition temperature of the organic compound is determined depending on the type of the organic solvent to be used, but basically the thermal decomposition of the organic compound can be performed at the binder decomposition temperature.
  • the heating rate is reduced as compared with a case where a general magnet is sintered.
  • the temperature rising rate is set to 2 ° C./min or less (for example, 1.5 ° C./min). Therefore, when performing the calcining treatment, the temperature is increased at a predetermined temperature increase rate of 2 ° C./min or less, and after reaching a preset set temperature (binder decomposition temperature), at the set temperature for several hours to Calcination is performed by holding for several tens of hours.
  • the carbon in the molded body 40 is not removed rapidly but is removed in stages, so that the density of the sintered permanent magnet is increased ( That is, it is possible to reduce the air gap in the permanent magnet. And if a temperature increase rate shall be 2 degrees C / min or less, the density of the permanent magnet after sintering can be made 95% or more, and a high magnet characteristic can be anticipated.
  • NdH 3 (high activity) in the molded body 40 produced by the calcination treatment is changed stepwise from NdH 3 (high activity) ⁇ NdH 2 (low activity).
  • the activity of the molded body 40 activated by the calcination treatment is reduced.
  • a sintering process for sintering the compact 40 that has been calcined by the calcining process is performed.
  • a sintering method of the molded body 40 it is also possible to use pressure sintering which sinters in a state where the molded body 40 is pressed in addition to general vacuum sintering.
  • the temperature is raised to a firing temperature of about 800 ° C. to 1080 ° C. at a predetermined temperature increase rate and held for about 0.1 to 2 hours. During this time, vacuum firing is performed, but the degree of vacuum is 5 Pa or less, preferably 10-2 Pa or less.
  • sintered body 50 a sintered compact of the magnet
  • pressure sintering examples include hot press sintering, hot isostatic pressing (HIP) sintering, ultrahigh pressure synthetic sintering, gas pressure sintering, and discharge plasma (SPS) sintering.
  • HIP hot isostatic pressing
  • SPS discharge plasma
  • the SPS is uniaxial pressure sintering that pressurizes in a uniaxial direction and is sintered by current sintering. Sintering is preferably used.
  • the pressure value is set to, for example, 0.01 MPa to 100 MPa, the pressure is increased to 940 ° C.
  • FIG. 10 is a schematic diagram showing a pressure sintering process of the compact 40 by SPS sintering.
  • the compact 40 when performing SPS sintering, first, the compact 40 is installed in the sintering die 41 made of graphite. The calcining process described above may also be performed in a state where the molded body 40 is installed in the sintering mold 41. Then, the compact 40 placed in the sintering die 41 is held in the vacuum chamber 42, and an upper punch 43 and a lower punch 44 made of graphite are set.
  • a low-voltage and high-current DC pulse voltage / current is applied using the upper punch electrode 45 connected to the upper punch 43 and the lower punch electrode 46 connected to the lower punch 44.
  • a load is applied to the upper punch 43 and the lower punch 44 from above and below using a pressure mechanism (not shown).
  • a pressure mechanism not shown.
  • the compact 40 placed in the sintering die 41 is sintered while being pressurized.
  • the sintered body 50 sintered by the above sintering treatment is set in a sputtering apparatus, and Nd sputtering is performed on the surface of the sintered body 50.
  • the sputtering conditions are, for example, 300 mA and 60 minutes. Note that Nd sputtering is performed on both sides of the sintered body 50 when the sintered body 50 has a thin plate shape as shown in FIG. As a result, an Nd thin film 51 is formed on the surface of the sintered body 50.
  • Cu is further sputtered on the surface of the sintered body 50 on which the Nd sputtering has been performed.
  • the sputtering conditions are, for example, 300 mA and 15 minutes.
  • Cu sputtering is performed on both surfaces of the sintered body 50 when the sintered body 50 has a thin plate shape as shown in FIG. As a result, a Cu thin film 52 is also formed on the surface of the sintered body 50 so as to overlap the Nd thin film 51.
  • Cu sputtered on the surface of the sintered body 50 is diffused into the sintered body 50.
  • the diffusion process is performed.
  • the diffusion treatment is performed at a temperature lower than the sintering temperature in a vacuum atmosphere and higher than the melting point of an intermetallic compound of Cu and Nd (for example, Nd—Cu) (for example, 600 ° C. to 800 ° C.) for a certain time (for example, 5 hours) by heating.
  • Nd—Cu an intermetallic compound of Cu and Nd
  • a certain time for example, 5 hours
  • Cu has a lower melting point in an alloy with Nd than in a single metal. Therefore, the diffusion treatment can be performed at a low temperature, and there is no possibility of grain growth at the stage of the diffusion treatment. Further, even when the amount of Cu added is small (for example, 0.1 wt%), Cu can be appropriately unevenly distributed with respect to the grain boundary. And as a result of performing the said diffusion process, the permanent magnet 1 is manufactured.
  • the sintered body 50 after the sintering by the sintering process and before or after the diffusion process may be further heat-treated.
  • the heat treatment is performed by once releasing the heat of the sintered body and heating it in a vacuum atmosphere at a temperature lower than the sintering temperature (460 ° C. to 600 ° C.) for a certain time (for example, 1 hour).
  • Dy and Nd contained in the organometallic compound form a eutectic in the sintered body.
  • Dy or the like contained in the organometallic compound is a specific metal (for example, Al, Ag, Ga (hereinafter referred to as Al or the like)
  • the eutectic has a lower melting point than Nd alone. Therefore, if heat treatment is performed at a temperature higher than the melting point of eutectic of Al and the like contained in the organometallic compound after sintering, the melting point is lowered by eutectic with Al and the like contained in the organometallic compound.
  • the Nd-rich phase becomes a liquid phase at the stage of heat treatment and penetrates into the grain boundaries, and a uniform Nd-rich phase can be formed at the grain boundaries. As a result, the coercive force of the permanent magnet 1 can be improved. In addition, since the heat treatment is performed at a low temperature, there is no possibility of grain growth at the stage of the heat treatment.
  • the calcining treatment is carried out at 450 ° C. in a hydrogen atmosphere at atmospheric pressure (in this example, it is assumed that the atmospheric pressure at the time of manufacture is the standard atmospheric pressure (about 0.1 MPa) in particular in this embodiment). Performed by holding time.
  • Nd sputtering is performed on the upper and lower surfaces of the sintered body at a current value of 300 mA for 60 minutes, and subsequently, the current value of 300 mA is also applied to the upper and lower surfaces of the sintered body. Then, sputtering of Cu was performed for 15 minutes.
  • the sputtering apparatus an MSP-30T magnetron sputtering apparatus (manufactured by vacuum device) was used.
  • the amount of Cu contained in the sintered body after sputtering was 0.13 wt%.
  • diffusion treatment was performed by holding the sintered body at 800 ° C. in a vacuum atmosphere for 5 hours. After that, the sintered body was further heat-treated by holding it at 500 ° C. for 1 hour in a vacuum atmosphere. The other steps are the same as those described in the above [Permanent magnet manufacturing method].
  • the magnet raw material was previously configured to include 0.1 wt% Cu, and the magnet raw material containing Cu was pulverized to produce a neodymium magnet powder. Further, Nd and Cu were not sputtered onto the sintered body, and the diffusion treatment was also omitted. Other conditions are the same as in the example.
  • FIG. 11 shows a list of measurement results.
  • the amount of added Cu is substantially the same, but Cu is not included in the magnet raw material and is unevenly distributed at the grain boundaries by sputtering.
  • the permanent magnet of the example showed higher coercivity than the permanent magnet of the comparative example. That is, in the permanent magnet of the comparative example, Cu is already contained in the molded body at the time when the molded body is calcined in a hydrogen atmosphere. It is predicted that the reaction of) was easy to proceed to the right.
  • the reaction (2) above is performed on the right side when performing the calcining treatment. It is predicted that it was difficult to proceed.
  • the rare earth permanent magnets of the examples it is considered that the main phase (Nd 2 Fe 14 B) of the rare earth magnet is not decomposed, the precipitation of ⁇ Fe is suppressed, and a high coercive force is exhibited.
  • the magnet raw material not containing Cu is pulverized, and the molded body is molded at 200 ° C. to 900 ° C. for several hours in a hydrogen atmosphere. Calcination is performed by holding for tens of hours. Thereafter, the compact is sintered by vacuum sintering or pressure sintering, and the permanent magnet 1 is manufactured by sputtering Cu on the surface of the sintered body.
  • the compact is sintered by vacuum sintering or pressure sintering, and the permanent magnet 1 is manufactured by sputtering Cu on the surface of the sintered body.
  • the step of diffusing the sputtered Cu inside the sintered body can be performed at a lower temperature.
  • the pulverized magnet powder contains Al, Dy, Tb, Nd, V, Mo, Zr, Ta, Ti, W, Ag, Ga, Co, Bi, Zn, Mg, or Nb and oxygen atoms and An organometallic compound that does not contain nitrogen atoms is added, the organometallic compound is uniformly attached to the surface of the magnet particles, and a compact is formed by molding the magnet powder with the organometallic compound attached to the surface of the particles.
  • Al, Dy, Tb, Nd, V, Mo, Zr, Ta, Ti, W, Ag, Ga, Co, Bi, Zn, Mg, or Nb contained in the organometallic compound is efficient with respect to the grain boundary of the magnet. Can be unevenly distributed. As a result, the magnetic performance of the permanent magnet can be improved.
  • the amount of addition of Al, Dy, Tb, Nd, V, Mo, Zr, Ta, Ti, W, Ag, Ga, Co, Bi, Zn, Mg, or Nb can be reduced compared to the conventional case, the residual magnetic flux A decrease in density can be suppressed.
  • a metal complex whose central metal is Al, Dy, Tb, Nd, V, Mo, Zr, Ta, Ti, W, Ag, Ga, Co, Bi, Zn, Mg, or Nb, or diisobutylaluminum hydride is organic. Since it is used as a metal compound, the organometallic compound can be easily thermally decomposed in the subsequent heating step, and the metal contained in the organometallic compound can be appropriately distributed with respect to the grain boundaries. In addition, the amount of carbon remaining in the magnet can be reduced by performing thermal decomposition.
  • a permanent magnet is composed of a magnet obtained by mixing magnet powder and a binder and sintering a molded green sheet, so deformation due to sintering becomes uniform and deformation such as warpage and dent after sintering occurs.
  • pressure unevenness during pressing is eliminated, there is no need to perform post-sintering correction processing, which has been conventionally performed, and the manufacturing process can be simplified. Thereby, a permanent magnet can be formed with high dimensional accuracy.
  • the pulverization conditions, kneading conditions, magnetic field orientation process, calcining conditions, sintering conditions, sputtering conditions, diffusion treatment conditions, heat treatment conditions, etc. of the magnet powder are not limited to the conditions described in the above examples.
  • the green sheet is formed by the slot die method, but other methods (for example, calendar roll method, comma coating method, extrusion molding, injection molding, mold molding, doctor blade method, etc.) can be used. It may be used to form a green sheet.
  • the atmosphere at the time of calcination is a non-oxidizing atmosphere
  • the atmosphere may be other than a hydrogen atmosphere (for example, a nitrogen atmosphere, a He atmosphere, or an Ar atmosphere).
  • a hydrogen atmosphere for example, a nitrogen atmosphere, a He atmosphere, or an Ar atmosphere.
  • only Cu sputtering may be performed without performing Nd sputtering.
  • the heating temperature for diffusing the sputtered Cu into the sintered body needs to be higher. Further, the order of sputtering of Cu and Nd may be changed.
  • the magnetic field orientation is performed after the mixture of the magnet powder and the binder is once molded into a sheet shape.
  • the magnetic field orientation may be performed after molding into a shape other than the sheet shape. For example, it may be molded into a block shape. Then, the block-shaped molded body oriented in the magnetic field is further processed to form a final product shape.
  • resin long chain hydrocarbon or fatty acid ester is used as the binder, but other materials may be used.
  • the permanent magnet may be manufactured by calcining and sintering a molded body formed by molding other than green sheet molding (for example, compaction molding). Even in such a case, the decarburization effect by calcining can be achieved for C-containing materials (added organometallic compounds, organic compounds remaining by wet pulverization, etc.) remaining in the molded body other than the binder. I can expect. Furthermore, in the above embodiment, calcining is performed in a hydrogen atmosphere or a mixed gas atmosphere of hydrogen and an inert gas after the magnet powder is molded. It is good also as manufacturing a permanent magnet by shape
  • the surface area of the magnet to be calcined is increased compared to the case of calcining the molded magnet particles. can do. That is, the amount of carbon in the calcined body can be reduced more reliably.
  • the heating process and magnetic field orientation process of the green sheet 14 will be performed simultaneously, even if it performs a magnetic field orientation process after performing a heating process and before the green sheet 14 solidifies. good. Further, when the magnetic field orientation is performed before the coated green sheet 14 is solidified (that is, the green sheet 14 is already softened without performing the heating process), the heating process may be omitted. .
  • the coating process by the slot die method, the heating process, and the magnetic field orientation process are performed by a series of continuous processes, but may be configured not to be performed by the continuous processes. Moreover, it is good also as performing by the process which divided
  • the coated green sheet 14 can be cut to a predetermined length, and the green sheet 14 in a stationary state can be configured to perform magnetic field orientation by heating and applying a magnetic field. is there.
  • tris (ethylcyclopentadienyl) Dy III
  • trihydridobis pentamethyldicyclopentadienyl) Nb (V)
  • the Nd—Fe—B type magnet has been described as an example, but other magnets (for example, samarium type cobalt magnet, alnico magnet, ferrite magnet, etc.) may be used.
  • the Nd component is larger than the stoichiometric composition in the present invention, but it may be stoichiometric.
  • the present invention can be applied not only to anisotropic magnets but also to isotropic magnets. In that case, the magnetic field orientation process for the green sheet 14 can be omitted.

Abstract

Provided is a rare earth permanent magnet that can achieve increased holding force through use of Cu, and that additionally suppresses the decomposition of a main component and the precipitation of αFe and does not experience reductions in magnetic properties, even if calcination is performed in an oxygen atmosphere. Also provided is a production method for a rare earth permanent magnet. In the present invention, a magnet source material that does not include Cu is, crushed and a calcination process is conducted whereby a molded body that is formed by molding is kept in an oxygen atmosphere at 200℃-900℃ for several hours to several tens of hours. Afterward, the molded body is sintered by means of vacuum sintering or pressure sintering, and a permanent magnet is produced by sputtering the surface of the sintered body with Cu.

Description

希土類永久磁石及び希土類永久磁石の製造方法Rare earth permanent magnet and method for producing rare earth permanent magnet
 本発明は、希土類永久磁石及び希土類永久磁石の製造方法に関する。 The present invention relates to a rare earth permanent magnet and a method for producing a rare earth permanent magnet.
 近年、ハイブリッドカーやハードディスクドライブ等に使用される永久磁石モータでは、小型軽量化、高出力化、高効率化が要求されている。そして、上記永久磁石モータにおいて小型軽量化、高出力化、高効率化を実現するに当たって、永久磁石モータに埋設される永久磁石について、更なる磁気特性の向上が求められている。尚、永久磁石としてはフェライト磁石、Sm-Co系磁石、Nd-Fe-B系磁石、SmFe17系磁石等があるが、特に残留磁束密度の高いNd-Fe-B系磁石が永久磁石モータ用の永久磁石として用いられる。 In recent years, permanent magnet motors used in hybrid cars, hard disk drives, and the like have been required to be smaller, lighter, higher in output, and more efficient. Further, in order to realize a reduction in size and weight, an increase in output, and an increase in efficiency in the permanent magnet motor, further improvement in magnetic characteristics is required for the permanent magnet embedded in the permanent magnet motor. Permanent magnets include ferrite magnets, Sm—Co magnets, Nd—Fe—B magnets, Sm 2 Fe 17 N x magnets, and Nd—Fe—B magnets with particularly high residual magnetic flux density. Used as a permanent magnet for a permanent magnet motor.
 しかしながら、Nd-Fe-B等のNd系磁石は、耐熱温度が低いことが問題であった。従って、Nd系磁石を永久磁石モータに用いる場合には、該モータを連続駆動させると磁石の残留磁束密度が徐々に低下することとなっていた。また、不可逆減磁も生じることとなっていた。そこで、Nd系磁石の保磁力を向上させる手段として、従来より微量のCuを添加することが行われている。 However, Nd-based magnets such as Nd—Fe—B have a problem that the heat-resistant temperature is low. Therefore, when an Nd magnet is used for a permanent magnet motor, the residual magnetic flux density of the magnet gradually decreases when the motor is continuously driven. In addition, irreversible demagnetization has also occurred. Therefore, as a means for improving the coercive force of the Nd-based magnet, a trace amount of Cu has been conventionally added.
特開2007-294917号公報(第7頁)JP 2007-294917 A (page 7)
 また、Nd系磁石の磁気性能を低下させる原因として、炭素含有物が磁石内に残留することが挙げられる。特にNd系磁石ではNdと炭素との反応性が非常に高いため、焼結工程において高温まで炭素含有物が残ると、カーバイドを形成する。その結果、形成されたカーバイドによって焼結後の磁石の主相と粒界相との間に空隙が生じ、磁石全体を緻密に焼結できずに磁気性能が著しく低下する問題があった。また、空隙が生じなかった場合でも、形成されたカーバイドによって焼結後の磁石の主相内にαFeが析出し、磁石特性を大きく低下させる問題があった。そこで、磁石を焼結する前に、水素雰囲気下で仮焼処理することにより、炭素含有物を熱分解させて含有する炭素を除去する技術が考えられる。 Also, as a cause of lowering the magnetic performance of the Nd-based magnet, there is a carbon-containing material remaining in the magnet. In particular, Nd-based magnets have a very high reactivity between Nd and carbon, and therefore, if a carbon-containing material remains at a high temperature in the sintering process, carbide is formed. As a result, there is a problem in that voids are formed between the main phase and the grain boundary phase of the magnet after sintering due to the formed carbide, and the entire magnet cannot be sintered densely, resulting in a significant decrease in magnetic performance. Even when no voids are formed, αFe is precipitated in the main phase of the magnet after sintering by the formed carbide, and there is a problem that the magnetic properties are greatly deteriorated. Therefore, a technique for removing carbon contained by pyrolyzing the carbon-containing material by pre-calcining in a hydrogen atmosphere before sintering the magnet is conceivable.
 しかしながら、水素雰囲気で上記仮焼処理を行う際には、希土類磁石内において以下の(1)の反応が生じることが考えられる。
  NdFe14B+2H→2NdH+12Fe+FeB・・・・(1)
 上記(1)の反応が右側に進むことによって、希土類磁石の主相(NdFe14B)が分解されるとともに、αFeが析出し、磁石特性を低下させる原因となる。尚、その後に行われる焼結処理によって分解された主相の一部が回復することも考えられるが、αFeについては残存することとなる。
However, when the calcination treatment is performed in a hydrogen atmosphere, the following reaction (1) may occur in the rare earth magnet.
Nd 2 Fe 14 B + 2H 2 → 2NdH 2 + 12Fe + Fe 2 B (1)
When the reaction (1) proceeds to the right side, the main phase (Nd 2 Fe 14 B) of the rare earth magnet is decomposed, and αFe is precipitated, which causes a decrease in magnet characteristics. Although it is considered that a part of the main phase decomposed by the subsequent sintering treatment is recovered, αFe remains.
 そして、上記特許文献1のようにCuを予め磁石原料に含める構成とすると、仮焼処理を行う時点においてCuが磁石中に含まれることとなる。その場合に、上記(1)の反応が右側に進み易くなる問題があった。ここで、図12は上記特許文献1のように予めCuを含む磁石原料を粉砕、成形及び焼結することにより製造された永久磁石と、Cuを含まない磁石原料を粉砕、成形及び焼結することにより製造された永久磁石について、仮焼処理の条件を変えて保磁力を比較した図である。 And if it is set as the structure which includes Cu beforehand in a magnet raw material like the said patent document 1, Cu will be contained in a magnet at the time of performing a calcination process. In that case, there was a problem that the reaction of the above (1) easily proceeds to the right side. Here, FIG. 12 pulverizes, molds and sinters a permanent magnet manufactured by previously crushing, forming and sintering a magnet raw material containing Cu as in Patent Document 1 and a magnet raw material not containing Cu. It is the figure which changed the conditions of calcination processing and compared the coercive force about the permanent magnet manufactured by this.
 図12に示すように、水素雰囲気で仮焼処理を行わない場合にはCuを含む永久磁石とCuを含まない永久磁石との間で大きな保磁力の差は生じていない。しかしながら、水素雰囲気で仮焼処理を行う場合には、Cuを含む永久磁石はCuを含まない永久磁石よりも保磁力が低くなり、更に仮焼処理を行う温度を高くすると、その保磁力の差が大きくなる。即ち、水素雰囲気で仮焼処理を行う場合に、Cuを含む永久磁石は上記(1)の反応が右側に進み易くなり、脱炭素による保磁力の向上よりも主相の分解やαFeの析出による保磁力の低下の影響が大きくなり、保磁力が低下していると予測できる。 As shown in FIG. 12, when the calcination treatment is not performed in a hydrogen atmosphere, there is no large difference in coercive force between the permanent magnet containing Cu and the permanent magnet not containing Cu. However, when the calcination treatment is performed in a hydrogen atmosphere, the permanent magnet containing Cu has a lower coercive force than the permanent magnet not containing Cu, and when the temperature at which the calcination treatment is performed is further increased, the difference in coercive force. Becomes larger. That is, when the calcination process is performed in a hydrogen atmosphere, the reaction of (1) above tends to proceed to the right side in the permanent magnet containing Cu, and the decomposition of the main phase and the precipitation of αFe rather than the improvement of the coercive force by decarbonization. It can be predicted that the influence of the decrease in coercive force is increased and the coercive force is decreased.
 本発明は前記従来における問題点を解消するためになされたものであり、Cuによる保磁力の向上を図ることが可能になるとともに、水素雰囲気下で仮焼を行った場合であっても、主相の分解やαFeの析出を抑え、磁気特性が低下することのない希土類永久磁石及び希土類永久磁石の製造方法を提供することを目的とする。 The present invention has been made to solve the problems in the prior art, and it is possible to improve the coercive force by Cu, and even when calcination is performed in a hydrogen atmosphere, It is an object of the present invention to provide a rare earth permanent magnet and a method for producing a rare earth permanent magnet, in which phase decomposition and αFe precipitation are suppressed and magnetic properties are not deteriorated.
 前記目的を達成するため本発明に係る希土類永久磁石は、磁石原料を磁石粉末に粉砕する工程と、前記粉砕された磁石粉末を成形することにより成形体を形成する工程と、前記磁石粉末を成形前又は成形後であって焼結前に水素雰囲気又は水素と不活性ガスの混合ガス雰囲気下で仮焼する工程と、前記成形体を焼成温度で保持することにより焼結し、焼結体を得る工程と、前記焼結体の表面にCuをスパッタリングする工程と、により製造されることを特徴とする。 In order to achieve the above object, a rare earth permanent magnet according to the present invention includes a step of pulverizing a magnet raw material into magnet powder, a step of forming a molded body by molding the pulverized magnet powder, and molding the magnet powder. A step of calcining in a hydrogen atmosphere or a mixed gas atmosphere of hydrogen and an inert gas before or after molding and before sintering, and sintering by holding the molded body at a firing temperature. It is manufactured by the process of obtaining, and the process of sputtering Cu on the surface of the said sintered compact, It is characterized by the above-mentioned.
 また、本発明に係る希土類永久磁石は、Cuがスパッタリングされた前記焼結体を加熱することによって、前記焼結体の表面にスパッタリングされたCuを前記焼結体の内部に拡散させる工程により製造されることを特徴とする。 The rare earth permanent magnet according to the present invention is manufactured by a process of diffusing Cu sputtered on the surface of the sintered body into the sintered body by heating the sintered body on which Cu is sputtered. It is characterized by being.
 また、本発明に係る希土類永久磁石は、Cuがスパッタリングされた前記焼結体を加熱する際に、前記焼成温度よりも低い温度で加熱することを特徴とする。 Further, the rare earth permanent magnet according to the present invention is characterized in that when the sintered body sputtered with Cu is heated, it is heated at a temperature lower than the firing temperature.
 また、本発明に係る希土類永久磁石は、前記焼結体の表面にCuをスパッタリングする工程では、前記焼結体の表面にNdをスパッタリングした後に、前記焼結体の表面にCuをスパッタリングすることを特徴とする。 In the rare earth permanent magnet according to the present invention, in the step of sputtering Cu on the surface of the sintered body, after sputtering Nd on the surface of the sintered body, Cu is sputtered on the surface of the sintered body. It is characterized by.
 また、本発明に係る希土類永久磁石は、前記粉砕された磁石粉末にAl、Dy、Tb、Nd、V、Mo、Zr、Ta、Ti、W、Ag、Ga、Co、Bi、Zn、Mg又はNbを含むとともに酸素原子及び窒素原子を含まない有機金属化合物を添加することにより、前記磁石粉末の粒子表面に前記有機金属化合物を付着させ、前記有機金属化合物が粒子表面に付着された前記磁石粉末を成形することにより成形体を形成することを特徴とする。 Further, the rare earth permanent magnet according to the present invention is obtained by adding Al, Dy, Tb, Nd, V, Mo, Zr, Ta, Ti, W, Ag, Ga, Co, Bi, Zn, Mg or the like to the pulverized magnet powder. By adding an organometallic compound that contains Nb and does not contain oxygen and nitrogen atoms, the organometallic compound is adhered to the particle surface of the magnet powder, and the organometallic compound is adhered to the particle surface. A molded body is formed by molding the material.
 また、本発明に係る希土類永久磁石は、中心金属がAl、Dy、Tb、Nd、V、Mo、Zr、Ta、Ti、W、Ag、Ga、Co、Bi、Zn、Mg又はNbである金属錯体、或いは水素化ジイソブチルアルミニウムであることを特徴とする。 The rare earth permanent magnet according to the present invention is a metal whose central metal is Al, Dy, Tb, Nd, V, Mo, Zr, Ta, Ti, W, Ag, Ga, Co, Bi, Zn, Mg, or Nb. It is characterized by being a complex or diisobutylaluminum hydride.
 また、本発明に係る希土類永久磁石は、前記磁石粉末を成形体に成形する工程では、前記磁石粉末とバインダーとが混合された混合物を生成し、前記混合物をシート状に成形することにより前記成形体としてグリーンシートを作製することを特徴とする。 In the rare earth permanent magnet according to the present invention, in the step of forming the magnet powder into a molded body, a mixture in which the magnet powder and a binder are mixed is generated, and the mixture is formed into a sheet shape. A green sheet is produced as a body.
 また、本発明に係る希土類永久磁石の製造方法は、磁石原料を磁石粉末に粉砕する工程と、前記粉砕された磁石粉末を成形することにより成形体を形成する工程と、前記磁石粉末を成形前又は成形後であって焼結前に水素雰囲気又は水素と不活性ガスの混合ガス雰囲気下で仮焼する工程と、前記成形体を焼成温度で保持することにより焼結し、焼結体を得る工程と、前記焼結体の表面にCuをスパッタリングする工程と、を有することを特徴とする。 The method for producing a rare earth permanent magnet according to the present invention includes a step of pulverizing a magnet raw material into magnet powder, a step of forming a molded body by molding the pulverized magnet powder, and a step of forming the magnet powder before molding. Alternatively, after the molding and before sintering, a step of calcining in a hydrogen atmosphere or a mixed gas atmosphere of hydrogen and an inert gas and sintering by holding the molded body at a firing temperature to obtain a sintered body And a step of sputtering Cu on the surface of the sintered body.
 また、本発明に係る希土類永久磁石の製造方法は、Cuがスパッタリングされた前記焼結体を加熱することによって、前記焼結体の表面にスパッタリングされたCuを前記焼結体の内部に拡散させる工程を有することを特徴とする。 In addition, the method for producing a rare earth permanent magnet according to the present invention diffuses Cu sputtered on the surface of the sintered body by heating the sintered body on which Cu is sputtered. It has the process.
 また、本発明に係る希土類永久磁石の製造方法は、Cuがスパッタリングされた前記焼結体を加熱する際に、前記焼成温度よりも低い温度で加熱することを特徴とする。 The method for producing a rare earth permanent magnet according to the present invention is characterized in that when the sintered body sputtered with Cu is heated, the sintered body is heated at a temperature lower than the firing temperature.
 また、本発明に係る希土類永久磁石の製造方法は、前記焼結体の表面にCuをスパッタリングする工程では、前記焼結体の表面にNdをスパッタリングした後に、前記焼結体の表面にCuをスパッタリングすることを特徴とする。 In the method of manufacturing a rare earth permanent magnet according to the present invention, in the step of sputtering Cu on the surface of the sintered body, after sputtering Nd on the surface of the sintered body, Cu is applied to the surface of the sintered body. It is characterized by sputtering.
 また、本発明に係る希土類永久磁石の製造方法は、前記粉砕された磁石粉末にAl、Dy、Tb、Nd、V、Mo、Zr、Ta、Ti、W、Ag、Ga、Co、Bi、Zn、Mg又はNbを含むとともに酸素原子及び窒素原子を含まない有機金属化合物を添加することにより、前記磁石粉末の粒子表面に前記有機金属化合物を付着させ、前記有機金属化合物が粒子表面に付着された前記磁石粉末を成形することにより成形体を形成することを特徴とする。 In addition, the method for producing a rare earth permanent magnet according to the present invention includes adding Al, Dy, Tb, Nd, V, Mo, Zr, Ta, Ti, W, Ag, Ga, Co, Bi, Zn to the pulverized magnet powder. By adding an organometallic compound that contains Mg or Nb and does not contain oxygen and nitrogen atoms, the organometallic compound is adhered to the particle surface of the magnet powder, and the organometallic compound is adhered to the particle surface. A compact is formed by molding the magnet powder.
 また、本発明に係る希土類永久磁石の製造方法は、前記有機金属化合物は、中心金属がAl、Dy、Tb、Nd、V、Mo、Zr、Ta、Ti、W、Ag、Ga、Co、Bi、Zn、Mg又はNbである金属錯体、或いは水素化ジイソブチルアルミニウムであることを特徴とする。 Further, in the method for producing a rare earth permanent magnet according to the present invention, the organometallic compound has a central metal of Al, Dy, Tb, Nd, V, Mo, Zr, Ta, Ti, W, Ag, Ga, Co, Bi. , Zn, Mg or Nb, or diisobutylaluminum hydride.
 更に、本発明に係る希土類永久磁石の製造方法は、前記磁石粉末を成形体に成形する工程では、前記磁石粉末とバインダーとが混合された混合物を生成し、前記混合物をシート状に成形することにより前記成形体としてグリーンシートを作製することを特徴とする。 Furthermore, in the method of manufacturing a rare earth permanent magnet according to the present invention, in the step of forming the magnet powder into a molded body, a mixture in which the magnet powder and a binder are mixed is generated, and the mixture is formed into a sheet shape. To produce a green sheet as the molded body.
 前記構成を有する本発明に係る希土類永久磁石によれば、Cuによる保磁力の向上を図ることが可能になるとともに、水素雰囲気下で仮焼を行った場合であっても、主相の分解やαFeの析出を抑え、磁気特性が低下することを防止できる。また、粉末状の磁石粒子に対して仮焼を行う場合には、成形後の磁石粒子に対して仮焼を行う場合と比較して、仮焼対象となる磁石の表面積を大きくすることができる。即ち、仮焼体中の炭素量をより確実に低減させることが可能となる。 According to the rare earth permanent magnet of the present invention having the above-described configuration, it is possible to improve the coercive force due to Cu, and even when calcining is performed in a hydrogen atmosphere, It is possible to suppress the precipitation of αFe and prevent the magnetic properties from deteriorating. In addition, when calcining the powdered magnet particles, the surface area of the magnet to be calcined can be increased compared to the case of calcining the molded magnet particles. . That is, the amount of carbon in the calcined body can be reduced more reliably.
 また、本発明に係る希土類永久磁石によれば、Cuがスパッタリングされた焼結体を加熱することによって、焼結体の表面にスパッタリングされたCuを焼結体の内部に拡散させるので、予め磁石原料にCuを含めることなく、焼結後にスパッタリングされたCuを粒界に対して適切に偏在させることが可能となる。即ち、予め磁石原料にCuを含めることなく、Cuによる保磁力向上の効果を得ることが可能となる。 Moreover, according to the rare earth permanent magnet of the present invention, the Cu sputtered on the surface of the sintered body is diffused into the sintered body by heating the sintered body on which Cu is sputtered. Without including Cu in the raw material, Cu sputtered after sintering can be appropriately distributed with respect to the grain boundary. That is, the effect of improving the coercive force by Cu can be obtained without previously including Cu in the magnet raw material.
 また、本発明に係る希土類永久磁石によれば、Cuがスパッタリングされた焼結体を加熱する際に、焼成温度よりも低い温度で加熱するので、スパッタリングされたCuを焼結体の内部に拡散させる工程において磁石粒子の粒成長が生じることを防止できる。 In addition, according to the rare earth permanent magnet of the present invention, when the sintered body on which Cu is sputtered is heated, it is heated at a temperature lower than the firing temperature, so that the sputtered Cu is diffused inside the sintered body. It can prevent that the particle growth of a magnet particle arises in the process to make.
 また、本発明に係る希土類永久磁石によれば、焼結体の表面にNdをスパッタリングした後に、焼結体の表面にCuをスパッタリングするので、スパッタリングされたCuを焼結体の内部に拡散させる工程をより低温で行うことが可能となる。 Further, according to the rare earth permanent magnet of the present invention, after sputtering Nd on the surface of the sintered body, Cu is sputtered on the surface of the sintered body, so that the sputtered Cu is diffused inside the sintered body. The process can be performed at a lower temperature.
 また、本発明に係る希土類永久磁石によれば、有機金属化合物に含まれるAl、Dy、Tb、Nd、V、Mo、Zr、Ta、Ti、W、Ag、Ga、Co、Bi、Zn、Mg又はNbを磁石の粒界に対して効率よく偏在させることができる。その結果、永久磁石の磁気性能を向上させることが可能となる。また、Al、Dy、Tb、Nd、V、Mo、Zr、Ta、Ti、W、Ag、Ga、Co、Bi、Zn、Mg又はNbの添加量を従来に比べて少量にできるので、残留磁束密度の低下を抑制することができる。 Moreover, according to the rare earth permanent magnet according to the present invention, Al, Dy, Tb, Nd, V, Mo, Zr, Ta, Ti, W, Ag, Ga, Co, Bi, Zn, Mg contained in the organometallic compound are included. Alternatively, Nb can be efficiently distributed with respect to the grain boundaries of the magnet. As a result, the magnetic performance of the permanent magnet can be improved. In addition, since the amount of addition of Al, Dy, Tb, Nd, V, Mo, Zr, Ta, Ti, W, Ag, Ga, Co, Bi, Zn, Mg, or Nb can be reduced compared to the conventional case, the residual magnetic flux A decrease in density can be suppressed.
 また、本発明に係る希土類永久磁石によれば、中心金属がCu、Al、Dy、Tb、Nd、V、Mo、Zr、Ta、Ti、W、Ag、Ga、Co、Bi、Zn、Mg又はNbである金属錯体、或いは水素化ジイソブチルアルミニウムを有機金属化合物として用いるので、その後の加熱工程において有機金属化合物の熱分解を容易に行うことができ、有機金属化合物に含まれる金属を粒界に対して適切に偏在させることが可能となる。また、熱分解を行わせることによって磁石内に残存する炭素量を軽減することも可能となる。その結果、焼結後の磁石の主相と粒界相との間に空隙を生じさせることなく、また、磁石全体を緻密に焼結することが可能となり、保磁力が低下することを防止できる。また、焼結後の磁石の主相内にαFeが多数析出することなく、磁石特性を大きく低下させることがない。 Further, according to the rare earth permanent magnet of the present invention, the central metal is Cu, Al, Dy, Tb, Nd, V, Mo, Zr, Ta, Ti, W, Ag, Ga, Co, Bi, Zn, Mg or Since the metal complex that is Nb or diisobutylaluminum hydride is used as the organometallic compound, the organometallic compound can be easily thermally decomposed in the subsequent heating step, and the metal contained in the organometallic compound can be separated from the grain boundary. It is possible to make it unevenly distributed. In addition, the amount of carbon remaining in the magnet can be reduced by performing thermal decomposition. As a result, it is possible to sinter the entire magnet densely without generating voids between the main phase and the grain boundary phase of the sintered magnet, and to prevent the coercive force from being lowered. . Further, a large number of αFe is not precipitated in the main phase of the magnet after sintering, and the magnet characteristics are not greatly deteriorated.
 また、本発明に係る希土類永久磁石によれば、磁石粉末とバインダーとを混合し、成形したグリーンシートを焼結した磁石により永久磁石を構成するので、焼結による収縮が均一となることにより焼結後の反りや凹みなどの変形が生じず、また、プレス時の圧力むらが無くなることから、従来行っていた焼結後の修正加工をする必要がなく、製造工程を簡略化することができる。それにより、高い寸法精度で永久磁石を成形可能となる。 Moreover, according to the rare earth permanent magnet of the present invention, the permanent magnet is composed of a magnet obtained by mixing magnet powder and a binder and sintering a molded green sheet. Deformation such as warping and dent after binding does not occur, and pressure unevenness at the time of pressing is eliminated, so that it is not necessary to perform correction processing after sintering, which can be performed conventionally, and the manufacturing process can be simplified. . Thereby, a permanent magnet can be formed with high dimensional accuracy.
 また、本発明に係る希土類永久磁石の製造方法によれば、Cuによる保磁力の向上を図ることが可能になるとともに、水素雰囲気下で仮焼を行った場合であっても、主相の分解やαFeの析出を抑え、磁気特性が低下することを防止できる。また、粉末状の磁石粒子に対して仮焼を行う場合には、成形後の磁石粒子に対して仮焼を行う場合と比較して、仮焼対象となる磁石の表面積を大きくすることができる。即ち、仮焼体中の炭素量をより確実に低減させることが可能となる。 Further, according to the method for producing a rare earth permanent magnet according to the present invention, it becomes possible to improve the coercive force due to Cu, and even when calcination is performed in a hydrogen atmosphere, the main phase is decomposed. And αFe precipitation can be suppressed, and the magnetic characteristics can be prevented from deteriorating. In addition, when calcining the powdered magnet particles, the surface area of the magnet to be calcined can be increased compared to the case of calcining the molded magnet particles. . That is, the amount of carbon in the calcined body can be reduced more reliably.
 また、本発明に係る希土類永久磁石の製造方法によれば、Cuがスパッタリングされた焼結体を加熱することによって、焼結体の表面にスパッタリングされたCuを焼結体の内部に拡散させるので、予め磁石原料にCuを含めることなく、焼結後にスパッタリングされたCuを粒界に対して適切に偏在させることが可能となる。即ち、予め磁石原料にCuを含めることなく、Cuによる保磁力向上の効果を得ることが可能となる。 In addition, according to the method for producing a rare earth permanent magnet according to the present invention, Cu sputtered on the surface of the sintered body is diffused inside the sintered body by heating the sintered body on which Cu is sputtered. In addition, Cu that has been sputtered after sintering can be appropriately unevenly distributed with respect to the grain boundaries without previously including Cu in the magnet raw material. That is, the effect of improving the coercive force by Cu can be obtained without previously including Cu in the magnet raw material.
 また、本発明に係る希土類永久磁石の製造方法によれば、Cuがスパッタリングされた焼結体を加熱する際に、焼成温度よりも低い温度で加熱するので、スパッタリングされたCuを焼結体の内部に拡散させる工程において磁石粒子の粒成長が生じることを防止できる。 Further, according to the method for producing a rare earth permanent magnet according to the present invention, when the sintered body with Cu sputtered is heated, it is heated at a temperature lower than the firing temperature. It is possible to prevent the grain growth of the magnet particles from occurring in the step of diffusing inside.
 また、本発明に係る希土類永久磁石の製造方法によれば、焼結体の表面にNdをスパッタリングした後に、焼結体の表面にCuをスパッタリングするので、スパッタリングされたCuを焼結体の内部に拡散させる工程をより低温で行うことが可能となる。 Further, according to the method for producing a rare earth permanent magnet according to the present invention, after sputtering Nd on the surface of the sintered body, Cu is sputtered on the surface of the sintered body. It is possible to carry out the step of diffusing into the substrate at a lower temperature.
 また、本発明に係る希土類永久磁石の製造方法によれば、有機金属化合物に含まれるAl、Dy、Tb、Nd、V、Mo、Zr、Ta、Ti、W、Ag、Ga、Co、Bi、Zn、Mg又はNbを磁石の粒界に対して効率よく偏在させることができる。その結果、永久磁石の磁気性能を向上させることが可能となる。また、Al、Dy、Tb、Nd、V、Mo、Zr、Ta、Ti、W、Ag、Ga、Co、Bi、Zn、Mg又はNbの添加量を従来に比べて少量にできるので、残留磁束密度の低下を抑制することができる。 Further, according to the method for producing a rare earth permanent magnet according to the present invention, Al, Dy, Tb, Nd, V, Mo, Zr, Ta, Ti, W, Ag, Ga, Co, Bi, contained in the organometallic compound, Zn, Mg, or Nb can be efficiently distributed with respect to the grain boundaries of the magnet. As a result, the magnetic performance of the permanent magnet can be improved. In addition, since the amount of addition of Al, Dy, Tb, Nd, V, Mo, Zr, Ta, Ti, W, Ag, Ga, Co, Bi, Zn, Mg, or Nb can be reduced compared to the conventional case, the residual magnetic flux A decrease in density can be suppressed.
 また、本発明に係る希土類永久磁石の製造方法によれば、中心金属がCu、Al、Dy、Tb、Nd、V、Mo、Zr、Ta、Ti、W、Ag、Ga、Co、Bi、Zn、Mg又はNbである金属錯体、或いは水素化ジイソブチルアルミニウムを有機金属化合物として用いるので、その後の加熱工程において有機金属化合物の熱分解を容易に行うことができ、有機金属化合物に含まれる金属を粒界に対して適切に偏在させることが可能となる。また、熱分解を行わせることによって磁石内に残存する炭素量を軽減することも可能となる。その結果、焼結後の磁石の主相と粒界相との間に空隙を生じさせることなく、また、磁石全体を緻密に焼結することが可能となり、保磁力が低下することを防止できる。また、焼結後の磁石の主相内にαFeが多数析出することなく、磁石特性を大きく低下させることがない。 Further, according to the method for producing a rare earth permanent magnet according to the present invention, the central metal is Cu, Al, Dy, Tb, Nd, V, Mo, Zr, Ta, Ti, W, Ag, Ga, Co, Bi, Zn. , Mg or Nb metal complex, or diisobutylaluminum hydride is used as the organometallic compound, so that the pyrolysis of the organometallic compound can be easily performed in the subsequent heating step, and the metal contained in the organometallic compound is granulated. It becomes possible to make it unevenly distributed with respect to the field. In addition, the amount of carbon remaining in the magnet can be reduced by performing thermal decomposition. As a result, it is possible to sinter the entire magnet densely without generating voids between the main phase and the grain boundary phase of the sintered magnet, and to prevent the coercive force from being lowered. . Further, a large number of αFe is not precipitated in the main phase of the magnet after sintering, and the magnet characteristics are not greatly deteriorated.
 更に、本発明に係る希土類永久磁石の製造方法によれば、磁石粉末とバインダーとを混合し、成形したグリーンシートを焼結した磁石により永久磁石を構成するので、焼結による収縮が均一となることにより焼結後の反りや凹みなどの変形が生じず、また、プレス時の圧力むらが無くなることから、従来行っていた焼結後の修正加工をする必要がなく、製造工程を簡略化することができる。それにより、高い寸法精度で永久磁石を成形可能となる。 Furthermore, according to the method for producing a rare earth permanent magnet according to the present invention, a permanent magnet is constituted by a magnet obtained by mixing magnet powder and a binder and sintering a molded green sheet, so that the shrinkage due to sintering becomes uniform. As a result, deformation such as warping and dent after sintering does not occur, and pressure unevenness at the time of pressing is eliminated, so that it is not necessary to carry out correction processing after sintering, which is conventionally performed, and simplifies the manufacturing process. be able to. Thereby, a permanent magnet can be formed with high dimensional accuracy.
図1は、本発明に係る永久磁石を示した全体図である。FIG. 1 is an overall view showing a permanent magnet according to the present invention. 図2は、本発明に係る永久磁石の粒界付近を拡大して示した模式図である。FIG. 2 is an enlarged schematic view showing the vicinity of the grain boundary of the permanent magnet according to the present invention. 図3は、本発明に係る永久磁石の粒界付近を拡大して示した模式図である。FIG. 3 is an enlarged schematic view showing the vicinity of the grain boundary of the permanent magnet according to the present invention. 図4は、本発明に係る永久磁石の製造工程を示した説明図である。FIG. 4 is an explanatory view showing a manufacturing process of the permanent magnet according to the present invention. 図5は、本発明に係る永久磁石の製造工程を示した説明図である。FIG. 5 is an explanatory view showing a manufacturing process of the permanent magnet according to the present invention. 図6は、本発明に係る永久磁石の製造工程の内、特にグリーンシートの成形工程を示した説明図である。FIG. 6 is an explanatory view showing a green sheet forming step, in particular, among the manufacturing steps of the permanent magnet according to the present invention. 図7は、本発明に係る永久磁石の製造工程の内、特にグリーンシートの加熱工程及び磁場配向工程を示した説明図である。FIG. 7 is an explanatory view showing a green sheet heating process and a magnetic field orientation process in the manufacturing process of the permanent magnet according to the present invention. 図8は、グリーンシートの面内垂直方向に磁場を配向する例について示した図である。FIG. 8 is a diagram showing an example in which the magnetic field is oriented in the in-plane vertical direction of the green sheet. 図9は、熱媒体(シリコーンオイル)を用いた加熱装置について説明した図である。FIG. 9 is a diagram illustrating a heating device using a heat medium (silicone oil). 図10は、本発明に係る永久磁石の製造工程の内、特にグリーンシートの加圧焼結工程を示した模式図である。FIG. 10 is a schematic view showing the pressure-sintering step of the green sheet, among the manufacturing steps of the permanent magnet according to the present invention. 図11は、実施例と比較例の各磁石についての各種測定結果を示した図である。FIG. 11 is a diagram showing various measurement results for the magnets of the example and the comparative example. 図12は、従来技術の問題点について説明した図である。FIG. 12 is a diagram for explaining the problems of the prior art.
 以下、本発明に係る希土類永久磁石及び希土類永久磁石の製造方法について具体化した一実施形態について以下に図面を参照しつつ詳細に説明する。 Hereinafter, an embodiment embodying a rare earth permanent magnet and a method for producing a rare earth permanent magnet according to the present invention will be described in detail with reference to the drawings.
[永久磁石の構成]
 先ず、本発明に係る永久磁石1の構成について説明する。図1は本発明に係る永久磁石1を示した全体図である。尚、図1に示す永久磁石1は扇型形状を備えるが、永久磁石1の形状は打ち抜き形状によって変化する。
 本発明に係る永久磁石1はNd-Fe-B系の異方性磁石である。また、永久磁石1を形成する各結晶粒子の界面(粒界)には、永久磁石1の磁気性能を高める為のCu、Al、Dy(ジスプロシウム)、Tb(テルビウム)、Nb(ニオブ)、V(バナジウム)、Mo(モリブデン)、Zr(ジルコニウム)、Ta(タンタル)、Ti(チタン)又はW(タングステン)が偏在する。尚、各成分の含有量はNd:25~37wt%、Cu、Al、Dy、Tb、Nb、V、Mo、Zr、Ta、Ti、W、Ag、Ga、Co、Bi、Zn、Mgのいずれか(但し、少なくともCuは含む。以下、Cu等という):0.01~5wt%、B:0.8~2wt%、Fe(電解鉄):60~75wt%とする。また、磁気特性向上の為、Si等の他元素を少量含んでも良い。
[Configuration of permanent magnet]
First, the configuration of the permanent magnet 1 according to the present invention will be described. FIG. 1 is an overall view showing a permanent magnet 1 according to the present invention. The permanent magnet 1 shown in FIG. 1 has a fan shape, but the shape of the permanent magnet 1 varies depending on the punched shape.
The permanent magnet 1 according to the present invention is an Nd—Fe—B anisotropic magnet. In addition, Cu, Al, Dy (dysprosium), Tb (terbium), Nb (niobium), V for enhancing the magnetic performance of the permanent magnet 1 are provided at the interfaces (grain boundaries) of the crystal grains forming the permanent magnet 1. (Vanadium), Mo (molybdenum), Zr (zirconium), Ta (tantalum), Ti (titanium) or W (tungsten) are unevenly distributed. The content of each component is Nd: 25 to 37 wt%, Cu, Al, Dy, Tb, Nb, V, Mo, Zr, Ta, Ti, W, Ag, Ga, Co, Bi, Zn, Mg (However, at least Cu is included. Hereinafter, it is referred to as Cu or the like): 0.01 to 5 wt%, B: 0.8 to 2 wt%, Fe (electrolytic iron): 60 to 75 wt%. Moreover, a small amount of other elements such as Si may be included to improve the magnetic characteristics.
 具体的に、本発明に係る永久磁石1は、図2に示すように永久磁石1を構成するNd結晶粒子(主相)2の結晶粒の表面部分(外殻)において、Cu等を含む層3(以下、金属偏在層3という)を生成することにより、Cu等をNd結晶粒子2の粒界に対して偏在させる。図2は永久磁石1を構成するNd結晶粒子2を拡大して示した図である。尚、金属偏在層3は、非磁性となることが好ましい。 Specifically, the permanent magnet 1 according to the present invention includes a layer containing Cu or the like in the surface portion (outer shell) of the crystal grains of the Nd crystal particles (main phase) 2 constituting the permanent magnet 1 as shown in FIG. 3 (hereinafter referred to as the unevenly distributed metal layer 3) causes Cu or the like to be unevenly distributed with respect to the grain boundaries of the Nd crystal particles 2. FIG. 2 is an enlarged view showing Nd crystal particles 2 constituting the permanent magnet 1. The metal uneven distribution layer 3 is preferably non-magnetic.
 ここで、本発明では特にCuを含む金属偏在層3を生成させる為に、後述のように焼結体の表面にCuをスパッタリングする。具体的には、焼結体をスパッタ装置にセットし、焼結体の表面にCuをスパッタリングした後に、スパッタリングされた焼結体を加熱する。その結果、スパッタリングされたCuが焼結体の内部に拡散浸透し、図2に示す金属偏在層3を形成する。また、特に、Cuをスパッタリングする前にNdをスパッタリングすることとすれば、CuをCu単体より低融点のNd-Cu合金(融点459℃)の状態で拡散浸透させることができ、Cuをより容易に焼結体の内部に拡散浸透させることが可能となる。 Here, in the present invention, Cu is sputtered on the surface of the sintered body as will be described later in order to generate the metal uneven distribution layer 3 containing Cu in particular. Specifically, the sintered body is set in a sputtering apparatus, Cu is sputtered onto the surface of the sintered body, and then the sputtered sintered body is heated. As a result, the sputtered Cu diffuses and penetrates into the sintered body to form the unevenly distributed metal layer 3 shown in FIG. In particular, if Nd is sputtered before Cu is sputtered, Cu can be diffused and penetrated in a state of an Nd—Cu alloy (melting point 459 ° C.) having a melting point lower than that of Cu alone. It is possible to diffuse and penetrate into the sintered body.
 また、Cu等の内、Cu以外の金属元素(以下、Dy等という)を含む金属偏在層3を生成させる為に、粉砕された磁石粉末を成形する前にDy等を含む有機金属化合物を磁石粉末に添加することが行われる。具体的には、Dy等を含む有機金属化合物を添加した磁石粉末を焼結する際に、湿式分散によりNd結晶粒子2の粒子表面に均一付着された該有機金属化合物中のDy等が、Nd結晶粒子2の結晶成長領域へと拡散侵入して置換が行われ、図2に示す金属偏在層3を形成する。尚、Nd結晶粒子2は、例えばNdFe14B金属間化合物から構成され、金属偏在層3は例えばNd-Cu金属間化合物、Nd-Fe-Cu金属間化合物、NbFeB金属間化合物、(DyNd1-xFe14B金属間化合物等から構成される。また、粒界には金属偏在層3以外に例えばNdリッチ相等も形成される。 Further, in order to generate a metal uneven distribution layer 3 containing a metal element other than Cu (hereinafter referred to as Dy) among Cu and the like, an organometallic compound containing Dy and the like is formed before forming the pulverized magnet powder. Adding to the powder is performed. Specifically, when the magnet powder to which the organometallic compound containing Dy or the like is added is sintered, the Dy or the like in the organometallic compound uniformly adhered to the particle surface of the Nd crystal particles 2 by wet dispersion is Nd. Replacement is performed by diffusing and penetrating into the crystal growth region of the crystal grain 2 to form the unevenly distributed metal layer 3 shown in FIG. The Nd crystal particles 2 are made of, for example, an Nd 2 Fe 14 B intermetallic compound, and the metal uneven distribution layer 3 is made of, for example, an Nd—Cu intermetallic compound, an Nd—Fe—Cu intermetallic compound, an NbFeB intermetallic compound, (Dy x Nd 1-x) 2 Fe 14 composed of B intermetallic compound. In addition to the metal uneven distribution layer 3, for example, an Nd-rich phase or the like is also formed at the grain boundary.
 また、本発明では、特に後述のようにDy等やNdを含むとともに酸素原子及び窒素原子を含まない有機金属化合物、より具体的には中心金属がDy等やNdである金属錯体又は水素化ジイソブチルアルミニウム(DIBAL)を有機溶媒に添加し、湿式状態で磁石粉末に混合する。それにより、Dy等やNdを含む有機金属化合物を有機溶媒中で分散させ、Nd結晶粒子2の粒子表面にDy等やNdを含む有機金属化合物を均一付着することが可能となる。 Further, in the present invention, as described later, an organometallic compound containing Dy or the like and Nd and not containing an oxygen atom and a nitrogen atom, more specifically, a metal complex or diisobutyl hydride whose central metal is Dy or the like and Nd. Aluminum (DIBAL) is added to the organic solvent and mixed with the magnet powder in a wet state. Thereby, an organometallic compound containing Dy or the like and Nd can be dispersed in an organic solvent, and the organometallic compound containing the Dy or the like or Nd can be uniformly attached to the particle surface of the Nd crystal particle 2.
 ここで、上記金属錯体としては特に配位子がアルキル基である金属アルキル錯体を用いることが望ましい。特にシクロペンタジエニル基、メチル基、ベンジル基、イソブチル基、フェニル基、オクチル基、エチルシクロペンタジエニル基、イソプロピルシクロペンタジエニル基、テトラメチルシクロペンタジエニル基又はペンタメチルシクロペンタジエニル基を含む金属錯体、或いは金属アセチリド錯体であることが望ましい。このような金属錯体としては、例えば、トリス(エチルシクロペンタジエニル)Dy(III)、トリス(イソプロピルシクロペンタジエニル)Tb(III)、ビス(シクロペンタジエニル)Mg(II)、ビス(シクロペンタジエニル)ジベンジルNb(IV)、トリヒドリドビス(ペンタメチルジシクロペンタジエニル)Nb(V)、ビス(シクロペンタジエニル)ジメチルTi(IV)、ビス(シクロペンタジエニル)ジメチルZr(IV)、ジヒドリドビス(シクロペンタジエニル)Zr(IV)、トリス(テトラメチルシクロペンタジエニル)Nd(III)、トリオクチルAl(III)、ジフェニルZn(II)、トリフェニルBi(III)、Ag(I)t-ブチルアセチリド、メシチルAg(I)、トリスシクロペンタジエニルGa(III)がある。そして、本発明では特に永久磁石1の磁気性能を向上させる為に、金属錯体の中心金属としてAl、Dy、Tb、Nd、V、Mo、Zr、Ta、Ti、W、Ag、Ga、Co、Bi、Zn、Mg又はNbを用いる。 Here, as the metal complex, it is particularly desirable to use a metal alkyl complex whose ligand is an alkyl group. Especially cyclopentadienyl, methyl, benzyl, isobutyl, phenyl, octyl, ethylcyclopentadienyl, isopropylcyclopentadienyl, tetramethylcyclopentadienyl or pentamethylcyclopentadienyl A metal complex containing a group or a metal acetylide complex is desirable. Examples of such metal complexes include tris (ethylcyclopentadienyl) Dy (III), tris (isopropylcyclopentadienyl) Tb (III), bis (cyclopentadienyl) Mg (II), bis ( Cyclopentadienyl) dibenzyl Nb (IV), trihydridobis (pentamethyldicyclopentadienyl) Nb (V), bis (cyclopentadienyl) dimethyl Ti (IV), bis (cyclopentadienyl) dimethyl Zr (IV), dihydridobis (cyclopentadienyl) Zr (IV), tris (tetramethylcyclopentadienyl) Nd (III), trioctyl Al (III), diphenyl Zn (II), triphenyl Bi (III), Ag (I) t-butyl acetylide, mesityl Ag (I), triscyclopentadienyl Ga (III). In the present invention, in order to improve the magnetic performance of the permanent magnet 1 in particular, Al, Dy, Tb, Nd, V, Mo, Zr, Ta, Ti, W, Ag, Ga, Co, Bi, Zn, Mg or Nb is used.
 また、有機金属化合物が添加された磁石粉末の成形体を適切な焼成条件で焼成すれば、Dy等がNd結晶粒子2内へと拡散浸透(固溶化)することを防止できる。それにより、本発明では、Dy等を添加したとしても焼結後に粒界のみにDy等を偏在させることができる。その結果、結晶粒全体としては(すなわち、焼結磁石全体としては)、コアのNdFe14B金属間化合物相が高い体積割合を占めた状態となる。それにより、その磁石の残留磁束密度(外部磁場の強さを0にしたときの磁束密度)の低下を抑制することができる。 Moreover, if the compact of the magnet powder to which the organometallic compound is added is fired under appropriate firing conditions, Dy and the like can be prevented from diffusing and penetrating (solid solution) into the Nd crystal particles 2. Thereby, in this invention, even if Dy etc. are added, Dy etc. can be unevenly distributed only to a grain boundary after sintering. As a result, as a whole crystal grain (that is, as a whole sintered magnet), the core Nd 2 Fe 14 B intermetallic compound phase occupies a high volume ratio. Thereby, the fall of the residual magnetic flux density (magnetic flux density when the intensity of an external magnetic field is set to 0) of the magnet can be suppressed.
 また、一般的に、焼結後の各Nd結晶粒子2が密な状態にあると、各Nd結晶粒子2間で交換相互作用が伝搬することが考えられる。その結果、外部から磁場が加わった場合に各結晶粒子の磁化反転が容易に生じ、仮に焼結後の結晶粒子をそれぞれ単磁区構造とすることができたとしても、保磁力は低下する。しかしながら、本発明では、Nd結晶粒子2の表面にコーティングされた非磁性の金属偏在層3によって、Nd結晶粒子2間での交換相互作用を分断され、外部から磁場が加わった場合でも各結晶粒子の磁化反転を妨げる。 Moreover, generally, when the sintered Nd crystal particles 2 are in a dense state, it is considered that exchange interaction propagates between the Nd crystal particles 2. As a result, when a magnetic field is applied from the outside, the magnetization reversal of each crystal particle easily occurs, and even if each sintered crystal particle can have a single domain structure, the coercive force decreases. However, in the present invention, the exchange interaction between the Nd crystal particles 2 is separated by the nonmagnetic metal uneven distribution layer 3 coated on the surface of the Nd crystal particles 2, and each crystal particle is applied even when a magnetic field is applied from the outside. Prevents the reversal of magnetization.
 また、本発明では金属偏在層3を少なくともCuを含む層によって構成するので、焼結後の永久磁石1中におけるNdリッチ相を均一に分散させ、保磁力を高める手段としても機能する。 In the present invention, since the metal uneven distribution layer 3 is composed of a layer containing at least Cu, it functions as a means for uniformly dispersing the Nd-rich phase in the sintered permanent magnet 1 and increasing the coercive force.
 また、金属偏在層3を特に高融点金属であるV、Mo、Zr、Ta、Ti、W又はNbを含む層によって構成すれば、Nd結晶粒子2の表面にコーティングされた金属偏在層3は、永久磁石1の焼結時においてはNd結晶粒子2の平均粒径が増加する所謂粒成長を抑制する手段としても機能する。 Further, if the metal uneven distribution layer 3 is constituted by a layer containing V, Mo, Zr, Ta, Ti, W or Nb, which is a particularly high melting point metal, the metal uneven distribution layer 3 coated on the surface of the Nd crystal particles 2 When the permanent magnet 1 is sintered, it also functions as a means for suppressing so-called grain growth in which the average grain size of the Nd crystal grains 2 increases.
 一方、金属偏在層3を特に磁気異方性の高いDy又はTbを含む層によって構成すれば、逆磁区の生成を抑制し、保磁力を高める(磁化反転を阻止する)手段としても機能する。 On the other hand, if the metal uneven distribution layer 3 is composed of a layer containing Dy or Tb having a particularly high magnetic anisotropy, it also functions as means for suppressing the generation of reverse magnetic domains and increasing the coercive force (preventing magnetization reversal).
 また、金属偏在層3を特にAlを含む層によって構成すれば、Cuとともに焼結後の永久磁石1中におけるNdリッチ相を均一に分散させ、保磁力を高める手段としても機能する。 Further, if the metal uneven distribution layer 3 is composed of a layer containing Al in particular, it also functions as a means for uniformly dispersing the Nd-rich phase in the sintered permanent magnet 1 together with Cu and increasing the coercive force.
 また、金属偏在層3を他のAg、Ga、Co、Bi、Zn又はMgを含む層によって構成した場合においても、粒界制御又は粒成長抑制による保磁力向上等の永久磁石の磁気性能を向上させる効果が期待できる。 Further, even when the metal uneven distribution layer 3 is composed of a layer containing other Ag, Ga, Co, Bi, Zn, or Mg, the magnetic performance of the permanent magnet is improved, such as coercivity improvement by grain boundary control or grain growth suppression. Can be expected.
 また、Ndを含む有機金属化合物を添加する構成とすれば、焼結後の永久磁石1においてNdリッチ相を均一に分散することが可能となる。また、製造過程で希土類元素が酸素や炭素と結び付いたとしても、化学量論組成に対して希土類元素が不足することなく、焼結後の永久磁石1中にαFeが生成されることを抑制することが可能となる。 In addition, if an organometallic compound containing Nd is added, the Nd-rich phase can be uniformly dispersed in the sintered permanent magnet 1. Further, even if the rare earth element is combined with oxygen or carbon in the manufacturing process, the rare earth element is not deficient with respect to the stoichiometric composition, and αFe is prevented from being generated in the sintered permanent magnet 1. It becomes possible.
 また、Nd結晶粒子2の粒径Dは0.2μm~1.2μm、好ましくは0.3μm程度とすることが望ましい。また、金属偏在層3の厚さdが2nm程度あれば、金属偏在層3による効果(粒成長抑制、交換相互作用の分断、保磁力向上等)を得ることが可能となる。但し、金属偏在層3の厚さdが大きくなりすぎると、磁性を発現しない非磁性成分の含有率が大きくなるので、残留磁束密度が低下することとなる。 Further, it is desirable that the particle diameter D of the Nd crystal particles 2 is 0.2 μm to 1.2 μm, preferably about 0.3 μm. Moreover, if the thickness d of the metal uneven distribution layer 3 is about 2 nm, it becomes possible to obtain the effects (grain growth suppression, exchange interaction division, coercive force improvement, etc.) due to the metal uneven distribution layer 3. However, if the thickness d of the metal uneven distribution layer 3 becomes too large, the content of non-magnetic components that do not exhibit magnetism increases, so that the residual magnetic flux density decreases.
 尚、Cu等をNd結晶粒子2の粒界に対して偏在させる構成としては、図3に示すようにNd結晶粒子2の粒界に対してCu等からなる粒4を点在させる構成としても良い。図3に示す構成であっても、同様の効果(粒成長抑制、交換相互作用の分断、保磁力向上等)を得ることが可能となる。尚、Cu等がNd結晶粒子2の粒界に対してどのように偏在しているかは、例えばSEM、FIB/SEMシステム、TEM、3次元アトムプローブ法により確認することができる。 As a configuration in which Cu or the like is unevenly distributed with respect to the grain boundaries of the Nd crystal particles 2, a configuration in which grains 4 made of Cu or the like are scattered with respect to the grain boundaries of the Nd crystal particles 2 as shown in FIG. good. Even with the configuration shown in FIG. 3, it is possible to obtain the same effects (grain growth suppression, exchange interaction division, coercive force improvement, etc.). In addition, how Cu or the like is unevenly distributed with respect to the grain boundaries of the Nd crystal particles 2 can be confirmed by, for example, SEM, FIB / SEM system, TEM, or three-dimensional atom probe method.
 また、金属偏在層3はCu化合物、Al化合物、Dy化合物、Tb化合物、Nb化合物、V化合物、Mo化合物、Zr化合物、Ta化合物、Ti化合物、Ag化合物、Ga化合物、Co化合物、Bi化合物、Zn化合物、Mg化合物又はW化合物(以下、Cu等化合物という)のみから構成される層である必要はなく、Cu等化合物とNd化合物との混合体からなる層であっても良い。その場合には、Cu等化合物とNd化合物との混合体からなる層を形成する。その結果、Nd磁石粉末の焼結時の液相焼結を助長することができる。 Further, the unevenly distributed metal layer 3 is composed of Cu compound, Al compound, Dy compound, Tb compound, Nb compound, V compound, Mo compound, Zr compound, Ta compound, Ti compound, Ag compound, Ga compound, Co compound, Bi compound, Zn. It is not necessary to be a layer composed only of a compound, Mg compound or W compound (hereinafter referred to as a compound such as Cu), and may be a layer composed of a mixture of a compound such as Cu and an Nd compound. In that case, a layer made of a mixture of a compound such as Cu and an Nd compound is formed. As a result, liquid phase sintering during the sintering of the Nd magnet powder can be promoted.
 ここで、永久磁石1は例えば0.05mm~10mm(例えば1mm)の厚さを備えた薄膜状の永久磁石である。永久磁石1は、後述のように圧粉成形により成形された成形体や磁石粉末とバインダーを混合した混合物を成形した成形体(グリーン体)を焼結することによって製造される。また、グリーン体は、後述のように磁石粉末とバインダーとが混合された混合物(スラリーやコンパウンド)を所定形状(例えば、シート形状、ブロック形状、最終製品形状等)に成形することによって作製される。尚、混合物を一旦最終製品形状以外に成形し、その後に打ち抜き加工、切削加工、変形加工等を行うことによって最終製品形状とする構成としても良い。また、特に混合物を一旦シート形状とした後に最終製品形状に加工する構成とすれば連続工程で生産することによって生産性を向上でき、また、成形の精度についても向上させることができる。混合物をシート形状とする場合には、例えば0.05mm~10mm(例えば1mm)の厚さを備えた薄膜状のシート部材とする。尚、シート形状とした場合であっても、複数枚積層することとすれば、大型の永久磁石1を製造することも可能である。 Here, the permanent magnet 1 is a thin-film permanent magnet having a thickness of, for example, 0.05 mm to 10 mm (for example, 1 mm). The permanent magnet 1 is manufactured by sintering a molded body (green body) formed by compacting as described below, or a molded body (green body) formed by mixing a mixture of magnet powder and a binder. Further, the green body is produced by forming a mixture (slurry or compound) in which magnet powder and a binder are mixed into a predetermined shape (for example, a sheet shape, a block shape, a final product shape, etc.) as described later. . In addition, it is good also as a structure which makes a final product shape by once shape | molding a mixture into shapes other than a final product shape, and performing punching, cutting, a deformation process, etc. after that. In particular, if the mixture is once formed into a sheet shape and then processed into a final product shape, productivity can be improved by producing in a continuous process, and molding accuracy can also be improved. When the mixture is formed into a sheet shape, for example, a thin film sheet member having a thickness of 0.05 mm to 10 mm (for example, 1 mm) is used. Even in the case of a sheet shape, a large permanent magnet 1 can be manufactured if a plurality of sheets are laminated.
 また、本発明では特にグリーン体を焼結することにより永久磁石1を製造する場合において、磁石粉末に混合されるバインダーは、樹脂や長鎖炭化水素や脂肪酸エステルやそれらの混合物等が用いられる。
 更に、バインダーに樹脂を用いる場合には、構造中に酸素原子を含まず、且つ解重合性のあるポリマーを用いるのが好ましい。また、後述のように磁石粉末とバインダーとの混合物を最終製品形状に成形する際に生じた混合物の残余物を再利用する為、及び成形された混合物を加熱して軟化した状態で磁場配向を行う為に、熱可塑性樹脂が用いられる。具体的には以下の一般式(1)に示されるモノマーから選ばれる1種又は2種以上の重合体又は共重合体からなるポリマーが該当する。
Figure JPOXMLDOC01-appb-C000001
(但し、R1及びR2は、水素原子、低級アルキル基、フェニル基又はビニル基を表す)
In the present invention, in particular, when the permanent magnet 1 is produced by sintering a green body, a resin, a long-chain hydrocarbon, a fatty acid ester, a mixture thereof, or the like is used as the binder mixed with the magnet powder.
Furthermore, when a resin is used for the binder, it is preferable to use a polymer that does not contain an oxygen atom in the structure and has a depolymerization property. In addition, as described later, in order to reuse the remainder of the mixture generated when the mixture of the magnet powder and the binder is formed into a final product shape, and the magnetic mixture is heated in a softened state. To do so, a thermoplastic resin is used. Specifically, the polymer which consists of 1 type, or 2 or more types of polymers or copolymers chosen from the monomer shown by the following general formula (1) corresponds.
Figure JPOXMLDOC01-appb-C000001
(However, R1 and R2 represent a hydrogen atom, a lower alkyl group, a phenyl group or a vinyl group.)
 上記条件に該当するポリマーとしては、例えばイソブチレンの重合体であるポリイソブチレン(PIB)、イソプレンの重合体であるポリイソプレン(イソプレンゴム、IR)、1,3-ブタジエンの重合体であるポリブタジエン(ブタジエンゴム、BR)、スチレンの重合体であるポリスチレン、スチレンとイソプレンの共重合体であるスチレン-イソプレンブロック共重合体(SIS)、イソブチレンとイソプレンの共重合体であるブチルゴム(IIR)、スチレンとブタジエンの共重合体であるスチレン-ブタジエンブロック共重合体(SBS)、2-メチル-1-ペンテンの重合体である2-メチル-1-ペンテン重合樹脂、2-メチル-1-ブテンの重合体である2-メチル-1-ブテン重合樹脂、α-メチルスチレンの重合体であるα-メチルスチレン重合樹脂等がある。尚、α-メチルスチレン重合樹脂は柔軟性を与えるために低分子量のポリイソブチレンを添加することが望ましい。また、バインダーに用いる樹脂としては、酸素原子を含むモノマーの重合体又は共重合体(例えば、ポリブチルメタクリレートやポリメチルメタクリレート等)を少量含む構成としても良い。更に、上記一般式(1)に該当しないモノマーが一部共重合していても良い。その場合であっても、本願発明の目的を達成することが可能である。
 尚、バインダーに用いる樹脂としては、磁場配向を適切に行う為に250℃以下で軟化する熱可塑性樹脂、より具体的にはガラス転移点又は融点が250℃以下の熱可塑性樹脂を用いることが望ましい。
Examples of the polymer satisfying the above conditions include polyisobutylene (PIB), which is a polymer of isobutylene, polyisoprene (isoprene rubber, IR), which is a polymer of isoprene, and polybutadiene (butadiene) that is a polymer of 1,3-butadiene. Rubber, BR), polystyrene as a polymer of styrene, styrene-isoprene block copolymer (SIS) as a copolymer of styrene and isoprene, butyl rubber (IIR) as a copolymer of isobutylene and isoprene, styrene and butadiene A styrene-butadiene block copolymer (SBS) which is a copolymer of 2-methyl-1-pentene, a polymer of 2-methyl-1-pentene, and a polymer of 2-methyl-1-butene. A 2-methyl-1-butene polymer resin, a polymer of α-methylstyrene That there is α- methyl styrene polymer resin. Incidentally, it is desirable to add low molecular weight polyisobutylene to the α-methylstyrene polymer resin in order to give flexibility. The resin used for the binder may include a small amount of a polymer or copolymer of a monomer containing an oxygen atom (for example, polybutyl methacrylate, polymethyl methacrylate, etc.). Furthermore, a monomer that does not correspond to the general formula (1) may be partially copolymerized. Even in that case, it is possible to achieve the object of the present invention.
As the resin used for the binder, it is desirable to use a thermoplastic resin that softens at 250 ° C. or lower, more specifically a thermoplastic resin having a glass transition point or a melting point of 250 ° C. or lower in order to appropriately perform magnetic field orientation. .
 一方、バインダーに長鎖炭化水素を用いる場合には、室温で固体、室温以上で液体である長鎖飽和炭化水素(長鎖アルカン)を用いるのが好ましい。具体的には炭素数が18以上である長鎖飽和炭化水素を用いるのが好ましい。そして、後述のように磁石粉末とバインダーとの混合物を磁場配向する際には、混合物を長鎖炭化水素の融点以上で加熱して軟化した状態で磁場配向を行う。 On the other hand, when a long chain hydrocarbon is used for the binder, it is preferable to use a long chain saturated hydrocarbon (long chain alkane) that is solid at room temperature and liquid at room temperature or higher. Specifically, it is preferable to use a long-chain saturated hydrocarbon having 18 or more carbon atoms. Then, when the mixture of the magnetic powder and the binder is magnetically oriented as described later, the magnetic field orientation is performed in a state where the mixture is heated and softened at a temperature equal to or higher than the melting point of the long-chain hydrocarbon.
 また、バインダーに脂肪酸エステルを用いる場合においても同様に、室温で固体、室温以上で液体であるステアリン酸メチルやドコサン酸メチル等を用いるのが好ましい。そして、後述のように磁石粉末とバインダーとの混合物を磁場配向する際には、混合物を脂肪酸エステルの融点以上で加熱して軟化した状態で磁場配向を行う。 Similarly, when a fatty acid ester is used as the binder, it is also preferable to use methyl stearate or methyl docosanoate which is solid at room temperature and liquid at room temperature or higher. And, as will be described later, when the magnetic powder and binder mixture is magnetically oriented, the magnetic field orientation is performed in a state where the mixture is heated and softened above the melting point of the fatty acid ester.
 磁石粉末に混合されるバインダーとして上記条件を満たすバインダーを用いることによって、磁石内に含有する炭素量及び酸素量を低減させることが可能となる。具体的には、焼結後に磁石に残存する炭素量を2000ppm以下、より好ましくは1000ppm以下とする。また、焼結後に磁石に残存する酸素量を5000ppm以下、より好ましくは2000ppm以下とする。 By using a binder that satisfies the above conditions as a binder to be mixed with the magnet powder, the amount of carbon and oxygen contained in the magnet can be reduced. Specifically, the amount of carbon remaining in the magnet after sintering is 2000 ppm or less, more preferably 1000 ppm or less. Further, the amount of oxygen remaining in the magnet after sintering is set to 5000 ppm or less, more preferably 2000 ppm or less.
 また、バインダーの添加量は、スラリーや加熱溶融したコンパウンドを成形する際に成形体の厚み精度を向上させる為に、磁石粒子間の空隙を適切に充填する量とする。例えば、磁石粉末とバインダーの合計量に対するバインダーの比率が、1wt%~40wt%、より好ましくは2wt%~30wt%、更に好ましくは3wt%~20wt%とする。 In addition, the amount of the binder added is an amount that appropriately fills the gaps between the magnet particles in order to improve the thickness accuracy of the molded body when molding a slurry or a heated and melted compound. For example, the ratio of the binder to the total amount of magnet powder and binder is 1 wt% to 40 wt%, more preferably 2 wt% to 30 wt%, and even more preferably 3 wt% to 20 wt%.
[永久磁石の製造方法]
 次に、本発明に係る永久磁石1の製造方法について図4及び図5を用いて説明する。図4及び図5は本実施形態に係る永久磁石1の製造工程を示した説明図である。
[Permanent magnet manufacturing method]
Next, a method for manufacturing the permanent magnet 1 according to the present invention will be described with reference to FIGS. 4 and 5 are explanatory views showing the manufacturing process of the permanent magnet 1 according to this embodiment.
 先ず、所定分率のNd-Fe-B(例えばNd:32.7wt%、Fe(電解鉄):65.96wt%、B:1.34wt%)からなる、インゴットを製造する。その後、インゴットをスタンプミルやクラッシャー等によって200μm程度の大きさに粗粉砕する。若しくは、インゴットを溶解し、ストリップキャスト法でフレークを作製し、水素解砕法で粗粉化する。それによって、粗粉砕磁石粉末10を得る。 First, an ingot made of a predetermined fraction of Nd—Fe—B (eg, Nd: 32.7 wt%, Fe (electrolytic iron): 65.96 wt%, B: 1.34 wt%) is manufactured. Thereafter, the ingot is roughly pulverized to a size of about 200 μm by a stamp mill or a crusher. Alternatively, the ingot is melted, flakes are produced by strip casting, and coarsely pulverized by hydrogen crushing. Thereby, coarsely pulverized magnet powder 10 is obtained.
 次いで、粗粉砕磁石粉末10をビーズミル11による湿式法又はジェットミルを用いた乾式法等によって微粉砕する。例えば、ビーズミル11による湿式法を用いた微粉砕では溶媒中で粗粉砕磁石粉末10を所定範囲の粒径(例えば0.1μm~5.0μm)に微粉砕するとともに溶媒中に磁石粉末を分散させる。また、粉砕に用いる溶媒の種類に特に制限はなく、イソプロピルアルコール、エタノール、メタノールなどのアルコール類、酢酸エチル等のエステル類、ペンタン、ヘキサンなどの低級炭化水素類、ベンゼン、トルエン、キシレンなど芳香族類、ケトン類、それらの混合物等が使用できる。尚、好ましくは、溶媒中に酸素原子を含まない溶媒が用いられる。 Next, the coarsely pulverized magnet powder 10 is finely pulverized by a wet method using a bead mill 11 or a dry method using a jet mill. For example, in the fine pulverization using the wet method with the bead mill 11, the coarsely pulverized magnet powder 10 is finely pulverized in a solvent to a predetermined particle size (for example, 0.1 μm to 5.0 μm) and the magnet powder is dispersed in the solvent. . Moreover, there is no restriction | limiting in particular in the kind of solvent used for grinding | pulverization, Alcohols, such as isopropyl alcohol, ethanol, methanol, Esters, such as ethyl acetate, Lower hydrocarbons, such as pentane and hexane, Aromatics, such as benzene, toluene, xylene , Ketones, mixtures thereof and the like. In addition, Preferably, the solvent which does not contain an oxygen atom in a solvent is used.
 一方、ジェットミルによる乾式法を用いた微粉砕では、粗粉砕した磁石粉末を、(a)酸素含有量が実質的に0%の窒素ガス、Arガス、Heガスなど不活性ガスからなる雰囲気中、又は(b)酸素含有量が0.0001~0.5%の窒素ガス、Arガス、Heガスなど不活性ガスからなる雰囲気中で、ジェットミルにより微粉砕し、所定範囲の粒径(例えば0.7μm~5.0μm)の平均粒径を有する微粉末とする。尚、酸素濃度が実質的に0%とは、酸素濃度が完全に0%である場合に限定されず、微粉の表面にごく僅かに酸化被膜を形成する程度の量の酸素を含有しても良いことを意味する。 On the other hand, in fine pulverization using a dry method using a jet mill, coarsely pulverized magnet powder is (a) in an atmosphere composed of an inert gas such as nitrogen gas, Ar gas, and He gas having substantially 0% oxygen content. Or (b) finely pulverized by a jet mill in an atmosphere made of an inert gas such as nitrogen gas, Ar gas, and He gas having an oxygen content of 0.0001 to 0.5%, A fine powder having an average particle diameter of 0.7 μm to 5.0 μm. The oxygen concentration of substantially 0% is not limited to the case where the oxygen concentration is completely 0%, but may contain oxygen in such an amount that a very small amount of oxide film is formed on the surface of the fine powder. Means good.
 次に、湿式粉砕後の磁石粉末が含まれる溶媒に対して有機金属化合物を添加し、混合することにより、磁石粉末の粒子表面に有機金属化合物を付着させる。尚、溶解させる有機金属化合物としては、前記したようにDy等やNdを含むとともに酸素原子及び窒素原子を含まない有機金属化合物、より具体的には中心金属がDy等やNdである金属錯体(例えば、トリス(エチルシクロペンタジエニル)Dy(III)、トリス(イソプロピルシクロペンタジエニル)Tb(III)、ビス(シクロペンタジエニル)Mg(II)、ビス(シクロペンタジエニル)ジベンジルNb(IV)、トリヒドリドビス(ペンタメチルジシクロペンタジエニル)Nb(V)、ビス(シクロペンタジエニル)ジメチルTi(IV)、ビス(シクロペンタジエニル)ジメチルZr(IV)、ジヒドリドビス(シクロペンタジエニル)Zr(IV)、トリス(テトラメチルシクロペンタジエニル)Nd(III)、トリオクチルAl(III)、ジフェニルZn(II)、トリフェニルBi(III)、Ag(I)t-ブチルアセチリド、メシチルAg(I)、トリスシクロペンタジエニルGa(III)等)又はDIBALを用いることが望ましい。また、溶解させる有機金属化合物の量は特に制限されないが、焼結後の磁石に対するDy等の含有量が0.001wt%~10wt%、好ましくは0.01wt%~5wt%となる量とするのが好ましい。尚、有機金属化合物の添加は粉砕工程の前に溶媒に対して添加し、粉砕と混合を同時に行う構成としても良い。また、ジェットミルによる乾式法を用いる場合には、粉砕後の磁石粉末と有機金属化合物をそれぞれ溶媒に添加して混合することにより、磁石粉末の粒子表面に有機金属化合物を付着させる。その後、湿式粉砕後の溶媒に含まれる磁石粉末を真空乾燥などで乾燥させ、乾燥した磁石粉末を取り出す。 Next, an organometallic compound is added to the solvent containing the magnet powder after wet pulverization and mixed to adhere the organometallic compound to the particle surface of the magnet powder. As described above, the organometallic compound to be dissolved includes an organometallic compound containing Dy or the like and Nd and not containing an oxygen atom and a nitrogen atom, more specifically, a metal complex having a central metal of Dy or the like or Nd ( For example, tris (ethylcyclopentadienyl) Dy (III), tris (isopropylcyclopentadienyl) Tb (III), bis (cyclopentadienyl) Mg (II), bis (cyclopentadienyl) dibenzyl Nb ( IV), trihydridobis (pentamethyldicyclopentadienyl) Nb (V), bis (cyclopentadienyl) dimethyl Ti (IV), bis (cyclopentadienyl) dimethyl Zr (IV), dihydridobis (cyclopenta) Dienyl) Zr (IV), tris (tetramethylcyclopentadienyl) Nd (III), trioctylAl (III), diph It is desirable to use phenyl Zn (II), triphenyl Bi (III), Ag (I) t-butyl acetylide, mesityl Ag (I), triscyclopentadienyl Ga (III), etc.) or DIBAL. Further, the amount of the organometallic compound to be dissolved is not particularly limited, but the amount is such that the content of Dy or the like in the sintered magnet is 0.001 wt% to 10 wt%, preferably 0.01 wt% to 5 wt%. Is preferred. The organometallic compound may be added to the solvent before the pulverization step, and pulverization and mixing may be performed simultaneously. Moreover, when using the dry method by a jet mill, the organometallic compound is made to adhere to the particle | grain surface of a magnet powder by adding the pulverized magnet powder and the organometallic compound to a solvent, respectively, and mixing. Thereafter, the magnet powder contained in the solvent after the wet pulverization is dried by vacuum drying or the like, and the dried magnet powder is taken out.
 次に、粒子表面に有機金属化合物が付着された磁石粉末を所望形状に成型する。尚、磁石粉末の成形には、例えば金型を用いて所望の形状へと成形する圧粉成形や、磁石粉末とバインダーとを混合した混合物を所望の形状へと成形するグリーン体成形がある。更に、圧粉成形には、乾燥した微粉末をキャビティに充填する乾式法と、磁石粉末を含むスラリーを乾燥させずにキャビティに充填する湿式法がある。一方、グリーン体成形では、混合物を最終製品形状へと直接成形しても良いし、混合物を一旦最終製品形状以外に成形して磁場配向を行い、その後に打ち抜き加工、切削加工、変形加工等を行うことによって最終製品形状としても良い。以下の実施例では、混合物をシート形状(以下、グリーンシートという)に一旦成形した後に最終製品形状へと加工する。また、混合物を特にシート形状に成形する場合には、例えば磁石粉末とバインダーとが混合したコンパウンドを加熱した後にシート形状に成形するホットメルト塗工や、磁石粉末とバインダーと有機溶媒とを含むスラリーを基材上に塗工することによりシート状に成形するスラリー塗工等による成形がある。 Next, the magnet powder with the organometallic compound attached to the particle surface is molded into a desired shape. In addition, in the shaping | molding of magnet powder, there exist compacting which shape | molds to a desired shape, for example using a metal mold | die, and green body shaping | molding which shape | molds the mixture which mixed magnetic powder and the binder to the desired shape. Further, there are two types of compacting: a dry method in which a dried fine powder is filled into a cavity, and a wet method in which a slurry containing magnet powder is filled into a cavity without drying. On the other hand, in green body molding, the mixture may be directly molded into the final product shape, or the mixture is once molded into a shape other than the final product shape and magnetic field orientation is performed, and then punching, cutting, deformation, etc. are performed. It is good also as a final product shape by doing. In the following examples, the mixture is once formed into a sheet shape (hereinafter referred to as a green sheet) and then processed into a final product shape. In addition, when the mixture is formed into a sheet shape, for example, hot melt coating that forms a sheet shape after heating a compound in which a magnet powder and a binder are mixed, or a slurry containing a magnet powder, a binder, and an organic solvent. There is molding by slurry coating or the like that forms a sheet by coating the substrate on a substrate.
 以下では、特にホットメルト塗工を用いたグリーンシート成形について説明する。
 先ず、磁石粉末にバインダーを混合することにより、磁石粉末とバインダーからなる粉末状の混合物(コンパウンド)12を作製する。ここで、バインダーとしては、上述したように樹脂や長鎖炭化水素や脂肪酸エステルやそれらの混合物等が用いられる。例えば、樹脂を用いる場合には構造中に酸素原子を含まず、且つ解重合性のあるポリマーからなる熱可塑性樹脂を用い、一方、長鎖炭化水素を用いる場合には、室温で固体、室温以上で液体である長鎖飽和炭化水素(長鎖アルカン)を用いるのが好ましい。また、脂肪酸エステルを用いる場合には、ステアリン酸メチルやドコサン酸メチル等を用いるのが好ましい。また、バインダーの添加量は、上述したように添加後のコンパウンド12における磁石粉末とバインダーの合計量に対するバインダーの比率が、1wt%~40wt%、より好ましくは2wt%~30wt%、更に好ましくは3wt%~20wt%となる量とする。
Hereinafter, green sheet forming using hot melt coating will be described.
First, a powdery mixture (compound) 12 composed of magnet powder and binder is prepared by mixing a binder with magnet powder. Here, as the binder, a resin, a long-chain hydrocarbon, a fatty acid ester, a mixture thereof, or the like is used as described above. For example, when a resin is used, a thermoplastic resin made of a depolymerizable polymer that does not contain an oxygen atom in the structure is used. On the other hand, when a long-chain hydrocarbon is used, the resin is solid at room temperature or above It is preferable to use a long-chain saturated hydrocarbon (long-chain alkane) that is liquid. Moreover, when using fatty acid ester, it is preferable to use methyl stearate, methyl docosanoate, or the like. Further, as described above, the amount of the binder added is such that the ratio of the binder to the total amount of the magnet powder and the binder in the compound 12 after the addition is 1 wt% to 40 wt%, more preferably 2 wt% to 30 wt%, still more preferably 3 wt%. % To 20 wt%.
 また、上記コンパウンド12には、後に行われる磁場配向工程での配向度を向上させる為に配向を助長する添加剤を添加しても良い。配向を助長する添加剤としては例えば炭化水素系の添加剤が用いられ、特に極性を有する(具体的には酸解離定数pKaが41未満の)添加剤を用いるのが望ましい。また、添加剤の添加量は磁石粉末の粒子径に依存し、磁石粉末の粒子径が小さい程、添加量を多くする必要がある。具体的な添加量としては、磁石粉末に対して0.1部~10部、より好ましくは1部~8部とする。そして、磁石粉末に添加された添加剤は、磁石粒子の表面に付着し、後述の磁場配向処理において、磁石粒子の回動を補助する役目を有する。その結果、磁場を印加した際に配向が容易に行われ、磁石粒子の磁化容易軸方向を同一方向に揃えること(即ち、配向度を高くすること)が可能となる。特に、磁石粉末にバインダーを添加する場合には、粒子表面にバインダーが存在するため、配向時の摩擦力が上がり、粒子の配向性が低下する為、添加剤を添加する効果がより大きくなる。 In addition, an additive for promoting orientation may be added to the compound 12 in order to improve the degree of orientation in a magnetic field orientation step performed later. As the additive for promoting the orientation, for example, a hydrocarbon-based additive is used, and it is particularly preferable to use an additive having polarity (specifically, an acid dissociation constant pKa of less than 41). Moreover, the addition amount of the additive depends on the particle diameter of the magnet powder, and it is necessary to increase the addition amount as the particle diameter of the magnet powder is smaller. The specific addition amount is 0.1 to 10 parts, more preferably 1 to 8 parts, with respect to the magnet powder. The additive added to the magnet powder adheres to the surface of the magnet particles and has a role of assisting the rotation of the magnet particles in the magnetic field orientation process described later. As a result, orientation is easily performed when a magnetic field is applied, and the easy magnetization axis directions of the magnet particles can be aligned in the same direction (that is, the degree of orientation can be increased). In particular, when a binder is added to the magnet powder, since the binder is present on the particle surface, the frictional force at the time of orientation is increased and the orientation of the particles is lowered, so that the effect of adding the additive is further increased.
 尚、バインダーの添加は、窒素ガス、Arガス、Heガスなど不活性ガスからなる雰囲気で行う。尚、磁石粉末とバインダーとの混合は、例えば有機溶媒に磁石粉末とバインダーとをそれぞれ投入し、攪拌機で攪拌することにより行う。また、混練性を促進する為に加熱攪拌を行っても良い。そして、攪拌後に磁石粉末とバインダーとを含む有機溶媒を加熱して有機溶媒を気化させることにより、コンパウンド12を抽出する。また、磁石粉末とバインダーの混合は、窒素ガス、Arガス、Heガスなど不活性ガスからなる雰囲気で行うことが望ましい。また、特に磁石粉末を湿式法で粉砕した場合においては、粉砕に用いた溶媒から磁石粉末を取り出すことなくバインダーを溶媒中に添加して混練し、その後に溶媒を揮発させ、後述のコンパウンド12を得る構成としても良い。 The binder is added in an atmosphere made of an inert gas such as nitrogen gas, Ar gas, or He gas. The mixing of the magnet powder and the binder is performed, for example, by putting the magnet powder and the binder in an organic solvent and stirring with a stirrer. In addition, heating and stirring may be performed to promote kneading properties. And the compound 12 is extracted by heating the organic solvent containing magnet powder and a binder after stirring, and vaporizing an organic solvent. The mixing of the magnet powder and the binder is preferably performed in an atmosphere made of an inert gas such as nitrogen gas, Ar gas, or He gas. In particular, when the magnet powder is pulverized by a wet method, the binder is added to the solvent without kneading the magnet powder from the solvent used for pulverization, and then the solvent is volatilized. It is good also as a structure to obtain.
 続いて、コンパウンド12をシート状に成形することによりグリーンシートを作成する。特に、ホットメルト塗工では、コンパウンド12を加熱することによりコンパウンド12を溶融し、流体状にしてからセパレータ等の支持基材13上に塗工する。その後、放熱して凝固させることにより、支持基材13上に長尺シート状のグリーンシート14を形成する。尚、コンパウンド12を加熱溶融する際の温度は、用いるバインダーの種類や量によって異なるが50~300℃とする。但し、用いるバインダーの融点よりも高い温度とする必要がある。尚、スラリー塗工を用いる場合には、多量の有機溶媒中に磁石粉末とバインダー(更に配向を助長する添加剤を含めても良い)を分散させ、スラリーをセパレータ等の支持基材13上に塗工する。その後、乾燥して有機溶媒を揮発させることにより、支持基材13上に長尺シート状のグリーンシート14を形成する。 Subsequently, a green sheet is formed by forming the compound 12 into a sheet shape. In particular, in hot melt coating, the compound 12 is heated to melt the compound 12 to form a fluid, and then the coating is applied on the support substrate 13 such as a separator. Then, the long sheet-like green sheet 14 is formed on the support base material 13 by heat dissipation and solidifying. The temperature at which the compound 12 is heated and melted is 50 to 300 ° C., although it varies depending on the type and amount of the binder used. However, the temperature needs to be higher than the melting point of the binder to be used. When slurry coating is used, magnet powder and a binder (additional additives may be added) are dispersed in a large amount of organic solvent, and the slurry is placed on a support substrate 13 such as a separator. Apply. Then, the green sheet 14 of a long sheet shape is formed on the support substrate 13 by drying and volatilizing the organic solvent.
 ここで、溶融したコンパウンド12の塗工方式は、スロットダイ方式やカレンダーロール方式等の層厚制御性に優れる方式を用いることが好ましい。特に、高い厚み精度を実現する為には、特に層厚制御性に優れた(即ち、基材の表面に高精度の厚さの層を塗工できる方式)であるダイ方式やコンマ塗工方式を用いることが望ましい。例えば、スロットダイ方式では、加熱して流体状にしたコンパウンド12をギアポンプにより押し出してダイに挿入することにより塗工を行う。また、カレンダーロール方式では、加熱した2本ロールのギャップにコンパウンド12を一定量仕込み、ロールを回転させつつ支持基材13上にロールの熱で溶融したコンパウンド12を塗工する。また、支持基材13としては、例えばシリコーン処理ポリエステルフィルムを用いる。更に、消泡剤を用いたり、加熱真空脱泡を行うこと等によって展開層中に気泡が残らないよう充分に脱泡処理することが好ましい。また、支持基材13上に塗工するのではなく、押出成型や射出成形によって溶融したコンパウンド12をシート状に成型するとともに支持基材13上に押し出すことによって、支持基材13上にグリーンシート14を成形する構成としても良い。 Here, the coating method of the melted compound 12 is preferably a method having excellent layer thickness controllability such as a slot die method or a calendar roll method. In particular, in order to achieve high thickness accuracy, a die method or comma coating method that is particularly excellent in layer thickness controllability (that is, a method capable of applying a high-accuracy thickness layer on the surface of a substrate) It is desirable to use For example, in the slot die method, coating is performed by extruding a heated compound 12 in a fluid state by a gear pump and inserting the compound 12 into a die. In the calendar roll method, a certain amount of the compound 12 is charged into the gap between the two heated rolls, and the compound 12 melted by the heat of the roll is applied onto the support base 13 while rotating the roll. Moreover, as the support base material 13, for example, a silicone-treated polyester film is used. Furthermore, it is preferable to sufficiently defoam the film so that bubbles do not remain in the spreading layer by using an antifoaming agent or performing heating vacuum defoaming. In addition, the green sheet is formed on the support substrate 13 by molding the compound 12 melted by extrusion molding or injection molding into a sheet shape and extruding the support substrate 13 instead of coating on the support substrate 13. 14 may be formed.
 以下に、図6を用いて特にスロットダイ方式によるグリーンシート14の形成工程についてより詳細に説明する。図6はスロットダイ方式によるグリーンシート14の形成工程を示した模式図である。
 図6に示すようにスロットダイ方式に用いられるダイ15は、ブロック16、17を互いに重ね合わせることにより形成されており、ブロック16、17との間の間隙によってスリット18やキャビティ(液溜まり)19を形成する。キャビティ19はブロック17に設けられた供給口20に連通される。そして、供給口20はギアポンプ(図示せず)等によって構成される塗布液の供給系へと接続されており、キャビティ19には供給口20を介して、計量された流体状のコンパウンド12が定量ポンプ等により供給される。更に、キャビティ19に供給された流体状のコンパウンド12はスリット18へ送液されて単位時間一定量で幅方向に均一な圧力でスリット18の吐出口21から予め設定された塗布幅により吐出される。一方で、支持基材13はコーティングロール22の回転に伴って予め設定された速度で連続搬送される。その結果、吐出した流体状のコンパウンド12が支持基材13に対して所定厚さで塗布され、その後、放熱して凝固することにより支持基材13上に長尺シート状のグリーンシート14が成形される。
Hereinafter, the process of forming the green sheet 14 by the slot die method will be described in more detail with reference to FIG. FIG. 6 is a schematic view showing a process of forming the green sheet 14 by the slot die method.
As shown in FIG. 6, the die 15 used in the slot die system is formed by superimposing the blocks 16 and 17 on each other, and a slit 18 and a cavity (liquid reservoir) 19 are formed by a gap between the blocks 16 and 17. Form. The cavity 19 communicates with a supply port 20 provided in the block 17. The supply port 20 is connected to a coating liquid supply system constituted by a gear pump (not shown) or the like, and the metered fluid-like compound 12 is quantified in the cavity 19 via the supply port 20. Supplied by a pump or the like. Further, the fluid-like compound 12 supplied to the cavity 19 is fed to the slit 18 and discharged from the discharge port 21 of the slit 18 with a predetermined application width with a uniform amount in the width direction at a constant amount per unit time. . On the other hand, the support base material 13 is continuously conveyed at a preset speed as the coating roll 22 rotates. As a result, the ejected fluid compound 12 is applied to the support base material 13 with a predetermined thickness, and then heat-radiating and solidifying to form a long sheet-like green sheet 14 on the support base material 13. Is done.
 また、スロットダイ方式によるグリーンシート14の形成工程では、塗工後のグリーンシート14のシート厚みを実測し、実測値に基づいてダイ15と支持基材13間のギャップDをフィードバック制御することが望ましい。また、ダイ15に供給する流体状のコンパウンド12の量の変動は極力低下させ(例えば±0.1%以下の変動に抑える)、更に塗工速度の変動についても極力低下させる(例えば±0.1%以下の変動に抑える)ことが望ましい。それによって、グリーンシート14の厚み精度を更に向上させることが可能である。尚、形成されるグリーンシート14の厚み精度は、設計値(例えば1mm)に対して±10%以内、より好ましくは±3%以内、更に好ましくは±1%以内とする。尚、他方のカレンダーロール方式では、カレンダー条件を同様に実測値に基づいて制御することで、支持基材13へのコンパウンド12の転写膜厚を制御することが可能である。 In the process of forming the green sheet 14 by the slot die method, the sheet thickness of the green sheet 14 after coating is measured, and the gap D between the die 15 and the support base 13 is feedback-controlled based on the measured value. desirable. Further, the fluctuation of the amount of the fluid compound 12 supplied to the die 15 is reduced as much as possible (for example, suppressed to fluctuation of ± 0.1% or less), and the fluctuation of the coating speed is reduced as much as possible (for example, ± 0. It is desirable to suppress the fluctuation to 1% or less. Thereby, it is possible to further improve the thickness accuracy of the green sheet 14. The thickness accuracy of the formed green sheet 14 is within ± 10%, more preferably within ± 3%, and even more preferably within ± 1% with respect to the design value (for example, 1 mm). In the other calendar roll method, it is possible to control the transfer film thickness of the compound 12 onto the support base 13 by similarly controlling the calendar conditions based on the actually measured values.
 尚、グリーンシート14の設定厚みは、0.05mm~20mmの範囲で設定することが望ましい。厚みを0.05mmより薄くすると、多層積層しなければならないので生産性が低下することとなる。 The set thickness of the green sheet 14 is desirably set in the range of 0.05 mm to 20 mm. When the thickness is less than 0.05 mm, the productivity must be reduced because multiple layers must be stacked.
 次に、上述したホットメルト塗工によって支持基材13上に形成されたグリーンシート14の磁場配向を行う。具体的には、先ず支持基材13とともに連続搬送されるグリーンシート14を加熱することによりグリーンシート14を軟化させる。具体的には、グリーンシート14の粘度が1~1500Pa・s、より好ましくは1~500Pa・sとなるまで軟化させる。それによって、磁場配向を適切に行わせることが可能となる。 Next, magnetic field orientation of the green sheet 14 formed on the support base material 13 is performed by the hot melt coating described above. Specifically, the green sheet 14 is first softened by heating the green sheet 14 that is continuously conveyed together with the support base material 13. Specifically, the green sheet 14 is softened until the viscosity becomes 1 to 1500 Pa · s, more preferably 1 to 500 Pa · s. Thereby, the magnetic field orientation can be appropriately performed.
 尚、グリーンシート14を加熱する際の温度及び時間は、用いるバインダーの種類や量によって異なるが、例えば100~250℃で0.1~60分とする。但し、グリーンシート14を軟化させる為に、用いるバインダーのガラス転移点又は融点以上の温度とする必要がある。また、グリーンシート14を加熱する加熱方式としては、例えばホットプレートによる加熱方式や熱媒体(シリコーンオイル)を熱源に用いた加熱方式が有る。次に、加熱により軟化したグリーンシート14の面内方向且つ長さ方向に対して磁場を印加することにより磁場配向を行う。印加する磁場の強さは5000[Oe]~150000[Oe]、好ましくは、10000[Oe]~120000[Oe]とする。その結果、グリーンシート14に含まれる磁石結晶のC軸(磁化容易軸)が一方向に配向される。尚、磁場を印加する方向としてはグリーンシート14の面内方向且つ幅方向に対して磁場を印加することとしても良い。また、複数枚のグリーンシート14に対して同時に磁場を配向させる構成としても良い。 The temperature and time for heating the green sheet 14 vary depending on the type and amount of the binder used, but for example, 100 to 250 ° C. and 0.1 to 60 minutes. However, in order to soften the green sheet 14, it is necessary to set the temperature to be equal to or higher than the glass transition point or melting point of the binder used. As a heating method for heating the green sheet 14, for example, there are a heating method using a hot plate and a heating method using a heat medium (silicone oil) as a heat source. Next, magnetic field orientation is performed by applying a magnetic field to the in-plane direction and the length direction of the green sheet 14 softened by heating. The intensity of the applied magnetic field is 5000 [Oe] to 150,000 [Oe], preferably 10,000 [Oe] to 120,000 [Oe]. As a result, the C axis (easy magnetization axis) of the magnet crystal included in the green sheet 14 is oriented in one direction. Note that the magnetic field may be applied in the in-plane direction and the width direction of the green sheet 14. Moreover, it is good also as a structure which orientates a magnetic field simultaneously with respect to the several green sheet 14. FIG.
 更に、グリーンシート14に磁場を印加する際には、加熱工程と同時に磁場を印加する工程を行う構成としても良いし、加熱工程を行った後であってグリーンシートが凝固する前に磁場を印加する工程を行うこととしても良い。また、ホットメルト塗工により塗工されたグリーンシート14が凝固する前に磁場配向する構成としても良い。その場合には、加熱工程は不要となる。 Furthermore, when applying a magnetic field to the green sheet 14, a configuration in which a magnetic field is applied at the same time as the heating process may be performed, or a magnetic field may be applied after the heating process and before the green sheet solidifies. It is good also as performing the process to perform. Moreover, it is good also as a structure which magnetic field orientates before the green sheet 14 apply | coated by hot-melt application solidifies. In that case, the heating step is not necessary.
 次に、図7を用いてグリーンシート14の加熱工程及び磁場配向工程についてより詳細に説明する。図7はグリーンシート14の加熱工程及び磁場配向工程を示した模式図である。尚、図7に示す例では、加熱工程と同時に磁場配向工程を行う例について説明する。 Next, the heating process and the magnetic field orientation process of the green sheet 14 will be described in more detail with reference to FIG. FIG. 7 is a schematic view showing a heating process and a magnetic field orientation process of the green sheet 14. In the example shown in FIG. 7, an example in which the magnetic field orientation process is performed simultaneously with the heating process will be described.
 図7に示すように、上述したスロットダイ方式により塗工されたグリーンシート14に対する加熱及び磁場配向は、ロールによって連続搬送された状態の長尺シート状のグリーンシート14に対して行う。即ち、加熱及び磁場配向を行う為の装置を塗工装置(ダイ等)の下流側に配置し、上述した塗工工程と連続した工程により行う。 As shown in FIG. 7, heating and magnetic field orientation on the green sheet 14 coated by the slot die method described above are performed on the long green sheet 14 in a state of being continuously conveyed by a roll. That is, an apparatus for performing heating and magnetic field orientation is disposed on the downstream side of the coating apparatus (die or the like), and is performed by a process continuous with the above-described coating process.
 具体的には、ダイ15やコーティングロール22の下流側において、搬送される支持基材13及びグリーンシート14がソレノイド25内を通過するようにソレノイド25を配置する。更に、ホットプレート26をソレノイド25内においてグリーンシート14に対して上下一対に配置する。そして、上下一対に配置されたホットプレート26によりグリーンシート14を加熱するとともに、ソレノイド25に電流を流すことによって、長尺シート状のグリーンシート14の面内方向(即ち、グリーンシート14のシート面に平行な方向)で且つ長さ方向に磁場を生じさせる。それによって、連続搬送されるグリーンシート14を加熱により軟化させるとともに、軟化したグリーンシート14の面内方向且つ長さ方向(図7の矢印27方向)に対して磁場を印加し、グリーンシート14に対して適切に均一な磁場を配向させることが可能となる。特に、磁場を印加する方向を面内方向とすることによって、グリーンシート14の表面が逆立つことを防止できる。
 また、磁場配向した後に行うグリーンシート14の放熱及び凝固は、搬送状態で行うことが好ましい。それによって、製造工程をより効率化することが可能となる。
Specifically, the solenoid 25 is disposed on the downstream side of the die 15 and the coating roll 22 so that the transported support base material 13 and the green sheet 14 pass through the solenoid 25. Further, the hot plates 26 are arranged in a pair above and below the green sheet 14 in the solenoid 25. The green sheet 14 is heated by a pair of upper and lower hot plates 26 and an electric current is passed through the solenoid 25, so that the in-plane direction of the long green sheet 14 (that is, the sheet surface of the green sheet 14). A magnetic field in the longitudinal direction). Thereby, the continuously conveyed green sheet 14 is softened by heating, and a magnetic field is applied to the in-plane direction and the length direction (in the direction of arrow 27 in FIG. 7) of the softened green sheet 14. On the other hand, it becomes possible to orient a uniform magnetic field appropriately. In particular, the surface of the green sheet 14 can be prevented from standing upright by setting the direction in which the magnetic field is applied to the in-plane direction.
Moreover, it is preferable that the heat dissipation and solidification of the green sheet 14 performed after the magnetic field orientation is performed in a transported state. Thereby, the manufacturing process can be made more efficient.
 尚、磁場配向をグリーンシート14の面内方向且つ幅方向に対して行う場合には、ソレノイド25の代わりに搬送されるグリーンシート14の左右に一対の磁場コイルを配置するように構成する。そして、各磁場コイルに電流を流すことによって、長尺シート状のグリーンシート14の面内方向で且つ幅方向に磁場を生じさせることが可能となる。 When the magnetic field orientation is performed in the in-plane direction and the width direction of the green sheet 14, a pair of magnetic field coils are arranged on the left and right of the green sheet 14 that is conveyed instead of the solenoid 25. And it becomes possible to generate a magnetic field in the in-plane direction and the width direction of the long sheet-like green sheet 14 by passing a current through each magnetic field coil.
 また、磁場配向をグリーンシート14の面に対して垂直方向とすることも可能である。磁場配向をグリーンシート14の面に対して垂直方向に対して行う場合には、例えばポールピース等を用いた磁場印加装置により行う。具体的には、図8に示すようにポールピース等を用いた磁場印加装置30は、中心軸が同一になるように平行配置された2つのリング状のコイル部31、32と、コイル部31、32のリング孔にそれぞれ配置された2つの略円柱状のポールピース33、34とを有し、搬送されるグリーンシート14に対して所定間隔離間されて配置される。そして、コイル部31、32に電流を流すことにより、グリーンシート14の面に対して垂直方向に磁場を生成し、グリーンシート14の磁場配向を行う。尚、磁場配向方向をグリーンシート14の面に対して垂直方向とする場合には、図8に示すようにグリーンシート14に対して支持基材13が積層された反対側の面にもフィルム35を積層することが好ましい。それによって、グリーンシート14の表面の逆立ちを防止することが可能となる。 It is also possible to make the magnetic field orientation perpendicular to the surface of the green sheet 14. When the magnetic field orientation is performed in a direction perpendicular to the surface of the green sheet 14, for example, the magnetic field application device using a pole piece or the like is used. Specifically, as shown in FIG. 8, the magnetic field application device 30 using a pole piece or the like includes two ring-shaped coil portions 31 and 32 arranged in parallel so that the central axes are the same, and the coil portion 31. , 32 and two substantially cylindrical pole pieces 33, 34 respectively disposed in the ring holes, and are spaced apart from the conveyed green sheet 14 by a predetermined distance. And a magnetic field is produced | generated to a perpendicular | vertical direction with respect to the surface of the green sheet 14 by sending an electric current through the coil parts 31 and 32, and the magnetic field orientation of the green sheet 14 is performed. In the case where the magnetic field orientation direction is perpendicular to the surface of the green sheet 14, the film 35 is also formed on the opposite surface of the green sheet 14 on which the support base material 13 is laminated as shown in FIG. Are preferably laminated. Accordingly, it is possible to prevent the surface of the green sheet 14 from standing upside down.
 また、上述したホットプレート26による加熱方式の代わりに熱媒体(シリコーンオイル)を熱源とした加熱方式を用いても良い。ここで、図9は熱媒体を用いた加熱装置37の一例を示した図である。
 図9に示すように、加熱装置37は発熱体となる平板部材38の内部に略U字型の空洞39を形成し、空洞39内に所定温度(例えば100~300℃)に加熱された熱媒体であるシリコーンオイルを循環させる構成とする。そして、図7に示すホットプレート26の代わりに、加熱装置37をソレノイド25内においてグリーンシート14に対して上下一対に配置する。それによって、連続搬送されるグリーンシート14を、熱媒体により発熱された平板部材38を介して加熱し、軟化させる。尚、平板部材38はグリーンシート14に対して当接させても良いし、所定間隔離間させて配置しても良い。そして、軟化したグリーンシート14の周囲に配置されたソレノイド25によって、グリーンシート14の面内方向且つ長さ方向(図7の矢印27方向)に対して磁場が印加され、グリーンシート14に対して適切に均一な磁場を配向させることが可能となる。尚、図9に示すような熱媒体を用いた加熱装置37では、一般的なホットプレート26のように内部に電熱線を有さないので、磁場中に配置した場合であってもローレンツ力によって電熱線が振動したり切断される虞が無く、適切にグリーンシート14の加熱を行うことが可能となる。また、電流による制御を行う場合には、電源のON又はOFFで電熱線が振動することにより疲労破壊の原因となる問題が有るが、熱媒体を熱源とした加熱装置37を用いることによって、そのような問題を解消することが可能となる。
Further, instead of the heating method using the hot plate 26 described above, a heating method using a heat medium (silicone oil) as a heat source may be used. Here, FIG. 9 is a diagram showing an example of a heating device 37 using a heat medium.
As shown in FIG. 9, the heating device 37 forms a substantially U-shaped cavity 39 inside a flat plate member 38 serving as a heating element, and heat heated to a predetermined temperature (for example, 100 to 300 ° C.) in the cavity 39. It is set as the structure which circulates the silicone oil which is a medium. Then, instead of the hot plate 26 shown in FIG. 7, the heating device 37 is disposed in a pair above and below the green sheet 14 in the solenoid 25. Thereby, the continuously conveyed green sheet 14 is heated and softened through the flat plate member 38 that is heated by the heat medium. The flat plate member 38 may be brought into contact with the green sheet 14 or may be arranged at a predetermined interval. A magnetic field is applied to the in-plane direction and the length direction of the green sheet 14 (in the direction of the arrow 27 in FIG. 7) by the solenoid 25 arranged around the softened green sheet 14. An appropriate uniform magnetic field can be oriented. Note that the heating device 37 using the heat medium as shown in FIG. 9 does not have a heating wire inside unlike the general hot plate 26, so even if it is placed in a magnetic field, There is no possibility that the heating wire vibrates or is cut, and the green sheet 14 can be appropriately heated. In addition, when performing control by electric current, there is a problem that causes fatigue failure due to vibration of the heating wire when the power is turned on or off, but by using the heating device 37 using a heat medium as a heat source, Such a problem can be solved.
 ここで、ホットメルト成形を用いずに一般的なスロットダイ方式やドクターブレード方式等によりスラリー等の流動性の高い液状物によってグリーンシート14を成形した場合には、磁場の勾配が生じているところにグリーンシート14が搬入されると、磁場が強い方にグリーンシート14に含まれる磁石粉末が引き寄せられることとなり、グリーンシート14を形成するスラリーの液寄り、即ち、グリーンシート14の厚みの偏りが生じる虞がある。それに対して、本発明のようにコンパウンド12をホットメルト成形によりグリーンシート14に成形する場合には、室温付近での粘度は数万~数十万Pa・sに達し、磁場勾配通過時の磁性粉末の寄りが生じることが無い。更に、均一磁場中に搬送され、加熱されることでバインダーの粘度低下が生じ、均一磁場中の回転トルクのみで、一様なC軸配向が可能となる。 Here, when the green sheet 14 is formed from a liquid material having high fluidity such as slurry by a general slot die method or doctor blade method without using hot melt molding, a magnetic field gradient is generated. When the green sheet 14 is carried in, the magnetic powder contained in the green sheet 14 is attracted toward the stronger magnetic field, so that the slurry forming the green sheet 14 is closer to the liquid, that is, the thickness of the green sheet 14 is uneven. May occur. On the other hand, when the compound 12 is molded into the green sheet 14 by hot melt molding as in the present invention, the viscosity near room temperature reaches several tens of thousands to several hundred thousand Pa · s, and the magnetism when passing through the magnetic field gradient is reached. There is no powder slippage. Furthermore, the viscosity of the binder is lowered by being transported and heated in a uniform magnetic field, and uniform C-axis orientation is possible only by the rotational torque in the uniform magnetic field.
 また、ホットメルト成形を用いずに一般的なスロットダイ方式やドクターブレード方式等により有機溶媒を含むスラリー等の流動性の高い液状物によってグリーンシート14を成形した場合には、厚さ1mmを越えるシートを作成しようとすると乾燥時においてスラリー等に含まれる有機溶媒が気化することによる発泡が課題となる。更に、発泡を抑制する為に乾燥時間を長時間化すれば、磁石粉末の沈降が生じ、それに伴って重力方向に対する磁石粉末の密度分布の偏りが生じ、焼成後の反りの原因となる。従って、スラリーからの成形では、厚みの上限値が実質上規制される為、1mm以下の厚みでグリーンシートを成形し、その後に積層する必要がある。しかし、その場合にはバインダー同士の絡まり合いが乏しくなり、その後の脱バインダー工程(仮焼処理)で層間剥離を生じ、それがC軸(磁化容易軸)配向性の低下、即ち残留磁束密度(Br)の低下原因となる。それに対して、本発明のようにコンパウンド12をホットメルト成形によりグリーンシート14に成形する場合には、有機溶媒を含まないので、厚さ1mmを越えるシートを作成した場合でも上述したような発泡の懸念が解消する。そして、バインダーが十分に絡まり合った状態にあるので、脱バインダー工程での層間剥離が生じる虞が無い。 Further, when the green sheet 14 is molded by a liquid material having high fluidity such as a slurry containing an organic solvent by a general slot die method or doctor blade method without using hot melt molding, the thickness exceeds 1 mm. When an attempt is made to produce a sheet, foaming due to vaporization of the organic solvent contained in the slurry or the like during drying becomes a problem. Further, if the drying time is prolonged to suppress foaming, the magnet powder is settled, and accordingly, the density distribution of the magnet powder is biased with respect to the direction of gravity, which causes warping after firing. Therefore, in the molding from the slurry, the upper limit value of the thickness is substantially regulated, so it is necessary to mold the green sheet with a thickness of 1 mm or less and then laminate it. However, in such a case, the entanglement between the binders becomes poor, and delamination occurs in the subsequent binder removal step (calcination process), which causes a decrease in C-axis (easy magnetization axis) orientation, that is, residual magnetic flux density ( Br) decreases. On the other hand, when the compound 12 is molded into the green sheet 14 by hot melt molding as in the present invention, since it does not contain an organic solvent, even when a sheet having a thickness exceeding 1 mm is prepared, Concerns are resolved. And since the binder is in a sufficiently entangled state, there is no possibility of delamination in the debinding process.
 また、複数枚のグリーンシート14に対して同時に磁場を印加させる場合には、例えばグリーンシート14を複数枚(例えば6枚)積層した状態で連続搬送し、積層したグリーンシート14がソレノイド25内を通過するように構成する。それによって生産性を向上させることが可能となる。 When applying a magnetic field to a plurality of green sheets 14 at the same time, for example, a plurality of (for example, six) green sheets 14 are continuously conveyed, and the stacked green sheets 14 pass through the solenoid 25. Configure to pass. As a result, productivity can be improved.
 その後、磁場配向を行ったグリーンシート14を所望の製品形状(例えば、図1に示す扇形形状)に打ち抜きし、成形体40を成形する。 Thereafter, the green sheet 14 subjected to the magnetic field orientation is punched into a desired product shape (for example, a fan shape shown in FIG. 1), and a formed body 40 is formed.
 続いて、成形された成形体40を大気圧、又は大気圧より高い圧力や低い圧力(例えば、1.0Paや1.0MPa)に加圧した非酸化性雰囲気(特に本発明では水素雰囲気又は水素と不活性ガスの混合ガス雰囲気)においてバインダー分解温度(配向を助長する添加剤を添加していた場合には該添加剤の熱分解温度以上の条件も満たす温度)で数時間~数十時間(例えば5時間)保持することにより仮焼処理を行う。水素雰囲気下で行う場合には、例えば仮焼中の水素の供給量は5L/minとする。仮焼処理を行うことによって、バインダー等の有機化合物を解重合反応等によりモノマーに分解し飛散させて除去することが可能となる。また、有機金属化合物を熱分解し、金属元素を粒界に残存させつつ、炭素については除去することが可能となる。即ち、成形体40中の炭素量を低減させる所謂脱カーボンが行われることとなる。また、仮焼処理は、成形体40中の炭素量が2000ppm以下、より好ましくは1000ppm以下とする条件で行うこととする。それによって、その後の焼結処理で永久磁石1全体を緻密に焼結させることが可能となり、残留磁束密度や保磁力を低下させることが無い。また、上述した仮焼処理を行う際の加圧条件を大気圧より高い圧力で行う場合には、15MPa以下とすることが望ましい。尚、加圧条件は大気圧より高い圧力、より具体的には0.2MPa以上とすれば特に炭素量軽減の効果が期待できる。 Subsequently, a non-oxidizing atmosphere (particularly a hydrogen atmosphere or hydrogen in the present invention) in which the molded body 40 is pressurized to atmospheric pressure, or a pressure higher or lower than atmospheric pressure (for example, 1.0 Pa or 1.0 MPa). Several hours to several tens of hours at a binder decomposition temperature in a mixed gas atmosphere of an inert gas and an inert gas (a temperature satisfying a condition equal to or higher than the thermal decomposition temperature of the additive if an additive that promotes orientation is added) For example, the calcining process is performed by holding for 5 hours. In the case of performing in a hydrogen atmosphere, for example, the supply amount of hydrogen during calcination is set to 5 L / min. By performing the calcination treatment, an organic compound such as a binder can be decomposed into a monomer by a depolymerization reaction or the like and scattered to be removed. Also, carbon can be removed while pyrolyzing the organometallic compound and leaving the metal element at the grain boundary. That is, so-called decarbonization for reducing the amount of carbon in the molded body 40 is performed. The calcining treatment is performed under the condition that the carbon content in the molded body 40 is 2000 ppm or less, more preferably 1000 ppm or less. Accordingly, the entire permanent magnet 1 can be densely sintered by the subsequent sintering process, and the residual magnetic flux density and coercive force are not reduced. Moreover, when performing the pressurization conditions at the time of performing the calcining process mentioned above by the pressure higher than atmospheric pressure, it is desirable to set it as 15 Mpa or less. In addition, if the pressurizing condition is a pressure higher than atmospheric pressure, more specifically 0.2 MPa or more, the effect of reducing the carbon amount can be expected.
 尚、バインダー分解温度は、バインダー分解生成物および分解残渣の分析結果に基づき決定する。具体的にはバインダーの分解生成物を補集し、モノマー以外の分解生成物が生成せず、かつ残渣の分析においても残留するバインダー成分の副反応による生成物が検出されない温度範囲が選ばれる。バインダーの種類により異なるが200℃~900℃、より好ましくは400℃~600℃(例えば450℃)とする。また、有機金属化合物の熱分解温度については、添加する有機金属化合物の種類によって決定されるが、上記バインダー分解温度であれば基本的に有機金属化合物の熱分解についても行うことが可能となる。尚、磁石粉末にバインダーを混合せずに成形(例えば圧粉成形)した場合には、有機金属化合物の熱分解温度で仮焼処理を行う。
 また、特に磁石原料を有機溶媒中で湿式粉砕により粉砕した場合には、有機溶媒を構成する有機化合物の熱分解温度且つバインダー分解温度で仮焼処理を行う。それによって、残留した有機溶媒についても除去することが可能となる。有機化合物の熱分解温度については、用いる有機溶媒の種類によって決定されるが、上記バインダー分解温度であれば基本的に有機化合物の熱分解についても行うことが可能となる。
The binder decomposition temperature is determined based on the analysis results of the binder decomposition product and decomposition residue. Specifically, a temperature range is selected in which decomposition products of the binder are collected, decomposition products other than the monomers are not generated, and products due to side reactions of the remaining binder components are not detected even in the analysis of the residues. Although it varies depending on the kind of the binder, it is set to 200 ° C. to 900 ° C., more preferably 400 ° C. to 600 ° C. (eg, 450 ° C.). Further, the thermal decomposition temperature of the organometallic compound is determined depending on the kind of the organometallic compound to be added, but basically the thermal decomposition of the organometallic compound can be performed at the binder decomposition temperature. In addition, when shape | molding (for example, compacting) without mixing a binder with magnet powder, a calcination process is performed at the thermal decomposition temperature of an organometallic compound.
In particular, when the magnet raw material is pulverized by wet pulverization in an organic solvent, the calcining treatment is performed at the thermal decomposition temperature and binder decomposition temperature of the organic compound constituting the organic solvent. Thereby, the remaining organic solvent can be removed. The thermal decomposition temperature of the organic compound is determined depending on the type of the organic solvent to be used, but basically the thermal decomposition of the organic compound can be performed at the binder decomposition temperature.
 また、上記仮焼処理は、一般的な磁石の焼結を行う場合と比較して、昇温速度を小さくするのが好ましい。具体的には、昇温速度を2℃/min以下(例えば1.5℃/min)とする。従って、仮焼処理を行う場合には、2℃/min以下の所定の昇温速度で昇温し、予め設定された設定温度(バインダー分解温度)に到達した後に、該設定温度で数時間~数十時間保持することにより仮焼処理を行う。上記のように仮焼処理において昇温速度を小さくすることによって、成形体40中の炭素が急激に除去されず、段階的に除去されるので、焼結後の永久磁石の密度を上昇させる(即ち、永久磁石中の空隙を減少させる)ことが可能となる。そして、昇温速度を2℃/min以下とすれば、焼結後の永久磁石の密度を95%以上とすることができ、高い磁石特性が期待できる。 Further, in the calcining process, it is preferable that the heating rate is reduced as compared with a case where a general magnet is sintered. Specifically, the temperature rising rate is set to 2 ° C./min or less (for example, 1.5 ° C./min). Therefore, when performing the calcining treatment, the temperature is increased at a predetermined temperature increase rate of 2 ° C./min or less, and after reaching a preset set temperature (binder decomposition temperature), at the set temperature for several hours to Calcination is performed by holding for several tens of hours. By reducing the heating rate in the calcination treatment as described above, the carbon in the molded body 40 is not removed rapidly but is removed in stages, so that the density of the sintered permanent magnet is increased ( That is, it is possible to reduce the air gap in the permanent magnet. And if a temperature increase rate shall be 2 degrees C / min or less, the density of the permanent magnet after sintering can be made 95% or more, and a high magnet characteristic can be anticipated.
 また、仮焼処理によって仮焼された成形体40を続いて真空雰囲気で保持することにより脱水素処理を行っても良い。脱水素処理では、仮焼処理によって生成された成形体40中のNdH(活性度大)を、NdH(活性度大)→NdH(活性度小)へと段階的に変化させることによって、仮焼処理により活性化された成形体40の活性度を低下させる。それによって、仮焼処理によって仮焼された成形体40をその後に大気中へと移動させた場合であっても、Ndが酸素と結び付くことを防止し、残留磁束密度や保磁力を低下させることが無い。また、磁石結晶の構造をNdH等からNdFe14B構造へと戻す効果も期待できる。 Moreover, you may perform a dehydrogenation process by hold | maintaining the molded object 40 calcined by the calcination process in a vacuum atmosphere succeedingly. In the dehydrogenation treatment, NdH 3 (high activity) in the molded body 40 produced by the calcination treatment is changed stepwise from NdH 3 (high activity) → NdH 2 (low activity). The activity of the molded body 40 activated by the calcination treatment is reduced. Thereby, even when the compact 40 that has been calcined by the calcining process is subsequently moved to the atmosphere, Nd is prevented from being combined with oxygen, and the residual magnetic flux density and coercive force are reduced. There is no. Moreover, the effect of returning the structure of the magnet crystals from NdH 2 etc. to Nd 2 Fe 14 B structure can be expected.
 続いて、仮焼処理によって仮焼された成形体40を焼結する焼結処理を行う。尚、成形体40の焼結方法としては、一般的な真空焼結以外に成形体40を加圧した状態で焼結する加圧焼結等も用いることが可能である。例えば、真空焼結で焼結を行う場合には、所定の昇温速度で800℃~1080℃程度の焼成温度まで昇温し、0.1~2時間程度保持する。この間は真空焼成となるが真空度としては5Pa以下、好ましくは10-2Pa以下とすることが好ましい。その後冷却し、再び300℃~1000℃で2時間熱処理を行う。そして、焼結の結果、焼結された磁石の成形体(以下、焼結体50という)が得られる。 Subsequently, a sintering process for sintering the compact 40 that has been calcined by the calcining process is performed. In addition, as a sintering method of the molded body 40, it is also possible to use pressure sintering which sinters in a state where the molded body 40 is pressed in addition to general vacuum sintering. For example, when sintering is performed by vacuum sintering, the temperature is raised to a firing temperature of about 800 ° C. to 1080 ° C. at a predetermined temperature increase rate and held for about 0.1 to 2 hours. During this time, vacuum firing is performed, but the degree of vacuum is 5 Pa or less, preferably 10-2 Pa or less. Thereafter, it is cooled and heat-treated again at 300 ° C. to 1000 ° C. for 2 hours. As a result of the sintering, a sintered compact of the magnet (hereinafter referred to as “sintered body 50”) is obtained.
 一方、加圧焼結としては、例えば、ホットプレス焼結、熱間静水圧加圧(HIP)焼結、超高圧合成焼結、ガス加圧焼結、放電プラズマ(SPS)焼結等がある。但し、焼結時の磁石粒子の粒成長を抑制するとともに焼結後の磁石に生じる反りを抑える為に、一軸方向に加圧する一軸加圧焼結であって且つ通電焼結により焼結するSPS焼結を用いることが好ましい。尚、SPS焼結で焼結を行う場合には、加圧値を例えば0.01MPa~100MPaとし、数Pa以下の真空雰囲気で940℃まで10℃/分で上昇させ、その後5分保持することが好ましい。その後冷却し、再び300℃~1000℃で2時間熱処理を行う。そして、焼結の結果、焼結体50が得られる。 On the other hand, examples of pressure sintering include hot press sintering, hot isostatic pressing (HIP) sintering, ultrahigh pressure synthetic sintering, gas pressure sintering, and discharge plasma (SPS) sintering. . However, in order to suppress the grain growth of the magnet particles during sintering and to suppress the warpage generated in the sintered magnet, the SPS is uniaxial pressure sintering that pressurizes in a uniaxial direction and is sintered by current sintering. Sintering is preferably used. When sintering is performed by SPS sintering, the pressure value is set to, for example, 0.01 MPa to 100 MPa, the pressure is increased to 940 ° C. at 10 ° C./min in a vacuum atmosphere of several Pa or less, and then held for 5 minutes. Is preferred. Thereafter, it is cooled and heat-treated again at 300 ° C. to 1000 ° C. for 2 hours. As a result of sintering, a sintered body 50 is obtained.
 以下に、図10を用いてSPS焼結による成形体40の加圧焼結工程についてより詳細に説明する。図10はSPS焼結による成形体40の加圧焼結工程を示した模式図である。
 図10に示すようにSPS焼結を行う場合には、先ず、グラファイト製の焼結型41に成形体40を設置する。尚、上述した仮焼処理についても成形体40を焼結型41に設置した状態で行っても良い。そして、焼結型41に設置された成形体40を真空チャンバー42内に保持し、同じくグラファイト製の上部パンチ43と下部パンチ44をセットする。そして、上部パンチ43に接続された上部パンチ電極45と下部パンチ44に接続された下部パンチ電極46とを用いて、低電圧且つ高電流の直流パルス電圧・電流を印加する。それと同時に、上部パンチ43及び下部パンチ44に対して加圧機構(図示せず)を用いて夫々上下方向から荷重を付加する。その結果、焼結型41内に設置された成形体40は、加圧されつつ焼結が行われる。また、生産性を向上させる為に、複数(例えば10個)の成形体に対して同時にSPS焼結を行うことが好ましい。尚、複数の成形体40に対して同時にSPS焼結を行う場合には、一の空間に複数の成形体40を配置しても良いし、成形体40毎に異なる空間に配置するようにしても良い。尚、成形体40毎に異なる空間に配置する場合には、空間毎に成形体40を加圧する上部パンチ43や下部パンチ44は各空間の間で一体とする(即ち一体となっている一の上部パンチ43及び下部パンチ44を駆動させることにより各空間にある複数の成形体を同時に加圧できる)ように構成する。
Below, the pressure sintering process of the molded object 40 by SPS sintering is demonstrated in detail using FIG. FIG. 10 is a schematic diagram showing a pressure sintering process of the compact 40 by SPS sintering.
As shown in FIG. 10, when performing SPS sintering, first, the compact 40 is installed in the sintering die 41 made of graphite. The calcining process described above may also be performed in a state where the molded body 40 is installed in the sintering mold 41. Then, the compact 40 placed in the sintering die 41 is held in the vacuum chamber 42, and an upper punch 43 and a lower punch 44 made of graphite are set. Then, a low-voltage and high-current DC pulse voltage / current is applied using the upper punch electrode 45 connected to the upper punch 43 and the lower punch electrode 46 connected to the lower punch 44. At the same time, a load is applied to the upper punch 43 and the lower punch 44 from above and below using a pressure mechanism (not shown). As a result, the compact 40 placed in the sintering die 41 is sintered while being pressurized. In order to improve productivity, it is preferable to perform SPS sintering simultaneously on a plurality of (for example, 10) shaped bodies. In addition, when performing SPS sintering with respect to the some molded object 40 simultaneously, you may arrange | position the several molded object 40 in one space, and arrange | position in the space which is different for every molded object 40. Also good. In addition, when arrange | positioning in the space which differs for every molded object 40, the upper punch 43 and the lower punch 44 which pressurize the molded object 40 for every space are united between each space (namely, one united one). And driving the upper punch 43 and the lower punch 44 to simultaneously pressurize a plurality of molded bodies in each space).
 次に、図5に示すように、上記焼結処理によって焼結された焼結体50を、スパッタ装置にセットし、焼結体50の表面に対してNdのスパッタリングを行う。スパッタリングの条件としては、例えば300mAで60分とする。尚、Ndのスパッタリングは、焼結体50が図1に示すような薄板形状を有する場合には、焼結体50の両面に対してそれぞれ行う。その結果、焼結体50の表面に対してNdの薄膜51が形成される。 Next, as shown in FIG. 5, the sintered body 50 sintered by the above sintering treatment is set in a sputtering apparatus, and Nd sputtering is performed on the surface of the sintered body 50. The sputtering conditions are, for example, 300 mA and 60 minutes. Note that Nd sputtering is performed on both sides of the sintered body 50 when the sintered body 50 has a thin plate shape as shown in FIG. As a result, an Nd thin film 51 is formed on the surface of the sintered body 50.
 続いて、上記Ndのスパッタリングが行われた焼結体50の表面に対して、更にCuのスパッタリングを行う。スパッタリングの条件としては、例えば300mAで15分とする。尚、Cuのスパッタリングは、焼結体50が図1に示すような薄板形状を有する場合には、焼結体50の両面に対して行う。その結果、焼結体50の表面に対してNdの薄膜51に重複してCuの薄膜52についても形成される。 Subsequently, Cu is further sputtered on the surface of the sintered body 50 on which the Nd sputtering has been performed. The sputtering conditions are, for example, 300 mA and 15 minutes. Cu sputtering is performed on both surfaces of the sintered body 50 when the sintered body 50 has a thin plate shape as shown in FIG. As a result, a Cu thin film 52 is also formed on the surface of the sintered body 50 so as to overlap the Nd thin film 51.
 その後、上記スパッタ処理によってNdの薄膜51とCuの薄膜52がそれぞれ形成された焼結体50を加熱することによって、焼結体50の表面にスパッタリングされたCuを焼結体50の内部に拡散させる拡散処理を行う。尚、拡散処理は、真空雰囲気下で焼結温度よりも低い温度で且つCuとNdの金属間化合物(例えばNd-Cu)の融点より高い温度(例えば600℃~800℃)で一定時間(例えば5時間)加熱することにより行う。その結果、焼結体50の表面にスパッタリングされたCuが、拡散処理の段階で液相となって粒界に浸透し、Cuを粒界に偏在させることが可能となる。 Thereafter, by heating the sintered body 50 on which the Nd thin film 51 and the Cu thin film 52 are respectively formed by the sputtering process, Cu sputtered on the surface of the sintered body 50 is diffused into the sintered body 50. The diffusion process is performed. The diffusion treatment is performed at a temperature lower than the sintering temperature in a vacuum atmosphere and higher than the melting point of an intermetallic compound of Cu and Nd (for example, Nd—Cu) (for example, 600 ° C. to 800 ° C.) for a certain time (for example, 5 hours) by heating. As a result, Cu sputtered on the surface of the sintered body 50 becomes a liquid phase at the stage of diffusion treatment and penetrates into the grain boundaries, and Cu can be unevenly distributed in the grain boundaries.
 ここで、Cuは単体金属よりもNdとの合金の方が融点が低くなる。従って、拡散処理を低温で行うことができ、拡散処理の段階で粒成長が生じる虞もない。また、Cuの添加量を少量(例えば0.1wt%)とした場合であっても、Cuを粒界に対して適切に偏在させることが可能となる。そして、上記拡散処理を行った結果、永久磁石1が製造される。 Here, Cu has a lower melting point in an alloy with Nd than in a single metal. Therefore, the diffusion treatment can be performed at a low temperature, and there is no possibility of grain growth at the stage of the diffusion treatment. Further, even when the amount of Cu added is small (for example, 0.1 wt%), Cu can be appropriately unevenly distributed with respect to the grain boundary. And as a result of performing the said diffusion process, the permanent magnet 1 is manufactured.
 また、上記焼結処理による焼結後であって、上記拡散処理が行われる前又は行われた後の焼結体50に対して、更に熱処理を行う構成としても良い。尚、熱処理は、焼結体を一旦放熱した後に真空雰囲気下で焼結温度よりも低い温度(460℃~600℃)で一定時間(例えば1時間)加熱することにより行う。 Further, the sintered body 50 after the sintering by the sintering process and before or after the diffusion process may be further heat-treated. The heat treatment is performed by once releasing the heat of the sintered body and heating it in a vacuum atmosphere at a temperature lower than the sintering temperature (460 ° C. to 600 ° C.) for a certain time (for example, 1 hour).
 ここで、上記焼結処理後の冷却段階で、焼結体において有機金属化合物に含まれるDy等とNdは共晶を形成する。そして、特に有機金属化合物に含まれるDy等が特定の金属(例えば、Al、Ag、Ga(以下Al等という))である場合、共晶はNd単体よりも融点が低くなる。従って、焼結後に有機金属化合物に含まれるAl等とNdとの共晶の融点より高い温度で熱処理を行うこととすれば、有機金属化合物に含まれるAl等との共晶によって低融点化したNdリッチ相が、熱処理の段階で液相となって粒界に浸透し、均一なNdリッチ相を粒界に形成することが可能となる。その結果、永久磁石1の保磁力を向上させることが可能となる。また、熱処理を低温で行うので、熱処理の段階で粒成長が生じる虞もない。 Here, in the cooling stage after the sintering process, Dy and Nd contained in the organometallic compound form a eutectic in the sintered body. In particular, when Dy or the like contained in the organometallic compound is a specific metal (for example, Al, Ag, Ga (hereinafter referred to as Al or the like)), the eutectic has a lower melting point than Nd alone. Therefore, if heat treatment is performed at a temperature higher than the melting point of eutectic of Al and the like contained in the organometallic compound after sintering, the melting point is lowered by eutectic with Al and the like contained in the organometallic compound. The Nd-rich phase becomes a liquid phase at the stage of heat treatment and penetrates into the grain boundaries, and a uniform Nd-rich phase can be formed at the grain boundaries. As a result, the coercive force of the permanent magnet 1 can be improved. In addition, since the heat treatment is performed at a low temperature, there is no possibility of grain growth at the stage of the heat treatment.
 更に、熱処理を有機金属化合物に含まれるCu等とNdとの共晶の融点より高い温度で行うこととすれば、Ndリッチ相とともに液相となったAl等からなる合金を粒界に浸透させることが可能となる。その結果、有機金属化合物の添加量を少量(例えば0.1wt%)とした場合であっても、有機金属化合物に含まれるAl等を粒界に対して適切に偏在させることが可能となる。 Furthermore, if the heat treatment is performed at a temperature higher than the melting point of the eutectic of Cu or the like contained in the organometallic compound and Nd, an alloy made of Al or the like that has become a liquid phase together with the Nd-rich phase is allowed to penetrate into the grain boundaries. It becomes possible. As a result, even when the amount of the organometallic compound added is small (for example, 0.1 wt%), Al or the like contained in the organometallic compound can be appropriately unevenly distributed with respect to the grain boundary.
 以下に、本発明の実施例について比較例と比較しつつ説明する。
(実施例)
 実施例1のネオジム磁石粉末の合金組成は、wt%でNd/Fe/B=32.7/65.96/1.34とする。そして、グリーンシート成形により厚さ3mmの成形体に成形した。また、仮焼処理は、成形体を大気圧(尚、本実施例では特に製造時の大気圧が標準大気圧(約0.1MPa)であると仮定する)の水素雰囲気下において450℃で10時間保持することにより行った。また、仮焼体を真空焼結した後に、焼結体の上下面に対して電流値300mAで60分間、Ndのスパッタリングを行い、続いて、同じく焼結体の上下面に対して電流値300mAで15分間、Cuのスパッタリングを行った。尚、スパッタ装置はMSP-30Tマグネトロンスパッタ装置(真空デバイス製)を用いた。また、スパッタリング後に焼結体に含まれるCuの量は0.13wt%であった。更にCuのスパッタリングを行った後に、焼結体を真空雰囲気下において800℃で5時間保持することにより拡散処理を行った。また、その後に焼結体を真空雰囲気下において更に500℃で1時間保持することにより熱処理を行った。尚、他の工程は上述した[永久磁石の製造方法]と同様の工程とする。
Examples of the present invention will be described below in comparison with comparative examples.
(Example)
The alloy composition of the neodymium magnet powder of Example 1 is Nd / Fe / B = 32.7 / 65.96 / 1.34 in wt%. And it shape | molded into the molded object of thickness 3mm by green sheet shaping | molding. The calcining treatment is carried out at 450 ° C. in a hydrogen atmosphere at atmospheric pressure (in this example, it is assumed that the atmospheric pressure at the time of manufacture is the standard atmospheric pressure (about 0.1 MPa) in particular in this embodiment). Performed by holding time. Further, after the calcined body is vacuum-sintered, Nd sputtering is performed on the upper and lower surfaces of the sintered body at a current value of 300 mA for 60 minutes, and subsequently, the current value of 300 mA is also applied to the upper and lower surfaces of the sintered body. Then, sputtering of Cu was performed for 15 minutes. As the sputtering apparatus, an MSP-30T magnetron sputtering apparatus (manufactured by vacuum device) was used. Moreover, the amount of Cu contained in the sintered body after sputtering was 0.13 wt%. Further, after performing sputtering of Cu, diffusion treatment was performed by holding the sintered body at 800 ° C. in a vacuum atmosphere for 5 hours. After that, the sintered body was further heat-treated by holding it at 500 ° C. for 1 hour in a vacuum atmosphere. The other steps are the same as those described in the above [Permanent magnet manufacturing method].
(比較例)
 予め磁石原料にCuを0.1wt%含める構成とし、Cuを含む磁石原料を粉砕してネオジム磁石粉末を作製した。また、焼結体へのNdやCuのスパッタリングを行わず、拡散処理についても省略した。他の条件は実施例と同様である。
(Comparative example)
The magnet raw material was previously configured to include 0.1 wt% Cu, and the magnet raw material containing Cu was pulverized to produce a neodymium magnet powder. Further, Nd and Cu were not sputtered onto the sintered body, and the diffusion treatment was also omitted. Other conditions are the same as in the example.
(実施例と比較例の磁石特性の比較検討)
 実施例及び比較例の各永久磁石の保磁力[kOe]を測定した。図11に測定結果の一覧を示す。
(Comparison study of magnet characteristics of Example and Comparative Example)
The coercive force [kOe] of each permanent magnet of the example and the comparative example was measured. FIG. 11 shows a list of measurement results.
 ここで、実施例と比較例の各永久磁石の保磁力を比較すると、添加したCuの量は略同一であるにもかかわらず、Cuを磁石原料に含めずにスパッタリングにより粒界に偏在させた実施例の永久磁石は、比較例の永久磁石よりも高い保磁力を示した。即ち、比較例の永久磁石では、水素雰囲気で成形体の仮焼処理を行う時点で、成形体中に既にCuが含まれた状態にあることから、仮焼処理を行う際に以下の(2)の反応が右側に進み易い状態にあったことが予測される。
  NdFe14B+2H→2NdH+12Fe+FeB・・・・(2)
 そして、上記(2)の反応が右側に進むことによって、希土類磁石の主相(NdFe14B)が分解されるとともに、αFeが析出し、その結果、保磁力が低下していると考えられる。
Here, when the coercive force of each of the permanent magnets of the example and the comparative example is compared, the amount of added Cu is substantially the same, but Cu is not included in the magnet raw material and is unevenly distributed at the grain boundaries by sputtering. The permanent magnet of the example showed higher coercivity than the permanent magnet of the comparative example. That is, in the permanent magnet of the comparative example, Cu is already contained in the molded body at the time when the molded body is calcined in a hydrogen atmosphere. It is predicted that the reaction of) was easy to proceed to the right.
Nd 2 Fe 14 B + 2H 2 → 2NdH 2 + 12Fe + Fe 2 B (2)
The reaction (2) proceeds to the right, whereby the main phase (Nd 2 Fe 14 B) of the rare earth magnet is decomposed and αFe is precipitated, resulting in a decrease in coercive force. It is done.
 一方、実施例の永久磁石では、水素雰囲気で成形体の仮焼処理を行う時点では、成形体中にCuを含まないことから、仮焼処理を行う際に上記(2)の反応が右側に進み難い状態にあったことが予測される。その結果、実施例の希土類永久磁石では、希土類磁石の主相(NdFe14B)が分解されることなく、αFeの析出も抑えられ、高い保磁力を示していると考えられる。 On the other hand, in the permanent magnet of the example, when the calcining treatment of the molded body is performed in a hydrogen atmosphere, since the molded body does not contain Cu, the reaction (2) above is performed on the right side when performing the calcining treatment. It is predicted that it was difficult to proceed. As a result, in the rare earth permanent magnets of the examples, it is considered that the main phase (Nd 2 Fe 14 B) of the rare earth magnet is not decomposed, the precipitation of αFe is suppressed, and a high coercive force is exhibited.
 以上説明したように、本実施形態に係る永久磁石1及び永久磁石1の製造方法では、Cuを含まない磁石原料を粉砕し、成形した成形体を水素雰囲気下において200℃~900℃で数時間~数十時間保持することにより仮焼処理を行う。その後、真空焼結や加圧焼結を行うことによって成形体を焼結し、更に焼結体の表面にCuをスパッタリングすることによって永久磁石1を製造する。それにより、Cuによる保磁力の向上を図ることが可能になるとともに、水素雰囲気下で仮焼を行った場合であっても、主相の分解やαFeの析出を抑え、磁気特性が低下することを防止できる。
 また、Cuがスパッタリングされた焼結体を加熱することによって、焼結体の表面にスパッタリングされたCuを焼結体の内部に拡散させるので、予め磁石原料にCuを含めることなく、焼結後にスパッタリングされたCuを粒界に対して適切に偏在させることが可能となる。即ち、予め磁石原料にCuを含めることなく、Cuによる保磁力向上の効果を得ることが可能となる。
 また、Cuがスパッタリングされた焼結体を加熱する際に、焼成温度よりも低い温度(例えば800℃)で加熱するので、スパッタリングされたCuを焼結体の内部に拡散させる工程において磁石粒子の粒成長が生じることを防止できる。
 また、焼結体の表面にNdをスパッタリングした後に、焼結体の表面にCuをスパッタリングするので、スパッタリングされたCuを焼結体の内部に拡散させる工程をより低温で行うことが可能となる。
 また、粉砕された磁石粉末に対して、Al、Dy、Tb、Nd、V、Mo、Zr、Ta、Ti、W、Ag、Ga、Co、Bi、Zn、Mg又はNbを含むとともに酸素原子及び窒素原子を含まない有機金属化合物を添加し、磁石粒子の表面に対して均一に有機金属化合物を付着させ、有機金属化合物が粒子表面に付着された磁石粉末を成形することにより成形体を形成するので、有機金属化合物に含まれるAl、Dy、Tb、Nd、V、Mo、Zr、Ta、Ti、W、Ag、Ga、Co、Bi、Zn、Mg又はNbを磁石の粒界に対して効率よく偏在させることができる。その結果、永久磁石の磁気性能を向上させることが可能となる。また、Al、Dy、Tb、Nd、V、Mo、Zr、Ta、Ti、W、Ag、Ga、Co、Bi、Zn、Mg又はNbの添加量を従来に比べて少量にできるので、残留磁束密度の低下を抑制することができる。
 また、中心金属がAl、Dy、Tb、Nd、V、Mo、Zr、Ta、Ti、W、Ag、Ga、Co、Bi、Zn、Mg又はNbである金属錯体、或いは水素化ジイソブチルアルミニウムを有機金属化合物として用いるので、その後の加熱工程において有機金属化合物の熱分解を容易に行うことができ、有機金属化合物に含まれる金属を粒界に対して適切に偏在させることが可能となる。また、熱分解を行わせることによって磁石内に残存する炭素量を軽減することも可能となる。その結果、焼結後の磁石の主相と粒界相との間に空隙を生じさせることなく、また、磁石全体を緻密に焼結することが可能となり、保磁力が低下することを防止できる。また、焼結後の磁石の主相内にαFeが多数析出することなく、磁石特性を大きく低下させることがない。
 また、磁石粉末とバインダーとを混合し、成形したグリーンシートを焼結した磁石により永久磁石を構成するので、焼結による収縮が均一となることにより焼結後の反りや凹みなどの変形が生じず、また、プレス時の圧力むらが無くなることから、従来行っていた焼結後の修正加工をする必要がなく、製造工程を簡略化することができる。それにより、高い寸法精度で永久磁石を成形可能となる。
As described above, in the permanent magnet 1 and the method for manufacturing the permanent magnet 1 according to the present embodiment, the magnet raw material not containing Cu is pulverized, and the molded body is molded at 200 ° C. to 900 ° C. for several hours in a hydrogen atmosphere. Calcination is performed by holding for tens of hours. Thereafter, the compact is sintered by vacuum sintering or pressure sintering, and the permanent magnet 1 is manufactured by sputtering Cu on the surface of the sintered body. As a result, it is possible to improve the coercive force due to Cu, and even when calcination is performed in a hydrogen atmosphere, the decomposition of the main phase and the precipitation of αFe are suppressed, and the magnetic properties are reduced. Can be prevented.
In addition, by heating the sintered body on which Cu is sputtered, Cu sputtered on the surface of the sintered body is diffused inside the sintered body, so that Cu is not included in the magnet raw material in advance before sintering. It becomes possible to appropriately distribute the sputtered Cu with respect to the grain boundary. That is, the effect of improving the coercive force by Cu can be obtained without previously including Cu in the magnet raw material.
Further, when heating the sintered body on which Cu is sputtered, it is heated at a temperature lower than the firing temperature (for example, 800 ° C.), so in the step of diffusing the sputtered Cu inside the sintered body, It is possible to prevent grain growth.
In addition, since Cu is sputtered onto the surface of the sintered body after Nd is sputtered onto the surface of the sintered body, the step of diffusing the sputtered Cu inside the sintered body can be performed at a lower temperature. .
In addition, the pulverized magnet powder contains Al, Dy, Tb, Nd, V, Mo, Zr, Ta, Ti, W, Ag, Ga, Co, Bi, Zn, Mg, or Nb and oxygen atoms and An organometallic compound that does not contain nitrogen atoms is added, the organometallic compound is uniformly attached to the surface of the magnet particles, and a compact is formed by molding the magnet powder with the organometallic compound attached to the surface of the particles. Therefore, Al, Dy, Tb, Nd, V, Mo, Zr, Ta, Ti, W, Ag, Ga, Co, Bi, Zn, Mg, or Nb contained in the organometallic compound is efficient with respect to the grain boundary of the magnet. Can be unevenly distributed. As a result, the magnetic performance of the permanent magnet can be improved. In addition, since the amount of addition of Al, Dy, Tb, Nd, V, Mo, Zr, Ta, Ti, W, Ag, Ga, Co, Bi, Zn, Mg, or Nb can be reduced compared to the conventional case, the residual magnetic flux A decrease in density can be suppressed.
In addition, a metal complex whose central metal is Al, Dy, Tb, Nd, V, Mo, Zr, Ta, Ti, W, Ag, Ga, Co, Bi, Zn, Mg, or Nb, or diisobutylaluminum hydride is organic. Since it is used as a metal compound, the organometallic compound can be easily thermally decomposed in the subsequent heating step, and the metal contained in the organometallic compound can be appropriately distributed with respect to the grain boundaries. In addition, the amount of carbon remaining in the magnet can be reduced by performing thermal decomposition. As a result, it is possible to sinter the entire magnet densely without generating voids between the main phase and the grain boundary phase of the sintered magnet, and to prevent the coercive force from being lowered. . Further, a large number of αFe is not precipitated in the main phase of the magnet after sintering, and the magnet characteristics are not greatly deteriorated.
In addition, a permanent magnet is composed of a magnet obtained by mixing magnet powder and a binder and sintering a molded green sheet, so deformation due to sintering becomes uniform and deformation such as warpage and dent after sintering occurs. In addition, since pressure unevenness during pressing is eliminated, there is no need to perform post-sintering correction processing, which has been conventionally performed, and the manufacturing process can be simplified. Thereby, a permanent magnet can be formed with high dimensional accuracy.
 尚、本発明は前記実施例に限定されるものではなく、本発明の要旨を逸脱しない範囲内で種々の改良、変形が可能であることは勿論である。
 例えば、磁石粉末の粉砕条件、混練条件、磁場配向工程、仮焼条件、焼結条件、スパッタリング条件、拡散処理条件、熱処理条件などは上記実施例に記載した条件に限られるものではない。例えば、上記実施例では、スロットダイ方式によりグリーンシートを形成しているが、他の方式(例えばカレンダーロール方式、コンマ塗工方式、押出成型、射出成型、金型成型、ドクターブレード方式等)を用いてグリーンシートを形成しても良い。また、溶媒に磁石粉末やバインダーを混合したスラリーを生成し、その後に生成したスラリーをシート状に成形することによってグリーンシートを作成することとしても良い。その場合にはバインダーとして熱可塑性樹脂以外を用いることも可能である。また、仮焼を行う際の雰囲気は非酸化性雰囲気であれば水素雰囲気以外(例えば窒素雰囲気、He雰囲気等、Ar雰囲気等)で行っても良い。また、Ndのスパッタリングを行わずにCuのスパッタリングのみを行う構成としても良い。但し、その場合にはスパッタリングされたCuを焼結体の内部に拡散させる際の加熱温度をより高い温度とする必要がある。また、CuとNdのスパッタリングの順序を変更しても良い。
In addition, this invention is not limited to the said Example, Of course, various improvement and deformation | transformation are possible within the range which does not deviate from the summary of this invention.
For example, the pulverization conditions, kneading conditions, magnetic field orientation process, calcining conditions, sintering conditions, sputtering conditions, diffusion treatment conditions, heat treatment conditions, etc. of the magnet powder are not limited to the conditions described in the above examples. For example, in the above embodiment, the green sheet is formed by the slot die method, but other methods (for example, calendar roll method, comma coating method, extrusion molding, injection molding, mold molding, doctor blade method, etc.) can be used. It may be used to form a green sheet. Moreover, it is good also as producing a green sheet by producing | generating the slurry which mixed magnet powder and a binder with the solvent, and shape | molding the slurry produced | generated after that in the sheet form. In that case, it is also possible to use other than the thermoplastic resin as the binder. Moreover, as long as the atmosphere at the time of calcination is a non-oxidizing atmosphere, the atmosphere may be other than a hydrogen atmosphere (for example, a nitrogen atmosphere, a He atmosphere, or an Ar atmosphere). Alternatively, only Cu sputtering may be performed without performing Nd sputtering. However, in that case, the heating temperature for diffusing the sputtered Cu into the sintered body needs to be higher. Further, the order of sputtering of Cu and Nd may be changed.
 また、上記実施例では、磁石粉末とバインダーとの混合体を一旦シート形状に成型した後に磁場配向を行う構成としているが、シート形状以外の形状に成型した後に磁場配向を行う構成としても良い。例えば、ブロック形状に成型しても良い。そして、磁場配向されたブロック形状の成形体を更に加工することによって最終製品形状へと成形する。 In the above embodiment, the magnetic field orientation is performed after the mixture of the magnet powder and the binder is once molded into a sheet shape. However, the magnetic field orientation may be performed after molding into a shape other than the sheet shape. For example, it may be molded into a block shape. Then, the block-shaped molded body oriented in the magnetic field is further processed to form a final product shape.
 また、上記実施例では、バインダーとして樹脂や長鎖炭化水素や脂肪酸エステルを用いることとしているが、他の材料を用いても良い。 In the above embodiment, resin, long chain hydrocarbon or fatty acid ester is used as the binder, but other materials may be used.
 また、永久磁石はグリーンシート成形以外の成形(例えば圧粉成形)により成形した成形体を仮焼及び焼結することにより製造しても良い。その場合であっても、バインダー以外の成形体中に残存するC含有物(添加した有機金属化合物や、湿式粉砕を行うことにより残存した有機化合物等)に対して、仮焼による脱炭効果が期待できる。更に、上記実施例では、磁石粉末を成形した後に水素雰囲気又は水素と不活性ガスの混合ガス雰囲気において仮焼を行っているが、成形前の磁石粉末に対して仮焼処理を行い、仮焼体である磁石粉末を成形体に成形し、その後に焼結を行うことによって永久磁石を製造することとしても良い。このような構成とすれば、粉末状の磁石粒子に対して仮焼を行うので、成形後の磁石粒子に対して仮焼を行う場合と比較して、仮焼対象となる磁石の表面積を大きくすることができる。即ち、仮焼体中の炭素量をより確実に低減させることが可能となる。但し、グリーン体による成形を行う場合には、バインダーを仮焼処理で熱分解させる為に、成形後に仮焼処理を行うことが望ましい。 Further, the permanent magnet may be manufactured by calcining and sintering a molded body formed by molding other than green sheet molding (for example, compaction molding). Even in such a case, the decarburization effect by calcining can be achieved for C-containing materials (added organometallic compounds, organic compounds remaining by wet pulverization, etc.) remaining in the molded body other than the binder. I can expect. Furthermore, in the above embodiment, calcining is performed in a hydrogen atmosphere or a mixed gas atmosphere of hydrogen and an inert gas after the magnet powder is molded. It is good also as manufacturing a permanent magnet by shape | molding the magnetic powder which is a body into a molded object, and performing sintering after that. With such a configuration, since the powdered magnet particles are calcined, the surface area of the magnet to be calcined is increased compared to the case of calcining the molded magnet particles. can do. That is, the amount of carbon in the calcined body can be reduced more reliably. However, when molding with a green body, it is desirable to perform a calcining treatment after molding in order to thermally decompose the binder by the calcining treatment.
 また、上記実施例では、グリーンシート14の加熱工程と磁場配向工程とを同時に行うこととしているが、加熱工程を行った後であってグリーンシート14が凝固する前に磁場配向工程を行っても良い。また、塗工されたグリーンシート14が凝固する前(即ち、加熱工程を行わなくてもグリーンシート14が既に軟化された状態)に磁場配向を行う場合には、加熱工程を省略しても良い。 Moreover, in the said Example, although it is supposed that the heating process and magnetic field orientation process of the green sheet 14 will be performed simultaneously, even if it performs a magnetic field orientation process after performing a heating process and before the green sheet 14 solidifies. good. Further, when the magnetic field orientation is performed before the coated green sheet 14 is solidified (that is, the green sheet 14 is already softened without performing the heating process), the heating process may be omitted. .
 また、上記実施例では、スロットダイ方式による塗工工程と加熱工程と磁場配向工程とを連続した一連の工程により行っているが、連続した工程により行わないように構成しても良い。また、塗工工程までの第1工程と、加熱工程以降の第2工程とに分けて、夫々連続した工程により行うこととしても良い。その場合には、塗工されたグリーンシート14を所定長さに切断し、静止した状態のグリーンシート14に対して加熱及び磁場印加を行うことにより磁場配向を行うように構成することが可能である。 Further, in the above embodiment, the coating process by the slot die method, the heating process, and the magnetic field orientation process are performed by a series of continuous processes, but may be configured not to be performed by the continuous processes. Moreover, it is good also as performing by the process which divided | segmented into the 1st process to a coating process, and the 2nd process after a heating process, respectively. In that case, the coated green sheet 14 can be cut to a predetermined length, and the green sheet 14 in a stationary state can be configured to perform magnetic field orientation by heating and applying a magnetic field. is there.
 また、上記実施例では磁石粉末に添加する有機金属化合物としてトリス(エチルシクロペンタジエニル)Dy(III)、トリス(イソプロピルシクロペンタジエニル)Tb(III)、ビス(シクロペンタジエニル)Mg(II)、ビス(シクロペンタジエニル)ジベンジルNb(IV)、トリヒドリドビス(ペンタメチルジシクロペンタジエニル)Nb(V)、ビス(シクロペンタジエニル)ジメチルTi(IV)、ビス(シクロペンタジエニル)ジメチルZr(IV)、ジヒドリドビス(シクロペンタジエニル)Zr(IV)、トリス(テトラメチルシクロペンタジエニル)Nd(III)、トリオクチルAl(III)、ジフェニルZn(II)、トリフェニルBi(III)、Ag(I)t-ブチルアセチリド、メシチルAg(I)、トリスシクロペンタジエニルGa(III)、DIBALを用いているが、Al、Dy、Tb、Nd、V、Mo、Zr、Ta、Ti、W、Ag、Ga、Co、Bi、Zn、Mg又はNbを含むとともに酸素原子及び窒素原子を含まない有機金属化合物であれば、他の有機金属化合物であっても良い。例えば、金属アルキル錯体以外の金属錯体を用いても良い。また、有機金属化合物は上記金属元素以外の元素(例えばSi等)を含む構成としても良い。 In the above embodiment, tris (ethylcyclopentadienyl) Dy (III), tris (isopropylcyclopentadienyl) Tb (III), bis (cyclopentadienyl) Mg ( II), bis (cyclopentadienyl) dibenzyl Nb (IV), trihydridobis (pentamethyldicyclopentadienyl) Nb (V), bis (cyclopentadienyl) dimethyl Ti (IV), bis (cyclopenta Dienyl) dimethyl Zr (IV), dihydridobis (cyclopentadienyl) Zr (IV), tris (tetramethylcyclopentadienyl) Nd (III), trioctyl Al (III), diphenyl Zn (II), triphenyl Bi (III), Ag (I) t-butyl acetylide, mesityl Ag (I), triscyclopentadienyl Ga (II I), DIBAL is used, but contains Al, Dy, Tb, Nd, V, Mo, Zr, Ta, Ti, W, Ag, Ga, Co, Bi, Zn, Mg, or Nb and oxygen atoms and nitrogen Other organometallic compounds may be used as long as they do not contain atoms. For example, a metal complex other than a metal alkyl complex may be used. In addition, the organometallic compound may include an element other than the metal element (for example, Si).
 また、本発明ではNd-Fe-B系磁石を例に挙げて説明したが、他の磁石(例えばサマリウム系コバルト磁石、アルニコ磁石、フェライト磁石等)を用いても良い。また、磁石の合金組成は本発明ではNd成分を量論組成より多くしているが、量論組成としても良い。また、異方性磁石だけでなく等方性磁石に対しても本発明を適用することが可能である。その場合には、グリーンシート14に対する磁場配向工程を省略可能である。 In the present invention, the Nd—Fe—B type magnet has been described as an example, but other magnets (for example, samarium type cobalt magnet, alnico magnet, ferrite magnet, etc.) may be used. Further, in the present invention, the Nd component is larger than the stoichiometric composition in the present invention, but it may be stoichiometric. Further, the present invention can be applied not only to anisotropic magnets but also to isotropic magnets. In that case, the magnetic field orientation process for the green sheet 14 can be omitted.
  1       永久磁石
  2       Nd結晶粒子
  3       金属偏在層
  12      コンパウンド
  14      グリーンシート
  40      成形体
DESCRIPTION OF SYMBOLS 1 Permanent magnet 2 Nd crystal particle 3 Metal uneven distribution layer 12 Compound 14 Green sheet 40 Forming body

Claims (14)

  1.  磁石原料を磁石粉末に粉砕する工程と、
     前記粉砕された磁石粉末を成形することにより成形体を形成する工程と、
     前記磁石粉末を成形前又は成形後であって焼結前に水素雰囲気又は水素と不活性ガスの混合ガス雰囲気下で仮焼する工程と、
     前記成形体を焼成温度で保持することにより焼結し、焼結体を得る工程と、
     前記焼結体の表面にCuをスパッタリングする工程と、により製造されることを特徴とする希土類永久磁石。
    Crushing magnet raw material into magnet powder;
    Forming a molded body by molding the pulverized magnet powder;
    A step of calcining the magnet powder in a hydrogen atmosphere or a mixed gas atmosphere of hydrogen and an inert gas before or after molding and before sintering;
    Sintering by holding the molded body at a firing temperature to obtain a sintered body;
    A rare earth permanent magnet manufactured by sputtering Cu on the surface of the sintered body.
  2.  Cuがスパッタリングされた前記焼結体を加熱することによって、前記焼結体の表面にスパッタリングされたCuを前記焼結体の内部に拡散させる工程により製造されることを特徴とする請求項1に記載の希土類永久磁石。 2. The method according to claim 1, wherein Cu is sputtered on a surface of the sintered body to be diffused into the sintered body by heating the sintered body on which Cu is sputtered. The rare earth permanent magnet described.
  3.  Cuがスパッタリングされた前記焼結体を加熱する際に、前記焼成温度よりも低い温度で加熱することを特徴とする請求項2に記載の希土類永久磁石。 3. The rare earth permanent magnet according to claim 2, wherein the sintered body on which Cu is sputtered is heated at a temperature lower than the firing temperature.
  4.  前記焼結体の表面にCuをスパッタリングする工程では、前記焼結体の表面にNdをスパッタリングした後に、前記焼結体の表面にCuをスパッタリングすることを特徴とする請求項1乃至請求項3のいずれかに記載の希土類永久磁石。 4. The step of sputtering Cu on the surface of the sintered body includes sputtering Cu on the surface of the sintered body after sputtering Nd on the surface of the sintered body. The rare earth permanent magnet according to any one of the above.
  5.  前記粉砕された磁石粉末にAl、Dy、Tb、Nd、V、Mo、Zr、Ta、Ti、W、Ag、Ga、Co、Bi、Zn、Mg又はNbを含むとともに酸素原子及び窒素原子を含まない有機金属化合物を添加することにより、前記磁石粉末の粒子表面に前記有機金属化合物を付着させ、
     前記有機金属化合物が粒子表面に付着された前記磁石粉末を成形することにより成形体を形成することを特徴とする請求項1乃至請求項4のいずれかに記載の希土類永久磁石。
    The pulverized magnet powder contains Al, Dy, Tb, Nd, V, Mo, Zr, Ta, Ti, W, Ag, Ga, Co, Bi, Zn, Mg, or Nb and oxygen atoms and nitrogen atoms. By adding no organometallic compound, the organometallic compound is attached to the particle surface of the magnet powder,
    The rare earth permanent magnet according to any one of claims 1 to 4, wherein a molded body is formed by molding the magnet powder in which the organometallic compound is adhered to the particle surface.
  6.  前記有機金属化合物は、中心金属がAl、Dy、Tb、Nd、V、Mo、Zr、Ta、Ti、W、Ag、Ga、Co、Bi、Zn、Mg又はNbである金属錯体、或いは水素化ジイソブチルアルミニウムであることを特徴とする請求項5に記載の希土類永久磁石。 The organometallic compound is a metal complex or hydrogenation whose central metal is Al, Dy, Tb, Nd, V, Mo, Zr, Ta, Ti, W, Ag, Ga, Co, Bi, Zn, Mg or Nb. 6. The rare earth permanent magnet according to claim 5, wherein the rare earth permanent magnet is diisobutylaluminum.
  7.  前記磁石粉末を成形体に成形する工程では、
       前記磁石粉末とバインダーとが混合された混合物を生成し、
       前記混合物をシート状に成形することにより前記成形体としてグリーンシートを作製することを特徴とする請求項1乃至請求項6のいずれかに記載の希土類永久磁石。
    In the step of forming the magnet powder into a molded body,
    Producing a mixture in which the magnet powder and the binder are mixed;
    The rare earth permanent magnet according to claim 1, wherein a green sheet is produced as the formed body by forming the mixture into a sheet shape.
  8.  磁石原料を磁石粉末に粉砕する工程と、
     前記粉砕された磁石粉末を成形することにより成形体を形成する工程と、
     前記磁石粉末を成形前又は成形後であって焼結前に水素雰囲気又は水素と不活性ガスの混合ガス雰囲気下で仮焼する工程と、
     前記成形体を焼成温度で保持することにより焼結し、焼結体を得る工程と、
     前記焼結体の表面にCuをスパッタリングする工程と、を有することを特徴とする希土類永久磁石の製造方法。
    Crushing magnet raw material into magnet powder;
    Forming a molded body by molding the pulverized magnet powder;
    A step of calcining the magnet powder in a hydrogen atmosphere or a mixed gas atmosphere of hydrogen and an inert gas before or after molding and before sintering;
    Sintering by holding the molded body at a firing temperature to obtain a sintered body;
    And a step of sputtering Cu on the surface of the sintered body.
  9.  Cuがスパッタリングされた前記焼結体を加熱することによって、前記焼結体の表面にスパッタリングされたCuを前記焼結体の内部に拡散させる工程を有することを特徴とする請求項8に記載の希土類永久磁石の製造方法。 9. The method according to claim 8, further comprising a step of diffusing Cu sputtered on the surface of the sintered body into the sintered body by heating the sintered body on which Cu is sputtered. A method for producing a rare earth permanent magnet.
  10.  Cuがスパッタリングされた前記焼結体を加熱する際に、前記焼成温度よりも低い温度で加熱することを特徴とする請求項9に記載の希土類永久磁石の製造方法。 The method for producing a rare earth permanent magnet according to claim 9, wherein when the sintered body sputtered with Cu is heated, the sintered body is heated at a temperature lower than the firing temperature.
  11.  前記焼結体の表面にCuをスパッタリングする工程では、前記焼結体の表面にNdをスパッタリングした後に、前記焼結体の表面にCuをスパッタリングすることを特徴とする請求項8乃至請求項10のいずれかに記載の希土類永久磁石の製造方法。 11. The step of sputtering Cu on the surface of the sintered body includes sputtering Cu on the surface of the sintered body after sputtering Nd on the surface of the sintered body. The manufacturing method of the rare earth permanent magnet in any one of.
  12.  前記粉砕された磁石粉末にAl、Dy、Tb、Nd、V、Mo、Zr、Ta、Ti、W、Ag、Ga、Co、Bi、Zn、Mg又はNbを含むとともに酸素原子及び窒素原子を含まない有機金属化合物を添加することにより、前記磁石粉末の粒子表面に前記有機金属化合物を付着させ、
     前記有機金属化合物が粒子表面に付着された前記磁石粉末を成形することにより成形体を形成することを特徴とする請求項8乃至請求項11のいずれかに記載の希土類永久磁石の製造方法。
    The pulverized magnet powder contains Al, Dy, Tb, Nd, V, Mo, Zr, Ta, Ti, W, Ag, Ga, Co, Bi, Zn, Mg, or Nb and oxygen atoms and nitrogen atoms. By adding no organometallic compound, the organometallic compound is attached to the particle surface of the magnet powder,
    The method for producing a rare earth permanent magnet according to any one of claims 8 to 11, wherein a molded body is formed by molding the magnet powder having the organometallic compound attached to the particle surface.
  13.  前記有機金属化合物は、中心金属がAl、Dy、Tb、Nd、V、Mo、Zr、Ta、Ti、W、Ag、Ga、Co、Bi、Zn、Mg又はNbである金属錯体、或いは水素化ジイソブチルアルミニウムであることを特徴とする請求項12に記載の希土類永久磁石の製造方法。 The organometallic compound is a metal complex or hydrogenation whose central metal is Al, Dy, Tb, Nd, V, Mo, Zr, Ta, Ti, W, Ag, Ga, Co, Bi, Zn, Mg or Nb. The method for producing a rare earth permanent magnet according to claim 12, which is diisobutylaluminum.
  14.  前記磁石粉末を成形体に成形する工程では、
       前記磁石粉末とバインダーとが混合された混合物を生成し、
       前記混合物をシート状に成形することにより前記成形体としてグリーンシートを作製することを特徴とする請求項8乃至請求項13のいずれかに記載の希土類永久磁石の製造方法。
    In the step of forming the magnet powder into a molded body,
    Producing a mixture in which the magnet powder and the binder are mixed;
    The method for producing a rare earth permanent magnet according to any one of claims 8 to 13, wherein a green sheet is produced as the formed body by forming the mixture into a sheet shape.
PCT/JP2014/053114 2014-02-12 2014-02-12 Rare earth permanent magnet and production method for rare earth permanent magnet WO2015121915A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/053114 WO2015121915A1 (en) 2014-02-12 2014-02-12 Rare earth permanent magnet and production method for rare earth permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/053114 WO2015121915A1 (en) 2014-02-12 2014-02-12 Rare earth permanent magnet and production method for rare earth permanent magnet

Publications (1)

Publication Number Publication Date
WO2015121915A1 true WO2015121915A1 (en) 2015-08-20

Family

ID=53799685

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/053114 WO2015121915A1 (en) 2014-02-12 2014-02-12 Rare earth permanent magnet and production method for rare earth permanent magnet

Country Status (1)

Country Link
WO (1) WO2015121915A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2018011854A1 (en) * 2016-07-11 2019-02-14 東芝三菱電機産業システム株式会社 Mist coating film forming apparatus and mist coating film forming method
CN109690710A (en) * 2016-09-23 2019-04-26 日东电工株式会社 The manufacturing method of sintered magnet formation sintered body and used sintered magnet formation sintered body permanent magnet manufacturing method
CN111243848A (en) * 2020-02-28 2020-06-05 安徽大地熊新材料股份有限公司 Sintered neodymium-iron-boron magnet and preparation method thereof
CN114657481A (en) * 2022-03-08 2022-06-24 厦门欧斯拓科技有限公司 Preparation method of rare earth composite material

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62188745A (en) * 1986-02-13 1987-08-18 Sumitomo Special Metals Co Ltd Permanent magnet material and its production
JPH07176443A (en) * 1993-12-20 1995-07-14 Daido Steel Co Ltd Manufacture of anisotropic rare-earth magnet
JP2005294558A (en) * 2004-03-31 2005-10-20 Tdk Corp Rare earth magnet and manufacturing method thereof
JP2011061038A (en) * 2009-09-10 2011-03-24 Toyota Central R&D Labs Inc Rare-earth magnet, method for manufacturing the same, and magnet composite member
JP2013219322A (en) * 2012-03-12 2013-10-24 Nitto Denko Corp Rare earth permanent magnet and manufacturing method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62188745A (en) * 1986-02-13 1987-08-18 Sumitomo Special Metals Co Ltd Permanent magnet material and its production
JPH07176443A (en) * 1993-12-20 1995-07-14 Daido Steel Co Ltd Manufacture of anisotropic rare-earth magnet
JP2005294558A (en) * 2004-03-31 2005-10-20 Tdk Corp Rare earth magnet and manufacturing method thereof
JP2011061038A (en) * 2009-09-10 2011-03-24 Toyota Central R&D Labs Inc Rare-earth magnet, method for manufacturing the same, and magnet composite member
JP2013219322A (en) * 2012-03-12 2013-10-24 Nitto Denko Corp Rare earth permanent magnet and manufacturing method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2018011854A1 (en) * 2016-07-11 2019-02-14 東芝三菱電機産業システム株式会社 Mist coating film forming apparatus and mist coating film forming method
CN109690710A (en) * 2016-09-23 2019-04-26 日东电工株式会社 The manufacturing method of sintered magnet formation sintered body and used sintered magnet formation sintered body permanent magnet manufacturing method
CN111243848A (en) * 2020-02-28 2020-06-05 安徽大地熊新材料股份有限公司 Sintered neodymium-iron-boron magnet and preparation method thereof
CN114657481A (en) * 2022-03-08 2022-06-24 厦门欧斯拓科技有限公司 Preparation method of rare earth composite material

Similar Documents

Publication Publication Date Title
US20200357545A1 (en) Rare-earth permanent magnet and method for manufacturing rare-earth permanent magnet
JP5411956B2 (en) Rare earth permanent magnet, rare earth permanent magnet manufacturing method, and rare earth permanent magnet manufacturing apparatus
JP5103553B1 (en) Rare earth permanent magnet and method for producing rare earth permanent magnet
JP2013219322A (en) Rare earth permanent magnet and manufacturing method thereof
JP5969781B2 (en) Rare earth permanent magnet manufacturing method
WO2013137132A1 (en) Rare earth permanent magnet and rare earth permanent magnet production method
WO2015121915A1 (en) Rare earth permanent magnet and production method for rare earth permanent magnet
JP5411957B2 (en) Rare earth permanent magnet and method for producing rare earth permanent magnet
JPWO2015121917A1 (en) Ring magnet for SPM motor, method for manufacturing ring magnet for SPM motor, SPM motor, and method for manufacturing SPM motor
JP6251545B2 (en) Pressure sintering apparatus and pressure sintering method
JP5203520B2 (en) Rare earth permanent magnet and method for producing rare earth permanent magnet
JP6147505B2 (en) Rare earth permanent magnet manufacturing method
JP5969782B2 (en) Rare earth permanent magnet manufacturing method
WO2015121914A1 (en) Rare earth permanent magnet and method for producing rare earth permanent magnet
JP2015207687A (en) Permanent magnet, and method for manufacturing permanent magnet
JP5926989B2 (en) Rare earth permanent magnet and method for producing rare earth permanent magnet
JP2013191610A (en) Rare earth permanent magnet and method for producing rare earth permanent magnet
JP2013191609A (en) Rare earth permanent magnet and method for producing rare earth permanent magnet
WO2015121913A1 (en) Rare earth permanent magnet and method for producing rare earth permanent magnet
JP5969783B2 (en) Rare earth permanent magnet manufacturing method
WO2015121916A1 (en) Permanent magnet, permanent magnet manufacturing method, spm motor, and spm motor manufacturing method
JP2013191607A (en) Rare earth permanent magnet and method for producing rare earth permanent magnet
WO2012176510A1 (en) Rare earth permanent magnet and method for manufacturing rare earth permanent magnet
JP2013191608A (en) Rare earth permanent magnet and method for producing rare earth permanent magnet
JP2013191614A (en) Rare earth permanent magnet and method of manufacturing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14882689

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14882689

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP