JPH0442517A - Manufacture of anticorrosive permanent magnet comprizing rare earth element - Google Patents

Manufacture of anticorrosive permanent magnet comprizing rare earth element

Info

Publication number
JPH0442517A
JPH0442517A JP15037890A JP15037890A JPH0442517A JP H0442517 A JPH0442517 A JP H0442517A JP 15037890 A JP15037890 A JP 15037890A JP 15037890 A JP15037890 A JP 15037890A JP H0442517 A JPH0442517 A JP H0442517A
Authority
JP
Japan
Prior art keywords
rare earth
treatment
synthetic resin
phosphate
permanent magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15037890A
Other languages
Japanese (ja)
Inventor
Yukihiro Kuribayashi
幸弘 栗林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP15037890A priority Critical patent/JPH0442517A/en
Publication of JPH0442517A publication Critical patent/JPH0442517A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/026Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets protecting methods against environmental influences, e.g. oxygen, by surface treatment

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

PURPOSE:To obtain synthetic resin coating having excellent corrosion resistance by sequentially conducting a pretreating step, an activating step, a smut removing step and a forming step of the surface of a sintered magnet together with a phosphate treating step and a chromic acid treating step, and executing a synthetic resin coating step. CONSTITUTION:A pretreating step, an activating step and a smut removing step are conducted as surface treating on a rare earth element-iron-boron sintered permanent magnet, and a phosphate treating step and a chromic acid treating step are then conducted. The phosphate treating may be executed by dipping in solution containing titanium phosphate. The chromic acid treating may be generally performed by dipping in hot aqueous chromate anhydride.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、高耐食性の希土類永久磁石の製造方法に関し
、特に焼結磁石体表面に耐食性合成樹脂塗膜を均一に被
覆した希土類−鉄一ボロン系焼結永久磁石の製造方法に
関するものである。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to a method for producing a highly corrosion-resistant rare earth permanent magnet, and in particular to a rare earth-iron permanent magnet in which the surface of a sintered magnet body is uniformly coated with a corrosion-resistant synthetic resin coating. The present invention relates to a method for manufacturing a boron-based sintered permanent magnet.

(従来の技術) 希土類永久磁石は優れた磁気特性と経済性のため、電気
・電子機器の分野で多用されており、近年ますますその
高性能化が切望されている。これらのうち特にNd系希
土類永久磁石は、Sm系希土類永久磁石と比べて主要元
素であるNdがSmより豊富に存在すること、COを多
量に使用しないですむことから原材料費が安価であり、
磁気特性もSm系希土類永久磁石をはるかにしのぐ極め
て優れた永久磁石材料であるため、従来Sm系希土類磁
石が使用されてきた小型磁気回路はこれによって代替え
されるだけでなく、コスト面からハードフェライトある
いは電磁石が使われていた分野にも広く応用されようと
している。しかしNdをはじめ希土類金属材料は一般に
湿気の多い空気中で極めて短時間のうちに容易に酸化す
るという欠点を有している。この酸化は磁石表面上に酸
化物が生成する表面酸化だけでなく、表面から内部へ結
晶粒界に沿って腐食が進行する、いわゆる粒界腐食の現
象も引き起こす。この現象はNd磁石で特に顕著であり
これはNd磁石の粒界に非常に活性なNdリッチ相が存
在するためである。粒界の腐食は極めて大きな磁気特性
の劣化を引き起こし、もし使用時に腐食が進行すれば、
磁石を組み込んだ機器の性能を低下させ、機器周辺を汚
染させる等の問題が生じる。
(Prior Art) Rare earth permanent magnets are widely used in the fields of electrical and electronic equipment due to their excellent magnetic properties and economic efficiency, and in recent years there has been an increasing desire for higher performance. Among these, Nd-based rare earth permanent magnets in particular have lower raw material costs than Sm-based rare earth permanent magnets because they have more abundant Nd, the main element, than Sm, and do not require the use of large amounts of CO.
It is a permanent magnet material with extremely superior magnetic properties that far exceeds that of Sm-based rare earth permanent magnets, so not only can it replace small magnetic circuits that have conventionally used Sm-based rare-earth magnets, but also hard ferrite can be used from a cost perspective. It is also being widely applied to fields where electromagnets were used. However, rare earth metal materials such as Nd generally have the drawback of being easily oxidized in a very short time in humid air. This oxidation causes not only surface oxidation in which oxides are produced on the magnet surface, but also so-called intergranular corrosion, in which corrosion progresses from the surface to the inside along grain boundaries. This phenomenon is particularly noticeable in Nd magnets because of the presence of a highly active Nd-rich phase at the grain boundaries of Nd magnets. Corrosion at grain boundaries causes extremely large deterioration of magnetic properties, and if corrosion progresses during use,
Problems arise, such as degrading the performance of devices incorporating magnets and contaminating the area around the devices.

(発明が解決しようとする課題) このような希土類永久磁石、とりわけNd系磁石の欠点
を克服するため各種の表面処理方法が提案されているが
、いずれの方法も耐食性表面処理として完全なものでは
ない。例えば吹付塗装、粉体塗装または電着塗装による
合成樹脂塗膜では、樹脂の吸湿性のために膜下に錆が発
生し、真空蒸着イオンスパッタリング、゛イオンブレー
ティング等の気相メツキ法では、コストがかかり過ぎ、
また円穴、溝部へのコーティングができないなどの不利
があった。
(Problem to be Solved by the Invention) Various surface treatment methods have been proposed to overcome the drawbacks of rare earth permanent magnets, especially Nd-based magnets, but none of these methods is perfect as a corrosion-resistant surface treatment. do not have. For example, with synthetic resin coatings made by spray painting, powder coating, or electrodeposition coating, rust occurs under the film due to the hygroscopicity of the resin, and with vapor phase plating methods such as vacuum evaporation ion sputtering and ion blating, It costs too much
Additionally, there were disadvantages such as the inability to coat circular holes and grooves.

本発明の目的は、これらの表面処理方法の内、合成樹脂
塗装の場合には、従来はその前処理として脱脂、ショツ
トブラスト等で該磁石表面の汚れや酸化被膜を取り除い
ていたが、これらの前処理では充分な耐食性を得ること
ができないため、合成樹脂塗膜自体の耐食性よりもさら
に大きな影響力を持つ下地処理について根本的に検討し
直し、耐食性に優れた合成樹脂塗装を提供することにあ
る。
Among these surface treatment methods, in the case of synthetic resin coating, the dirt and oxide film on the surface of the magnet were conventionally removed by degreasing, shot blasting, etc. as pretreatment; Since it is not possible to obtain sufficient corrosion resistance with pre-treatment, we fundamentally reconsidered the base treatment, which has a greater influence than the corrosion resistance of the synthetic resin coating itself, and decided to provide a synthetic resin coating with excellent corrosion resistance. be.

(課題を解決するための手段) 本発明者等は、かかる課題を解決するために、合成樹脂
塗装の下地処理方法について種々検討した結果、鉄製品
において使われているりん酸塩処理とクロム酸処理を併
用して一時的に錆止めをすることで、合成樹脂塗膜の性
能を最大限に発揮できることを見出し、本発明を完成さ
せた。
(Means for Solving the Problems) In order to solve the problems, the present inventors investigated various methods of surface treatment for synthetic resin coating, and found that phosphate treatment and chromic acid treatment, which are used in iron products, The present invention was completed based on the discovery that the performance of synthetic resin coatings can be maximized by temporarily inhibiting rust using a combination of treatments.

本発明の要旨は、 希土類−鉄−ポロン系焼結永久磁石の製造方法において
、該焼結磁石体の表面に前処理工程、活性化処理工程、
スマット除去工程および化成処理工程としてりん酸塩処
理工程とクロム酸処理工程との併用を順次行ない、最終
的に合成樹脂塗装工程を実施することを特徴とする耐食
性希土類磁石の製造方法にある。
The gist of the present invention is to provide a method for producing a rare earth-iron-poron-based sintered permanent magnet, in which the surface of the sintered magnet body is subjected to a pretreatment step, an activation treatment step,
A method for manufacturing a corrosion-resistant rare earth magnet, characterized in that a phosphate treatment step and a chromic acid treatment step are sequentially performed in combination as a smut removal step and a chemical conversion treatment step, and finally a synthetic resin coating step is performed.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

先ず、本発明の方法が適用される希土類−鉄一ボロン系
焼結永久磁石(以下希土類磁石と略称する)の組成とし
ては、希土類金属はSc、Y、La、 Ce、 Pr、
 Nd、 Pm、 Sm、 Eu、 Gd、 Tb、 
Dy、 Ho、 Er、 Tm、 Yb、およびLuの
内少なくとも1種であり、その含有量は5〜40重量%
である。さらにFeを50〜90重量%、C。
First, the composition of the rare earth-iron-boron based sintered permanent magnet (hereinafter referred to as rare earth magnet) to which the method of the present invention is applied is that the rare earth metals are Sc, Y, La, Ce, Pr,
Nd, Pm, Sm, Eu, Gd, Tb,
At least one of Dy, Ho, Er, Tm, Yb, and Lu, the content of which is 5 to 40% by weight
It is. Further, 50 to 90% by weight of Fe and C.

を15重量%以下、Bを0.2〜8重量%、および添加
物としてNi、Nb、Al、Ti、Zr、Cr、 V 
、Mn、Mo、Si、Sn+ G a * Cu +及
びZnから選ばれる少なくとも1種の元素を8重量%以
下含有し、これに加えてC,O。
up to 15% by weight, B from 0.2 to 8% by weight, and additives such as Ni, Nb, Al, Ti, Zr, Cr, and V.
, Mn, Mo, Si, Sn+ Ga * Cu + and Zn in an amount of 8% by weight or less, and in addition to this, C, O.

P、S等の工業的に不可避な微量不純物を含有するもの
である。
It contains industrially unavoidable trace impurities such as P and S.

このような組成を有する希土類磁石は前述したように、
このままでは耐食性に欠けるため、耐食性に優れた表面
処理を必要とし、以下、本発明で採用した表面処理方法
を(1)〜(6)の工程順に説明する。
As mentioned above, rare earth magnets with such a composition are
Since it lacks corrosion resistance as it is, surface treatment with excellent corrosion resistance is required.Hereinafter, the surface treatment method employed in the present invention will be explained in the order of steps (1) to (6).

(1)前処理工程・・・i)〜iv)の4種類。(1) Pretreatment step...4 types i) to iv).

i)錆落し 錆落しは希土類磁石表面の酸化皮膜の除去を目的として
行なうものであり、砥石あるいはパフによる研磨、バレ
ル研磨、サンドブラストまたはホニング、ブラシ掛けな
どによって達成される。
i) Rust Removal Rust removal is performed for the purpose of removing the oxide film on the surface of the rare earth magnet, and is accomplished by polishing with a grindstone or puff, barrel polishing, sandblasting or honing, brushing, etc.

これにより希土類磁石表面の錆や汚れその他の不純物が
除かれる。
This removes rust, dirt, and other impurities from the surface of the rare earth magnet.

it)溶剤脱脂 溶剤膜−脂は希土類磁石表面の油脂類の汚れを除去する
ことを目的としたものであり、トリクロルエチレン、パ
ークロルエチレン、トリクロルエタン又はフロン等の溶
剤中に浸漬又は該溶剤をスプレーして行なうものである
。これによりプレス油切削油、防錆油等の有機性の汚れ
が除去される。
it) Solvent Degreasing Solvent film - The purpose of the solvent film is to remove oil and fat stains from the surface of rare earth magnets. It is done by spraying. This removes organic stains such as press oil, cutting oil, and antirust oil.

1ii)アルカリ脱脂 アルカリ脱脂は、上記の溶剤脱脂と同様に、希土類磁石
表面の油脂類の汚れを除去することを目的として行なう
ものであり、一般的には溶剤脱脂が予備脱脂洗浄で、ア
ルカリ脱脂は本脱脂洗浄に当たる。アルカリ脱脂液の成
分は、水酸化ナトリウム、炭酸ナトリウム、オルソケイ
酸ナトリウムメタケイ酸ナトリウム、燐酸三ナトリウム
、シアン化ナトリウム、キレート剤などの少な(とも一
種以上を合計で5〜200g、#2含む水溶液でありこ
れを常温〜90℃に加熱した中に希土類磁石を浸漬すれ
ば良い。またこのアルカリ脱脂と同時に陰極電解又は陽
極電解あるいはPR電解を同時に行なってもよい。
1ii) Alkaline Degreasing Alkaline degreasing, like the above-mentioned solvent degreasing, is performed for the purpose of removing oil and fat stains from the surface of rare earth magnets. Generally, solvent degreasing is preliminary degreasing, and alkaline degreasing is corresponds to the main degreasing cleaning. The components of the alkaline degreasing solution are sodium hydroxide, sodium carbonate, sodium orthosilicate, sodium metasilicate, trisodium phosphate, sodium cyanide, chelating agents, etc. The rare earth magnet may be immersed in the mixture heated to room temperature to 90 DEG C. Also, cathodic electrolysis, anodic electrolysis, or PR electrolysis may be performed at the same time as this alkaline degreasing.

iV)酸洗い 酸洗いは一般にi)〜1ii)工程までで落し切れなか
った酸化被膜、あるいはアルカリ脱脂液によるアルカリ
皮膜または電解洗浄で生じた酸化被膜等の除去を目的と
して行なわれる。酸洗い液は、硫酸、フッ化水素酸、硝
酸、塩酸、過マンガン酸しゅう酸、酢酸、蟻酸、ヒドロ
キシ酢酸、燐酸のうち少なくとも1種を合計で1〜40
重量%、好ましくは18〜40重量%含む水溶液である
。これを10〜60℃の温度として希土類磁石を浸漬し
、酸洗いが行なわれる。これにより希土類磁石表面の酸
化物、水酸化物、硫化物、金属塩、その他の不純物が除
去される。
iV) Pickling Pickling is generally carried out for the purpose of removing the oxide film that could not be removed in steps i) to 1ii), or the alkaline film using an alkaline degreasing solution or the oxide film generated during electrolytic cleaning. The pickling solution contains at least one of sulfuric acid, hydrofluoric acid, nitric acid, hydrochloric acid, permanganate oxalic acid, acetic acid, formic acid, hydroxyacetic acid, and phosphoric acid in a total of 1 to 40%.
It is an aqueous solution containing 18 to 40% by weight, preferably 18 to 40% by weight. The rare earth magnet is immersed at a temperature of 10 to 60° C. and pickled. This removes oxides, hydroxides, sulfides, metal salts, and other impurities on the surface of the rare earth magnet.

以上4種類の前処理工程i )、ii)、1ii)、i
v)は希土類磁石の表面の汚れの質や程度に応じて少な
(とも1種類を選択するのであるが2種類以上を組み合
わせて行なうのが望ましく、それぞれの処理時間も適宜
に変え得る。また各処理を行なった後は必ず充分に水洗
する必要がある。
The above four types of pretreatment steps i), ii), 1ii), i
v) depends on the quality and degree of contamination on the surface of the rare earth magnet. After treatment, it is necessary to thoroughly rinse with water.

(2)活性化処理工程 活性化処理工程は、希土類磁石表面の表面エネルギー状
態を予め昂揚しておいて、この後に施されるりん酸塩処
理、クロム酸処理および合成樹脂塗膜と磁石表面との間
の密着力を向上させるために行なわれる。この処理によ
って希土類磁石表面と合成樹脂塗膜は強固に密着するよ
うになり、希土類磁石表面への腐食物質の侵入が阻まれ
て耐食性が改善される。活性化に使用される薬液(活性
化処理液)は、上記酸洗い液とほぼ同様の成分であるが
、酸洗い液と比べて低濃度で良い。即ち塩酸、硫酸、フ
ッ化水素酸、硝酸、過マンガン酸、しゅう酸、酢酸、ヒ
ドロキシ酢酸および燐酸の内少なくとも1種以上を合計
で1〜20容量%、好ましくは1−15容量%含む水溶
液である。活性化の効果をさらに挙げたい場合には、少
量の界面活性剤を添加すると良い。界面活性剤としては
、ラウリル酸ソーダ、ミリスチン酸ソーダ、パルミチン
酸ソーダ、ステアリン酸ソーダなどの石鹸類、又は分岐
鎖アルキルベンゼン硫酸化塩、直鎖アルキルヘンゼン硫
酸化塩、アルカンスルフォン酸塩、a−オレフィン硫酸
化塩などの合成陰イオン界面活性剤あるいはアルキルジ
メチルベンジルアンモニウムクロライドなどのカチオン
界面活性剤、さらにはノニルフェノールポリオキシエチ
レンエーテルなどのノニオン界面活性剤の内少なくとも
1種以上を合計で3重量%上添加することが望ましい。
(2) Activation treatment process In the activation treatment process, the surface energy state of the rare earth magnet surface is increased in advance, and the subsequent phosphate treatment, chromic acid treatment, and synthetic resin coating film and magnet surface are This is done to improve the adhesion between the two. This treatment allows the surface of the rare earth magnet to adhere firmly to the synthetic resin coating, thereby preventing corrosive substances from entering the surface of the rare earth magnet, thereby improving corrosion resistance. The chemical solution (activation treatment solution) used for activation has almost the same components as the above-mentioned pickling solution, but may have a lower concentration than the pickling solution. That is, an aqueous solution containing a total of 1 to 20% by volume, preferably 1 to 15% by volume of at least one of hydrochloric acid, sulfuric acid, hydrofluoric acid, nitric acid, permanganic acid, oxalic acid, acetic acid, hydroxyacetic acid, and phosphoric acid. be. If you want to further enhance the activation effect, it is recommended to add a small amount of surfactant. Examples of surfactants include soaps such as sodium laurate, sodium myristate, sodium palmitate, and sodium stearate, or branched chain alkylbenzene sulfates, linear alkylbenzene sulfates, alkanesulfonates, a- A total of 3% by weight of at least one of synthetic anionic surfactants such as olefin sulfate salts, cationic surfactants such as alkyldimethylbenzylammonium chloride, and nonionic surfactants such as nonylphenol polyoxyethylene ether. It is desirable to add it above.

また活性化処理液の寿命を長くするため、金属イオン封
鎖剤を添加することもある。即ちビロリン酸ソーダ、ト
リポリ燐酸ソーダ、テトラポリ燐酸ソーダ、ヘキサメタ
燐酸ソーダなどの無機金属イオン封鎖剤あるいはクエン
酸、グルコン酸、酒石酸、ジエチレントリアミノペンタ
酢酸、ヒドロキシエチレンジアミン4酢酸などの有機金
属イオン封鎖剤のうち少なくとも1種以上を合計で5重
量%以下添加すれば良い。 以上の酸、界面活性剤、金
属イオン封鎖剤を適量に含む水溶液を10〜80’Cの
温度としてこれに希土類磁石を浸漬し活性化が行なわれ
る。
Furthermore, in order to extend the life of the activation treatment solution, a metal ion sequestering agent may be added. Namely, among inorganic metal ion sequestrants such as sodium birophosphate, sodium tripolyphosphate, sodium tetrapolyphosphate, and sodium hexametaphosphate, and organic metal ion sequestrants such as citric acid, gluconic acid, tartaric acid, diethylenetriaminopentaacetic acid, and hydroxyethylenediaminetetraacetic acid. At least one or more types may be added in a total amount of 5% by weight or less. Activation is carried out by immersing a rare earth magnet in an aqueous solution containing appropriate amounts of the above acids, surfactants, and sequestering agents at a temperature of 10 to 80'C.

(3)スマット除去工程 スマット除去は活性化処理工程後の水洗いしたあと引き
続いて行なうものであり、このスマット除去後にりん酸
塩処理、クロム酸処理および合成樹脂塗装を行なう事に
より合成樹脂塗膜と磁石表面との密着力を一層向上させ
る効果が得られる。
(3) Smut removal process Smut removal is performed after rinsing with water after the activation treatment process. After this smut removal, phosphate treatment, chromic acid treatment, and synthetic resin coating are performed to remove the synthetic resin coating. The effect of further improving the adhesion with the magnet surface can be obtained.

このスマット除去は磁石表面に物理的な吸着あるいは磁
気的に吸引されて残存する微量の不純物を磁石表面から
脱離させる工程であり、その具体的な方法としてはブラ
シ掛けによる除去、水やエアースプレーによる除去、超
音波による除去等が挙げられる。
This smut removal is a process in which trace amounts of impurities that remain on the magnet surface are removed by physical adsorption or magnetic attraction.Specific methods include removal by brushing, water or air spray. Removal by ultrasonic waves, etc. can be mentioned.

(4)りん酸塩処理工程 鉄鋼材料に合成樹脂塗装する場合、下地処理として各種
化成膜を素材表面に生成させる事が広く一般的に行なわ
れている。鉄を特徴とする特許土類磁石においても合成
樹脂塗膜下地用化成処理の1種としてりん酸塩処理が適
用できる。
(4) Phosphate treatment step When coating steel materials with synthetic resins, it is widely and generally practiced to form various chemical coatings on the surface of the material as a base treatment. Phosphate treatment can also be applied to patented earth magnets featuring iron as a type of chemical conversion treatment for the base of synthetic resin coatings.

この磁石体表面に生成したりん酸塩被膜自体が防錆剤と
して働くと同時に、その投錨効果により合成樹脂塗膜と
の密着性を更に向上させる働きを持っている。
The phosphate film itself formed on the surface of the magnet acts as a rust preventive agent, and at the same time, its anchoring effect further improves the adhesion to the synthetic resin coating.

尚、りん酸塩は、生成される被膜構成側に亜鉛系、亜鉛
−カルシウム系、マンガン系、鉄系に分類されるが、い
ずれも該磁石体に対し有効である。
Note that phosphates are classified into zinc-based, zinc-calcium-based, manganese-based, and iron-based based on the film structure formed, and all of them are effective for the magnet.

りん酸塩処理の内、りん酸亜鉛は結晶性であり、その微
細な結晶が磁石全面に均一に、緻密に付着している方が
耐食性、密着性が高(、その様な膜が得られるようりん
酸亜鉛処理を行なう前の工程として表面調整工程を追加
しても良い。表面調整の原理としては、一般的にりん酸
チタンが難溶性コロイドとして金属表面に数多くのりん
酸塩が生成するための結晶核を作り、化学的に吸着して
いるものと考えられている。具体的には、りん酸チタン
を含有する溶液に室温〜45℃、0.5〜1分間程度漫
積すれば良い。
Among the phosphate treatments, zinc phosphate is crystalline, and if the fine crystals adhere uniformly and densely to the entire surface of the magnet, corrosion resistance and adhesion are higher (such a film can be obtained). A surface conditioning process may be added as a process before the zinc phosphate treatment.The principle of surface conditioning is that titanium phosphate generally forms a large number of phosphates on the metal surface as a sparingly soluble colloid. It is thought that the chemical adsorption occurs by creating a crystal nucleus for titanium phosphate.Specifically, if it is placed in a solution containing titanium phosphate at room temperature to 45℃ for about 0.5 to 1 minute, good.

(5)クロム酸処理工程 無水クロム酸(CrO2)を含む熱水溶液中に浸漬する
いわゆるクロメート処理をりん酸塩処理の後で行なうこ
とによりりん酸塩処理単独よりもさらに耐食性が向上す
る。
(5) Chromic acid treatment step By performing so-called chromate treatment, which involves immersion in a hot aqueous solution containing anhydrous chromic acid (CrO2), after phosphate treatment, the corrosion resistance is further improved than by phosphate treatment alone.

このクロム駿処理は、無水クロム酸1〜100g/I2
を含む温度20〜80℃の熱水溶液に5秒〜5分間浸積
するのが一般的である。
This chromic acid treatment consists of 1 to 100 g of chromic anhydride/I2
Generally, it is immersed in a hot aqueous solution containing 20 to 80°C for 5 seconds to 5 minutes.

また処理後の水切り乾燥条件も耐食性に対して支配要因
となっており、水洗水にクロム酸が検出されなくなるま
で徹底的に水洗し、充分乾燥する必要がある。
In addition, the draining and drying conditions after treatment are also a governing factor for corrosion resistance, and it is necessary to thoroughly wash with water and dry thoroughly until chromic acid is no longer detected in the washing water.

以上(1)〜(5)の5工程を順次実施することによっ
て、次に述べる合成樹脂塗装の下地処理が充分に為され
、焼結磁石体表面と合成樹脂塗膜とが強く密着し、高い
耐食性が得られる。
By carrying out the above five steps (1) to (5) in sequence, the base treatment for the synthetic resin coating described below is sufficiently performed, and the surface of the sintered magnet body and the synthetic resin coating are strongly adhered to each other, resulting in high Provides corrosion resistance.

(6)合成樹脂塗装工程 以上の表面処理の最終工程は、合成樹脂塗装工程である
。クロム酸処理後充分水洗し、乾燥後本工程に入る。合
成樹脂としては、塗膜として硬度が高(、接着性、耐熱
性、耐候性等に優れたものを選択する必要があり、エポ
キシ系合成樹脂が好ましい。このエポキシ系合成樹脂は
主として有機溶剤溶液としてスプレー塗装または電着塗
装するか、微粉末として粉体塗装により仕上げる。塗膜
厚さは合成樹脂の性能にもよるが、5〜100μm、好
ましくは10〜50μmであり、ピンホール、傷、凹凸
などがないよう適切な条件下に塗装されなければならな
い。
(6) Synthetic resin painting step The final step of the surface treatment is a synthetic resin painting step. After treatment with chromic acid, thoroughly wash with water and dry before entering the main process. As for the synthetic resin, it is necessary to select one that has high hardness as a coating film (and has excellent adhesion, heat resistance, weather resistance, etc.), and epoxy synthetic resin is preferable.This epoxy synthetic resin is mainly used in an organic solvent solution. It is finished by spray painting or electrodeposition, or by powder coating as a fine powder.The thickness of the coating film depends on the performance of the synthetic resin, but is 5 to 100 μm, preferably 10 to 50 μm, and is free from pinholes, scratches, etc. It must be painted under appropriate conditions to avoid any unevenness.

以上(1)〜(6)工程の一連の下地処理、表面処理を
施すことにより耐食性、耐久性に優れた希土類−鉄−ボ
ロン系焼結永久磁石が得られる。
A rare earth-iron-boron-based sintered permanent magnet with excellent corrosion resistance and durability can be obtained by performing a series of base treatment and surface treatment in steps (1) to (6) above.

以下、本発明の実施態様を実施例と比較例を挙げて具体
的に説明するが、本発明はこれらに限定されるものでは
ない。
Hereinafter, embodiments of the present invention will be specifically described with reference to Examples and Comparative Examples, but the present invention is not limited thereto.

(実施例1) Ar雰囲気の高周波溶解により、Ndを32.0重量%
、 Tbを 2.0重量%、Bを 1.1重、量%、F
eを58.4重量%、Goを5.0重量%、A1を1.
0重量%、及びGaを0.5重量%含むインゴットを作
製した。このインゴットをショークラッシャーで粗粉砕
し、さらにN2ガスによるジェットミルで微粉砕を行な
って、平均粒径が3.5μmの微粉末を得た。次にこの
微粉末を10,0000eの磁界が印加された金型内に
充填し、1.Ot/crrfの圧力で成形した。次いで
真空中1,090℃で2時間焼結し、さらに550℃で
1時間時効処理を施して永久磁石とした。得られた永久
磁石から30+nn+X 30mmX 3mmtの方形
試験片を切り出した。磁石容易軸は厚さ方向に一致する
ようにした。
(Example 1) 32.0% by weight of Nd was dissolved by high frequency melting in an Ar atmosphere.
, Tb 2.0% by weight, B 1.1% by weight, F
58.4% by weight of e, 5.0% by weight of Go, 1.
Ingots containing 0% by weight and 0.5% by weight of Ga were produced. This ingot was coarsely crushed with a show crusher and further finely crushed with a jet mill using N2 gas to obtain a fine powder with an average particle size of 3.5 μm. Next, this fine powder was filled into a mold to which a magnetic field of 10,0000e was applied, and 1. Molding was carried out at a pressure of Ot/crrf. Next, it was sintered in vacuum at 1,090°C for 2 hours, and then aged at 550°C for 1 hour to obtain a permanent magnet. A rectangular test piece measuring 30+nn+×30mm×3mmt was cut out from the obtained permanent magnet. The easy axis of the magnet was made to coincide with the thickness direction.

この希土類磁石試験片に以下の表面処理な施す。This rare earth magnet test piece was subjected to the following surface treatment.

(1)前処理工程 鋼薄しニジヨツトブラスト・・・1分間。(1) Pretreatment process Steel-thin rainbow blast...1 minute.

(2)活性化処理工程 以下に記した活性化処理液に1分間浸漬する。(2) Activation treatment process Immerse for 1 minute in the activation treatment solution described below.

U裁 酢酸・・・ 塩酸・ 2%(v/v) 2%(v/v) 硫酸・・・      2%(V/V)ラウリル酸ソー
ダ・・・1  geI!。
Acetic acid... Hydrochloric acid 2% (v/v) 2% (v/v) Sulfuric acid... 2% (V/V) Sodium laurate... 1 geI! .

(3)スマット除去工程 水中超音波・・・1分間。(3) Smut removal process Underwater ultrasound...1 minute.

(4)りん酸亜鉛処理工程 本発明に用いるりん酸亜鉛浴組成は以下の通りである(
いずれも日本ペイント■製部品名)。
(4) Zinc phosphate treatment step The composition of the zinc phosphate bath used in the present invention is as follows (
All parts are made by Nippon Paint (part names).

■プラノジン16N−18T :りん酸亜鉛処理剤(主
成分;第1りん酸亜鉛と重金属(Mn))4%V/V、 ■ブライマー40:中和剤(苛性アルカリ)・・1.2
%V/V の濃度に調整し、温度50〜60℃、浸漬時間5〜10
分で化成処理を行なった。
■Pranozin 16N-18T: Zinc phosphate treatment agent (main ingredients: monovalent zinc phosphate and heavy metals (Mn)) 4% V/V, ■Brymer 40: Neutralizing agent (caustic alkali)...1.2
Adjust the concentration to %V/V, temperature 50-60℃, immersion time 5-10
Chemical conversion treatment was performed in minutes.

(5)クロム酸処理 クロム酸浴の浴組成、処理条件は以下の通りである。(5) Chromic acid treatment The bath composition and treatment conditions of the chromic acid bath are as follows.

無水クロム酸濃度=3〜5g/I2、温度50±5℃、
浸漬時間1〜1.5分間、水洗は25℃の純水を3分間
掛は流して充分洗浄し、60℃×10分間掛けて乾燥し
た。
Chromic anhydride concentration = 3 to 5 g/I2, temperature 50 ± 5°C,
The immersion time was 1 to 1.5 minutes, and the water washing was thoroughly washed by running pure water at 25°C for 3 minutes, and then dried at 60°C for 10 minutes.

(6)合成樹脂塗装 カチオン電着塗料ニスビアー9VS (エポキシ系合成
樹脂、神東塗料■製商品名)を使用し、試験片を陰極と
し、5US316材板を陽極として温度28℃、電圧1
70v、3分間の条件で電着塗装を施した。次いで水洗
し、風乾した後、180℃×30分間保持して樹脂層を
密着させた。得られた塗膜の厚みは20μmであった。
(6) Synthetic resin coating Using cationic electrodeposition paint Nisbier 9VS (epoxy-based synthetic resin, trade name manufactured by Shinto Paint ■), using the test piece as the cathode and the 5US316 material plate as the anode, at a temperature of 28°C and a voltage of 1
Electrodeposition coating was performed under the conditions of 70V and 3 minutes. After washing with water and air drying, the resin layer was held at 180° C. for 30 minutes to adhere the resin layer. The thickness of the resulting coating film was 20 μm.

以上の表面処理終了後、下記の条件で耐食性試験を実施
し、その結果を第1表に示した。
After the above surface treatment was completed, a corrosion resistance test was conducted under the following conditions, and the results are shown in Table 1.

[耐食性試験] 80℃×90%RHの耐湿試験に掛け、発錆、ふくれ等
外観上異常が発生するまでの耐久時間を求めた。
[Corrosion Resistance Test] A moisture resistance test was conducted at 80° C. and 90% RH to determine the durability time until appearance abnormalities such as rusting and blistering occurred.

(比較例1.2) 比較例1.2として夫々下記および第1表に併記した下
地処理条件とした以外は実施例1と同様の条件で表面処
理を行ない、耐食性試験の結果を第1表に記載した。
(Comparative Example 1.2) As Comparative Example 1.2, surface treatment was carried out under the same conditions as in Example 1, except that the surface treatment conditions were set as shown below and in Table 1, and the results of the corrosion resistance test are shown in Table 1. Described in.

比較例1ニクロム酸処理工程・・・なし比較例2:りん
酸亜鉛処理工程・・なしニクロム酸処理工程・・・なし これらの結果から、本発明のりん酸塩処理+クロム酸処
理併用の有効性が高(、耐食性、耐久性が格段に向上し
ていることが判かる。
Comparative Example 1 Dichromic acid treatment step...None Comparative Example 2: Zinc phosphate treatment step...None Dichromic acid treatment step...None These results demonstrate the effectiveness of the combination of phosphate treatment and chromic acid treatment of the present invention. It can be seen that the corrosion resistance and durability are significantly improved.

(発明の効果) 本発明は希土類−鉄一ボロン系焼結永久磁石体の表面に
耐食性合成樹脂塗装を行なう際に、その下地に化成処理
としてりん酸塩処理とクロム酸処理を併用することによ
り従来にない優れた耐食性が得られ、経時変化による磁
気特性の劣化も極めて小さく信頼性の高い磁石製造方法
として極めて有効である。
(Effects of the Invention) The present invention is characterized in that when coating the surface of a rare earth-iron-boron sintered permanent magnet body with a corrosion-resistant synthetic resin, a combination of phosphate treatment and chromic acid treatment is applied to the base as a chemical conversion treatment. This method provides excellent corrosion resistance that has never been seen before, and the deterioration of magnetic properties due to changes over time is extremely small, making it extremely effective as a highly reliable method for producing magnets.

特許出願人  信越化学工業株式会社 代理人 弁理士  山 本 亮 −リ ー巴1rC”−Patent applicant: Shin-Etsu Chemical Co., Ltd. Agent Patent Attorney Ryo Yamamoto -Tomoe 1rC”-

Claims (1)

【特許請求の範囲】[Claims] 1.希土類−鉄−ボロン系焼結永久磁石の製造方法にお
いて、該焼結磁石体の表面に前処理工程、活性化処理工
程、スマット除去工程および化成処理工程としてりん酸
塩処理工程とクロム酸処理工程との併用を順次行ない、
最終的に合成樹脂塗装工程を実施することを特徴とする
耐食性希土類永久磁石の製造方法。
1. In a method for producing a rare earth-iron-boron sintered permanent magnet, the surface of the sintered magnet body is subjected to a phosphate treatment step and a chromic acid treatment step as a pretreatment step, an activation treatment step, a smut removal step, and a chemical conversion treatment step. sequentially used in combination with
A method for producing a corrosion-resistant rare earth permanent magnet, the method comprising finally carrying out a synthetic resin coating process.
JP15037890A 1990-06-08 1990-06-08 Manufacture of anticorrosive permanent magnet comprizing rare earth element Pending JPH0442517A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15037890A JPH0442517A (en) 1990-06-08 1990-06-08 Manufacture of anticorrosive permanent magnet comprizing rare earth element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15037890A JPH0442517A (en) 1990-06-08 1990-06-08 Manufacture of anticorrosive permanent magnet comprizing rare earth element

Publications (1)

Publication Number Publication Date
JPH0442517A true JPH0442517A (en) 1992-02-13

Family

ID=15495689

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15037890A Pending JPH0442517A (en) 1990-06-08 1990-06-08 Manufacture of anticorrosive permanent magnet comprizing rare earth element

Country Status (1)

Country Link
JP (1) JPH0442517A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005026663A (en) * 2003-06-11 2005-01-27 Neomax Co Ltd Oxidation-resistant rare-earth magnet powder and manufacturing method therefor
JP2010263223A (en) * 2008-07-04 2010-11-18 Hitachi Metals Ltd Corrosion-resistant magnet and method of manufacturing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005026663A (en) * 2003-06-11 2005-01-27 Neomax Co Ltd Oxidation-resistant rare-earth magnet powder and manufacturing method therefor
JP2010263223A (en) * 2008-07-04 2010-11-18 Hitachi Metals Ltd Corrosion-resistant magnet and method of manufacturing the same
US8641833B2 (en) 2008-07-04 2014-02-04 Hitachi Metals, Ltd. Corrosion-resistant magnet and method for producing the same
US9275795B2 (en) 2008-07-04 2016-03-01 Hitachi Metals, Ltd. Corrosion-resistant magnet and method for producing the same

Similar Documents

Publication Publication Date Title
JP2520450B2 (en) Method for manufacturing corrosion resistant rare earth magnet
US20190156974A1 (en) Nd-fe-b magnet including a composite coating disposed thereon and a method of depositing a composite coating on the nd-fe-b magnet
JPH0243397A (en) Method for making an anodizing layer closeness
US5067990A (en) Method of applying phosphate conversion coatings to Fe-R-B substrates, and Fe-R-B articles having a phosphate conversion coating thereon
CN105040004B (en) A kind of Sintered NdFeB magnet surface coating technique
JPH0442517A (en) Manufacture of anticorrosive permanent magnet comprizing rare earth element
CN111101173A (en) Multilayer nickel plating and dehydrogenation process for neodymium iron boron permanent magnet material
KR101181421B1 (en) Surface treatment method for magnesium alloy
JP2003277960A (en) Surface treatment method of magnesium alloy
JPH03283607A (en) Manufacture of anticorrosive rare earth magnet
JPH0418718A (en) Manufacture of corrosion-resistant rare-earth permanent magnet
CA1143632A (en) Method and means for treatment of surfaces
JPH0442518A (en) Manufacture of corrosion resistant permanent magnet comprizing rare earth element
JPH03173104A (en) Manufacture of corrosion resistant rare earth magnet
JP3580521B2 (en) Manufacturing method of high corrosion resistant permanent magnet
JP4506306B2 (en) Corrosion-resistant rare earth permanent magnet and method for producing the same
JP3796567B2 (en) R-Fe-B permanent magnet and manufacturing method thereof
JP3248982B2 (en) Permanent magnet and manufacturing method thereof
JP4077275B2 (en) Metal body surface treatment method and metal article production method
JP2840998B2 (en) Surface treatment method for R-Fe-B permanent magnet
JPS63110706A (en) Permanent magnet and manufacture thereof
JPH03173105A (en) Rare earth permanent magnet with corrosion resistant film and manufacture thereof
JPH01223712A (en) Manufacture of corrosion-resistant permanent magnet
JPS63198305A (en) High corrosion resistance rare earth element permanent magnet
JPS63266805A (en) Permanent magnet and its manufacture