JPH03173105A - Rare earth permanent magnet with corrosion resistant film and manufacture thereof - Google Patents

Rare earth permanent magnet with corrosion resistant film and manufacture thereof

Info

Publication number
JPH03173105A
JPH03173105A JP31158889A JP31158889A JPH03173105A JP H03173105 A JPH03173105 A JP H03173105A JP 31158889 A JP31158889 A JP 31158889A JP 31158889 A JP31158889 A JP 31158889A JP H03173105 A JPH03173105 A JP H03173105A
Authority
JP
Japan
Prior art keywords
plating
rare earth
electrolytic
permanent magnet
earth permanent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31158889A
Other languages
Japanese (ja)
Inventor
Takeshi Ohashi
健 大橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP31158889A priority Critical patent/JPH03173105A/en
Publication of JPH03173105A publication Critical patent/JPH03173105A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/026Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets protecting methods against environmental influences, e.g. oxygen, by surface treatment

Abstract

PURPOSE:To improve corrosion resistance and to prevent hydrogen embrittlement by providing a corrosion resistant coating made of electrolytic Al plating on an Nd-Fe-B rare earth element permanent magnet, and forming the coating by nonaqueous solution type electrolytic Al plating. CONSTITUTION:An R-Fe-B rare earth element permanent magnet (where R is rare earth element of one or more types mainly with Nd) or particularly sintered magnet manufactured by a powder metallurgical process is to be applied. In order to obtain excellent corrosion resistance of electrolytic Al plating, an oxide layer, a processing deteriorated layer, pores, damage, etc., are reduced on the sintered surface, composition is dense and the density of the magnet is 95% or larger of true density is desired. The coating is formed on the surface by electrolytic Al plating with nonaqueous solution. It is desirable to ultrasonically clean in organic solvent immediately before the above process.

Description

【発明の詳細な説明】 (産業上の利用分野) 磁性材料として有用なR−Fe−B系の耐食性に優れた
被膜を有する希土類永久磁石およびその製造方法に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a rare earth permanent magnet having an R-Fe-B coating with excellent corrosion resistance useful as a magnetic material, and a method for manufacturing the same.

(従来の技術) R−Fe−B系希土類永久磁石は従来のSn+系希土類
永久磁石と比較し磁気特性の高さ、原料資源の豊富さか
ら使用範囲が急激に拡大し、電気、電子分野のモーター
 アクチュエーター、センサー等、特に自動車用電装品
に最適に使用されつつある。しかしこの磁石の耐食性の
悪さは焼結磁石、プラスチック磁石共に鉄以上であるた
めその改善には数多(の試みがなされている。
(Prior technology) Compared to conventional Sn+ rare earth permanent magnets, R-Fe-B rare earth permanent magnets have rapidly expanded their range of use due to their superior magnetic properties and abundance of raw material resources, and are becoming increasingly popular in the electrical and electronic fields. It is being optimally used for motor actuators, sensors, etc., especially in automotive electrical components. However, the corrosion resistance of this magnet is worse than that of iron for both sintered magnets and plastic magnets, and many attempts have been made to improve it.

(発明が解決しようととする課題) その一つは磁石合金に耐食性を向上させる元素を添加す
る試みである。他の方法としては磁石の表面を耐食性の
ある物質被膜で被覆する事である。−膜内ににはNiメ
ッキ、A1イオンクロメート、吹き付は樹脂塗装、電着
樹脂塗装等が行なわれており、用途によって使い分けが
なされている(特開昭60−63903、特開昭60−
54406、特開昭60−63902、特開昭60−6
3901参照)。これらの被膜で被フされた磁石で実用
に耐え得る耐食性が得られ始めているが、未だ密着力、
耐食性の面で改良の余地が大きい。メッキ、樹脂塗装等
の被膜を載せるとき、磁石焼結体の表面状態が耐食性の
良否に大きく影響し、表面の酸化層、磁石特性の劣化し
ている加工劣化層、空孔等は耐食性低下の原因となる。
(Problems to be Solved by the Invention) One of these is an attempt to add an element that improves corrosion resistance to a magnet alloy. Another method is to coat the surface of the magnet with a coating of corrosion-resistant material. -The inside of the membrane is coated with Ni plating, A1 ion chromate, sprayed resin coating, electrodeposited resin coating, etc., and these are used depending on the application (JP-A-60-63903, JP-A-60-
54406, JP-A-60-63902, JP-A-60-6
3901). Magnets coated with these films are beginning to have corrosion resistance that can withstand practical use, but there are still problems with adhesion and
There is a lot of room for improvement in terms of corrosion resistance. When applying coatings such as plating or resin coating, the surface condition of the magnet sintered body greatly affects the quality of corrosion resistance, and oxidized layers on the surface, processed deteriorated layers with deteriorated magnetic properties, pores, etc. can reduce corrosion resistance. Cause.

これらのことから電解メッキでは一般にピンホールフリ
ーのメッキを形成することは困難と言われている。また
水溶液を使用する電解メッキではメッキ操作中に発生す
る水素を磁石が吸収し、磁石の水素脆化を起こす恐れが
ある。特にR−Fe−B系希土類永久磁石は水素吸蔵が
著しい金属間化合物として知られているためこの点が問
題となっている。蒸着、スパッタリング、イオンブレー
ティングのようなPVD法では製造工程がバッチ処理で
あるため生産性に劣り、また磁石と被膜の密着性が良(
ないため耐食性にも劣るという欠点がある。本発明の目
的は電解AIメッキにより、ピンホールフリーで耐食性
に優れ水素脆化の恐れの無い電解AIメッキを有するR
−Fe−B系希土類永久磁石な提供することにある。
For these reasons, it is generally said that it is difficult to form pinhole-free plating with electrolytic plating. Furthermore, in electrolytic plating using an aqueous solution, the magnet absorbs hydrogen generated during the plating operation, which may cause hydrogen embrittlement of the magnet. In particular, R--Fe--B rare earth permanent magnets are known as intermetallic compounds that have a remarkable ability to absorb hydrogen, and this is a problem. PVD methods such as vapor deposition, sputtering, and ion blating have poor productivity because the manufacturing process is a batch process, and the adhesion between the magnet and the coating is poor (
This has the disadvantage of poor corrosion resistance. The purpose of the present invention is to provide electrolytic AI plating that is pinhole-free, has excellent corrosion resistance, and has no risk of hydrogen embrittlement.
-Fe-B rare earth permanent magnets.

(課題を解決するための手段) 本発明者等は、かかる課題を解決するために、種々の電
解メッキを検討した結果、電解AlメッキでAIメッキ
をR−Fe−B系希土類永久磁石表面に形成させれば、
ピンホールフリーの、水素脆化のない優れた耐食性被膜
が得られることを見い出した。
(Means for Solving the Problems) In order to solve the problems, the present inventors investigated various electrolytic plating methods and, as a result, applied electrolytic Al plating to the surface of R-Fe-B rare earth permanent magnets. If you let it form,
It has been found that an excellent corrosion-resistant coating that is pinhole-free and free from hydrogen embrittlement can be obtained.

また粉末冶金法により製作された磁石焼結体表面に被膜
を形成し優れた耐食性を得るためには、磁石焼結体表面
を特定状態に保つメッキ前処理工程が重要であることも
同時に見い出して本発明に到達した。本発明の要旨は、 Nd−Fe−B系希土類永久磁石の表面に電解Alメッ
キよりなる耐食性被膜を有することを特徴とする希土類
永久磁石およびこの耐食性Al被膜を非水溶液系電解A
Iメッキで形成することを特徴とする耐食性被膜を有す
る希土類永久磁石の製造方法にある。
We also discovered that in order to form a coating on the surface of a sintered magnet produced by powder metallurgy and obtain excellent corrosion resistance, a pre-plating process that maintains the surface of the sintered magnet in a specific state is important. We have arrived at the present invention. The gist of the present invention is to provide a rare earth permanent magnet characterized by having a corrosion-resistant coating made of electrolytic Al plating on the surface of the Nd-Fe-B rare earth permanent magnet, and a non-aqueous electrolytic A
A method of manufacturing a rare earth permanent magnet having a corrosion-resistant coating formed by I plating.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

本発明の適応範囲はR−Fe−B系希土類永久磁石(こ
こにRは希土類元素でNdを主体とする1種もしくは2
種以上とする)、特には粉末冶金法で製造した焼結磁石
が対象となる。磁石組成としての希土類元素Rは、Y 
、 La、 Ce、 Pr、 Nd、 Sm、 Eu、
 Gd、 Tb、 Dy * Ho * E r + 
T m e Yb及びLuのうちNdを含む1種以上で
あり、FeはGo、 AI、 Nb、 Mo、 Cr等
で置換されても良いが、Go、Cr等の耐食性向上元素
が含有されていることが望ましい。また、電解Alメッ
キの優れた耐食性を得るためには、焼結体表面に酸化層
、加工劣化層、空孔、傷等が少なく、組織が緻密な状態
で、焼結磁石の密度が真密度の95%以上である事が望
ましい。
The applicable range of the present invention is R-Fe-B rare earth permanent magnets (here R is a rare earth element, and one or two types mainly composed of Nd).
(species or higher), especially sintered magnets manufactured by powder metallurgy. The rare earth element R as a magnet composition is Y
, La, Ce, Pr, Nd, Sm, Eu,
Gd, Tb, Dy * Ho * E r +
T m e One or more types of Yb and Lu containing Nd, and Fe may be substituted with Go, AI, Nb, Mo, Cr, etc., but it contains corrosion resistance improving elements such as Go and Cr. This is desirable. In addition, in order to obtain excellent corrosion resistance of electrolytic Al plating, the sintered body must have a dense structure with few oxidized layers, degraded layers, pores, scratches, etc. on the surface of the sintered body, and the density of the sintered magnet must be at the true density. It is desirable that it be 95% or more.

本発明で採用した電解Alメッキは、非水溶液による電
解メッキであり、有機溶剤中にAlCl5.AI(CJ
i)m等のアルミニウム化合物を錯イオンの形で溶解し
、これにLiAlH4、NaF等の還元剤を加えてメッ
キ浴とし、通常の電解メッキと同じ方法でアルミニウム
被膜を形成する。有機溶剤としては、ジメチルエーテル
、トルエン、テトラヒドロフラン+ベンゼン系芳香族化
合物等が例示されるが、トルエン等が好ましく用いられ
る。 メッキ浴としては次の様なものが知られている。
The electrolytic Al plating employed in the present invention is electrolytic plating using a non-aqueous solution, with AlCl5. AI (C.J.
i) An aluminum compound such as m is dissolved in the form of a complex ion, a reducing agent such as LiAlH4 or NaF is added thereto to form a plating bath, and an aluminum film is formed in the same manner as ordinary electrolytic plating. Examples of the organic solvent include dimethyl ether, toluene, tetrahydrofuran + benzene aromatic compounds, and toluene is preferably used. The following types of plating baths are known.

1) NBS浴: AlC1,(Al錯イオン)、Li
AIH,またはLiH(還元剤)、ジメチルエーテル(
溶剤)。
1) NBS bath: AlC1, (Al complex ion), Li
AIH, or LiH (reducing agent), dimethyl ether (
solvent).

2)改良NBS浴: AlC1a(Al錯イオン)、L
iAIH4またはLL旧還元剤)、テトラヒドロフラン
(THF)とペンゾール系芳香族化合物(混合溶剤)。
2) Improved NBS bath: AlC1a (Al complex ion), L
iAIH4 or LL (old reducing agent), tetrahydrofuran (THF) and penzole aromatic compound (mixed solvent).

3)シーメンス浴: Al(CJs)s(Al錯イオン
)、NaF (還元剤)、 トルエン(溶剤) メッキ浴としてはl)〜3)のいずれを選択しても良い
が、メッキ浴自体が空気、水との接触により発火するた
め、取扱いには厳重な管理と注意が必要である。
3) Siemens bath: Al(CJs)s (Al complex ion), NaF (reducing agent), toluene (solvent) Any of 1) to 3) may be selected as the plating bath, but the plating bath itself must be air-filled. Since it can ignite on contact with water, strict control and care are required when handling it.

電解AIメッキ工程は基本的には電解Niメッキ工程と
異なる点はないが本発明を工程順に説明すると、A)前
処理工程:脱脂、水洗、酸洗、水洗、乾燥、     
活性化処理 B)メッキ工程:電解AIメッキ C)後処理工程:水洗、(クロメート処理)、乾燥の三
工程からなり、磁石焼結体をA)工程から順次処理する
。各工程の目的は次の様になる。
The electrolytic AI plating process is basically the same as the electrolytic Ni plating process, but to explain the present invention in order of process, A) pretreatment process: degreasing, water washing, pickling, water washing, drying,
Activation treatment B) Plating process: Electrolytic AI plating C) Post-treatment process: Consists of three steps: washing with water, (chromate treatment), and drying, and the magnet sintered body is sequentially processed from step A). The purpose of each process is as follows.

(A>前処理工程: l)脱脂:先ず、磁石焼結体表面に付着している油脂類
を有機溶剤で洗浄する。
(A>Pre-treatment step: l) Degreasing: First, oils and fats adhering to the surface of the magnet sintered body are washed with an organic solvent.

2)水洗:残存有機溶剤、塵埃を除去する。2) Washing with water: Remove residual organic solvent and dust.

3)酸洗:塩酸水溶液により酸化層、加工劣化層を除去
する。
3) Pickling: Remove the oxidized layer and process-deteriorated layer with an aqueous hydrochloric acid solution.

4)水洗:残存塩酸を洗浄する。4) Washing with water: Wash away residual hydrochloric acid.

5)乾燥:不活性ガス中で水分を除去する。5) Drying: Remove moisture in an inert gas.

6)活性化処理:有機溶剤中で超音波洗浄にかける。(
後述) (B)メッキ工程:非水溶液系電解Alメッキ(前述) (C)後処理工程: 1)水洗:メッキ浴を洗浄、除去する。
6) Activation treatment: Ultrasonic cleaning in an organic solvent. (
(Described later) (B) Plating process: Non-aqueous electrolytic Al plating (described above) (C) Post-treatment process: 1) Washing: Washing and removing the plating bath.

2)クロメート処理ニクロム酸化膜をAlメッキ表面に
形成し、耐食性を向上させる。:必要に応じて行なう。
2) A chromate-treated nichrome oxide film is formed on the Al plating surface to improve corrosion resistance. : Perform as necessary.

3)乾燥二人気中で乾燥する。3) Dry in the dryer.

各工程の基本的技術は公知であるが、本発明では (A
)メッキ前処理工程に活性化処理を施すことが特徴の一
つである。この活性化処理とは酸洗浄と有機溶剤洗浄と
の組合せ処理を指し、酸洗浄で酸化層と加工劣化層の大
部分を除去し、その後、有機溶剤洗浄で完全に除去する
処理法である。メッキのピンホールの原因の一つは磁石
焼結体表面の空孔に前処理工程での酸、水分、酸化層等
が残存し良好なメッキ膜が形成されないことにある。
Although the basic technology of each step is known, in the present invention (A
) One of the characteristics is that activation treatment is performed in the plating pretreatment process. This activation treatment refers to a combination treatment of acid cleaning and organic solvent cleaning, and is a treatment method in which most of the oxidized layer and process-degraded layer are removed by acid cleaning, and then completely removed by organic solvent cleaning. One of the causes of pinholes in plating is that acids, moisture, oxide layers, etc. from the pretreatment process remain in the pores on the surface of the magnet sintered body, and a good plating film cannot be formed.

元来非水溶液系電解Alメッキの付き回り性は水溶液系
の電解メッキに比べて良好であるが、本発明においては
更にこれを改良するため、有機溶剤で超音波洗浄する活
性化工程を導入することにより、非常に緻密なAlメッ
キが形成可能となった。有機溶剤を使用するのは表面張
力が小さいため僅かの隙間、空孔にもよ(浸透し、洗浄
効果が挙がるためである。有機溶剤としてはフロン系の
フロン11、フロン112、フロン113等が挙げられ
るが、中でもフロン113等が好ましく用いられる。超
音波洗浄処理条件は磁石の表面状態、残存物質の種類と
量等から適宜選択すれば良い。
Originally, the coverage of non-aqueous electrolytic Al plating is better than that of aqueous electrolytic plating, but in order to further improve this, in the present invention, an activation process of ultrasonic cleaning with an organic solvent is introduced. This made it possible to form extremely dense Al plating. Organic solvents are used because they have a low surface tension and can penetrate into even the slightest gaps and pores, increasing the cleaning effect. Examples of organic solvents include fluorocarbons such as Freon 11, Freon 112, and Freon 113. Among these, Freon 113 and the like are preferably used.The conditions for the ultrasonic cleaning treatment may be appropriately selected depending on the surface condition of the magnet, the type and amount of residual substances, etc.

である。It is.

電解Alメッキは陽極酸化が容易であるので、アルマイ
ト処理により表面硬化も可能であり、更にアルマイト処
理工程において着色することも可能であるので、装飾性
を持たせて付加価値を挙げることも可能である。
Since electrolytic Al plating is easy to anodize, the surface can be hardened by alumite treatment, and it can also be colored during the alumite treatment process, so it is possible to add value by adding decorative properties. be.

本発明の焼結希土類磁石は一般的に用いられている粉末
冶金法で得られる。その工程は原料メタルを不活性ガス
中で溶解、鋳型に傾注して合金インゴットを作製し、不
活性ガス中で平均粒径3〜5μmに微粉砕し、該微粉を
磁場中で磁場方向に配向させた状態でプレス成形する。
The sintered rare earth magnet of the present invention can be obtained by a commonly used powder metallurgy method. The process involves melting the raw metal in an inert gas, pouring it into a mold to create an alloy ingot, pulverizing it in an inert gas to an average particle size of 3 to 5 μm, and orienting the fine powder in a magnetic field in the direction of the magnetic field. Press mold in this state.

次いで該成形体を不活性ガス中で焼結(1000〜11
00℃)、熱処理(500〜700℃)を行い異方性焼
結磁石を作製する。焼結体の密度は高い程良いが、前述
した様に電解Alメッキの成否に関わり、各製造工程の
条件にも大きく影響されるため、各工程の製造条件は厳
密に制御されねばならない。
Next, the molded body is sintered in an inert gas (1000 to 11
00°C) and heat treatment (500 to 700°C) to produce an anisotropic sintered magnet. The higher the density of the sintered body, the better; however, as mentioned above, it is related to the success or failure of electrolytic Al plating and is greatly influenced by the conditions of each manufacturing process, so the manufacturing conditions of each process must be strictly controlled.

以下、本発明の具体的実施態様を実施例を挙げて説明す
るが、本発明はこれらに限定されるものではない。
Hereinafter, specific embodiments of the present invention will be described with reference to Examples, but the present invention is not limited thereto.

(実施例1) 純度99.9%のFe、 Go、 Alと純度99%の
NdおよびBを用い、式Ndl5 (Feo、 5sc
Oo、 on) t*、 tBsAlo、 aからなる
磁石合金を作製した。これをN2ガスによるジェットミ
ルで3〜4μm径に微粉砕した。得られた微粉を12k
Oeの静磁場中で配向させ、プレス成形を行なった。成
形体は不活性ガス中で1000〜1100℃の温度で焼
結を行ない、引き続き500〜650℃の温度で熱処理
して焼結体を得た。該焼結体を20mmφX 1.5m
mtの円盤に加工し、電解Alメッキを10μm厚さに
形成した。電解Alメッキはメッキ前処理(アルカリ脱
脂、水洗、中和、水洗、酸洗、水洗、活性化処理)、電
解Alメッキ、メッキ後処理工程(水洗、乾燥)の工程
で行なった。メッキ前処理工程の活性化処理は、有機溶
剤としてフロン113を用い、超音波洗浄に掛けた。電
解Alメッキは、AlC1m 3モル/I2、LiA1
1(40,3モル/I2、混合溶剤lβ(THF 90
%、ベンゼンlO%)からなるメッキ浴を用いて行なっ
た。
(Example 1) Using Fe, Go, Al with a purity of 99.9% and Nd and B with a purity of 99%, the formula Ndl5 (Feo, 5sc
A magnetic alloy consisting of Oo, on) t*, tBsAlo, a was produced. This was pulverized to a diameter of 3 to 4 μm using a jet mill using N2 gas. 12k of the obtained fine powder
It was oriented in a static magnetic field of Oe and press molded. The molded body was sintered at a temperature of 1000 to 1100°C in an inert gas, and then heat treated at a temperature of 500 to 650°C to obtain a sintered body. The sintered body is 20mmφX 1.5m
It was processed into a disc of mt and electrolytically plated with Al to a thickness of 10 μm. Electrolytic Al plating was performed in the following steps: pre-plating treatment (alkali degreasing, water washing, neutralization, water washing, pickling, water washing, activation treatment), electrolytic Al plating, and post-plating treatment step (water washing, drying). Activation treatment in the plating pretreatment step was performed by ultrasonic cleaning using Freon 113 as an organic solvent. Electrolytic Al plating is AlC1m 3mol/I2, LiA1
1 (40.3 mol/I2, mixed solvent lβ (THF 90
%, benzene 1O%).

比較のため活性化処理を施していないものとメッキ無し
のものとを作製し、これらを比較例1および2とした。
For comparison, one without activation treatment and one without plating were produced, and these were designated as Comparative Examples 1 and 2.

耐食性テストとしては各試料をオートクレーブ中にセッ
トし、120℃×2気圧の水蒸気中で100Hr放置し
た後の磁石特性を評価し、その結果を第1表に示した。
As a corrosion resistance test, each sample was placed in an autoclave and left for 100 hours in water vapor at 120° C. and 2 atm, and then the magnetic properties were evaluated. The results are shown in Table 1.

この結果から実施例と比較例では顕著な差があることが
分かる。
From this result, it can be seen that there is a significant difference between the example and the comparative example.

(実施例2) 純度99.9%のFo、 Ce、 Nbメタルと純度9
9%のPr。
(Example 2) Fo, Ce, and Nb metals with a purity of 99.9% and purity 9
9% Pr.

Nd、 DyおよびBを用い、式 %式%( こにx=o、 oz、 0.06の二組酸を調整した)
からなる合金を作製し、以下実施例1と同条件で円盤に
加工し、電解AIメッキを施した。比較のために、実施
例2と同一組成、同一形状のものを電解NiメッキでN
i膜厚さ10μmを形成し比較例3とした。耐食性テス
トは塩水(NaC15%)噴霧を35℃×24Hr行い
メッキ膜のピンホールの数について評価しその結果を第
2表に示した。実施例では非常に優れた結果が得られて
いる。
Using Nd, Dy and B, the formula % formula % (where x=o, oz, 0.06 two-set acid was prepared)
An alloy consisting of the following was prepared, processed into a disk under the same conditions as in Example 1, and subjected to electrolytic AI plating. For comparison, a product with the same composition and shape as Example 2 was plated with N by electrolytic Ni plating.
Comparative Example 3 was prepared by forming an i film with a thickness of 10 μm. The corrosion resistance test was performed by spraying salt water (NaC 15%) at 35° C. for 24 hours and evaluating the number of pinholes in the plating film, and the results are shown in Table 2. In the Examples, very excellent results have been obtained.

JLLJ二 Nd焼結磁石へのAIメッキ膜、活性化処理の有無によ
る耐食性オートクレーブテスト(120℃X 100H
r ) Nd系磁石のAl被膜Ni被膜の塩水噴霧テスト[註]
 R,N、ニレ−ティングナンバーサンプル表面積に占
める腐食面積な%表示したとき、次式で表わされる値を
さす、腐食面積0%の時R,N、 =10、腐食面積5
0%の時R,N、 =1となる。
Corrosion resistance autoclave test of AI plating film on JLLJ 2Nd sintered magnet, with and without activation treatment (120℃
r) Salt spray test of Al coating and Ni coating of Nd-based magnet [Note]
R, N, Nirating number When expressed as a percentage of the corrosion area in the sample surface area, it refers to the value expressed by the following formula. When the corrosion area is 0%, R, N = 10, corrosion area 5
When it is 0%, R, N, = 1.

(発明の効果) 本発明はR−Fe−B系希土類永久磁石の表面に非水溶
液系電解Alメッキよりなる耐食性被膜を有する希土類
永久磁石およびその製造方法に関わるもので、鉄より腐
食性の高いR−Fe−B系希土類永久磁石の腐食防止法
として、従来法では得られなかった極めて高い耐食性と
水素脆化のない非水溶液系電解Alメッキに成功したも
のであり、産業上極めて高い利用価値を有するものであ
る。
(Effects of the Invention) The present invention relates to a rare earth permanent magnet having a corrosion-resistant coating made of non-aqueous electrolytic Al plating on the surface of an R-Fe-B rare earth permanent magnet, and a method for manufacturing the same. As a corrosion prevention method for R-Fe-B rare earth permanent magnets, we have successfully achieved non-aqueous electrolytic Al plating that has extremely high corrosion resistance and no hydrogen embrittlement that could not be obtained with conventional methods, and has extremely high industrial utility value. It has the following.

Claims (3)

【特許請求の範囲】[Claims] 1.R−Fe−B系希土類永久磁石(ここにRは希土類
元素でNdを主体とする1種もしくは2種以上とする)
の表面に電解Alメッキよりなる耐食性被膜を有する希
土類永久磁石。
1. R-Fe-B rare earth permanent magnet (here, R is one or more rare earth elements mainly composed of Nd)
A rare earth permanent magnet that has a corrosion-resistant coating made of electrolytic Al plating on its surface.
2.R−Fe−B系希土類永久磁石の表面に非水溶液系
で電解Alメッキ処理して耐食性Al被膜を形成させる
ことを特徴とする耐食性被膜を有する希土類永久磁石の
製造方法。
2. A method for producing a rare earth permanent magnet having a corrosion-resistant coating, which comprises forming a corrosion-resistant Al coating on the surface of an R-Fe-B rare earth permanent magnet by electrolytically plating the surface with Al in a non-aqueous solution.
3.非水溶液系電解Alメッキ直前に有機溶剤中で超音
波洗浄することを特徴とする請求項2に記載の耐食性被
膜を有する希土類永久磁石の製造方法。
3. 3. The method for manufacturing a rare earth permanent magnet having a corrosion-resistant coating according to claim 2, wherein ultrasonic cleaning is performed in an organic solvent immediately before non-aqueous electrolytic Al plating.
JP31158889A 1989-11-30 1989-11-30 Rare earth permanent magnet with corrosion resistant film and manufacture thereof Pending JPH03173105A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31158889A JPH03173105A (en) 1989-11-30 1989-11-30 Rare earth permanent magnet with corrosion resistant film and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31158889A JPH03173105A (en) 1989-11-30 1989-11-30 Rare earth permanent magnet with corrosion resistant film and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH03173105A true JPH03173105A (en) 1991-07-26

Family

ID=18019048

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31158889A Pending JPH03173105A (en) 1989-11-30 1989-11-30 Rare earth permanent magnet with corrosion resistant film and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH03173105A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7391291B2 (en) * 2004-02-26 2008-06-24 Shin-Etsu Chemical Co., Ltd. Sealed rare earth magnet and method for manufacturing the same
JP2009099853A (en) * 2007-10-18 2009-05-07 Hitachi Metals Ltd Highly corrosion-resistant r-t-b based rare earth magnet

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7391291B2 (en) * 2004-02-26 2008-06-24 Shin-Etsu Chemical Co., Ltd. Sealed rare earth magnet and method for manufacturing the same
JP2009099853A (en) * 2007-10-18 2009-05-07 Hitachi Metals Ltd Highly corrosion-resistant r-t-b based rare earth magnet

Similar Documents

Publication Publication Date Title
JP2520450B2 (en) Method for manufacturing corrosion resistant rare earth magnet
US5275891A (en) R-TM-B permanent magnet member having improved corrosion resistance and method of producing same
JPH03173106A (en) Rare earth permanent magnet with corrosion resistant film and manufacture thereof
US5332488A (en) Surface treatment for iron-based permanent magnet including rare-earth element
JP4506965B2 (en) R-T-M-B rare earth permanent magnet and method for producing the same
JPH03173105A (en) Rare earth permanent magnet with corrosion resistant film and manufacture thereof
JP3580521B2 (en) Manufacturing method of high corrosion resistant permanent magnet
JPH01268004A (en) R-tm-b permanent magnet with improved corrosion resistance and manufacture thereof
JP3142172B2 (en) R-TM-B permanent magnet with improved adhesion and method for producing the same
US5286366A (en) Surface treatment for iron-based permanent magnet including rare-earth element
JP3796567B2 (en) R-Fe-B permanent magnet and manufacturing method thereof
JPH09289108A (en) R-fe-b permanent magnet having electric insulating film excellent in adhesion and its manufacture
JPH04288804A (en) Permanent magnet and manufacture thereof
JPS63453A (en) Oxidation resistant permanent magnet material and its production
KR20020050829A (en) Ni multilayer plated Nd-Fe-B magnet and its manufacturing method
JPH0828295B2 (en) Permanent magnet with excellent oxidation resistance and method for manufacturing the same
JPH03173104A (en) Manufacture of corrosion resistant rare earth magnet
JP3325933B2 (en) Surface treatment of metals and alloys
JPH03283607A (en) Manufacture of anticorrosive rare earth magnet
JPS63110706A (en) Permanent magnet and manufacture thereof
JPH0442517A (en) Manufacture of anticorrosive permanent magnet comprizing rare earth element
JP2006013399A (en) Corrosion-resistant rare earth-based permanent magnet and manufacturing method thereof
JPH07135121A (en) Method for surface treatment of permanent magnet
JPH02310374A (en) Method for plating rare earth element magnet
JP3638423B2 (en) High corrosion resistance permanent magnet