JP4506306B2 - Corrosion-resistant rare earth permanent magnet and method for producing the same - Google Patents

Corrosion-resistant rare earth permanent magnet and method for producing the same Download PDF

Info

Publication number
JP4506306B2
JP4506306B2 JP2004192244A JP2004192244A JP4506306B2 JP 4506306 B2 JP4506306 B2 JP 4506306B2 JP 2004192244 A JP2004192244 A JP 2004192244A JP 2004192244 A JP2004192244 A JP 2004192244A JP 4506306 B2 JP4506306 B2 JP 4506306B2
Authority
JP
Japan
Prior art keywords
corrosion
film
coating
rare earth
chemical conversion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004192244A
Other languages
Japanese (ja)
Other versions
JP2006013399A (en
Inventor
篤 菊川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2004192244A priority Critical patent/JP4506306B2/en
Publication of JP2006013399A publication Critical patent/JP2006013399A/en
Application granted granted Critical
Publication of JP4506306B2 publication Critical patent/JP4506306B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、耐食性希土類系永久磁石およびその製造方法に関する。   The present invention relates to a corrosion-resistant rare earth permanent magnet and a method for producing the same.

Nd−Fe−B系永久磁石に代表されるR−Fe−B系永久磁石などの希土類系永久磁石は、高い磁気特性を有していることから、今日、様々な分野で使用されている。しかしながら、希土類系永久磁石は、大気中で酸化腐食されやすい希土類元素:Rを含む。それ故、表面処理を行わずに使用した場合には、わずかな酸やアルカリや水分などの影響によって表面から腐食が進行して錆が発生し、それに伴って、磁気特性の劣化やばらつきを招くことになる。さらに、磁気回路などの装置に組み込んだ磁石に錆が発生した場合、錆が飛散して周辺部品を汚染する恐れがある。そこで、上記の点に鑑み、希土類系永久磁石に耐食性を付与することを目的として、その表面に耐食性被膜としてのAl被膜を真空蒸着法やイオンプレーティング法やスパッタリング法などの気相成長法により形成することが行われている。Al被膜は、耐食性や量産性に優れていることに加え、部品組み込み時に必要とされる接着剤との接着信頼性に優れている(接着剤が本質的に有する破壊強度に達するまでに被膜と接着剤との間で剥離が生じにくい)ので、強い接着強度が要求される希土類系永久磁石に対して広く適用されている。
ところで、近頃、希土類系永久磁石の使用分野は拡大の一途を辿っており、それに伴い、磁石に求められる耐食性は、ますます厳しく多様化したものになってきている。従って、優れた耐食性を有するAl被膜といえども、耐高温高湿性能、耐塩水噴霧性能、耐酸性雨性能などの向上が望まれている。しかしながら、気相成長法で形成したAl被膜は、Alという金属の特性から、その表面が酸化して不動態被膜で覆われているが、Al被膜の表面の不動態被膜が損傷を受けると、そこから磁石の表面に向かって腐食が進行し(孔食)、やがて腐食が磁石の表面に到達してしまうという性質を有する。また、気相成長法で形成したAl被膜は、時として、ドロップレット(溶融粒子)の発生と欠落により、数十μmの広がりで被膜の存在しない部分や薄い部分などの欠陥部分が生じることがあるが、このようなことが起こったAl被膜では、孔食の発生はさらに促進される。今日の技術によって形成されるAl被膜の耐食性は非常に優れているものの、このような腐食は常に起こり得ることから、その解決策を確立しておかなければ、Al被膜の耐食性の向上を図ることはできない。
以上のような問題に対する解決策として、Al被膜の耐食性を補強・補完する方法になり得るものとしては、例えば、特許文献1に記載されている、化成処理反応によりAl被膜の表面改質を行うことができるアルミ−クロメート処理方法がある。しかしながら、この方法は、環境や人体にとって望ましくない六価クロムやフッ素イオンを含む処理液を用い、Al被膜の表面をフッ素イオンでエッチングしながらクロム酸塩被膜を形成するものであるが、形成されたクロム酸塩被膜には処理液中に含まれていた六価クロムが取り込まれていることから、環境や人体に対する悪影響が懸念されるという問題があるとともに、廃液処理が複雑であるという問題がある。よって、この方法は、必ずしも今日において望ましい方法であるとは言えない。また、クロム酸塩被膜は、Al被膜の表面での化成処理反応による反応性被膜であるため、厚膜化を図ることが困難であり、ドロップレットの発生と欠落による欠陥部分に対しては、その部分を封孔して耐食性を補強・補完するといったことが十分にできないという問題がある。従って、アルミ−クロメート処理方法にとってかわることができる、優れた解決策が望まれている。
特公平6−66173号公報
Rare earth permanent magnets such as R-Fe-B permanent magnets typified by Nd-Fe-B permanent magnets have high magnetic properties and are used in various fields today. However, rare earth permanent magnets contain a rare earth element: R, which is susceptible to oxidative corrosion in the atmosphere. Therefore, when used without surface treatment, corrosion progresses from the surface due to the influence of slight acid, alkali, moisture, etc., and rust is generated, resulting in deterioration and dispersion of magnetic properties. It will be. Furthermore, when rust is generated in a magnet incorporated in a device such as a magnetic circuit, the rust may be scattered and contaminate peripheral components. Therefore, in view of the above points, for the purpose of imparting corrosion resistance to the rare earth-based permanent magnet, an Al film as a corrosion-resistant film is formed on the surface by a vapor deposition method such as a vacuum deposition method, an ion plating method, or a sputtering method. To be formed. In addition to being excellent in corrosion resistance and mass productivity, the Al coating has excellent adhesion reliability with the adhesive required at the time of component assembly. Therefore, it is widely applied to rare earth permanent magnets that require strong adhesive strength.
By the way, recently, the field of use of rare earth permanent magnets has been expanding, and along with this, the corrosion resistance required of magnets has become increasingly severe and diversified. Therefore, even an Al coating having excellent corrosion resistance is desired to be improved in high temperature and high humidity resistance, salt spray resistance, acid rain resistance, and the like. However, the Al film formed by the vapor deposition method has its surface oxidized and covered with a passive film due to the characteristics of a metal called Al, but when the passive film on the surface of the Al film is damaged, From there, the corrosion proceeds toward the surface of the magnet (pitting corrosion), and eventually the corrosion reaches the surface of the magnet. In addition, an Al film formed by vapor phase epitaxy sometimes has a defect portion such as a part where the film does not exist or a thin part with a spread of several tens of μm due to generation and lack of droplets (molten particles). However, the occurrence of pitting corrosion is further promoted in the Al film in which this occurs. Although the corrosion resistance of the Al coating formed by today's technology is very good, such corrosion can always occur. Therefore, unless the solution is established, the corrosion resistance of the Al coating should be improved. I can't.
As a solution to the above problems, as a method for reinforcing and supplementing the corrosion resistance of the Al coating, for example, the surface modification of the Al coating is performed by a chemical conversion treatment reaction described in Patent Document 1. There are aluminum-chromate treatment methods that can be used. However, this method uses a treatment liquid containing hexavalent chromium and fluorine ions, which is undesirable for the environment and the human body, and forms a chromate film while etching the surface of the Al film with fluorine ions. Since the chromate film incorporates hexavalent chromium contained in the treatment solution, there are concerns about adverse effects on the environment and the human body, as well as the problem of complicated waste liquid treatment. is there. Therefore, this method is not necessarily a desirable method today. In addition, since the chromate film is a reactive film by a chemical conversion treatment reaction on the surface of the Al film, it is difficult to increase the film thickness. There is a problem in that the portion cannot be sufficiently sealed to reinforce and supplement the corrosion resistance. Therefore, an excellent solution that can replace the aluminum-chromate treatment method is desired.
Japanese Examined Patent Publication No. 6-66173

そこで本発明は、優れた接着信頼性を確保したままAl被膜の孔食の発生を抑制してその耐食性の向上が図られた耐食性希土類系永久磁石およびその製造方法を提供することを目的とする。   Accordingly, an object of the present invention is to provide a corrosion-resistant rare earth permanent magnet in which the occurrence of pitting corrosion in an Al coating is suppressed while ensuring excellent adhesion reliability and the corrosion resistance is improved, and a method for producing the same. .

本発明者は、上記の点に鑑み種々の検討を行った結果、希土類系永久磁石の表面に形成したAl被膜の表面をZnおよび/またはSnによる置換処理をしてから、構成成分として三価クロムと炭素を含み、六価クロムフリーの化成処理被膜を形成することにより、環境や人体に対して悪影響を及ぼすことなく、優れた接着信頼性を確保したままAl被膜の孔食の発生を抑制してその耐食性の向上を図ることができることを見出した。   As a result of various studies in view of the above points, the present inventor has performed a substitution treatment of the surface of the Al coating formed on the surface of the rare earth-based permanent magnet with Zn and / or Sn, and then trivalent as a constituent component. By forming a chemical treatment film containing chromium and carbon and free of hexavalent chromium, it suppresses the occurrence of pitting corrosion of the Al film while ensuring excellent adhesion reliability without adversely affecting the environment and the human body. It was found that the corrosion resistance can be improved.

上記の知見に基づいてなされた本発明の耐食性希土類系永久磁石は、請求項1記載の通り、焼結磁石の表面に気相成長法によって膜厚が3μm〜25μmであるAl被膜を形成した後、その表面をZnおよび/またはSnによる置換処理をしてから、構成成分として三価クロムと炭素を含み、六価クロムフリーの化成処理被膜を形成してなることを特徴とする。
また、請求項2記載の耐食性希土類系永久磁石は、請求項1記載の耐食性希土類系永久磁石において、化成処理被膜がさらに構成成分としてCo,Mo,W,Ti,Zr,Mn,Feから選ばれる少なくとも1種の金属成分を含んでなることを特徴とする。
また、請求項3記載の耐食性希土類系永久磁石は、請求項1または2記載の耐食性希土類系永久磁石において、Al被膜と化成処理被膜の間に、Al被膜の表面のZnおよび/またはSnによる置換処理に基づく置換処理層を有してなることを特徴とする。
また、請求項4記載の耐食性希土類系永久磁石は、請求項3記載の耐食性希土類系永久磁石において、置換処理層が(1)Znおよび/またはSnと(2)Fe,Ni,Co,Cuから選ばれる少なくとも1種の金属成分を含んでなることを特徴とする。
また、請求項5記載の耐食性希土類系永久磁石は、請求項1乃至4のいずれかに記載の耐食性希土類系永久磁石において、化成処理被膜の膜厚が0.01μm〜1μmであることを特徴とする。
また、本発明の耐食性希土類系永久磁石の製造方法は、請求項6記載の通り、焼結磁石の表面に気相成長法によって膜厚が3μm〜25μmであるAl被膜を形成した後、その表面をZnおよび/またはSnによる置換処理をしてから、構成成分として三価クロムと炭素を含み、六価クロムフリーの化成処理被膜を形成することを特徴とする。
また、請求項7記載の製造方法は、請求項6記載の製造方法において、化成処理被膜がさらに構成成分としてCo,Mo,W,Ti,Zr,Mn,Feから選ばれる少なくとも1種の金属成分を含んでなることを特徴とする。
また、請求項8記載の製造方法は、請求項6または7記載の製造方法において、Al被膜の表面に、Znおよび/またはSnによる置換処理に基づく層厚が0.05μm〜5μmの置換処理層を形成してから、その表面に、化成処理被膜を形成することを特徴とする。
また、請求項9記載の製造方法は、請求項8記載の製造方法において、置換処理層が(1)Znおよび/またはSnと(2)Fe,Ni,Co,Cuから選ばれる少なくとも1種の金属成分を含んでなることを特徴とする。


The corrosion-resistant rare earth-based permanent magnet of the present invention based on the above knowledge is obtained by forming an Al film having a thickness of 3 μm to 25 μm on the surface of the sintered magnet by vapor phase growth as described in claim 1. The surface is subjected to a substitution treatment with Zn and / or Sn, and then a trivalent chromium and carbon are contained as constituent components to form a hexavalent chromium-free chemical conversion coating film.
The corrosion-resistant rare earth permanent magnet according to claim 2 is the corrosion-resistant rare earth permanent magnet according to claim 1, wherein the chemical conversion coating is further selected from Co, Mo, W, Ti, Zr, Mn, and Fe as constituent components. It comprises at least one metal component.
The corrosion-resistant rare earth permanent magnet according to claim 3 is the corrosion-resistant rare earth permanent magnet according to claim 1 or 2, wherein the surface of the Al coating is replaced with Zn and / or Sn between the Al coating and the chemical conversion coating. It has a substitution processing layer based on processing.
The corrosion-resistant rare earth-based permanent magnet according to claim 4 is the corrosion-resistant rare earth-based permanent magnet according to claim 3, wherein the substitution treatment layer is made of (1) Zn and / or Sn and (2) Fe, Ni, Co, Cu. It comprises at least one metal component selected.
Further, the corrosion-resistant rare earth-based permanent magnet according to claim 5 is the corrosion-resistant rare earth-based permanent magnet according to any one of claims 1 to 4, wherein the chemical conversion treatment film has a thickness of 0.01 μm to 1 μm. To do.
The method for producing a corrosion-resistant rare earth-based permanent magnet according to the present invention includes the step of forming an Al film having a thickness of 3 μm to 25 μm on the surface of the sintered magnet by vapor phase epitaxy as described in claim 6. After the substitution treatment with Zn and / or Sn, a hexavalent chromium-free chemical conversion coating film containing trivalent chromium and carbon as constituent components is formed.
The manufacturing method according to claim 7 is the manufacturing method according to claim 6, wherein the chemical conversion coating film further comprises at least one metal component selected from Co, Mo, W, Ti, Zr, Mn, and Fe as a constituent component. It is characterized by comprising.
The manufacturing method according to claim 8 is the replacement processing layer according to claim 6 or 7, wherein a layer thickness of 0.05 μm to 5 μm on the surface of the Al coating is based on a replacement treatment with Zn and / or Sn. Then, a chemical conversion treatment film is formed on the surface.
The manufacturing method according to claim 9 is the manufacturing method according to claim 8, wherein the substitution treatment layer is at least one selected from (1) Zn and / or Sn and (2) Fe, Ni, Co, Cu. It comprises a metal component.


本発明によれば、優れた接着信頼性を確保したままAl被膜の孔食の発生を抑制してその耐食性の向上が図られた耐食性希土類系永久磁石およびその製造方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, generation | occurrence | production of the pitting corrosion of Al film can be suppressed, and the corrosion resistance can be improved, and the manufacturing method can be provided, ensuring the outstanding adhesion reliability.

本発明の耐食性希土類系永久磁石の製造方法において、磁石の表面へのAl被膜の形成は、どのような方法で行ってもよいが、希土類系永久磁石とAl被膜の双方が酸化腐食されやすい性質を有することに鑑みれば、気相成長法により行うことが望ましい。気相成長法としては、真空蒸着法やイオンプレーティング法やスパッタリング法などが挙げられるが、形成される被膜の緻密性や膜厚均一性、被膜形成速度などに鑑みれば、真空蒸着法またはイオンプレーティング法を採用することが望ましい。Al被膜の形成条件は、採用する方法における一般的な条件に従ったものでよい。なお、Al被膜を形成する前に、磁石の表面に対し、洗浄、脱脂、スパッタリングなどの公知の清浄化処理を施してもよいことは言うまでもない。Al被膜の膜厚は3μm〜25μmが望ましく、5μm〜20μmがより望ましい。膜厚が3μmを下回ると、次に行うAl被膜の表面のZnおよび/またはSnによる置換処理の際、Al被膜が溶解してしまうことで、Al被膜の耐食性の向上を図ることができなくなる恐れがある一方、膜厚が25μmを上回ると、Al被膜を形成するのに長時間を費やすことになることで生産性に劣る恐れがある他、磁石の有効体積の確保が困難になる恐れがある。なお、Al被膜は、Alを主体とするCuやMgなどとの合金被膜であってもよい。また、混入不可避な金属を不純物として含んでいてもよい。   In the method for producing a corrosion-resistant rare earth permanent magnet according to the present invention, the Al film may be formed on the surface of the magnet by any method, but both the rare earth permanent magnet and the Al film are susceptible to oxidative corrosion. In view of having this, it is desirable to carry out by vapor phase growth. Examples of the vapor phase growth method include a vacuum deposition method, an ion plating method, a sputtering method, and the like. It is desirable to adopt a plating method. The formation conditions of the Al coating may be in accordance with general conditions in the method employed. Needless to say, a known cleaning process such as washing, degreasing, and sputtering may be performed on the surface of the magnet before forming the Al film. The film thickness of the Al coating is desirably 3 μm to 25 μm, and more desirably 5 μm to 20 μm. If the film thickness is less than 3 μm, the corrosion resistance of the Al coating may not be improved because the Al coating is dissolved during the subsequent substitution treatment with Zn and / or Sn on the surface of the Al coating. On the other hand, if the film thickness exceeds 25 μm, it may take a long time to form the Al film, which may result in inferior productivity and may make it difficult to secure the effective volume of the magnet. . The Al coating may be an alloy coating with Cu, Mg or the like mainly composed of Al. Moreover, the metal which cannot avoid mixing may be contained as an impurity.

Al被膜の表面のZnおよび/またはSnによる置換処理は、公知の亜鉛置換処理や錫置換処理や錫・亜鉛置換処理などであってよい。Znおよび/またはSnによる置換処理に用いる処理液としては、Znイオンおよび/またはSnイオンを含み、水酸化ナトリウムなどのアルカリでpHを11〜14に調整したものが挙げられる。処理液には、Al被膜の表面の被覆性を向上させるために、Feイオン、Niイオン、Coイオン、Cuイオンから選ばれる少なくとも1種の金属イオンを含ませてもよい。このような処理液の調製は、例えば、水酸化ナトリウム水溶液に、酸化亜鉛および/または酸化錫、さらに、塩化第二鉄、硫酸ニッケル、硫酸コバルト、硫酸銅から選ばれる少なくとも1種の金属塩を溶解することで行えばよい(このような処理液は市販もされている:例えば上村工業社製の商品名AZ301やAZ401など)。処理液中のこれらの金属イオンの濃度は、Al被膜の表面での置換反応を均一に起こすためには、総金属イオン濃度として1g/L〜150g/Lが望ましく、5g/L〜100g/Lがより望ましい。なお、処理液には、その安定化を図ることなどを目的として各種の添加剤を添加してもよい。   The substitution treatment with Zn and / or Sn on the surface of the Al coating may be a known zinc substitution treatment, tin substitution treatment, tin / zinc substitution treatment, or the like. Examples of the treatment liquid used for the substitution treatment with Zn and / or Sn include those containing Zn ions and / or Sn ions and having a pH adjusted to 11 to 14 with an alkali such as sodium hydroxide. The treatment liquid may contain at least one metal ion selected from Fe ions, Ni ions, Co ions, and Cu ions in order to improve the surface coverage of the Al coating. The preparation of such a treatment liquid includes, for example, an aqueous sodium hydroxide solution containing zinc oxide and / or tin oxide, and at least one metal salt selected from ferric chloride, nickel sulfate, cobalt sulfate and copper sulfate. It may be performed by dissolving (such a treatment liquid is also commercially available: for example, trade names AZ301 and AZ401 manufactured by Uemura Kogyo Co., Ltd.). The concentration of these metal ions in the treatment liquid is preferably 1 g / L to 150 g / L as the total metal ion concentration in order to cause a substitution reaction on the surface of the Al coating uniformly, and 5 g / L to 100 g / L. Is more desirable. Various additives may be added to the treatment liquid for the purpose of stabilizing the treatment liquid.

Al被膜の表面のZnおよび/またはSnによる置換処理は、例えば、上記の(1)Znイオンおよび/またはSnイオンと(2)Feイオン、Niイオン、Coイオン、Cuイオンから選ばれる少なくとも1種の金属イオンを含む処理液に、磁石の表面にAl被膜を形成した希土類系永久磁石を浸漬することで行えばよい。こうすることで、Al被膜の表面に形成されている不動態被膜を剥離し、新たに露出させた活性な表面に金属イオンを置換析出させ、(1)Znおよび/またはSnと(2)Fe,Ni,Co,Cuから選ばれる少なくとも1種の金属成分を含んでなる置換処理層を形成する。この際、処理液の温度は、室温〜50℃とすることが望ましい。処理液の温度が室温を下回ると、Al被膜の表面での置換反応を均一に起こすことが困難になる恐れがある一方、処理液の温度が50℃を上回ると、置換反応が過激に起こることで均一な置換処理層を形成することが困難になる恐れがある。また、処理時間は5秒〜300秒とすることが望ましい。処理時間が5秒を下回ると、置換処理層が十分に形成されない恐れがある一方、処理時間が300秒を上回ると、Al被膜の溶解が進行し、場合によっては磁石の表面が露出することで磁石の腐食が起こったり、均一な置換処理層を形成することが困難になったりする恐れがある。こうして形成される置換処理層は、形成された置換処理層の表面にさらに置換処理層を構成する成分が析出することができるので、クロム酸塩被膜と異なって厚層化を図ることができることから、Al被膜にドロップレットの発生と欠落による欠陥部分が存在しても、その部分に対する封孔効果に優れる。なお、Al被膜の表面のZnおよび/またはSnによる置換処理を行う前に、Al被膜の表面に対し、洗浄、脱脂、スパッタリングなどの公知の清浄化処理を施してもよいことは言うまでもない。また、Al被膜の表面をエタノールなどの有機溶剤を用いて脱脂した後、リン酸ナトリウムや炭酸ナトリウムと界面活性剤を含むアルカリ溶液で脱脂し、さらに、リン酸ナトリウムと炭酸ナトリウムと水酸化ナトリウムを含むアルカリ溶液でエッチングしてから、硝酸水溶液や硫酸水溶液に浸漬してスマット除去を行ってもよい。また、いったん形成した置換処理層の表面を硝酸で軽くエッチングした後、再度、置換処理層を形成するようにすれば、Al被膜の表面により均一な置換処理層を形成することができる。   The substitution treatment of the surface of the Al coating with Zn and / or Sn is, for example, at least one selected from (1) Zn ions and / or Sn ions and (2) Fe ions, Ni ions, Co ions, and Cu ions. What is necessary is just to immerse the rare earth-based permanent magnet in which the Al film is formed on the surface of the magnet in the treatment liquid containing the metal ions. By doing this, the passive film formed on the surface of the Al film is peeled off, and metal ions are substituted and deposited on the newly exposed active surface. (1) Zn and / or Sn and (2) Fe A substitution treatment layer containing at least one metal component selected from Ni, Co and Cu is formed. At this time, the temperature of the treatment liquid is desirably room temperature to 50 ° C. If the temperature of the treatment liquid is lower than room temperature, it may be difficult to cause a substitution reaction on the surface of the Al coating uniformly. On the other hand, if the temperature of the treatment liquid is higher than 50 ° C., the substitution reaction may occur drastically. Therefore, it may be difficult to form a uniform replacement treatment layer. The processing time is preferably 5 seconds to 300 seconds. If the treatment time is less than 5 seconds, the substitution treatment layer may not be sufficiently formed. On the other hand, if the treatment time is more than 300 seconds, the dissolution of the Al coating proceeds, and in some cases, the surface of the magnet is exposed. Corrosion of the magnet may occur or it may be difficult to form a uniform replacement treatment layer. Since the component constituting the substitution treatment layer can be deposited on the surface of the substitution treatment layer thus formed, the substitution treatment layer thus formed can be thickened unlike the chromate film. Even if there is a defective part due to generation and loss of droplets in the Al coating, the sealing effect on the part is excellent. Needless to say, a known cleaning process such as cleaning, degreasing, or sputtering may be performed on the surface of the Al film before the replacement process with Zn and / or Sn on the surface of the Al film. In addition, after degreasing the surface of the Al coating with an organic solvent such as ethanol, degreasing with an alkaline solution containing sodium phosphate or sodium carbonate and a surfactant, and further adding sodium phosphate, sodium carbonate and sodium hydroxide. Etching with an alkaline solution that is contained may be followed by dipping in an aqueous nitric acid solution or an aqueous sulfuric acid solution to remove smut. Further, if the surface of the substitution treatment layer once formed is lightly etched with nitric acid and then the substitution treatment layer is formed again, a uniform substitution treatment layer can be formed on the surface of the Al coating.

こうして形成される置換処理層の層厚は、0.05μm〜5μmであることが望ましい。層厚が0.05μmを下回ると、次の工程で、希土類系永久磁石の表面に形成したAl被膜の表面に、密着性に優れた、構成成分として三価クロムと炭素を含み、六価クロムフリーの化成処理被膜を形成することが困難になる恐れや、Al被膜に微小なピンホールが存在する場合、置換処理層でピンホールを覆うことができないことで、Al被膜の耐食性の向上を図ることが困難になる恐れがある一方、層厚が5μmを上回ると、置換処理層の強度が低下し、置換処理層がその機能を十分に発揮することができなくなる恐れがある。なお、置換処理層の層厚は、処理液の温度やpHの他、処理時間(処理液への浸漬時間)や処理回数(処理液への浸漬回数)により調整することができる。   The thickness of the substitution treatment layer thus formed is desirably 0.05 μm to 5 μm. If the layer thickness is less than 0.05 μm, the surface of the Al coating formed on the surface of the rare earth-based permanent magnet in the next step contains trivalent chromium and carbon as constituent components with excellent adhesion, and hexavalent chromium. There is a risk that it is difficult to form a free chemical conversion coating, and if there are minute pinholes in the Al coating, the pinhole cannot be covered with the substitution processing layer, thereby improving the corrosion resistance of the Al coating. On the other hand, when the layer thickness exceeds 5 μm, the strength of the substitution treatment layer is lowered, and the substitution treatment layer may not be able to fully perform its function. The layer thickness of the substitution treatment layer can be adjusted by the treatment time (immersion time in the treatment liquid) and the number of treatments (number of immersion in the treatment liquid) in addition to the temperature and pH of the treatment liquid.

Al被膜の表面をZnおよび/またはSnによる置換処理をした後に行う、構成成分として三価クロムと炭素を含み、六価クロムフリーの化成処理被膜の形成は、例えば、(1)三価クロムの硝酸塩や硫酸塩などと(2)コハク酸、リンゴ酸、マロン酸、シュウ酸などのカルボン酸やこれらの塩(ナトリウム塩やカリウム塩など)を水に溶解して調製した処理液に、Al被膜の表面のZnおよび/またはSnによる置換処理に基づく置換処理層を形成した希土類系永久磁石を浸漬することで、置換処理層に含まれるZnやSnが溶出することによるpH変動に基づいて、処理液中においてカルボン酸と安定な錯体を形成している三価クロムイオンを遊離させ、置換処理層の表面に三価クロムの水酸化物を生成沈着させることで行えばよい。こうして形成される化成処理被膜は、被膜中で三価クロムとの塩などの形態で存在するカルボン酸に由来する炭素を構成成分として含む。また、こうして形成される化成処理被膜は、さらに構成成分としてCo,Mo,W,Ti,Zr,Mn,Feから選ばれる少なくとも1種の金属成分を含んでいてもよい。このような金属成分は、遊離のカルボン酸と水に難溶乃至不溶の塩を形成することにより、カルボン酸塩の形態で化成処理被膜に含まれる他、時には置換処理層に含まれるZnやSnとの置換反応によって析出する金属結晶として化成処理被膜に含まれることで、化成処理被膜の厚膜化に寄与する。また、このようなカルボン酸塩などの生成は、置換処理層の表面への三価クロムの水酸化物の生成沈着を促進することでも、化成処理被膜の厚膜化に寄与する。構成成分として三価クロムと炭素に加え、Co,Mo,W,Ti,Zr,Mn,Feから選ばれる少なくとも1種の金属成分を含み、六価クロムフリーの化成処理被膜の形成は、例えば、(1)三価クロムの硝酸塩や硫酸塩などと(2)コハク酸、リンゴ酸、マロン酸、シュウ酸などのカルボン酸やこれらの塩(ナトリウム塩やカリウム塩など)と(3)Co,Mo,W,Ti,Zr,Mn,Feの硝酸塩や硫酸塩を水に溶解して調製した処理液に、Al被膜の表面のZnおよび/またはSnによる置換処理に基づく置換処理層を形成した希土類系永久磁石を浸漬することで行えばよい。処理液のpHは1〜5が望ましく、3〜4.5であることがより望ましい。pHが1を下回ると、置換処理層の表面への三価クロムの水酸化物の生成沈着効率が低下する恐れがある一方、pHが5を上回ると、処理液中における三価クロムのカルボン酸錯体の安定性が低下することで、処理液自体の安定性が低下する恐れがある。処理液の温度は10℃〜80℃とすることが望ましく、25℃〜40℃とすることがより望ましい。温度が10℃を下回ると、置換処理層の表面への三価クロムの水酸化物の生成沈着効率が低下する恐れがある一方、温度が80℃を上回ると、化成処理反応が過激に起こることで均一な化成処理被膜を形成することが困難になる恐れがある他、処理液からの水分蒸発が顕著となり、処理液組成に変動をきたしやすく、安定操業が困難になる恐れがある。また、処理時間は5秒〜300秒とすることが望ましい。なお、処理液には、その安定化を図ることなどを目的として各種の添加剤を添加してもよい。   The formation of a hexavalent chromium-free chemical conversion coating containing trivalent chromium and carbon as constituent components after the surface of the Al coating is replaced with Zn and / or Sn is, for example, (1) Nitrate and sulfate, etc. and (2) succinic acid, malic acid, malonic acid, oxalic acid and other carboxylic acids and their salts (sodium salt, potassium salt, etc.) dissolved in water and treated with Al coating By immersing a rare earth-based permanent magnet formed with a substitution treatment layer based on the substitution treatment with Zn and / or Sn on the surface of the surface, treatment based on pH fluctuation caused by elution of Zn and Sn contained in the substitution treatment layer The trivalent chromium ions that form a stable complex with the carboxylic acid in the liquid may be liberated, and trivalent chromium hydroxide may be generated and deposited on the surface of the substitution treatment layer. The chemical conversion film formed in this way contains carbon derived from a carboxylic acid present in the form of a salt with trivalent chromium in the film as a constituent component. Moreover, the chemical conversion treatment film thus formed may further contain at least one metal component selected from Co, Mo, W, Ti, Zr, Mn, and Fe as a constituent component. Such a metal component forms a salt that is hardly soluble or insoluble in free carboxylic acid and water, so that it is included in the chemical conversion coating in the form of a carboxylate salt, and sometimes Zn or Sn included in the substitution processing layer. It is included in the chemical conversion treatment film as a metal crystal that precipitates due to the substitution reaction with, thereby contributing to the thickening of the chemical conversion treatment film. In addition, the generation of such a carboxylate salt also contributes to the thickening of the chemical conversion coating film by promoting the generation and deposition of a hydroxide of trivalent chromium on the surface of the substitution processing layer. In addition to trivalent chromium and carbon as constituent components, at least one metal component selected from Co, Mo, W, Ti, Zr, Mn, Fe is included, and the formation of the hexavalent chromium-free chemical conversion coating film is, for example, (1) Trivalent chromium nitrates and sulfates, etc. (2) Carboxylic acids such as succinic acid, malic acid, malonic acid, oxalic acid and their salts (sodium salts, potassium salts, etc.) and (3) Co, Mo , W, Ti, Zr, Mn, Fe, a rare earth system in which a substitution treatment layer based on substitution treatment with Zn and / or Sn on the surface of the Al coating is formed in a treatment solution prepared by dissolving nitrate or sulfate in water What is necessary is just to immerse a permanent magnet. The pH of the treatment liquid is desirably 1 to 5, and more desirably 3 to 4.5. If the pH is less than 1, the formation and deposition efficiency of trivalent chromium hydroxide on the surface of the substitution treatment layer may be reduced. On the other hand, if the pH exceeds 5, the trivalent chromium carboxylic acid in the treatment solution If the stability of the complex decreases, the stability of the treatment liquid itself may decrease. The temperature of the treatment liquid is preferably 10 ° C to 80 ° C, and more preferably 25 ° C to 40 ° C. If the temperature is lower than 10 ° C, the formation and deposition efficiency of the trivalent chromium hydroxide on the surface of the substitution treatment layer may be reduced. On the other hand, if the temperature is higher than 80 ° C, the chemical conversion treatment reaction may occur extremely. In addition to the possibility of forming a uniform chemical conversion treatment film, the evaporation of water from the treatment liquid becomes prominent, the composition of the treatment liquid tends to fluctuate, and stable operation may be difficult. The processing time is preferably 5 seconds to 300 seconds. Various additives may be added to the treatment liquid for the purpose of stabilizing the treatment liquid.

こうして形成される化成処理被膜は、Al被膜の表面のZnおよび/またはSnによる置換処理に基づく置換処理層の表面での化成処理反応による反応性被膜であるが、それ自体が水に難溶であり、長期に亘って水分に対して変質が少なく腐食しにくい性質を有する。また、こうして形成される化成処理被膜は、Al被膜の表面のZnおよび/またはSnによる置換処理に基づく置換処理層の表面に形成されることで、均質性に優れたものである。従って、この化成処理被膜は、これらの特性が相まって、希土類系永久磁石に対して優れた耐食性を付与するものとなる。また、その表面は適度な粗度を有することから、アンカー効果に基づいて優れた接着信頼性を有する。なお、万が一、この化成処理被膜に欠陥が生じたとしても、この化成処理被膜が自己修復作用を有することに加え、Al被膜の表面をZnおよび/またはSnによる置換処理をしたことで、Al被膜の表面には犠牲防食作用が付加されていることから、希土類系永久磁石の腐食を効果的に防止することができる。   The chemical conversion coating thus formed is a reactive coating by a chemical conversion reaction on the surface of the substitution treatment layer based on the substitution treatment with Zn and / or Sn on the surface of the Al coating, but itself is hardly soluble in water. Yes, it has the property of being less susceptible to corrosion over time and less susceptible to corrosion. Further, the chemical conversion treatment film thus formed is excellent in homogeneity by being formed on the surface of the substitution treatment layer based on the substitution treatment with Zn and / or Sn on the surface of the Al coating. Therefore, this chemical conversion coating film combines these characteristics and imparts excellent corrosion resistance to the rare earth permanent magnet. Moreover, since the surface has moderate roughness, it has excellent adhesion reliability based on the anchor effect. Even if a defect occurs in the chemical conversion coating film, in addition to the chemical conversion coating film having a self-repairing action, the Al coating surface is replaced with Zn and / or Sn. Since the sacrificial anticorrosive action is added to the surface, the corrosion of the rare earth permanent magnet can be effectively prevented.

こうして形成される化成処理被膜の膜厚は、0.01μm〜1μmであることが望ましい。膜厚が0.01μmを下回ると、磁石の表面に形成したAl被膜の耐食性の向上に寄与しなくなる恐れがある一方、膜厚が1μmを上回ると、その形成過程において処理液中の三価クロムイオンの濃度が大きく変動してしまうことで長期に亘る安定した生産が困難になる恐れがある。化成処理被膜の膜厚は、処理液の温度やpHの他、処理時間(処理液への浸漬時間)や処理回数(処理液への浸漬回数)により調整することができる。なお、この化成処理被膜は、Al被膜の表面のZnおよび/またはSnによる置換処理に基づく置換処理層の表面での化成処理反応により形成されるものであるので、Al被膜の表面のZnおよび/またはSnによる置換処理に基づく置換処理層を形成した希土類系永久磁石を処理液に浸漬することで、置換処理層が溶解してしまい、見かけ上、Al被膜の表面に直接形成される場合と、置換処理層が溶解しきれずに残存することで、Al被膜の表面に置換処理層を介して形成される場合とがある。   The film thickness of the chemical conversion film thus formed is desirably 0.01 μm to 1 μm. If the film thickness is less than 0.01 μm, it may not contribute to the improvement of the corrosion resistance of the Al coating formed on the surface of the magnet. On the other hand, if the film thickness exceeds 1 μm, the trivalent chromium in the treatment liquid is formed during the formation process. If the concentration of ions greatly fluctuates, stable production over a long period of time may be difficult. The film thickness of the chemical conversion coating can be adjusted by the treatment time (immersion time in the treatment liquid) and the number of treatments (number of immersion in the treatment liquid) in addition to the temperature and pH of the treatment liquid. This chemical conversion coating is formed by a chemical conversion reaction on the surface of the substitution treatment layer based on the substitution treatment with Zn and / or Sn on the surface of the Al coating. Or by immersing the rare earth-based permanent magnet in which the substitution treatment layer based on the substitution treatment with Sn is immersed in the treatment liquid, the substitution treatment layer is dissolved and apparently formed directly on the surface of the Al coating; In some cases, the substitution treatment layer is not completely dissolved and remains on the surface of the Al coating via the substitution treatment layer.

以下、本発明を実施例によってさらに詳細に説明するが、本発明はこれに限定して解釈されるものではない。なお、以下の実施例は、例えば、米国特許4770723号公報や米国特許4792368号公報に記載されているようにして、公知の鋳造インゴットを粉砕し、微粉砕後に成形、焼結、熱処理、表面加工を行うことによって得られた17Nd−1Pr−75Fe−7B組成(at%)の縦27mm×横15mm×高さ2mm寸法の焼結磁石(以下、磁石体試験片と称する)を用いて行った。   EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is limited to this and is not interpreted. In the following examples, as described in, for example, US Pat. No. 4,770,723 and US Pat. No. 4,792,368, a known cast ingot is pulverized, and after fine pulverization, molding, sintering, heat treatment, surface processing This was performed using a sintered magnet (hereinafter referred to as a magnet specimen) having a size of 27 mm in length, 15 mm in width, and 2 mm in height having a 17Nd-1Pr-75Fe-7B composition (at%) obtained by performing the above.

実験A:耐食性希土類系永久磁石の製造
工程1:磁石体試験片の表面へのAl被膜の形成
自体公知の表面処理装置(内容積2.2m3)の処理室(真空槽)内に磁石体試験片を収容した後、内部の全圧が1.0×10-1Paになるまで真空排気した。その後、真空槽内にArガスを全圧が1.0MPaとなるように導入し、スパッタリングを行って磁石体試験片の表面を清浄化した。その後、磁石体試験片に電圧1.5kVを印加し、Alワイヤを加熱して溶融し、蒸発させてイオン化し、イオンプレーティング法により、その表面に20分で膜厚が20μmのAl被膜を形成した(N=3の平均値)。
Experiment A: Production process of corrosion-resistant rare earth-based permanent magnet 1: Formation of Al coating on the surface of a magnet specimen A magnet body in a processing chamber (vacuum chamber) of a known surface treatment apparatus (internal volume 2.2 m 3 ) After accommodating the test piece, the test piece was evacuated until the total internal pressure became 1.0 × 10 −1 Pa. Thereafter, Ar gas was introduced into the vacuum chamber so that the total pressure was 1.0 MPa, and sputtering was performed to clean the surface of the magnet specimen. Thereafter, a voltage of 1.5 kV is applied to the magnet test piece, the Al wire is heated and melted, evaporated and ionized, and an Al coating with a thickness of 20 μm is formed on the surface by an ion plating method in 20 minutes. Formed (average value of N = 3).

工程2:Al被膜の表面の亜鉛置換処理
工程1にて磁石体試験片の表面に形成したAl被膜の表面を、自体公知のピーニング処理を行って平滑化した後、前処理としてエタノールで脱脂してから、5種類の条件にて表面にAl被膜を形成した磁石体試験片を亜鉛置換処理液に浸漬することで、Al被膜の表面の亜鉛置換処理を行った。用いた亜鉛置換処理液は、酸化亜鉛の濃度が100g/L、塩化第二鉄の濃度が10g/L、ロッシェル塩の濃度が10g/L、水酸化ナトリウムの濃度が525g/Lになるように各成分を水に溶解して調製した(pH11.8、亜鉛置換処理液中のZnイオンとFeイオンの合計濃度は83.7g/L)。得られた結果(サンプル1〜サンプル5)を表1に示す。
Step 2: Zinc replacement treatment on the surface of the Al coating The surface of the Al coating formed on the surface of the magnet specimen in Step 1 is smoothed by performing a peening treatment known per se, and then degreased with ethanol as a pretreatment. Then, the zinc replacement treatment of the surface of the Al coating was performed by immersing the magnet test piece having the Al coating formed on the surface under five kinds of conditions in a zinc replacement treatment solution. The zinc replacement treatment liquid used was such that the zinc oxide concentration was 100 g / L, the ferric chloride concentration was 10 g / L, the Rochelle salt concentration was 10 g / L, and the sodium hydroxide concentration was 525 g / L. Each component was prepared by dissolving in water (pH 11.8, the total concentration of Zn ions and Fe ions in the zinc substitution treatment solution was 83.7 g / L). The obtained results (Sample 1 to Sample 5) are shown in Table 1.

Figure 0004506306
Figure 0004506306

表1から明らかなように、処理時間を変更することで、亜鉛置換処理層の層厚を制御できることがわかった。なお、亜鉛置換処理層の層厚は、亜鉛置換処理層の形成前後のサンプルを破断し、EPMA(EPM−810:島津製作所社製,以下同じ)を用いて亜鉛(ZnKα)を検出することで測定した(N=3の平均値)。また、亜鉛置換処理層の形成前後のサンプルを破断し、EPMAを用いて鉄(FeKα)を検出することで、亜鉛置換処理層に鉄が含まれていることが確認できた。   As is clear from Table 1, it was found that the layer thickness of the zinc-substituted treatment layer can be controlled by changing the treatment time. The thickness of the zinc substitution treatment layer is determined by breaking the sample before and after the formation of the zinc substitution treatment layer and detecting zinc (ZnKα) using EPMA (EPM-810: manufactured by Shimadzu Corporation, the same shall apply hereinafter). Measured (average value of N = 3). In addition, it was confirmed that the zinc substitution treatment layer contained iron by breaking the sample before and after the formation of the zinc substitution treatment layer and detecting iron (FeKα) using EPMA.

工程3:化成処理被膜の形成による耐食性希土類系永久磁石の製造
工程2にて得られたサンプル1、サンプル2、サンプル3を、それぞれ3種類の条件にて処理液に浸漬することで、亜鉛置換処理層の表面に化成処理被膜を形成した。用いた処理液は、硝酸クロム(III)の濃度が25g/L、硝酸コバルトの濃度が3g/L、硫酸銅5水和物の濃度が0.004g/L、硝酸銀の濃度が0.05g/L、硝酸ナトリウムの濃度が2g/L、コハク酸の濃度が20g/Lになるように各成分を水に溶解し、水酸化ナトリウムでpHを4に調整して調製した。得られた結果(実施例1〜実施例9)を表2に示す。
Step 3: Production of corrosion-resistant rare earth-based permanent magnets by forming a chemical conversion coating film Sample 1, sample 2, and sample 3 obtained in step 2 are each immersed in a treatment solution under three types of conditions to replace zinc. A chemical conversion coating was formed on the surface of the treatment layer. The treatment liquid used was a chromium (III) nitrate concentration of 25 g / L, a cobalt nitrate concentration of 3 g / L, a copper sulfate pentahydrate concentration of 0.004 g / L, and a silver nitrate concentration of 0.05 g / L. Each component was dissolved in water so that the concentration of L, sodium nitrate was 2 g / L, and the concentration of succinic acid was 20 g / L, and the pH was adjusted to 4 with sodium hydroxide. The obtained results (Examples 1 to 9) are shown in Table 2.

Figure 0004506306
Figure 0004506306

表2から明らかなように、実施例1〜実施例9のすべてにおいて、三価クロムイオンを含む処理液から、亜鉛置換処理層の表面に、膜厚が0.01μm〜0.1μmの、三価クロムを含み、六価クロムフリーの、化成処理被膜を形成することができた。なお、化成処理被膜の膜厚は、化成処理被膜の形成前後のサンプルを破断し、EPMAを用いてクロム(CrKα)を検出することで測定した。また、化成処理被膜の形成前後のサンプルを破断し、EPMAを用いて、コバルト(CoKα)を検出することで化成処理被膜にコバルトが含まれていることが、炭素(CKα)を検出することで化成処理被膜に炭素が含まれていることが確認できた。なお、実施例1〜実施例3において製造した耐食性希土類系永久磁石では、工程2で形成した亜鉛置換処理層の層厚が薄いために、化成処理被膜を形成した後には亜鉛置換処理層は溶解してほとんど残存しなかったが、実施例4〜実施例9において製造した耐食性希土類系永久磁石では、工程2で形成した亜鉛置換処理層の層厚が厚いために、化成処理被膜を形成した後にも亜鉛置換処理層が残存していることが、化成処理被膜の形成前後のサンプルを破断し、EPMAを用いて亜鉛(ZnKα)を検出することで確認できた。   As is clear from Table 2, in all of Examples 1 to 9, three films having a film thickness of 0.01 μm to 0.1 μm were formed on the surface of the zinc substitution treatment layer from the treatment liquid containing trivalent chromium ions. A chemical conversion coating containing hexavalent chromium and free of hexavalent chromium could be formed. The film thickness of the chemical conversion coating was measured by breaking the sample before and after the chemical conversion coating was formed and detecting chromium (CrKα) using EPMA. In addition, the sample before and after the formation of the chemical conversion coating is broken, and EPMA is used to detect cobalt (CoKα). By detecting carbon (CKα), the chemical conversion coating contains cobalt. It was confirmed that the chemical conversion coating film contained carbon. In addition, in the corrosion-resistant rare earth-based permanent magnets manufactured in Examples 1 to 3, since the layer thickness of the zinc substitution treatment layer formed in Step 2 is thin, the zinc substitution treatment layer is dissolved after the chemical conversion treatment film is formed. In the corrosion-resistant rare earth permanent magnets manufactured in Examples 4 to 9, the thickness of the zinc substitution treatment layer formed in Step 2 was so thick that the chemical conversion treatment film was formed. It was confirmed that the zinc substitution treatment layer remained by breaking the sample before and after the formation of the chemical conversion coating and detecting zinc (ZnKα) using EPMA.

実験B:製造した耐食性希土類系永久磁石の耐食性の評価
実験Aの実施例1〜実施例9において製造した、表面にAl被膜を形成した後、その表面を亜鉛置換処理をしてから化成処理被膜を形成してなる磁石体試験片(耐食性希土類系永久磁石)に対し、JIS Z 2371に記載の塩水噴霧試験を1000時間行うことでその耐食性を評価した。その結果を、実験Aの工程1において得た表面に膜厚が20μmのAl被膜を形成した磁石体試験片(比較例1)と、実験Aの工程2において得たサンプル1、サンプル2、サンプル3と、特開2000−150216号公報に記載の方法に従って、実験Aの工程1において得た表面に膜厚が20μmのAl被膜を形成した磁石体試験片を、日本パーカライジング社製のパルコート3756MAとパルコート3756MBを用いて調製した処理液に浸漬して、Al被膜の表面にジルコニウム含有化成処理被膜を形成した磁石体試験片(比較例2)と、実験Aの工程1において得た表面に膜厚が20μmのAl被膜を形成した磁石体試験片を、日本ペイント社製のアサルーフ600Nを用いて調製した処理液に浸漬して、Al被膜の表面に六価クロムを含むクロム酸塩被膜を形成した磁石体試験片(比較例3)の耐食性の評価の結果とともに表3に示す。
Experiment B: Evaluation of Corrosion Resistance of Produced Corrosion Resistant Rare Earth Permanent Magnets After the formation of an Al film on the surface produced in Examples 1 to 9 of Experiment A, the surface was subjected to a zinc substitution treatment and then a chemical conversion treatment film Corrosion resistance was evaluated by performing a salt spray test described in JIS Z 2371 for 1000 hours on a magnet body test piece (corrosion-resistant rare earth permanent magnet) formed by forming a film. The result is a magnetic specimen (Comparative Example 1) in which an Al film having a film thickness of 20 μm is formed on the surface obtained in Step 1 of Experiment A, and Sample 1, Sample 2 and Sample obtained in Step 2 of Experiment A. 3 and according to the method described in Japanese Patent Application Laid-Open No. 2000-150216, a magnetic body test piece in which an Al film having a film thickness of 20 μm was formed on the surface obtained in Step 1 of Experiment A was obtained from Palcoat 3756MA manufactured by Nihon Parkerizing Co., Ltd. A magnet test piece (Comparative Example 2) in which a zirconium-containing chemical conversion coating was formed on the surface of an Al coating by immersion in a processing solution prepared using PALCOAT 3756MB, and a film thickness on the surface obtained in Step 1 of Experiment A Is immersed in a treatment solution prepared using Asa Roof 600N manufactured by Nippon Paint Co., Ltd., and a hexavalent cup is formed on the surface of the Al film. Shown in Table 3 together with the results of the evaluation of corrosion resistance of the magnet test piece obtained by forming a chromate coating (Comparative Example 3) containing the beam.

Figure 0004506306
Figure 0004506306

表3から明らかなように、塩水噴霧試験においては、比較例1では、試験開始から24時間経過後に孔食の発生が目立ち始め、早期に全面赤錆発生に至った。サンプル1、サンプル2、サンプル3では、試験開始から24時間経過後に亜鉛の溶出による白錆が発生し、100時間経過後に全面赤錆発生に至った。比較例2では、試験開始から100時間経過後に孔食と点錆の発生が目立ち始め、250時間経過後に全面赤錆発生に至った。比較例3では、一部で亜鉛の溶出による白錆の発生が認められたものの、試験開始から1000時間経過後も全面赤錆発生には至らなかった。実施例1〜実施例3において製造した耐食性希土類系永久磁石では、工程2で形成した亜鉛置換処理層の層厚が薄いために、化成処理被膜を形成した後には亜鉛置換処理層は溶解してほとんど残存しなかったが、試験開始から100時間経過後に亜鉛の溶出による白錆の発生が認められたものの、試験開始から1000時間経過後も全面赤錆発生には至らなかった。実施例4〜実施例9において製造した耐食性希土類系永久磁石では、一部で亜鉛の溶出による白錆の発生が認められたが、試験開始から1000時間経過後も全面赤錆発生には至らなかった。よって、実施例1〜実施例9において製造したいずれの耐食性希土類系永久磁石も、実用上極めて優れた耐食性を有することがわかった。なお、実施例1〜実施例9において製造したいずれの耐食性希土類系永久磁石も、試験終了後に優れた接着信頼性を有していた(エポキシ系接着剤との接着信頼性の評価により確認)。   As apparent from Table 3, in the salt spray test, in Comparative Example 1, the occurrence of pitting corrosion was noticeable after the lapse of 24 hours from the start of the test, leading to the occurrence of red rust on the entire surface. In Sample 1, Sample 2, and Sample 3, white rust was generated by elution of zinc after 24 hours from the start of the test, and red rust was generated on the entire surface after 100 hours. In Comparative Example 2, the occurrence of pitting corrosion and spot rust began to be noticeable after 100 hours had elapsed from the start of the test, and the entire surface reached red rust after 250 hours had elapsed. In Comparative Example 3, although generation of white rust due to elution of zinc was recognized in part, red rust was not generated on the entire surface even after 1000 hours had elapsed from the start of the test. In the corrosion-resistant rare earth permanent magnets manufactured in Examples 1 to 3, the zinc substitution treatment layer formed in Step 2 is thin, so the zinc substitution treatment layer is dissolved after the chemical conversion coating is formed. Although hardly remained, white rust was generated due to elution of zinc after 100 hours from the start of the test, but no red rust was generated even after 1000 hours from the start of the test. In the corrosion-resistant rare earth-based permanent magnets manufactured in Examples 4 to 9, generation of white rust due to elution of zinc was recognized in part, but no red rust was generated even after 1000 hours from the start of the test. . Therefore, it was found that any of the corrosion-resistant rare earth permanent magnets manufactured in Examples 1 to 9 has extremely excellent corrosion resistance in practical use. In addition, any of the corrosion-resistant rare earth permanent magnets manufactured in Examples 1 to 9 had excellent adhesion reliability after the test was completed (confirmed by evaluation of adhesion reliability with the epoxy adhesive).

実験C:製造した耐食性希土類系永久磁石の過酷環境下における耐孔食性の評価
実験Aの実施例4〜実施例9において製造した、表面にAl被膜を形成した後、その表面を亜鉛置換処理をしてから水に難溶乃至不溶の無機物被膜を形成してなる磁石体試験片(耐食性希土類系永久磁石)に対し、過飽和高温高圧試験(PCT:Pressure Cooker Test)により耐孔食性を評価した。耐孔食性の評価は、プレッシャークッカー試験機(TPC−411:TABAI社製)を用い、温度120℃×相対湿度98%以上×圧力0.2MPaの条件下で12時間放置することで行った。その結果を、実験Aの工程1において得た表面に膜厚が20μmのAl被膜を形成した磁石体試験片(比較例1)と、実験Aの工程2において得たサンプル1、サンプル2、サンプル3と、特開2000−150216号公報に記載の方法に従って、実験Aの工程1において得た表面に膜厚が20μmのAl被膜を形成した磁石体試験片を、日本パーカライジング社製のパルコート3756MAとパルコート3756MBを用いて調製した処理液に浸漬して、Al被膜の表面にジルコニウム含有化成処理被膜を形成した磁石体試験片(比較例2)と、実験Aの工程1において得た表面に膜厚が20μmのAl被膜を形成した磁石体試験片を、日本ペイント社製のアサルーフ600Nを用いて調製した処理液に浸漬して、Al被膜の表面に六価クロムを含むクロム酸塩被膜を形成した磁石体試験片(比較例3)の耐孔食性の評価の結果とともに表4に示す。
Experiment C: Evaluation of Pitting Corrosion Resistance in Severe Environment of Produced Corrosion Resistant Rare Earth Permanent Magnet After forming Al coating on the surface produced in Examples 4 to 9 of Experiment A, the surface was subjected to zinc substitution treatment Then, pitting corrosion resistance was evaluated by a supersaturated high-temperature and high-pressure test (PCT: Pressure Cooker Test) for a magnet specimen (corrosion-resistant rare earth permanent magnet) formed with an inorganic coating that is hardly soluble or insoluble in water. Evaluation of pitting corrosion resistance was performed by using a pressure cooker tester (TPC-411: manufactured by Tabai Co., Ltd.) and leaving it for 12 hours under the conditions of temperature 120 ° C. × relative humidity 98% or more × pressure 0.2 MPa. The result is a magnetic specimen (Comparative Example 1) in which an Al film having a film thickness of 20 μm is formed on the surface obtained in Step 1 of Experiment A, and Sample 1, Sample 2 and Sample obtained in Step 2 of Experiment A. 3 and according to the method described in Japanese Patent Application Laid-Open No. 2000-150216, a magnetic body test piece in which an Al film having a film thickness of 20 μm was formed on the surface obtained in Step 1 of Experiment A was obtained from Palcoat 3756MA manufactured by Nihon Parkerizing Co., Ltd. A magnet specimen (Comparative Example 2) in which a zirconium-containing chemical conversion coating was formed on the surface of an Al coating by immersing it in a processing solution prepared using Palcoat 3756MB, and a film thickness on the surface obtained in Step 1 of Experiment A Is immersed in a treatment solution prepared using Asa Roof 600N manufactured by Nippon Paint Co., Ltd., and a hexavalent cup is formed on the surface of the Al film. Shown in Table 4 together with the results of the evaluation of pitting corrosion resistance of the magnet test piece obtained by forming a chromate coating (Comparative Example 3) containing the beam.

Figure 0004506306
Figure 0004506306

表4から明らかなように、比較例1〜比較例3とサンプル1では、試験終了後に多数の孔食の発生が認められた。サンプル2とサンプル3では、孔食の発生は認められなかったが、多数の白錆が認められた。実施例4〜実施例9において製造した耐食性希土類系永久磁石では、試験終了後に孔食の発生は認められず、実用上極めて優れた耐孔食性を示した。なお、実施例4〜実施例9において製造したいずれの耐食性希土類系永久磁石も、試験終了後に優れた接着信頼性を有していた(エポキシ系接着剤との接着信頼性の評価により確認)。   As is apparent from Table 4, in Comparative Examples 1 to 3 and Sample 1, the occurrence of a large number of pitting corrosion was observed after the test was completed. In Sample 2 and Sample 3, no pitting corrosion was observed, but many white rusts were observed. In the corrosion-resistant rare earth permanent magnets manufactured in Examples 4 to 9, no pitting corrosion was observed after completion of the test, and the pitting corrosion resistance was extremely excellent in practical use. In addition, any of the corrosion-resistant rare earth permanent magnets manufactured in Examples 4 to 9 had excellent adhesion reliability after the test was completed (confirmed by evaluation of adhesion reliability with the epoxy adhesive).

本発明は、優れた接着信頼性を確保したままAl被膜の孔食の発生を抑制してその耐食性の向上が図られた耐食性希土類系永久磁石およびその製造方法を提供することができる点において産業上の利用可能性を有する。   INDUSTRIAL APPLICABILITY The present invention provides an anti-corrosion rare earth permanent magnet in which the corrosion resistance is improved by suppressing the occurrence of pitting corrosion in an Al coating while ensuring excellent adhesion reliability, and an industrial method in that it can be provided. With the above applicability.

Claims (9)

焼結磁石の表面に気相成長法によって膜厚が3μm〜25μmであるAl被膜を形成した後、その表面をZnおよび/またはSnによる置換処理をしてから、構成成分として三価クロムと炭素を含み、六価クロムフリーの化成処理被膜を形成してなることを特徴とする耐食性希土類系永久磁石。 After forming an Al film having a film thickness of 3 μm to 25 μm on the surface of the sintered magnet by vapor deposition , the surface is subjected to a substitution treatment with Zn and / or Sn, and then trivalent chromium and carbon as constituent components. A corrosion-resistant rare earth-based permanent magnet comprising a chemical conversion coating film free of hexavalent chromium. 化成処理被膜がさらに構成成分としてCo,Mo,W,Ti,Zr,Mn,Feから選ばれる少なくとも1種の金属成分を含んでなることを特徴とする請求項1記載の耐食性希土類系永久磁石。   2. The corrosion-resistant rare earth permanent magnet according to claim 1, wherein the chemical conversion coating further comprises at least one metal component selected from Co, Mo, W, Ti, Zr, Mn and Fe as a constituent component. Al被膜と化成処理被膜の間に、Al被膜の表面のZnおよび/またはSnによる置換処理に基づく置換処理層を有してなることを特徴とする請求項1または2記載の耐食性希土類系永久磁石。   The corrosion-resistant rare earth permanent magnet according to claim 1 or 2, wherein a substitution treatment layer based on substitution treatment with Zn and / or Sn on the surface of the Al coating is provided between the Al coating and the chemical conversion coating. . 置換処理層が(1)Znおよび/またはSnと(2)Fe,Ni,Co,Cuから選ばれる少なくとも1種の金属成分を含んでなることを特徴とする請求項3記載の耐食性希土類系永久磁石。   4. The corrosion-resistant rare earth-based permanent material according to claim 3, wherein the substitution treatment layer comprises (1) Zn and / or Sn and (2) at least one metal component selected from Fe, Ni, Co, Cu. magnet. 化成処理被膜の膜厚が0.01μm〜1μmであることを特徴とする請求項1乃至4のいずれかに記載の耐食性希土類系永久磁石。   The corrosion-resistant rare earth-based permanent magnet according to any one of claims 1 to 4, wherein the chemical conversion coating has a thickness of 0.01 µm to 1 µm. 焼結磁石の表面に気相成長法によって膜厚が3μm〜25μmであるAl被膜を形成した後、その表面をZnおよび/またはSnによる置換処理をしてから、構成成分として三価クロムと炭素を含み、六価クロムフリーの化成処理被膜を形成することを特徴とする耐食性希土類系永久磁石の製造方法。 After forming an Al film having a film thickness of 3 μm to 25 μm on the surface of the sintered magnet by vapor deposition , the surface is subjected to a substitution treatment with Zn and / or Sn, and then trivalent chromium and carbon as constituent components. And a hexavalent chromium-free chemical conversion coating is formed. A method for producing a corrosion-resistant rare earth permanent magnet. 化成処理被膜がさらに構成成分としてCo,Mo,W,Ti,Zr,Mn,Feから選ばれる少なくとも1種の金属成分を含んでなることを特徴とする請求項6記載の製造方法。   The production method according to claim 6, wherein the chemical conversion coating further comprises at least one metal component selected from Co, Mo, W, Ti, Zr, Mn, and Fe as a constituent component. Al被膜の表面に、Znおよび/またはSnによる置換処理に基づく層厚が0.05μm〜5μmの置換処理層を形成してから、その表面に、化成処理被膜を形成することを特徴とする請求項6または7記載の製造方法。   A chemical conversion treatment film is formed on a surface of an Al coating film after forming a substitution treatment layer having a thickness of 0.05 μm to 5 μm based on a substitution treatment with Zn and / or Sn. Item 8. The manufacturing method according to Item 6 or 7. 置換処理層が(1)Znおよび/またはSnと(2)Fe,Ni,Co,Cuから選ばれる少なくとも1種の金属成分を含んでなることを特徴とする請求項8記載の製造方法。   9. The manufacturing method according to claim 8, wherein the substitution treatment layer comprises (1) Zn and / or Sn and (2) at least one metal component selected from Fe, Ni, Co, and Cu.
JP2004192244A 2004-06-29 2004-06-29 Corrosion-resistant rare earth permanent magnet and method for producing the same Active JP4506306B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004192244A JP4506306B2 (en) 2004-06-29 2004-06-29 Corrosion-resistant rare earth permanent magnet and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004192244A JP4506306B2 (en) 2004-06-29 2004-06-29 Corrosion-resistant rare earth permanent magnet and method for producing the same

Publications (2)

Publication Number Publication Date
JP2006013399A JP2006013399A (en) 2006-01-12
JP4506306B2 true JP4506306B2 (en) 2010-07-21

Family

ID=35780237

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004192244A Active JP4506306B2 (en) 2004-06-29 2004-06-29 Corrosion-resistant rare earth permanent magnet and method for producing the same

Country Status (1)

Country Link
JP (1) JP4506306B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4737046B2 (en) * 2006-11-21 2011-07-27 日立金属株式会社 Iron-based rare earth permanent magnet and method for producing the same
JP5196102B2 (en) * 2007-01-12 2013-05-15 上村工業株式会社 Aluminum oxide film removal solution and surface treatment method of aluminum or aluminum alloy
CN102400118B (en) * 2011-11-18 2013-06-26 钢铁研究总院 Preparation method of nickel phosphorus alloy plating on surface of sintered neodymium iron boron permanent magnet
CN102936677B (en) * 2012-11-14 2014-05-21 山西汇镪磁性材料制作有限公司 Preparation method of thin-film material for bonding permanent magnets

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11283818A (en) * 1998-03-30 1999-10-15 Sumitomo Special Metals Co Ltd High corrosion-resistant r-fe-b bonded magnet and its manufacture
JP2000133541A (en) * 1998-10-23 2000-05-12 Sumitomo Special Metals Co Ltd Manufacture of corrosion-resistant r-fe-b bonded magnet
JP2000199074A (en) * 1998-12-28 2000-07-18 Nippon Parkerizing Co Ltd Deposition type surface treating liquid of rare earth- iron sintered permanent magnet, its surface treatment, and rare earth-iron sintered permanent magnet having surface treated by that surface treatment
JP2001335958A (en) * 2000-05-31 2001-12-07 Dipsol Chem Co Ltd METHOD FOR FORMING HEXAVALENT CHROMIUM-FREE CORROSION RESISTANT FILM ON Sn-Zn ALLOY PLATING
JP2001358003A (en) * 2000-06-09 2001-12-26 Sumitomo Special Metals Co Ltd Rare-earth permanent magnet with insulating coat and manufacturing method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11283818A (en) * 1998-03-30 1999-10-15 Sumitomo Special Metals Co Ltd High corrosion-resistant r-fe-b bonded magnet and its manufacture
JP2000133541A (en) * 1998-10-23 2000-05-12 Sumitomo Special Metals Co Ltd Manufacture of corrosion-resistant r-fe-b bonded magnet
JP2000199074A (en) * 1998-12-28 2000-07-18 Nippon Parkerizing Co Ltd Deposition type surface treating liquid of rare earth- iron sintered permanent magnet, its surface treatment, and rare earth-iron sintered permanent magnet having surface treated by that surface treatment
JP2001335958A (en) * 2000-05-31 2001-12-07 Dipsol Chem Co Ltd METHOD FOR FORMING HEXAVALENT CHROMIUM-FREE CORROSION RESISTANT FILM ON Sn-Zn ALLOY PLATING
JP2001358003A (en) * 2000-06-09 2001-12-26 Sumitomo Special Metals Co Ltd Rare-earth permanent magnet with insulating coat and manufacturing method thereof

Also Published As

Publication number Publication date
JP2006013399A (en) 2006-01-12

Similar Documents

Publication Publication Date Title
JPH01304713A (en) Manufacture of corrosion-resistant rare earth magnet
JP5299887B2 (en) Electrolytic solution for trivalent chromium plating film
JP4033241B2 (en) Method for producing rare earth based permanent magnet having copper plating film on its surface
JP3137535B2 (en) Zinc-containing metal-coated steel sheet composite excellent in coatability and method for producing the same
US10770224B2 (en) Method for forming electrolytic copper plating film on surface of rare earth metal-based permanent magnet
JP4506306B2 (en) Corrosion-resistant rare earth permanent magnet and method for producing the same
JP2005126797A (en) Trivalent chromate liquid, and method of forming hexavalent chromium-free corrosion resistant film on zinc-nickel alloy plating using the liquid
JP4506305B2 (en) Corrosion-resistant rare earth permanent magnet and method for producing the same
JP3176597B2 (en) Corrosion resistant permanent magnet and method for producing the same
JP2009041092A (en) Chemical treatment liquid for galvanizing or galvannealing film, and method for forming corrosion protection coating using the same
JP2002158105A (en) Magnet and its manufacturing method
JP2002105658A (en) Galvanized steel sheet having excellent blackening resistance and corrosion resistance after working, chemically treating solution and chemical conversion treatment method
JP2004111516A (en) R-t-b rare earth magnet of high corrosion resistance
JP4572468B2 (en) Method of using rare earth permanent magnets in water containing Cu ions and chlorine ions
JP2968605B2 (en) Manufacturing method of permanent magnet
JP2002212775A (en) Ni ELECTROPLATING METHOD FOR RARE EARTH BASED PERMANENT MAGNET
JP3796567B2 (en) R-Fe-B permanent magnet and manufacturing method thereof
EP1467002A1 (en) METHOD FOR FORMING Re ALLOY COATING FILM HAVING HIGH Re CONTENT THROUGH ELECTROPLATING
JPH06318512A (en) Permanent magnet and manufactured thereof
TW201042082A (en) Process for forming corrosion protection layers on metal surfaces
JPS63198305A (en) High corrosion resistance rare earth element permanent magnet
JP3740551B2 (en) Method for manufacturing permanent magnet
JPH0533165A (en) Production of aluminum plate having excellent filiform corrosion resistance
JPH03283607A (en) Manufacture of anticorrosive rare earth magnet
JPH07142246A (en) Permanent magnet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061228

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070606

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080623

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090611

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090616

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090810

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100406

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100419

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4506306

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140514

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350