JP4572468B2 - Method of using rare earth permanent magnets in water containing Cu ions and chlorine ions - Google Patents

Method of using rare earth permanent magnets in water containing Cu ions and chlorine ions Download PDF

Info

Publication number
JP4572468B2
JP4572468B2 JP2001009311A JP2001009311A JP4572468B2 JP 4572468 B2 JP4572468 B2 JP 4572468B2 JP 2001009311 A JP2001009311 A JP 2001009311A JP 2001009311 A JP2001009311 A JP 2001009311A JP 4572468 B2 JP4572468 B2 JP 4572468B2
Authority
JP
Japan
Prior art keywords
ions
plating film
plating
magnet
rare earth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001009311A
Other languages
Japanese (ja)
Other versions
JP2002212783A (en
Inventor
一英 大島
稔展 新苗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2001009311A priority Critical patent/JP4572468B2/en
Publication of JP2002212783A publication Critical patent/JP2002212783A/en
Application granted granted Critical
Publication of JP4572468B2 publication Critical patent/JP4572468B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/026Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets protecting methods against environmental influences, e.g. oxygen, by surface treatment

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroplating And Plating Baths Therefor (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、酸化性で腐食性の高い電解質溶液(腐食液)に浸漬して使用しても優れた耐食性を発揮する水中使用型希土類系永久磁石およびその製造方法に関する。
【0002】
【従来の技術】
Nd−Fe−B系永久磁石に代表されるR−Fe−B系永久磁石などの希土類系永久磁石は、高い磁気特性を有しているが、酸化腐食されやすい金属種(特にR)を含むので、表面処理を行わずに使用した場合には、わずかな酸やアルカリや水分などの影響によって表面から腐食が進行して錆が発生し、それに伴って、磁気特性の劣化やばらつきを招くことになる。さらに、磁気回路などの装置に組み込んだ磁石に錆が発生した場合、錆が飛散して周辺部品を汚染する恐れがある。従って、これらの問題点を回避するために、従来から、該磁石に要求される耐食性を付与すべく電気Niめっきにより、耐食性被膜としてのNiめっき被膜をその表面に形成することが行われている。
【0003】
【発明が解決しようとする課題】
ところで、井戸水汲み上げ用や送液用の水中ポンプ、家電送液ポンプ、自動車の熱交換器部品用のモーターなどに使用される磁石としては、耐食性に優れたフェライト磁石が従来から使用されてきているが、ポンプやモーターなどの小型化による省スペース化や効率アップによる省エネルギー化などの要請から高い磁気特性を有する希土類系永久磁石をフェライト磁石に代えて使用することが検討されている。しかしながら、希土類系永久磁石を水中で使用されるこれらの用途に供するためには当然のことながら大気中で使用されるものよりも優れた耐食性が要求される。特に家電や自動車などのエアコンエバポレーター、コンデンサ、ラジエーター、暖房ヒーターなどの熱交換器部品用のモーターにおいては、液循環系の構成材料、大気環境、補給液などから不可避的に混入するCuイオン、塩素イオン(塩分)、硫酸イオン、硝酸イオン、炭酸イオンなどの不純物イオンや溶存酸素などの影響により、磁石が使用される環境が酸化性で腐食性の高い電解質溶液(腐食液)環境となる場合がある。不純物イオンの中でもCuイオンや塩素イオンは腐食性が高く、とりわけ、Cuイオンは強酸化性であるため、希土類系永久磁石表面にNiめっき被膜を形成した場合でも、CuイオンがNiめっき被膜表面に置換析出して腐食の起点になったり、局部電池を形成して深さ方向の腐食を進行させる傾向が強く、結果的に、磁石素地に至る腐食(孔食や点食)により磁気特性が大きく劣化してしまうなどの使用上の問題がある。従って、希土類系永久磁石を水中で使用する場合にはCuイオンや塩素イオンに対して如何にして耐食性を向上させるかが重要な課題となる。
そこで本発明は、酸化性で腐食性の高い電解質溶液(腐食液)に浸漬して使用しても優れた耐食性を発揮する水中使用型希土類系永久磁石およびその製造方法を提供することを目的とする。
【0004】
【課題を解決するための手段】
本発明者らは、上記の点に鑑み種々の検討を行う過程において、水溶液中におけるCuイオンとCuの平衡電位(Cu2+/Cu平衡電位)に着目し、自然電極電位が該平衡電位以上という特性を有するNiめっき被膜を希土類系永久磁石表面の最表層に形成することにより、酸化性で腐食性の高い電解質溶液(腐食液)に浸漬して使用しても優れた耐食性を発揮する磁石が得られることを知見した。
【0005】
本発明は、上記の知見に基づいてなされたものであり、本発明のCuイオンと塩素イオンを含む水中で希土類系永久磁石を使用する方法は、請求項1記載の通り、芳香族スルホン酸またはその塩を供給源とするSを含有させることで、自然電極電位(対SCE飽和カロメル電極)がCuイオンを10ppm含む水溶液中で−0.1V以上であり、かつ、Cuイオンを100ppm含む水溶液中で0V以上の特性を有し、平均電析結晶粒径が0.1μm以下であるNiめっき被膜を磁石表面の最表層に形成することによって耐食性を付与することを特徴とする
た、請求項記載の方法は、請求項記載の方法において、前記Niめっき被膜のS含有量が10ppm〜800ppmであることを特徴とする
た、請求項記載の方法は、請求項1または2記載の方法において、磁石表面に多層めっき被膜層を形成するに際しての最表層としての前記Niめっき被膜の膜厚が0.1μm〜10μmであることを特徴とする。
また、請求項記載の方法は、請求項記載の方法において、前記Niめっき被膜が下層となるNiめっき被膜の表面に形成されていることを特徴とする。
また、請求項記載の方法は、請求項1乃至のいずれかに記載の方法において、希土類系永久磁石がR−Fe−B系永久磁石であることを特徴とする
【0006】
【発明の実施の形態】
本発明の水中使用型希土類系永久磁石は、自然電極電位(対SCE飽和カロメル電極)がCuイオンを10ppm含む水溶液中で−0.1V以上であり、かつ、Cuイオンを100ppm含む水溶液中で0V以上の特性を有するNiめっき被膜を磁石表面の最表層に形成したことを特徴とするものである。
希土類系永久磁石表面の最表層にこの特性を有するNiめっき被膜を形成することにより、該被膜の水溶液中における自然電極電位をCuイオンとCuの平衡電位(Cu2+/Cu平衡電位)以上とすることで、酸化性で腐食性の高い電解質溶液(腐食液)に浸漬して使用しても優れた耐食性を発揮する磁石とする。なお、より優れた耐食性を付与するためには自然電極電位(対SCE飽和カロメル電極)がCuイオンを10ppm含む水溶液中で0V以上であり、かつ、Cuイオンを100ppm含む水溶液中で0.1V以上の特性を有するNiめっき被膜を形成することが望ましい。
【0007】
本発明において自然電極電位とは、水溶液中においてNiめっき被膜の表面で複数の化学反応が起きている際のNiと水溶液との間の電位を意味し、具体的には、アノード反応としてのNiの溶解反応(Ni→Ni2++2e)、カソード反応としてのCuイオンの還元反応(Cu2++2e→Cu、Cu2++e→Cu)や溶存酸素の還元反応(O+2HO+4e→4OH)などに基づく混成電位を意味する。
【0008】
自然電極電位(対SCE飽和カロメル電極)がCuイオンを10ppm含む水溶液中で−0.1V以上であり、かつ、Cuイオンを100ppm含む水溶液中で0V以上の特性を有するNiめっき被膜を希土類系永久磁石表面の最表層に形成する方法としては、例えば、芳香族スルホン酸またはその塩を含有するNiめっき液を使用して電気Niめっきを行うことにより、Niめっき被膜に芳香族スルホン酸またはその塩を供給源とするSを含有させる方法がある。
【0009】
希土類系永久磁石の電気Niめっきにおいては、一般的なめっき浴(ワット浴など)組成単独では緻密で光沢性に優れたNiめっき被膜を形成することができないことから、従来からめっき被膜中にサッカリンに代表される芳香族スルホンイミドや芳香族スルホンアミドを供給源とするSを含有させてめっき被膜を緻密化させる方法が広く採用されている。しかしながら、このようにしてめっき被膜中にSを含有させると、Niめっき被膜の表面電位が下がるので、電気化学的にめっき被膜自身の耐食性が低下することになる。
上記の現象を利用して、希土類系永久磁石表面に多層Niめっき被膜を形成するに際して、最表層のNiめっき被膜にのみSを含有させたり(例えば特開平2−23603号公報を参照)、磁石表面から上層のNiめっき被膜になるほどSの含有量を多くして意図的に表面電位を下げる(例えば特開平4−267305号公報や特許第2941446号公報を参照)ことで上層のNiめっき被膜を優先的に腐食させるようにして全体としての耐食性を向上させる方法が提案されているが、Cuイオンなどを含む腐食液中でこのような磁石を使用した場合、磁石表面の最表層のNiめっき被膜の自然電極電位がCu2+/Cu平衡電位よりも低くなってしまうことでCuイオンがNiめっき被膜表面に置換析出してしまい、その結果、腐食が進行して充分な耐食性を確保することができなかった。
ところが、本発明者らの検討によって、Niめっき被膜中に含有させるSの供給源として、広く使用されている芳香族スルホンイミドや芳香族スルホンアミドを使用した場合、上記のような問題が起こるのにもかかわらず、芳香族スルホン酸またはその塩をSの供給源として使用した場合、Cuイオンなどを含む腐食液に浸漬して使用しても優れた耐食性を発揮するNiめっき被膜が形成されることが判明した。
【0010】
ここで、芳香族スルホン酸としては、ベンゼンスルホン酸や1,3,6ナフタレントリスルホン酸などが挙げられる。芳香族スルホン酸の塩としては、ナトリウム塩やカリウム塩などが挙げられる。
【0011】
Niめっき液への芳香族スルホン酸またはその塩の添加は、形成されるNiめっき被膜のS含有量が10ppm〜800ppmとなるように行うことが望ましい。形成されるNiめっき被膜のS含有量が10ppmよりも少ないとその効果が十分に発揮されない恐れがあり、800ppmよりも多いと脆くて密着性に欠けるNiめっき被膜となる恐れがある。
【0012】
芳香族スルホン酸またはその塩の添加対象となるNiめっき液は、特段限定されるものではなく、電気Niめっきに使用される自体公知のもの、例えば、ワット浴、スルファミン酸浴、塩化物浴、ほうふっ化物浴、塩化アンモニウム浴などに使用されるものでよい。電気Niめっき条件は個々のめっき浴に応じた自体公知の条件を設定して行えばよい。なお、必要に応じて、電気Niめっき後に熱処理(ベーキング)を大気中で150℃〜250℃にて10分〜1時間程度行ってもよい。この処理により、形成されるNiめっき被膜の水溶液中での自然電極電位をより貴な方向に移動させることができる。
【0013】
自然電極電位(対SCE飽和カロメル電極)がCuイオンを10ppm含む水溶液中で−0.1V以上であり、かつ、Cuイオンを100ppm含む水溶液中で0V以上の特性を有するNiめっき被膜は、被膜の緻密化の観点からその平均電析結晶粒径が0.1μm以下となるように形成することが望ましい。このようなめっき被膜は、Niめっき液に上記の芳香族スルホン酸またはその塩を単独で添加したり、これを例えばポリエチレングリコールなどのアルコール系添加剤と組み合わせて添加することなどで形成することができる。なお、電析結晶粒径はFE−SEM(電界放射型走査顕微鏡)やAFM(原子間力顕微鏡)による観察によって測定することができる。
【0014】
自然電極電位(対SCE飽和カロメル電極)がCuイオンを10ppm含む水溶液中で−0.1V以上であり、かつ、Cuイオンを100ppm含む水溶液中で0V以上の特性を有するNiめっき被膜の膜厚は、希土類系永久磁石表面にこのNiめっき被膜のみを形成する場合は5μm〜30μmが望ましく、磁石表面に多層めっき被膜層を形成するに際しての最表層にこのNiめっき被膜を形成する場合は0.1μm〜10μmが望ましい。磁石表面に多層めっき被膜層を形成するに際しての最表層にこのNiめっき被膜を形成する場合におけるその下層は、電気めっきや無電解めっきなどの湿式めっきや、気相めっきなど、自体公知の方法で形成されるNiめっき被膜をはじめとする種々の金属めっき被膜でよく、例えば、第1層が公知のNiめっき被膜で第2層(最表層)がこのNiめっき被膜、第1層と第2層が公知のNiめっき被膜で第3層(最表層)がこのNiめっき被膜、第1層が公知のNiめっき被膜で第2層が公知のCuめっき被膜で第3層(最表層)がこのNiめっき被膜などの形態がある。
【0015】
本発明に適用される希土類系永久磁石の内、R−Fe−B系永久磁石における希土類元素(R)は、Nd、Pr、Dy、Ho、Tb、Smのうち少なくとも1種、あるいはさらに、La、Ce、Gd、Er、Eu、Tm、Yb、Lu、Yのうち少なくとも1種を含むものが望ましい。
また、通常はRのうち1種をもって足りるが、実用上は2種以上の混合物(ミッシュメタルやジジムなど)を入手上の便宜などの理由によって使用することもできる。
さらに、Al、Ti、V、Cr、Mn、Bi、Nb、Ta、Mo、W、Sb、Ge、Sn、Zr、Ni、Si、Zn、Hf、Gaのうち少なくとも1種を添加することで、保磁力や減磁曲線の角型性の改善、製造性の改善、低価格化を図ることが可能となる。また、Feの一部をCoで置換することによって、得られる磁石の磁気特性を損なうことなしに温度特性を改善することができる。
【0016】
【実施例】
本発明を以下の実施例によってさらに詳細に説明するが、本発明は以下の記載に何ら限定されるものではない。
【0017】
粉末冶金法により作製した15Nd−1Dy−7B−77Fe(原子%)の組成をもつ焼結体をアルゴン雰囲気中600℃で2時間時効処理を施し、厚さ2mm、幅15mm、長さ30mmの平板状に加工し、さらにバレル面取り加工を行って得られた焼結磁石を希釈硝酸で酸洗清浄化した。水洗後にさらにアルカリ液で電解洗浄し、水洗した。
この磁石に対し、硫酸ニッケル・6水和物260g/l、塩化ニッケル・6水和物40g/l、ホウ酸40g/l、添加剤としてプロパギルアルコールを0.5g/lを含み、pHを4に調整したNiめっき液を使用し、めっき浴の液温50℃、電流密度0.2A/dm、陽極としてNi板という電気Niめっき条件にて、膜厚が20μmのNiめっき被膜を第1層めっき被膜として磁石表面に形成した。
次に、硫酸ニッケル・6水和物300g/l、塩化ニッケル・6水和物50g/l、ホウ酸30g/l、クエン酸ナトリウム10g/l、表1に示した各種の濃度に調整した添加剤を含み、pHを4に調整したNiめっき液を使用し、めっき浴の液温50℃、電流密度0.3A/dm、陽極としてNi板という電気Niめっき条件にて、膜厚が5μmのNiめっき被膜を第2層(最表層)めっき被膜として第1層めっき被膜表面に形成した。第2層Niめっき被膜について、EPMA(電子線マイクロアナライザー:島津製作所社製EPM−810を使用)を使用して測定したS含有量と、AFM(原子間力顕微鏡:島津製作所社製SPM−9500を使用)を使用して測定した平均電析結晶粒径を表1に示す。
上記のようにして得られためっき磁石サンプルを水洗して乾燥させた後、これをCuイオン100ppm(塩化銅・2水和物で調整)と塩素イオン200ppm(塩化ナトリウムで調整)を含有してさらに溶存酸素が存在する50℃の腐食液1と、Cuイオン10ppm(同)と塩素イオン200ppm(同)を含有してさらに溶存酸素が存在する50℃の腐食液2(いずれの腐食液もpHは6.5〜7)に浸漬し第2層Niめっき被膜の自然電極電位を測定するとともにその性能を評価した。結果を表1に示す。
【0018】
表1において、自然電極電位の測定は以下のようにして行った。即ち、500mlビーカーに腐食液を入れ液温50℃とした。めっき磁石サンプルを腐食液に浸漬してから30分経過後、一般的な飽和塩化カリウム溶液を寒天詰めしたガラス製ルギン管を用い、参照電極をSCE飽和カロメル電極としてサンプル表面の電位を市販のポテンショスタット装置により測定することにより行った(自然電極電位の測定はNiめっき被膜表面の電位が安定する腐食液浸漬20分〜30分経過後に行うことが望ましい)。なお、この測定はビーカー内をマグネットスターラーにて500rpmで攪拌しながら行った。
【0019】
表1における被膜健全性の評価はめっき被膜の緻密性及び耐食性促進評価(発色反応試験)により行った。評価方法を簡単に説明すると以下の通りである。フェリシアン化カリウム3g/l、エタノール100ml/lおよび塩酸にてpH2に調整した試験液にめっき磁石サンプルを常温で浸漬して60分間観察した。
磁石素材に腐食が至ったり被膜欠陥(ピンホールなど)が存在する場合には青色斑点が発生するので、60分浸漬後も青色斑点の発生がない場合は○、浸漬後30分以上で青色斑点が発生した場合は△、浸漬後10分〜20分で青色斑点が発生した場合は×と評価した。
【0020】
表1における耐食性の評価はめっき磁石サンプルを液温50℃の腐食液1に1000時間浸漬し、赤錆の発生と着磁後のフラックス量測定に基づく磁気特性劣化を調べ、赤錆発生がなく、かつ、減磁率が1%以下の場合は○、それ以外の場合は×と評価することで行った。
【0021】
【表1】

Figure 0004572468
【0022】
表1から明らかなように、芳香族スルホン酸やその塩を含有するNiめっき液を使用して電気Niめっきを行うことにより、自然電極電位(対SCE飽和カロメル電極)がCuイオンを10ppm含む水溶液中で−0.1V以上であり、かつ、Cuイオンを100ppm含む水溶液中で0V以上の特性を有し、腐食液に浸漬して使用しても優れた耐食性を発揮するNiめっき被膜を形成することができることがわかった。一方、芳香族スルホンイミドや芳香族スルホンアミドを含有するNiめっき液を使用して電気Niめっきを行った場合、形成されるNiめっき被膜は、そのS含有量が芳香族スルホン酸やその塩を含有するNiめっき液を使用して電気Niめっきを行うことにより形成されるNiめっき被膜のS含有量と同程度であっても、水溶液中での自然電極電位が大きく低下して卑となり、腐食液に浸漬して使用した場合、耐食性を維持できないことがわかった。この違いは、芳香族スルホン酸やその塩をSの供給源として使用した場合と芳香族スルホンイミドや芳香族スルホンアミドをSの供給源として使用した場合との間での、形成されるNiめっき被膜中でのSの供給源としてのこれらの添加剤の析出状態の違いや、Niめっき被膜中のSの分布の均一性の差に基づくものであると推察される。
また、チオ尿素とプロパギルアルコールを組み合わせてNiめっき液に添加した場合やポリエチレングリコールをNiめっき液に添加した場合にも芳香族スルホン酸やその塩と同様の効果が得られることがわかった。
【0023】
【発明の効果】
本発明の水中使用型希土類系永久磁石は、自然電極電位(対SCE飽和カロメル電極)がCuイオンを10ppm含む水溶液中で−0.1V以上であり、かつ、Cuイオンを100ppm含む水溶液中で0V以上の特性を有するNiめっき被膜を磁石表面の最表層に形成したことで、酸化性で腐食性の高い電解質溶液(腐食液)に浸漬して使用しても優れた耐食性を発揮する。本発明の水中使用型希土類系永久磁石の製造方法としては、例えば、芳香族スルホン酸またはその塩を含有するNiめっき液を使用して電気Niめっきを行うことにより、Niめっき被膜に芳香族スルホン酸またはその塩を供給源とするSを含有させる方法がある。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an underwater-use rare earth-based permanent magnet that exhibits excellent corrosion resistance even when immersed in an oxidizing and highly corrosive electrolyte solution (corrosive solution) and a method for producing the same.
[0002]
[Prior art]
Rare earth permanent magnets such as R-Fe-B permanent magnets typified by Nd-Fe-B permanent magnets have high magnetic properties, but contain metal species (especially R) that are susceptible to oxidative corrosion. Therefore, when used without surface treatment, corrosion proceeds from the surface due to the influence of slight acid, alkali, moisture, etc., and rust is generated, resulting in deterioration and dispersion of magnetic properties. become. Furthermore, when rust is generated in a magnet incorporated in a device such as a magnetic circuit, the rust may be scattered and contaminate peripheral components. Therefore, in order to avoid these problems, conventionally, a Ni plating film as a corrosion resistant film is formed on the surface of the magnet by electro Ni plating so as to give the magnet the corrosion resistance required. .
[0003]
[Problems to be solved by the invention]
By the way, as magnets used for submersible pumps for pumping well water and for feeding liquids, home appliance feeding pumps, motors for automotive heat exchanger parts, etc., ferrite magnets having excellent corrosion resistance have been used conventionally. However, the use of rare earth-based permanent magnets having high magnetic properties instead of ferrite magnets has been studied in response to demands for space saving by reducing the size of pumps and motors and energy saving by increasing efficiency. However, in order to use rare earth-based permanent magnets for these uses that are used in water, it is a matter of course that corrosion resistance superior to that used in the atmosphere is required. In particular, in motors for heat exchanger parts such as air conditioner evaporators, condensers, radiators, and heaters for home appliances and automobiles, Cu ions and chlorine inevitably mixed in from components of the liquid circulation system, atmospheric environment, and replenisher The environment in which the magnet is used may be an oxidizing and highly corrosive electrolyte solution (corrosive solution) due to the influence of impurities such as ions (salts), sulfate ions, nitrate ions, carbonate ions and dissolved oxygen. is there. Among the impurity ions, Cu ions and chlorine ions are highly corrosive. In particular, since Cu ions are strongly oxidizable, even when a Ni plating film is formed on the surface of the rare earth permanent magnet, the Cu ions remain on the surface of the Ni plating film. There is a strong tendency to promote corrosion in the depth direction by forming a displacement cell due to substitutional precipitation, and as a result, the magnetic properties increase due to corrosion (pitting corrosion and pitting corrosion) that reaches the magnet substrate. There are problems in use such as deterioration. Therefore, when a rare earth-based permanent magnet is used in water, an important issue is how to improve corrosion resistance against Cu ions or chlorine ions.
Accordingly, an object of the present invention is to provide an underwater-use rare earth permanent magnet that exhibits excellent corrosion resistance even when immersed in an oxidizing and highly corrosive electrolyte solution (corrosive solution) and a method for producing the same. To do.
[0004]
[Means for Solving the Problems]
In the process of conducting various studies in view of the above points, the inventors pay attention to the equilibrium potential (Cu 2+ / Cu equilibrium potential) of Cu ions and Cu in an aqueous solution, and the natural electrode potential is equal to or higher than the equilibrium potential. By forming a Ni plating film with characteristics on the outermost surface of the rare earth permanent magnet surface, a magnet that exhibits excellent corrosion resistance even when immersed in an oxidizing and highly corrosive electrolyte solution (corrosion solution) is used. It was found that it was obtained.
[0005]
The present invention has been made based on the above findings, and the method of using a rare earth permanent magnet in water containing Cu ions and chlorine ions according to the present invention is an aromatic sulfonic acid or By containing S using the salt as a supply source, the natural electrode potential (vs. SCE saturated calomel electrode) is −0.1 V or more in an aqueous solution containing 10 ppm of Cu ions, and in an aqueous solution containing 100 ppm of Cu ions. in have a more characteristic 0V, the average electrodeposition crystal grain size is characterized by imparting corrosion resistance by the Ni plating film is 0.1μm or less formed on the outermost layer of the magnet surface.
Also, the method of claim 2, in the method of claim 1, wherein, S content of the Ni plating film characterized in that it is a 10Ppm~800ppm.
Also, The method of claim 3, wherein, in the method according to claim 1 or 2, wherein the film thickness of the Ni plating film as the outermost layer of when forming a multi-layer plating coat layer on the magnet surface is 0.1μm~10μm It is characterized by being.
The method of claim 4, wherein, in the method of claim 3, wherein the Ni plating film characterized in that it is formed on the surface of the Ni plating film as a lower layer.
The method of claim 5, wherein, in the method according to any one of claims 1 to 4, a rare earth-based permanent magnet characterized in that it is a R-Fe-B permanent magnets.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
The underwater rare earth permanent magnet of the present invention has a natural electrode potential (vs. SCE saturated calomel electrode) of −0.1 V or more in an aqueous solution containing 10 ppm of Cu ions and 0 V in an aqueous solution containing 100 ppm of Cu ions. The Ni plating film having the above characteristics is formed on the outermost layer of the magnet surface.
By forming a Ni plating film having this property on the outermost surface of the rare earth-based permanent magnet surface, the natural electrode potential in the aqueous solution of the film is made equal to or higher than the equilibrium potential of Cu ions and Cu (Cu 2+ / Cu equilibrium potential). Thus, a magnet that exhibits excellent corrosion resistance even when used by being immersed in an oxidizing and highly corrosive electrolyte solution (corrosive solution). In order to give better corrosion resistance, the natural electrode potential (vs. SCE saturated calomel electrode) is 0 V or more in an aqueous solution containing 10 ppm of Cu ions, and 0.1 V or more in an aqueous solution containing 100 ppm of Cu ions. It is desirable to form a Ni plating film having the following characteristics.
[0007]
In the present invention, the natural electrode potential means a potential between Ni and an aqueous solution when a plurality of chemical reactions are occurring on the surface of the Ni plating film in the aqueous solution. Specifically, Ni is an anode reaction. Dissolution reaction (Ni → Ni 2+ + 2e), Cu ion reduction reaction (Cu 2+ + 2e → Cu, Cu 2+ + e → Cu + ) and dissolved oxygen reduction reaction (O 2 + 2H 2 O + 4e →) as a cathode reaction 4OH -) refers to a mixed potential based on the like.
[0008]
A rare earth-based permanent Ni plating film having a natural electrode potential (vs. SCE saturated calomel electrode) of −0.1 V or more in an aqueous solution containing 10 ppm of Cu ions and 0 V or more in an aqueous solution containing 100 ppm of Cu ions. As a method for forming the outermost layer on the magnet surface, for example, by performing Ni electroplating using a Ni plating solution containing an aromatic sulfonic acid or a salt thereof, the aromatic sulfonic acid or a salt thereof is applied to the Ni plating film. There is a method of containing S using as a supply source.
[0009]
In electric Ni plating of rare earth permanent magnets, a general plating bath (such as Watt bath) composition alone cannot form a dense Ni plating film with excellent gloss, so that saccharin has been conventionally included in the plating film. A method of densifying the plating film by containing S with an aromatic sulfonimide or aromatic sulfonamide as a supply source is widely adopted. However, when S is contained in the plating film in this way, the surface potential of the Ni plating film is lowered, and therefore the corrosion resistance of the plating film itself is lowered electrochemically.
When forming a multilayer Ni plating film on the surface of the rare earth-based permanent magnet using the above phenomenon, only the outermost Ni plating film contains S (see, for example, JP-A-2-23603), or a magnet The upper Ni plating film is intentionally lowered by increasing the content of S as the surface becomes the upper Ni plating film from the surface (see, for example, Japanese Patent Application Laid-Open No. 4-267305 and Japanese Patent No. 2941446). A method of improving corrosion resistance as a whole by preferentially corroding has been proposed, but when such a magnet is used in a corrosive solution containing Cu ions, the Ni plating film on the outermost layer of the magnet surface natural electrode potential of ends up displacement deposition Cu ions in Ni plating film surface by becomes lower than Cu 2+ / Cu equilibrium potential, as a result, corrosion It was not able to secure a sufficient corrosion resistance on the line.
However, as a result of the study by the present inventors, when the aromatic sulfonimide and aromatic sulfonamide that are widely used are used as the source of S contained in the Ni plating film, the above-described problems occur. Nevertheless, when an aromatic sulfonic acid or a salt thereof is used as a supply source of S, a Ni plating film that exhibits excellent corrosion resistance is formed even when immersed in a corrosive solution containing Cu ions or the like. It has been found.
[0010]
Here, examples of the aromatic sulfonic acid include benzenesulfonic acid and 1,3,6 naphthalenetrisulfonic acid. Examples of the salt of aromatic sulfonic acid include sodium salt and potassium salt.
[0011]
The addition of aromatic sulfonic acid or a salt thereof to the Ni plating solution is desirably performed so that the S content of the formed Ni plating film is 10 ppm to 800 ppm. If the S content of the formed Ni plating film is less than 10 ppm, the effect may not be sufficiently exhibited, and if it exceeds 800 ppm, the Ni plating film may be brittle and lack adhesiveness.
[0012]
The Ni plating solution to which the aromatic sulfonic acid or a salt thereof is added is not particularly limited, and is a per se known one used for electric Ni plating, such as a watt bath, a sulfamic acid bath, a chloride bath, It may be used for a borofluoride bath, an ammonium chloride bath or the like. The electric Ni plating conditions may be performed by setting known conditions according to individual plating baths. If necessary, heat treatment (baking) may be performed in the air at 150 ° C. to 250 ° C. for about 10 minutes to 1 hour after electro Ni plating. By this treatment, the natural electrode potential in the aqueous solution of the Ni plating film to be formed can be moved in a more noble direction.
[0013]
The Ni plating film having a natural electrode potential (vs. SCE saturated calomel electrode) of −0.1 V or higher in an aqueous solution containing 10 ppm of Cu ions and 0 V or higher in an aqueous solution containing 100 ppm of Cu ions is From the viewpoint of densification, it is desirable that the average electrodeposited crystal grain size is 0.1 μm or less. Such a plating film can be formed by adding the above aromatic sulfonic acid or a salt thereof alone to the Ni plating solution, or adding it in combination with an alcohol-based additive such as polyethylene glycol, for example. it can. The grain size of the electrodeposited crystal can be measured by observation with an FE-SEM (field emission scanning microscope) or an AFM (atomic force microscope).
[0014]
The film thickness of the Ni plating film having a characteristic that the natural electrode potential (vs. SCE saturated calomel electrode) is −0.1 V or more in an aqueous solution containing 10 ppm of Cu ions and 0 V or more in an aqueous solution containing 100 ppm of Cu ions. When forming only this Ni plating film on the surface of the rare earth-based permanent magnet, 5 μm to 30 μm is desirable, and when forming this Ni plating film on the outermost layer when forming the multilayer plating film layer on the magnet surface, 0.1 μm 10 μm is desirable. When forming this Ni plating film on the outermost layer when forming the multilayer plating film layer on the magnet surface, the lower layer is a per se known method such as wet plating such as electroplating or electroless plating, or vapor phase plating. Various metal plating films including the Ni plating film to be formed may be used. For example, the first layer is a known Ni plating film, and the second layer (the outermost layer) is the Ni plating film, and the first layer and the second layer. Is the known Ni plating film, the third layer (the outermost layer) is this Ni plating film, the first layer is the known Ni plating film, the second layer is the known Cu plating film, and the third layer (the outermost layer) is this Ni There are forms such as plating film.
[0015]
Among the rare earth permanent magnets applied to the present invention, the rare earth element (R) in the R—Fe—B permanent magnet is at least one of Nd, Pr, Dy, Ho, Tb, Sm, or La , Ce, Gd, Er, Eu, Tm, Yb, Lu, and Y are preferable.
Usually, one type of R is sufficient, but in practice, a mixture of two or more types (such as misch metal and didymium) may be used for reasons of convenience.
Furthermore, by adding at least one of Al, Ti, V, Cr, Mn, Bi, Nb, Ta, Mo, W, Sb, Ge, Sn, Zr, Ni, Si, Zn, Hf, and Ga, It becomes possible to improve the squareness of the coercive force and the demagnetization curve, improve the manufacturability, and reduce the price. Further, by replacing part of Fe with Co, the temperature characteristics can be improved without impairing the magnetic characteristics of the obtained magnet.
[0016]
【Example】
The present invention will be described in more detail with reference to the following examples, but the present invention is not limited to the following description.
[0017]
A sintered body having a composition of 15Nd-1Dy-7B-77Fe (atomic%) produced by powder metallurgy is subjected to aging treatment at 600 ° C. for 2 hours in an argon atmosphere, and a flat plate having a thickness of 2 mm, a width of 15 mm, and a length of 30 mm. Then, the sintered magnet obtained by further chamfering the barrel was pickled and cleaned with diluted nitric acid. After washing with water, it was further electrolytically washed with an alkaline solution and washed with water.
This magnet contains 260 g / l nickel sulfate hexahydrate, 40 g / l nickel chloride hexahydrate, 40 g / l boric acid, 0.5 g / l propargyl alcohol as an additive, and has a pH of No. 4 Ni plating solution was used, and the plating bath temperature was 50 ° C., the current density was 0.2 A / dm 2 , and the Ni plating film with a film thickness of 20 μm was used under the electric Ni plating conditions of the Ni plate as the anode. A single layer plating film was formed on the magnet surface.
Next, nickel sulfate hexahydrate 300 g / l, nickel chloride hexahydrate 50 g / l, boric acid 30 g / l, sodium citrate 10 g / l, adjusted to various concentrations shown in Table 1 Ni plating solution with pH adjusted to 4 is used, the plating bath temperature is 50 ° C., current density is 0.3 A / dm 2 , and the Ni plate is used as the anode, and the film thickness is 5 μm. The Ni plating film was formed as a second layer (outermost layer) plating film on the surface of the first layer plating film. About 2nd layer Ni plating film, S content measured using EPMA (electron beam microanalyzer: Shimadzu Corporation EPM-810 use) and AFM (atomic force microscope: Shimadzu Corporation SPM-9500) Table 1 shows the average electrodeposited crystal grain size measured using
After the plated magnet sample obtained as described above was washed with water and dried, it contained 100 ppm of Cu ions (adjusted with copper chloride dihydrate) and 200 ppm of chloride ions (adjusted with sodium chloride). Further, 50 ° C. corrosive liquid 1 in which dissolved oxygen exists, and 50 ° C. corrosive liquid 2 containing 10 ppm (same) Cu ions and 200 ppm (same) chloride ions and further having dissolved oxygen (both corrosive liquids have pH Was immersed in 6.5-7), and the natural electrode potential of the second Ni plating film was measured and its performance was evaluated. The results are shown in Table 1.
[0018]
In Table 1, the natural electrode potential was measured as follows. That is, the caustic solution was put in a 500 ml beaker and the solution temperature was 50 ° C. Thirty minutes after the plated magnet sample was immersed in the corrosive solution, a glass rugin tube packed with a general saturated potassium chloride solution was used as a reference electrode as the SCE saturated calomel electrode, and the potential of the sample surface was adjusted to a commercially available potentiometer. The measurement was performed by using a stat device (the measurement of the natural electrode potential is preferably performed after 20 to 30 minutes of immersion in a corrosive solution in which the potential of the Ni plating film surface is stable). This measurement was performed while stirring the inside of the beaker with a magnetic stirrer at 500 rpm.
[0019]
Evaluation of film soundness in Table 1 was performed by evaluation of denseness and corrosion resistance of the plating film (coloring reaction test). The evaluation method is briefly described as follows. A plated magnet sample was immersed in a test solution adjusted to pH 2 with potassium ferricyanide 3 g / l, ethanol 100 ml / l and hydrochloric acid, and observed for 60 minutes.
Blue spots occur when the magnet material is corroded or has coating defects (pinholes, etc.). If there is no blue spots after immersion for 60 minutes, blue spots occur after 30 minutes or more after immersion. In the case where a blue spot was generated 10 minutes to 20 minutes after immersion, it was evaluated as x.
[0020]
The corrosion resistance evaluation in Table 1 was conducted by immersing the plated magnet sample in the corrosive solution 1 having a liquid temperature of 50 ° C. for 1000 hours, examining the occurrence of red rust and the deterioration of the magnetic properties based on the flux amount measurement after magnetization, When the demagnetization factor was 1% or less, the evaluation was ○, and otherwise, the evaluation was ×.
[0021]
[Table 1]
Figure 0004572468
[0022]
As is clear from Table 1, by performing Ni electroplating using a Ni plating solution containing an aromatic sulfonic acid or a salt thereof, an aqueous solution in which the natural electrode potential (vs. SCE saturated calomel electrode) contains 10 ppm of Cu ions Forms a Ni-plated film that is at least −0.1 V and has a property of 0 V or higher in an aqueous solution containing 100 ppm of Cu ions and exhibits excellent corrosion resistance even when immersed in a corrosive solution. I found out that I could do it. On the other hand, when Ni electroplating is performed using a Ni plating solution containing aromatic sulfonimide or aromatic sulfonamide, the formed Ni plating film has an S content of aromatic sulfonic acid or a salt thereof. Even if the Ni content is about the same as the S content of the Ni plating film formed by electro Ni plating using the contained Ni plating solution, the natural electrode potential in the aqueous solution is greatly reduced to become base and corrosive. It was found that the corrosion resistance cannot be maintained when immersed in the liquid. The difference is that the Ni plating formed between the case where aromatic sulfonic acid or a salt thereof is used as the source of S and the case where aromatic sulfonimide or aromatic sulfonamide is used as the source of S. It is presumed that this is based on the difference in the precipitation state of these additives as the supply source of S in the film and the difference in the uniformity of the distribution of S in the Ni plating film.
It was also found that the same effect as the aromatic sulfonic acid and its salt can be obtained when thiourea and propargyl alcohol are combined and added to the Ni plating solution, or when polyethylene glycol is added to the Ni plating solution.
[0023]
【The invention's effect】
The underwater rare earth permanent magnet of the present invention has a natural electrode potential (vs. SCE saturated calomel electrode) of −0.1 V or more in an aqueous solution containing 10 ppm of Cu ions and 0 V in an aqueous solution containing 100 ppm of Cu ions. By forming the Ni plating film having the above characteristics on the outermost surface layer of the magnet surface, excellent corrosion resistance is exhibited even if it is immersed in an oxidizing and highly corrosive electrolyte solution (corrosive solution). As a method for producing an underwater-use rare earth permanent magnet of the present invention, for example, by performing Ni electroplating using a Ni plating solution containing an aromatic sulfonic acid or a salt thereof, an aromatic sulfone is applied to the Ni plating film. There is a method of containing S using an acid or a salt thereof as a source.

Claims (5)

Cuイオンと塩素イオンを含む水中で希土類系永久磁石を使用する方法であって、芳香族スルホン酸またはその塩を供給源とするSを含有させることで、自然電極電位(対SCE飽和カロメル電極)がCuイオンを10ppm含む水溶液中で−0.1V以上であり、かつ、Cuイオンを100ppm含む水溶液中で0V以上の特性を有し、平均電析結晶粒径が0.1μm以下であるNiめっき被膜を磁石表面の最表層に形成することによって耐食性を付与することを特徴とする方法。 A method of using a rare earth-based permanent magnet in water containing Cu ions and chlorine ions, and containing natural aromatic sulfonic acid or a salt thereof as a source, so that a natural electrode potential (vs. SCE saturated calomel electrode) Ni plating There is at -0.1V or more in an aqueous solution containing 10ppm of Cu ions, and have a more characteristic 0V in an aqueous solution containing 100ppm of Cu ions, the average electrodeposition grain diameter of 0.1μm or less A method of imparting corrosion resistance by forming a coating on the outermost layer of the magnet surface . 前記Niめっき被膜のS含有量が10ppm〜800ppmであることを特徴とする請求項記載の方法。 The method of claim 1, wherein the S content of the Ni plating film characterized in that it is a 10Ppm~800ppm. 磁石表面に多層めっき被膜層を形成するに際しての最表層としての前記Niめっき被膜の膜厚が0.1μm〜10μmであることを特徴とする請求項1または2記載の方法The method according to claim 1 or 2 , wherein a film thickness of the Ni plating film as an outermost layer when forming the multilayer plating film layer on the magnet surface is 0.1 µm to 10 µm. 前記Niめっき被膜が下層となるNiめっき被膜の表面に形成されていることを特徴とする請求項記載の方法The method according to claim 3, wherein the Ni plating film is formed on a surface of the Ni plating film as a lower layer. 希土類系永久磁石がR−Fe−B系永久磁石であることを特徴とする請求項1乃至のいずれかに記載の方法。 The method according to any one of claims 1 to 4 based permanent magnet characterized in that it is a R-Fe-B permanent magnets.
JP2001009311A 2001-01-17 2001-01-17 Method of using rare earth permanent magnets in water containing Cu ions and chlorine ions Expired - Lifetime JP4572468B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001009311A JP4572468B2 (en) 2001-01-17 2001-01-17 Method of using rare earth permanent magnets in water containing Cu ions and chlorine ions

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001009311A JP4572468B2 (en) 2001-01-17 2001-01-17 Method of using rare earth permanent magnets in water containing Cu ions and chlorine ions

Publications (2)

Publication Number Publication Date
JP2002212783A JP2002212783A (en) 2002-07-31
JP4572468B2 true JP4572468B2 (en) 2010-11-04

Family

ID=18876813

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001009311A Expired - Lifetime JP4572468B2 (en) 2001-01-17 2001-01-17 Method of using rare earth permanent magnets in water containing Cu ions and chlorine ions

Country Status (1)

Country Link
JP (1) JP4572468B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1898756B (en) 2004-07-16 2010-05-26 Tdk株式会社 Rare earth element magnet
JP4670567B2 (en) 2005-09-30 2011-04-13 Tdk株式会社 Rare earth magnets
JP5284811B2 (en) * 2009-01-30 2013-09-11 Tdk株式会社 Rare earth permanent magnet
DE102012202687A1 (en) * 2012-02-22 2013-08-22 Robert Bosch Gmbh Magnet i.e. permanent magnet, for use in electromotor for e.g. anti-skid system in motor car, has base material consisting of neodymium iron boron and applied as coating on layer having specified Vickers hardness
CN111074305A (en) * 2020-01-14 2020-04-28 江西理工大学 Method for depositing Ni layer on surface of magnetic steel based on double-pulse technology

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01268004A (en) * 1988-04-19 1989-10-25 Hitachi Metals Ltd R-tm-b permanent magnet with improved corrosion resistance and manufacture thereof
JPH04288804A (en) * 1991-03-18 1992-10-13 Tdk Corp Permanent magnet and manufacture thereof
JPH0657480A (en) * 1992-08-05 1994-03-01 Sumitomo Special Metals Co Ltd Surface treatment of r-fe-b system permanent magnet
JPH06290935A (en) * 1992-02-20 1994-10-18 Tdk Corp Rare earth magnet
JP2000204495A (en) * 1999-01-08 2000-07-25 Okuno Chem Ind Co Ltd Nickel electroplating solution

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01268004A (en) * 1988-04-19 1989-10-25 Hitachi Metals Ltd R-tm-b permanent magnet with improved corrosion resistance and manufacture thereof
JPH04288804A (en) * 1991-03-18 1992-10-13 Tdk Corp Permanent magnet and manufacture thereof
JPH06290935A (en) * 1992-02-20 1994-10-18 Tdk Corp Rare earth magnet
JPH0657480A (en) * 1992-08-05 1994-03-01 Sumitomo Special Metals Co Ltd Surface treatment of r-fe-b system permanent magnet
JP2000204495A (en) * 1999-01-08 2000-07-25 Okuno Chem Ind Co Ltd Nickel electroplating solution

Also Published As

Publication number Publication date
JP2002212783A (en) 2002-07-31

Similar Documents

Publication Publication Date Title
JP2007525598A (en) Bathes, systems, and methods for electroplating zinc-nickel ternary alloys and higher ternary alloys and articles electroplated so
EP1300489B1 (en) Electrolytic copper-plated r-t-b magnet and plating method thereof
JP2016074979A (en) Cyanide-free electroplating baths for white bronze based on copper (i) ions
WO1999054890A1 (en) Corrosion-resisting permanent magnet and method for producing the same
JP3972111B2 (en) Method for producing rare earth based permanent magnet having copper plating film on its surface
KR100738840B1 (en) Method for producing rare-earth permanent magnet and metal plating bath
Li et al. Template-assisted electrodeposition of Fe-Ni-Co nanowires: effects of electrolyte pH and sodium lauryl sulfate
JP4033241B2 (en) Method for producing rare earth based permanent magnet having copper plating film on its surface
JP4572468B2 (en) Method of using rare earth permanent magnets in water containing Cu ions and chlorine ions
JP4045530B2 (en) Electrolytic copper plating method for RTB-based magnets
JP4538959B2 (en) Electric Ni plating method for rare earth permanent magnet
JP4770553B2 (en) Magnet and manufacturing method thereof
JP4760706B2 (en) Method for imparting hydrogen resistance to articles
JP2004111516A (en) R-t-b rare earth magnet of high corrosion resistance
JP4423377B2 (en) Method for producing soft magnetic thin film and soft magnetic thin film
JP3614754B2 (en) Surface treatment method and magnet manufacturing method
JP2005256045A (en) Plating liquid for forming platinum-iron alloy film and plating method
JP4224075B2 (en) Plating solution, conductive material, and surface treatment method for conductive material
JP3796567B2 (en) R-Fe-B permanent magnet and manufacturing method thereof
JP3868380B2 (en) Plating bath, plating film manufacturing method, and rare earth magnet manufacturing method
JP2006013399A (en) Corrosion-resistant rare earth-based permanent magnet and manufacturing method thereof
JPH0226003A (en) Rare-earth permanent magnet having excellent corrosion-resistance and manufacture thereof
JPH0729734A (en) Magnetic thin film and manufacture thereof
Smistrup et al. Pulse reversal PermAlloy plating process for MEMS applications
KR101602789B1 (en) NdFeB BASED MAGNET AND METHOD OF THE NdFeB BASED MAGNET USING WETTING COATING

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070608

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070918

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080911

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100427

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100628

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100720

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100802

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4572468

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130827

Year of fee payment: 3

EXPY Cancellation because of completion of term