JPS63453A - Oxidation resistant permanent magnet material and its production - Google Patents

Oxidation resistant permanent magnet material and its production

Info

Publication number
JPS63453A
JPS63453A JP14297386A JP14297386A JPS63453A JP S63453 A JPS63453 A JP S63453A JP 14297386 A JP14297386 A JP 14297386A JP 14297386 A JP14297386 A JP 14297386A JP S63453 A JPS63453 A JP S63453A
Authority
JP
Japan
Prior art keywords
heat treatment
alloy
metal
coating
magnet material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14297386A
Other languages
Japanese (ja)
Inventor
Tsutomu Otsuka
努 大塚
Etsuo Otsuki
悦夫 大槻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tohoku Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku Metal Industries Ltd filed Critical Tohoku Metal Industries Ltd
Priority to JP14297386A priority Critical patent/JPS63453A/en
Publication of JPS63453A publication Critical patent/JPS63453A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To produce a magnet material having excellent oxidation resistance by coating a suitable metal or alloy on the surface of a sintered magnetic body, then subjecting the same to a heat treatment to recrystallize the metal or alloy film. CONSTITUTION:The metal or alloy such as Al, Ni, Cr or the alloy thereof having the excellent oxidation resistance is coated on the surface of the sintered magnetic body consisting of an Nd2Fe14B alloy, etc. Vapor deposition, sputtering, ion plating, etc., are the suitable stages for forming the above-mentioned film and the preferable film thickness is about 5-30mum. Said sintered magnetic body film is heat-treated to recrystallize the metal or alloy film. The adequate heat treatment temp. of said recrystallization treatment stage is substantially 500-700 deg.C. Said heat treatment is otherwise set substantially at 400-1,100 deg.C (exclusive of 500-700 deg.C) and thereafter the reheat treatment is executed substantially at 500-700 deg.C, by which the magnet characteristics can be recovered. The above-mentioned film layer of the columnar crystal is thereby recrystallized to the equiaxed crystal, by which the ductility and adhesiveness are improved and pinholes are removed. The oxidation resistance and corrosion resistance are thus improved without deteriorating the magnet characteristics.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はNd2Fe14B系合金で代表される希土類元
素(8)と遷移金属(力とからなるR2T14B系金属
間化合物磁石に関し、特にR(Tを含む希土類元素)。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to an R2T14B intermetallic compound magnet consisting of a rare earth element (8) represented by a Nd2Fe14B alloy and a transition metal (force), and in particular, (including rare earth elements).

Fe 、 Bを主成分とする永久磁石に係り、耐酸化性
を改善したR−Fe−B系磁石に関するものである。
The present invention relates to a permanent magnet containing Fe and B as main components, and relates to an R-Fe-B magnet with improved oxidation resistance.

〔従来の技術〕[Conventional technology]

従来のR−Fe−B系磁石は、現在市販されて因るSm
−Co系永久磁石に比べ高−磁石特性を有する。
Conventional R-Fe-B magnets are currently commercially available.
-Has higher magnetic properties than Co-based permanent magnets.

しかしながら、大気中にお−て極度に酸化し易い希土類
元素と鉄とを含有するため、磁気回路などの装置に組込
んだ場合、磁石の酸化による特性の劣化、バラツキが生
ずる。例えば、・・−ドディスクのボイスコイルモータ
などでは磁石より発生する酸化物(サビ)の飛散による
周辺部品への汚染の問題があった。
However, since it contains rare earth elements and iron that are extremely easily oxidized in the atmosphere, when it is incorporated into a device such as a magnetic circuit, the characteristics of the magnet deteriorate and vary due to oxidation. For example, in voice coil motors for disks, etc., there is a problem of contamination of peripheral parts due to scattering of oxides (rust) generated by magnets.

これら耐酸化性改善の文献として、特開昭60−544
06.特開昭60−63901 、特開昭60−639
02などが挙げられる。
As a document on improving oxidation resistance, JP-A No. 60-544
06. JP-A-60-63901, JP-A-60-639
Examples include 02.

これらの文献によれば、永久磁石の表面に耐酸化性の金
属被皮膜を形成するものである。これらの耐酸化性皮膜
は湿式による金属メッキ、化成皮膜、耐酸化性樹脂によ
り、生成され、耐食性の向上を目的としている。
According to these documents, an oxidation-resistant metal coating is formed on the surface of a permanent magnet. These oxidation-resistant films are produced by wet metal plating, chemical conversion coatings, and oxidation-resistant resins, and are intended to improve corrosion resistance.

ところが、 R−Fe−B系磁石におAては、大気中で
極めて酸化し易く且つ、不安定な酸化物であるR−ri
ch相をその金属組成中に含有する。このため。
However, in R-Fe-B magnets A, R-ri is an unstable oxide that is extremely easily oxidized in the atmosphere.
Contains a ch phase in its metal composition. For this reason.

電解、無電解の湿式金属メッキ、化成被膜処理ではその
処理工程に多量の水、水溶液を用いるため被膜形成工程
中に磁石材料が酸化する恐れがあり充分な耐食性を得ら
れない欠点がある。
Electrolytic and electroless wet metal plating and chemical conversion coating treatments use a large amount of water and aqueous solutions in the treatment process, so there is a risk that the magnet material will oxidize during the coating forming process, and there is a drawback that sufficient corrosion resistance cannot be obtained.

一方、耐酸化性樹脂による防食においても被膜の物理強
度などが金属被膜に比べ劣るため、被膜表面にキズ等が
入りやすく充分な耐食性を得ることができない。
On the other hand, even in corrosion protection using oxidation-resistant resins, the physical strength of the coating is inferior to that of metal coatings, so the coating surface is prone to scratches and the like, making it impossible to obtain sufficient corrosion resistance.

そこで、上記の湿式メッキ法に代替する新しい乾式メッ
キ法としてイオンブレーティング法がある。このイオン
グレ〜ティンダ法による乾式メッキは、予め焼結させた
磁石の表面に、イオン化させた金属粒子を磁性結晶体で
ある被コーテイング材へダロー放電によりたたきつけ、
コーティングする方法であり、その成膜工程中に水、水
溶液を全く使用しないため特に酸化されやすい材料には
有効な防食方法である。
Therefore, there is an ion blating method as a new dry plating method to replace the above-mentioned wet plating method. Dry plating using the ion gray-tinda method involves bombarding the surface of a pre-sintered magnet with ionized metal particles onto the material to be coated, which is a magnetic crystal, using a dull discharge.
This is a coating method that does not use any water or aqueous solution during the film-forming process, so it is an effective anti-corrosion method especially for materials that are easily oxidized.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながらこのイオンブレーティング法によるコーテ
ィングにおいてもであるコーティング被膜と被コーテイ
ング材との密着度は、物理的吸着によるものであるため
完全であるとは言い難い。
However, even in coating by this ion blating method, the degree of adhesion between the coating film and the material to be coated is due to physical adsorption, so it cannot be said to be perfect.

また、コーティングする金属は被コーテイング材表面に
柱状に成長するため、小さいピンホールなども多数存在
し、また被膜が脆いためエツジ部が欠けやすい。そのた
め厳し込環境下で使用される場合(例えば、自動車用部
品等)には、耐食性が不充分であシ対応できな込。この
対策として、イオンブレーティングした素材に、さらに
耐酸化性に優れた樹脂コーティングを施すことにより耐
食性はかなり向上するがコスト高となりさらに膜厚も大
きくなるため、工業上不都合がある。
Furthermore, since the metal to be coated grows in columnar shapes on the surface of the material to be coated, there are many small pinholes and the like, and the coating is brittle and the edges are easily chipped. Therefore, when used in harsh environments (for example, as automobile parts), the corrosion resistance is insufficient and it cannot be used. As a countermeasure to this problem, the corrosion resistance can be considerably improved by applying a resin coating with excellent oxidation resistance to the ion-bladed material, but this is industrially disadvantageous because it increases the cost and also increases the thickness of the film.

そこで1本発明の目的はこれら諸問題点を解決し高耐酸
化性を有するRFe−B系磁石材料を提供することであ
る。
Therefore, one object of the present invention is to solve these problems and provide an RFe-B magnet material having high oxidation resistance.

〔問題点を解決するための手段〕[Means for solving problems]

本発明によれば、R−Fe−B系磁石材料にAt 。 According to the present invention, At is added to the R-Fe-B magnet material.

Cr 、 Ni及びこれら元素の合金を蒸着・ス・ぐン
タ。
Cr, Ni and alloys of these elements are vapor deposited.

イオンブレーティングにより被覆した後、熱処理するこ
とにより、光来よりも著しく耐酸化性に優れた永久磁石
材料が得られる。
By applying heat treatment after coating by ion blating, a permanent magnet material with significantly better oxidation resistance than conventional materials can be obtained.

さらに1本発明によれば°、蒸着・スフ4ンタ、イオン
ブレーテイングによりAt 、 Cr 、 Ni又はこ
れら元素の合金を被覆した後400〜1100℃で熱処
理することにより、被膜である金属コーテイング膜の組
織を変化させ(EXX柱状晶等等軸晶ることによシ被覆
層の延性を増し、さらに表面に存在するピンホールを除
去して、耐食性の向上が図れる。
Furthermore, according to the present invention, the metal coating film, which is a film, is coated with At, Cr, Ni, or an alloy of these elements by vapor deposition, sintering, or ion blating, and then heat-treated at 400 to 1100 °C. By changing the structure (equiaxed columnar crystals), the ductility of the coating layer can be increased, and the pinholes present on the surface can be removed to improve corrosion resistance.

〔発明の原理〕 本発明は例えばネオジー鉄−ゴロンを主成分とするR2
T14B系磁性焼結体からなる永久磁石において、活性
な磁性焼結体の表面に金属被膜を約5μm以上の膜厚を
形成したのち、永久磁石とその被膜との物理的密着度を
高めるために、熱処理を施こす。金属被膜の結晶構造は
、熱処理前においては。
[Principle of the Invention] The present invention is directed to, for example, R2 containing neodymium iron-Goron as a main component.
In a permanent magnet made of a T14B magnetic sintered body, after forming a metal coating with a thickness of about 5 μm or more on the surface of the active magnetic sintered body, in order to increase the degree of physical adhesion between the permanent magnet and the coating. , heat treatment. The crystal structure of the metal coating is as follows before heat treatment.

柱状晶であり、ボアの多い構造であったが、熱処理を施
こすと9等軸晶は再結晶し、しかもボアが消滅するため
に永久磁石への密着度が向上される。
It was a columnar crystal with a structure with many bores, but when heat treated, the 9 equiaxed crystal recrystallizes and the bores disappear, improving the degree of adhesion to the permanent magnet.

しかもこの密着度を改善する熱処理を施した後。Moreover, after applying heat treatment to improve this adhesion.

焼結型磁石では磁石特性を回復させるために、さらに再
熱処理を施すことにより、磁石特性が良好で、耐酸化性
、耐食性の良い永久磁石を得るものである。
In order to restore the magnetic properties of the sintered magnet, a permanent magnet with good magnetic properties, oxidation resistance, and corrosion resistance can be obtained by further performing reheat treatment.

また、熱処理によシ被膜としてのコーテイング膜と、R
−Fe−B磁石に冶金反応が生じコーティング金属被膜
とR−Fe−B系磁石の反応相が生ずるためコーテイン
グ膜とR−Fe−B系磁石の密着度が向上し。
In addition, a coating film as a film formed by heat treatment and a R
A metallurgical reaction occurs in the -Fe-B magnet, resulting in a reaction phase between the coating metal film and the R-Fe-B magnet, which improves the degree of adhesion between the coating film and the R-Fe-B magnet.

さらに耐食性が向上するものである。Furthermore, corrosion resistance is improved.

ここで、熱処理温度を400〜1100℃としたのは3
00℃未満では、コーティング金属と。
Here, the heat treatment temperature was set at 400 to 1100°C.
Below 00°C, the coating metal.

R−Fe−B系磁石間の冶金反応が不充分であり密着度
の向上が図れず、また、コーティング被膜金属の組織変
化も不充分であり、ピンホールが存在し耐食性の向上が
図れないためである。
The metallurgical reaction between the R-Fe-B magnets is insufficient, making it impossible to improve adhesion, and the structure change of the coating metal is also insufficient, resulting in the presence of pinholes, making it impossible to improve corrosion resistance. It is.

また1100℃以下としたのは、1100℃を越えた温
度領域ではNd2Fe14B相の粒成長が著しくなり、
Hc及び減磁カーブの角型性の劣化が生じ。
In addition, the reason for setting the temperature below 1100°C is that grain growth of the Nd2Fe14B phase becomes significant in the temperature range exceeding 1100°C.
Deterioration of the squareness of Hc and demagnetization curve occurs.

磁石特性上好ましくなく、また、磁石の融解も生じ、磁
石の変形が生じ製品上好ましくないためである。
This is not desirable in terms of magnetic properties, and also causes melting of the magnet, causing deformation of the magnet, which is not desirable in terms of products.

また、コーテイング膜の膜厚均一度、膜厚コントロール
の点でドーピング法、 CVD法に比べ蒸着。
In addition, vapor deposition is superior to doping and CVD methods in terms of uniformity and control of coating film thickness.

ス・ぐンタ、イオンブレーティングは優れているため本
発明ではこれら手法を採択している。
Since ion brating is superior, these methods are adopted in the present invention.

また、コーティング膜厚は耐酸化性、コスト面。In addition, the coating film thickness is oxidation resistant and cost-effective.

寸法精度の面より5〜30μmが好ましい。From the viewpoint of dimensional accuracy, 5 to 30 μm is preferable.

さらに本発明によるコーテイング後の熱処理により磁石
特性が劣化する場合においても、適当な熱処理をさらに
加えることにより磁石特性は回復する。
Furthermore, even if the heat treatment after coating according to the present invention deteriorates the magnetic properties, the magnet properties can be restored by further applying an appropriate heat treatment.

以上述べたように本発明によればR−Fe−B系磁石材
料にAt、 Cr 、 Ni及びこれらの合金を蒸着。
As described above, according to the present invention, At, Cr, Ni, and alloys thereof are deposited on the R-Fe-B magnet material.

スパIり、イオングレーティングにより被覆した後1c
400〜1100℃で、熱処理することによシ、耐酸化
性に優れた磁石材料が得られ、また。
1c after spa treatment and coating with ion grating
By heat-treating at 400 to 1100°C, a magnet material with excellent oxidation resistance can be obtained.

コーテイング後の熱処理により磁石特性が劣化する場合
においても、適当な熱処理を加えることにより、磁石特
性は回復するため実用上非常に有益である。
Even if the magnetic properties deteriorate due to heat treatment after coating, the magnetic properties can be recovered by applying appropriate heat treatment, which is very useful in practice.

〔実施例〕〔Example〕

本発明の実施例を図面を参照して説明する。 Embodiments of the present invention will be described with reference to the drawings.

〈実施例1〉 純度95 wt %以上のN+1Fe−Bを用いアルゴ
ン雰囲気中で高周波加熱により33Nd−1,OB−F
ebat(wt%)の組成を有するインゴットを得た。
<Example 1> Using N+1Fe-B with a purity of 95 wt% or more, 33Nd-1, OB-F was produced by high-frequency heating in an argon atmosphere.
An ingot having a composition of ebat (wt%) was obtained.

次にこれらインゴットを、アルゴン雰囲気中で粗粉砕し
た後約4μmにゴールミルを用いて湿式粉砕した。この
粉末を15 KOeの磁界中にて1.Oton/C−の
圧力で成形した。この圧粉体を1050〜1100℃で
2時間Ar中保持焼結し、その後水焼入れ忙よシ急冷し
た。
Next, these ingots were roughly pulverized in an argon atmosphere, and then wet-pulverized to about 4 μm using a gall mill. This powder was heated for 1.5 hours in a magnetic field of 15 KOe. Molding was carried out at a pressure of Oton/C-. This green compact was held and sintered at 1050 to 1100°C for 2 hours in Ar, and then rapidly cooled during water quenching.

得られた焼結体よシ10門X1X10mmX8の寸法た
試験片を複数個切り出した。次にAt・Cr・Ni金属
を蒸着、スノJ?ツタ、イオングレーティングにより第
1表のようにこれら試験片へ被覆した。
A plurality of test pieces having dimensions of 10 mm x 1 x 10 mm x 8 were cut out from the obtained sintered body. Next, At, Cr, and Ni metals are evaporated, and Suno J? These specimens were coated with ivy and ion grating as shown in Table 1.

これらのコーテイング膜をハクリしてその膜厚を測定し
たところ最小で5μm、最大で15μmであった。
When these coating films were peeled off and the film thickness was measured, the minimum thickness was 5 μm and the maximum thickness was 15 μm.

次に、これらコーティングした試験片をコーテイング膜
と磁石材料を反応させるための熱処理(1)を行った。
Next, these coated test pieces were subjected to heat treatment (1) in order to cause the coating film to react with the magnet material.

その後特性を回復させるためさらに熱処理を加えた。Further heat treatment was then applied to restore the properties.

第1表にこれらコーティング条件と熱処理条件及び磁気
特性の関係を示す。また、比較例として上記焼結体を6
00℃で熱処理し念コーティング処理しない試験片及び
この試験片に、 At、 Ni 。
Table 1 shows the relationship between these coating conditions, heat treatment conditions, and magnetic properties. In addition, as a comparative example, the above sintered body was
A test piece heat-treated at 00°C and not coated and this test piece was treated with At, Ni.

Cr蒸着、スパッタ、イオングレーティングしたのみの
試験片の磁石特性を第2表に示す。
Table 2 shows the magnetic properties of the test pieces that were only subjected to Cr vapor deposition, sputtering, and ion grating.

また、これら試験片を100hr塩水¥を霧試験(JI
S−Z−2371) L、た結果を第3表に示す。
In addition, these test pieces were subjected to a 100 hr salt water fog test (JI
S-Z-2371) L, the results are shown in Table 3.

第1表、第2表、第3表よちAt、 Ni 、 Crを
蒸着、ス・ぐツタ、イオンブレーティングしたノミの試
料よりもさらに熱処理を加えた試料の方が耐食性に優れ
、しかも磁石特性に優れていることがわかる。
Tables 1, 2, and 3 show that the samples that have been heat-treated have better corrosion resistance than the chisel samples that have been evaporated with At, Ni, and Cr, and have been ion-blated. It can be seen that it has excellent characteristics.

図−1にAtをイオンブレーティングした試料の破面の
金属組織及び熱処理を加えた試料の破面の金属組織を示
す。(熱処理条件600℃X0,5hr)Atヲイオン
グレーティングした試料に比べ、熱処理を加えた試料で
はコーテイング膜と磁石材料の間に反応相が認められる
。この反応相をX−M−Aにより解析したところAt−
Nd−Feの化合物であることがわかった。また、 A
tの組織がイオンブレーティングのみでは柱状的に存在
して−るが、熱処理を加えることにより等軸晶になって
いるのがわかる。
Figure 1 shows the metallographic structure of the fractured surface of a sample subjected to At ion blating and the metallographic structure of the fractured surface of a sample subjected to heat treatment. (Heat treatment conditions: 600° C. x 0.5 hr) Compared to the sample subjected to ion grating, a reaction phase was observed between the coating film and the magnet material in the sample subjected to heat treatment. When this reaction phase was analyzed by X-M-A, At-
It turned out to be a Nd-Fe compound. Also, A
It can be seen that the structure of t exists in a columnar shape only by ion blating, but it becomes an equiaxed crystal by adding heat treatment.

以下余白 第2表 く比較例〉 焼結後600℃×1h「の熱処理
を加えた試験片の無コーテイング、及びAt。
Comparative Example> Uncoated test piece heat treated at 600°C for 1 hour after sintering, and At.

Cr 、Niを蒸着、スノにツタ、イオンブレーティン
グした試験片の磁気特性 〈実施例−2〉 実施例−1で得られた焼結体試験片にNiを。
Magnetic properties of a test piece on which Cr and Ni were vapor-deposited, ion-bladed, and ion-blated <Example 2> Ni was applied to the sintered compact test piece obtained in Example 1.

イオンシレーティングによシコーティングした。Coated with ion silating.

これらの試験片の膜厚を測定したところ10〜15μm
であった。これら試験片を300〜1200℃で0.5
hr熱処理した。さらにこれら試験片のうち磁気特性の
劣化が著しいものには特性を回復させるため500〜6
00℃の熱処理を加えた。ここで、コーティングしたN
iと磁石材料を反応させるために行った熱処理のうち、
600℃と700℃の試料は特性劣化を生じていないた
め追加熱処理は行なわなかった。また1200℃で熱処
理した試験片は、著しい変形を生じていた。
The film thickness of these test pieces was measured and was 10 to 15 μm.
Met. 0.5 at 300-1200℃
Heat treated for hr. Furthermore, among these test pieces, for those with significant deterioration of magnetic properties, 50 to 6
Heat treatment at 00°C was applied. Here, coated N
Among the heat treatments performed to cause i to react with the magnetic material,
Samples heated at 600° C. and 700° C. were not subjected to additional heat treatment since no deterioration in characteristics occurred. Moreover, the test piece heat-treated at 1200°C was significantly deformed.

これら熱処理による磁石特性の変化を第2図に示す。FIG. 2 shows the changes in magnetic properties caused by these heat treatments.

磁石に被膜を施こした後、金属膜の改質を図るために横
軸の温度とする熱処理温度で熱処理(1)を施こしたの
が一〇−曲線である。これによれば、熱処理(1)によ
る磁石特性の良好なところは550℃〜750℃の温度
範囲とすべきことが分る。また。
The 10-curve shows that after coating the magnet, heat treatment (1) was performed at the heat treatment temperature shown on the horizontal axis in order to modify the metal film. According to this, it can be seen that the best magnetic properties due to heat treatment (1) should be within the temperature range of 550°C to 750°C. Also.

−・−曲線は、上記のように一度膜を改質するために横
軸に示す温度で熱処理を施こしたものを、さらに500
〜600℃で熱処理(If)を施こすことにより磁石特
性が改善していることを明らかにしたデータである。
-・- The curve shows the film that has been heat-treated at the temperature shown on the horizontal axis to modify the film as described above, and then
This data reveals that the magnetic properties are improved by heat treatment (If) at ~600°C.

また比較例として、実施例−1で示した比較例のNi−
イオングレーティングした試料の磁気特性も列挙した。
In addition, as a comparative example, Ni-
The magnetic properties of the ion grating samples were also listed.

またこれら試料を100 hr塩水噴霧試験した結果を
第4表に示す。
Table 4 shows the results of a 100 hr salt water spray test on these samples.

また、耐食性という面でこれらの試料を評価した結果が
第4表で、耐食性という面でば400℃〜1100℃で
熱処理されることが良い。熱処理により膜が柱状晶に形
成さn、ポーラス(多孔質)な状態から、熱処理により
膜が同軸品に改質され。
Table 4 shows the results of evaluating these samples in terms of corrosion resistance. In terms of corrosion resistance, heat treatment at 400°C to 1100°C is preferable. Heat treatment forms the film into columnar crystals, and heat treatment modifies the film from a porous state into a coaxial product.

それはといもなおさず孔がなくなるために、磁石との空
気中の酸との接触が断たれるために耐食性が改善される
ものである。
Since there are no pores, contact between the magnet and the acid in the air is cut off, which improves corrosion resistance.

第2図、第4表よシわかるように、400〜1100℃
の熱処理を加えることによシ、磁石特性を低下させず、
しかも耐食性の優れた磁石材料が得られることがわかる
As shown in Figure 2 and Table 4, 400 to 1100℃
By applying heat treatment, the magnetic properties are not deteriorated.
Moreover, it can be seen that a magnet material with excellent corrosion resistance can be obtained.

第4表 Niをイオンブレーティングした試料及び熱処
理を追加した試料の100hr塩水噴霧試験結果 〔発明の効果〕 以上実施例で述べた如く2本発明によればAt・Ni−
Cr又はこれら元素の合金を蒸着、ス・ぐフタ。
Table 4 Results of 100-hour salt spray test of Ni ion-blated samples and heat-treated samples [Effects of the invention] As described in the examples above, according to the present invention, At.Ni-
Vapor deposition of Cr or alloys of these elements.

イオングレーティングにより磁石材料表面にコーティン
グした後400〜1100℃で熱処理することにより耐
酸化性に著しく優れた磁石材料が得られる。また熱処理
によシ磁石特性が劣化した場合においても適当な温度で
熱処理をさらに加えてやることにより磁石特性は回復す
るため磁石特性上でも問題ない。
By coating the surface of a magnet material with ion grating and then heat-treating it at 400 to 1100°C, a magnet material with extremely excellent oxidation resistance can be obtained. Further, even if the magnetic properties are deteriorated by heat treatment, the magnetic properties can be recovered by further heat treatment at an appropriate temperature, so there is no problem in terms of the magnetic properties.

以上、At−Ni−Cr及びこ扛らの合金についてのみ
述べたが耐酸化性に優れた金属及び合金であれば同様な
効果が期待できることは容易に推察できるものである。
Although only At-Ni-Cr and alloys thereof have been described above, it can be easily inferred that similar effects can be expected from metals and alloys with excellent oxidation resistance.

【図面の簡単な説明】[Brief explanation of the drawing]

Claims (1)

【特許請求の範囲】 1、磁性焼結体と、該磁性焼結体の表面を被膜する金属
又は合金被膜とを有する耐酸化性永久磁石材料において
、前記金属又は合金被膜は、再結晶構造であることを特
徴とする耐酸化性永久磁石材料。 2、磁性焼結体の表面に金属又は合金を被膜する被膜工
程と、該被膜工程を経た後、前記被膜された磁性焼結体
に熱処理を施し、前記金属又は合金被膜を再結晶させる
再結晶処理工程とを有することを特徴とする耐酸化性永
久磁石材料の製造方法。 3、特許請求の範囲第2項記載の耐酸化性永久磁石材料
の製造方法において、前記再結晶処理工程における熱処
理温度は、実質的に500〜700℃であることを特徴
とする耐酸化性永久磁石材料の製造方法。 4、特許請求の範囲第2項記載の耐酸化性永久磁石材料
の製造方法において、前記再結晶処理工程における熱処
理温度は、実質的に400〜1100℃(500〜70
0℃を除く)であることを特徴とする耐酸化性永久磁石
材料の製造方法。 5、特許請求の範囲第3項又は第4項記載の耐酸化性永
久磁石材料の製造方法において、前記再結晶処理工程に
おける熱処理後、再熱処理を施すことを特徴とする耐酸
化性永久磁石材料の製造方法。 6、特許請求の範囲第5項記載の耐酸化性永久磁石材料
の製造方法において、前記再結晶処理工程における再熱
処理温度は、実質的に500〜700℃であることを特
徴とする耐酸化性永久磁石材料の製造方法。
[Claims] 1. An oxidation-resistant permanent magnet material comprising a magnetic sintered body and a metal or alloy coating coating the surface of the magnetic sintered body, wherein the metal or alloy coating has a recrystallized structure. An oxidation-resistant permanent magnetic material characterized by: 2. A coating process of coating a metal or alloy on the surface of a magnetic sintered body, and a recrystallization process of recrystallizing the metal or alloy coating by heat-treating the coated magnetic sintered body after the coating process. A method for producing an oxidation-resistant permanent magnet material, comprising the steps of: 3. The method for producing an oxidation-resistant permanent magnet material according to claim 2, wherein the heat treatment temperature in the recrystallization treatment step is substantially 500 to 700°C. Method of manufacturing magnetic materials. 4. In the method for producing an oxidation-resistant permanent magnet material according to claim 2, the heat treatment temperature in the recrystallization treatment step is substantially 400 to 1100°C (500 to 70°C).
1. A method for producing an oxidation-resistant permanent magnet material, characterized in that the temperature is 0°C (excluding 0°C). 5. In the method for producing an oxidation-resistant permanent magnet material according to claim 3 or 4, the oxidation-resistant permanent magnet material is characterized in that a reheat treatment is performed after the heat treatment in the recrystallization treatment step. manufacturing method. 6. The method for producing an oxidation-resistant permanent magnet material according to claim 5, wherein the reheat treatment temperature in the recrystallization treatment step is substantially 500 to 700°C. Method of manufacturing permanent magnet material.
JP14297386A 1986-06-20 1986-06-20 Oxidation resistant permanent magnet material and its production Pending JPS63453A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14297386A JPS63453A (en) 1986-06-20 1986-06-20 Oxidation resistant permanent magnet material and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14297386A JPS63453A (en) 1986-06-20 1986-06-20 Oxidation resistant permanent magnet material and its production

Publications (1)

Publication Number Publication Date
JPS63453A true JPS63453A (en) 1988-01-05

Family

ID=15327961

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14297386A Pending JPS63453A (en) 1986-06-20 1986-06-20 Oxidation resistant permanent magnet material and its production

Country Status (1)

Country Link
JP (1) JPS63453A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5472525A (en) * 1993-01-29 1995-12-05 Hitachi Metals, Ltd. Nd-Fe-B system permanent magnet
JP2005294558A (en) * 2004-03-31 2005-10-20 Tdk Corp Rare earth magnet and manufacturing method thereof
JP2009147382A (en) * 2009-03-25 2009-07-02 Toshiba Corp Electronic apparatus
US11008394B2 (en) 2007-12-27 2021-05-18 Chugai Seiyaku Kabushiki Kaisha High concentration antibody-containing liquid formulation

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62120002A (en) * 1985-11-20 1987-06-01 Sumitomo Special Metals Co Ltd Permanent magnet with excellent corrosion resistance

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62120002A (en) * 1985-11-20 1987-06-01 Sumitomo Special Metals Co Ltd Permanent magnet with excellent corrosion resistance

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5472525A (en) * 1993-01-29 1995-12-05 Hitachi Metals, Ltd. Nd-Fe-B system permanent magnet
JP2005294558A (en) * 2004-03-31 2005-10-20 Tdk Corp Rare earth magnet and manufacturing method thereof
US11008394B2 (en) 2007-12-27 2021-05-18 Chugai Seiyaku Kabushiki Kaisha High concentration antibody-containing liquid formulation
US11359026B2 (en) 2007-12-27 2022-06-14 Chugai Seiyaku Kabushiki Kaisha High concentration antibody-containing liquid formulation
JP2009147382A (en) * 2009-03-25 2009-07-02 Toshiba Corp Electronic apparatus

Similar Documents

Publication Publication Date Title
JPS63453A (en) Oxidation resistant permanent magnet material and its production
JP2002158105A (en) Magnet and its manufacturing method
JPH01125813A (en) Method of processing metal
JPS62294159A (en) Method for preventing rust of permanent magnet alloy
JP4006620B2 (en) Manufacturing method of high purity nickel target and high purity nickel target
JPH0945567A (en) Rare earth-iron-boron permanent magnet manufacturing method
JPS61195964A (en) Rust preventing method of permanent magnet alloy
JPS62120002A (en) Permanent magnet with excellent corrosion resistance
JPH06224038A (en) Manufacture of thin film permanent magnet
JP4573381B2 (en) Manufacturing method of sputtering target
JPS63232304A (en) Permanent magnet excellent in oxidation resistance and manufacture thereof
JP4698779B2 (en) Magnetic sputtering target and manufacturing method thereof
US5286366A (en) Surface treatment for iron-based permanent magnet including rare-earth element
JP2002212602A (en) Magnet material and production method therefor
JPH0237081B2 (en) EIKYUJISHAKUNOSEIZOHOHO
JPS61281850A (en) Permanent magnet material
JP3969125B2 (en) Fe-Pt magnet and method for producing the same
JPH10340823A (en) Manufacture of r-iron-boron permanent magnet having excellent salt water resistance
JPH04288804A (en) Permanent magnet and manufacture thereof
JPH11288812A (en) High coercive force r-irone-b thin-film magnet and manufacture thereof
JPH05226125A (en) Manufacture of highly corrosion-resistant rare-earth magnet
JPS61119005A (en) Manufacture of iron-rareearth-boron permanent magnet
JPH08264310A (en) Manufacture of rare earth-iron-boron permanent magnet
JPS63187603A (en) Permanent magnet having improved resistance to oxidation and manufacture thereof
JPH03173105A (en) Rare earth permanent magnet with corrosion resistant film and manufacture thereof