JP3638423B2 - High corrosion resistance permanent magnet - Google Patents

High corrosion resistance permanent magnet Download PDF

Info

Publication number
JP3638423B2
JP3638423B2 JP35691697A JP35691697A JP3638423B2 JP 3638423 B2 JP3638423 B2 JP 3638423B2 JP 35691697 A JP35691697 A JP 35691697A JP 35691697 A JP35691697 A JP 35691697A JP 3638423 B2 JP3638423 B2 JP 3638423B2
Authority
JP
Japan
Prior art keywords
permanent magnet
film
chromate
corrosion resistance
chromium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP35691697A
Other languages
Japanese (ja)
Other versions
JPH11186013A (en
Inventor
昌夫 吉川
健一 勝見
武久 美濃輪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP35691697A priority Critical patent/JP3638423B2/en
Publication of JPH11186013A publication Critical patent/JPH11186013A/en
Application granted granted Critical
Publication of JP3638423B2 publication Critical patent/JP3638423B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/026Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets protecting methods against environmental influences, e.g. oxygen, by surface treatment

Description

【0001】
【発明の属する技術分野】
本発明は、R−T−B系永久磁石(RはYを含む希土類元素の少なくとも一種、TはFeまたはFeおよびCo、以下同じ)に関する。
【0002】
【従来の技術】
希土類永久磁石は優れた磁気特性と経済性のため、電気・電子機器の分野で多用されており、近年益々その高性能化が要求されている。これらの希土類永久磁石のうちR−Fe−B系永久磁石は、希土類コバルト磁石に比べて主要元素であるNdがSmより豊富に存在すること、およびCoを多量に使用しないことから原材料費が安価であり、磁気特性も希土類コバルト磁石を遥かにしのぐ極めて優れた永久磁石である。そのため、これまで希土類コバルト磁石が使用されてきた小型磁気回路がこれによって代替されるだけでなく、ハードフェライトあるいは電磁石が使用されていた分野にも広く応用されている。
しかし、R−T−B系永久磁石は主成分として希土類元素および鉄を含有するため、湿気をおびた空気中で短時間のうちに容易に酸化するという欠点をもっている。そのため、磁気回路に組み込んだ場合に、これらの酸化により磁気回路の出力が低下したり、機器周辺を汚染するという問題点があった。
【0003】
【発明が解決しようとする課題】
このような、R−T−B系永久磁石の耐食性改善のために、樹脂塗装、イオンプレーティング等の気相めっき、ニッケルめっき等の湿式めっき等の各種表面処理法が提案されている。しかしこれらの処理法は複雑な工程を必要とするため、R−Fe−B系永久磁石に対して表面処理コストが高価になってしまうという問題を含んでいた。
また、これらの表面処理法は耐食性を確保するために一定以上の膜厚を必要とし、一般的には寸法精度を含めると10〜50μm、場合によっては100μmもの厚みが必要である。その場合、必然的に磁石体積を小さくせねばならず、磁石が本来持つ磁気特性を十分に発揮できなくなる。
上記のような理由により、R−T−B系永久磁石に、Co、Ni、Cr等を添加し、素材自体の耐食性を改善する試みもなされている。しかし、これらの元素の添加で使用可能な耐食性を有するためには、大量に添加する必要があり、磁気特性の大幅な低下は避けられない。そのため、十分な耐食性を付与することができず、実用には至っていない。
そこで、本発明はR−T−B系永久磁石表面に形成される防錆皮膜が極めて薄く、長時間にわたって防錆効果があり、外観の美観性が保持される高耐食性永久磁石の提供を課題とする。
【0004】
【課題を解決するための手段】
本発明者らは、R−T−B系永久磁石に対するクロメート皮膜について鋭意検討した結果、クロム組成が調整された膜厚1〜100nmのクロメート皮膜をR−T−B系永久磁石表面に形成することにより、極めて薄い膜であっても長時間にわたって外観の美観性が保持され、高耐食性を有することを見い出し本発明を完成させた。
【0005】
すなわち、本発明は、R−T−B系永久磁石に、クロメート処理した後、水洗し80℃以下で乾燥して得られる三価クロムCr3+/六価クロムCr6+の存在比が10以上である膜厚1〜100nmのクロメート皮膜を有することを特徴とする高耐食性永久磁石を要旨とするものである。
【0006】
【発明の実施の形態】
以下、本発明を詳細に説明する。
本発明においてクロメート皮膜が被覆されるR−T−B系永久磁石に用いられるRとしては、Y、La、Ce、Pr、Nd、Sm、Gd、Tb、Dy、Ho、Er、Lu、Ybの内から選択される1種または2種以上が使用される。その中でも、La、Ce、Pr、Nd、Tb、Dyの内少なくとも1種を含むことが好ましい。R、TおよびBの含有量は、5重量%≦R≦40重量%、50重量%≦T≦90重量%、0.2重量%≦B≦8重量%の範囲が好ましい。TはFeまたはFeおよびCoであるが、Coを大量に添加すると保持力が著しく減少するためFeの20%置換までが好ましい。
また、磁気特性の改善あるいはコスト低減のために、Ni、Nb、Al、Ti、Zr、Cr、V、Mn、Mo、Si、Sn、Cu、Ca、Mg、Pb、Sb、GaおよびZnから選択される1種または2種以上を添加することができる。
【0007】
次に、本発明のクロメート皮膜について述べる。
R−T−B系永久磁石の内部組織は、大きく分けると、強磁性であるR214B相(主相)と、その主相を取り囲むように、希土類が主成分であるRリッチ相およびBリッチ相から成っている。
このR−T−B系永久磁石の腐食機構は、高温多湿な条件下では主相に比べて電気化学的に卑であるRリッチ相およびBリッチ相が選択的に腐食され主相の脱粒を招く風化現象と、結露などにより水滴等が磁石体表面に付着した場合に、主相が酸化し茶錆が発生する発錆現象の2種類が考えられる。
【0008】
該磁石体にクロメート処理を行うと、上述したRリッチ相が選択的に除去されることで腐食の起点となる部分が無くなり風化現象が起き難くなる。さらに、クロメート処理によって主相にクロムを含有する不働態膜を形成し発錆を抑える効果が生じる。
このR−T−B系永久磁石の耐食性をさらに飛躍的に向上させるクロメート被膜について鋭意検討した結果、膜中の三価クロムと六価クロムの存在比すなわち三価クロム/六価クロムが10以上であり、しかも1〜100nmの膜厚を有するクロメート皮膜とすることで、風化や発錆現象を抑えることのできる極めて耐食性のよいR−T−B系永久磁石を完成させた。
【0009】
なお三価クロムと六価クロムの測定は、X線光電子分光分析計(XPS)を用いて、Cr2p軌道電子スペクトルのピークの積分強度の測定により求め、三価クロムと六価クロムの存在比は重量比で表される。
膜中の三価クロム/六価クロムの存在比が10未満の場合、すなわち六価クロムの存在比率が高くなると、六価クロムは水に対して溶解性があるため、結露や空気中の水分等によって容易に溶け出し該磁石体表面に茶しみや錆を生じる。逆に水に対して不溶性の三価クロムの膜中の存在比率が高くなる、すなわち膜中の三価クロム/六価クロムの存在比が10以上となると、主相と水分の接触を阻害して、主相の発錆を抑えることが可能となる。したがって膜中の三価クロム/六価クロムの存在比は10以上とした。
【0010】
R−T−B系永久磁石に対するクロメート皮膜の膜厚は1〜100nm、好ましくは2〜80nmの範囲内である。クロメート皮膜の膜厚が1nm未満では十分な耐食性が得られず、逆に100nmを超えると脆く、密着性の乏しいクロメート皮膜となるだけでなく、処理時間が長くなり生産性が悪くなるため、1〜100nmの範囲内とした。
【0011】
クロメート処理の方法には特に制限はなく、エッチングクロメート、電解クロメート、塗布クロメート等を用いればよい。また、クロメート処理液としては、アルカリクロメート、酸性クロメート等のいずれでもよいが、一般的には無水クロム酸を用いた水溶液中に該磁石体を所定時間浸漬する方法により行う。
また、必要に応じてクロメート処理直前に前処理を行ってもよい。この前処理は、該磁石体表面の酸化皮膜や加工による劣化層を除去し、より均一なクロメート被膜を形成させる目的で行うものであり、一般的には該磁石体表面を全体的に均一に溶解させる硝酸、酢酸又はその混酸による酸洗いを行い、続いてスマット除去のために超音波中水洗を行う。
【0012】
クロメート処理後の乾燥は100℃以下、好ましくは80℃以下がよい。乾燥温度が100℃を超えると皮膜が過度に脱水され、場合によっては皮膜に亀裂が生じたり、さらに粉末化して脱落するようになり皮膜の信頼性が低下するので好ましくない。
【0013】
【実施例】
以下、本発明の実施の形態を実施例および比較例を挙げて具体的に説明するが、本発明はこれらに何等制限されるものではない。
(実施例1、比較例1)
組成式Nd14.5Fe75.5Co46 のNd−Fe−B系永久磁石を20×40×2mm形状に加工し、次いで前処理として、0.3Nの硝酸(25℃)に1分浸漬し、その後純水中(25℃)で1分間超音波洗浄を行った。上記処理の該磁石体を無水クロム酸濃度5g/l中に50℃で30分浸漬し、その後純水中(25℃)で30秒の水洗を行い、60℃で5分の乾燥を行って実施例1とした。また、無水クロム酸に浸漬後水洗を行わない以外は実施例1と同様に処理したものを比較例1とした。試料は各々10個づつ作製した。
実施例1と比較例1のクロメート皮膜の膜厚およびX線光電子分光分析計(XPS)を用いて測定した膜中の三価クロム/六価クロムの存在比を表1に示す。
耐食性を評価するため、これらの試料の内各5個づつは、温度80℃、湿度90%RHの環境に500時間暴露し、発錆の有無および発生率を調べた。また、残りの各5個づつは、プレッシャークッカー試験(120℃×100%RH)に100時間さらして試験後の重量減少によって防錆効果を評価した。その結果を表2に示す。
【0014】
【表1】

Figure 0003638423
【0015】
【表2】
Figure 0003638423
【0016】
(実施例2、比較例2)
実施例1と同組成、同形状のNd−Fe−B系永久磁石を準備し、0.2N硝酸と2N酢酸の混酸(25℃)に30秒浸漬し、その後純水中(25℃)で1分間超音波洗浄を行った。上記処理の磁石表面を無水クロム酸濃度3g/l中に60℃で10分浸漬し、その後純水中(25℃)で30秒の水洗を行い、次いでメタノール(25℃)中に5秒浸漬後30℃で1分の乾燥を行って実施例2の試料を作製した。
また、比較例2として、無水クロム酸濃度3g/l中に無水クロム酸ナトリウム5g/lを混ぜたクロメート液に浸漬する以外は実施例2と同様の処理を施した試料を作製した。
実施例2と比較例2のクロメート皮膜の膜厚およびX線光電子分光分析計(XPS)を用いて測定した膜中の三価クロム/六価クロムの存在比を表3に示す。また実施例1と同様の条件で測定した、実施例2と比較例2の耐食試験の結果を表4に示す。
【0017】
【表3】
Figure 0003638423
【0018】
【表4】
Figure 0003638423
【0019】
表1〜表4から分かるように、三価クロム/六価クロムの存在比が10以上で膜厚1〜100nmのクロメート被膜をR−T−B系永久磁石に施すことで、長時間にわたって高耐食性を有することがわかる。
【0020】
【発明の効果】
本発明のクロメート皮膜をR−T−B系永久磁石表面に形成することにより、極めて薄い膜厚であっても長時間にわたって外観の美観性が保持され、高耐食性を有するので、産業上その効果は極めて高い。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an R-T-B permanent magnet (R is at least one kind of rare earth element including Y, T is Fe or Fe and Co, the same shall apply hereinafter).
[0002]
[Prior art]
Rare earth permanent magnets are widely used in the field of electrical and electronic equipment because of their excellent magnetic properties and economy, and in recent years, their performance is increasingly required. Among these rare earth permanent magnets, R-Fe-B permanent magnets have lower raw material costs because Nd, which is the main element, is abundant than Sm and rarely uses Co in comparison with rare earth cobalt magnets. The magnetic properties of the permanent magnet are far superior to those of rare earth cobalt magnets. For this reason, the small magnetic circuit in which rare earth cobalt magnets have been used so far is not only replaced by this, but is also widely applied to fields where hard ferrites or electromagnets have been used.
However, since the R-T-B permanent magnet contains rare earth elements and iron as main components, it has a drawback of being easily oxidized in a short period of time in humid air. For this reason, when incorporated in a magnetic circuit, there is a problem in that the output of the magnetic circuit decreases due to these oxidations, and the periphery of the device is contaminated.
[0003]
[Problems to be solved by the invention]
Various surface treatment methods such as resin coating, vapor phase plating such as ion plating, and wet plating such as nickel plating have been proposed to improve the corrosion resistance of such R-T-B permanent magnets. However, since these treatment methods require complicated steps, the surface treatment cost is increased for R-Fe-B permanent magnets.
In addition, these surface treatment methods require a certain film thickness in order to ensure corrosion resistance, and generally require a thickness of 10 to 50 μm and, in some cases, a thickness of 100 μm including dimensional accuracy. In that case, the volume of the magnet must be reduced, and the magnetic properties inherent in the magnet cannot be fully exhibited.
For the reasons described above, attempts have been made to improve the corrosion resistance of the material itself by adding Co, Ni, Cr, or the like to the RTB-based permanent magnet. However, in order to have corrosion resistance that can be used by the addition of these elements, it is necessary to add a large amount, and a significant decrease in magnetic properties is inevitable. Therefore, sufficient corrosion resistance cannot be imparted and it has not been put into practical use.
Therefore, the present invention has an object to provide a highly corrosion-resistant permanent magnet that has a very thin rust preventive film formed on the surface of an R-T-B system permanent magnet, has a rust preventive effect over a long period of time, and maintains the aesthetic appearance. And
[0004]
[Means for Solving the Problems]
As a result of intensive studies on the chromate film for the R-T-B system permanent magnet, the present inventors form a chromate film with a film thickness of 1 to 100 nm with the chromium composition adjusted on the surface of the R-T-B system permanent magnet. Thus, the present invention was completed by finding that the aesthetic appearance of the film is maintained for a long time even with a very thin film and has high corrosion resistance.
[0005]
That is, according to the present invention, the abundance ratio of trivalent chromium Cr 3+ / hexavalent chromium Cr 6+ obtained by subjecting an R-T-B permanent magnet to chromate treatment , washing with water and drying at 80 ° C. or less is 10. The gist of the present invention is a highly corrosion-resistant permanent magnet having the above-described chromate film having a thickness of 1 to 100 nm.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail.
In the present invention, R used for the RTB-based permanent magnet coated with the chromate film is Y, La, Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, Lu, Yb. One or two or more selected from the above are used. Among these, it is preferable that at least one of La, Ce, Pr, Nd, Tb, and Dy is included. The contents of R, T and B are preferably in the ranges of 5 wt% ≦ R ≦ 40 wt%, 50 wt% ≦ T ≦ 90 wt%, 0.2 wt% ≦ B ≦ 8 wt%. T is Fe or Fe and Co. However, when Co is added in a large amount, the holding power is remarkably reduced.
In addition, Ni, Nb, Al, Ti, Zr, Cr, V, Mn, Mo, Si, Sn, Cu, Ca, Mg, Pb, Sb, Ga, and Zn are selected for improvement of magnetic characteristics or cost reduction. One kind or two or more kinds can be added.
[0007]
Next, the chromate film of the present invention will be described.
The internal structure of an R-T-B permanent magnet can be broadly divided into an R 2 T 14 B phase (main phase) that is ferromagnetic and an R-rich phase that is mainly composed of rare earths so as to surround the main phase. And B rich phase.
The corrosion mechanism of this R-T-B system permanent magnet is that the R-rich phase and B-rich phase, which are electrochemically lower than the main phase under high-temperature and high-humidity conditions, are selectively corroded to prevent the main phase from degranulating. There are two types: a weathering phenomenon that invites water, and a rusting phenomenon that occurs when water droplets or the like adhere to the surface of the magnet body due to condensation or the like, and the main phase is oxidized and brown rust is generated.
[0008]
When the chromate treatment is performed on the magnet body, the R-rich phase described above is selectively removed, so that a portion that becomes a starting point of corrosion disappears and a weathering phenomenon hardly occurs. Furthermore, the chromate treatment produces an effect of suppressing rusting by forming a passive film containing chromium in the main phase.
As a result of intensive studies on a chromate film that dramatically improves the corrosion resistance of this R-T-B system permanent magnet, the ratio of trivalent chromium to hexavalent chromium in the film, that is, trivalent chromium / hexavalent chromium is 10 or more. Moreover, by using a chromate film having a film thickness of 1 to 100 nm, an R-T-B permanent magnet having extremely good corrosion resistance capable of suppressing weathering and rusting was completed.
[0009]
In addition, the measurement of trivalent chromium and hexavalent chromium is obtained by measuring the integrated intensity of the peak of Cr2p orbital electron spectrum using an X-ray photoelectron spectrometer (XPS), and the abundance ratio of trivalent chromium and hexavalent chromium is Expressed in weight ratio.
If the abundance ratio of trivalent chromium / hexavalent chromium in the film is less than 10, that is, if the abundance ratio of hexavalent chromium is high, hexavalent chromium is soluble in water. Easily melts due to, for example, brown spots and rust on the surface of the magnet body. Conversely existence ratio in the film insoluble trivalent chromium is high relative to water, i.e. existence ratio of the trivalent chromium / hexavalent chromium in the film is 10 or more, inhibits contact of the main phase and water Thus, rusting of the main phase can be suppressed. Therefore, the abundance ratio of trivalent chromium / hexavalent chromium in the film was set to 10 or more.
[0010]
The film thickness of the chromate film with respect to the R-T-B permanent magnet is in the range of 1 to 100 nm, preferably 2 to 80 nm. If the thickness of the chromate film is less than 1 nm, sufficient corrosion resistance cannot be obtained. Conversely, if the film thickness exceeds 100 nm, not only the chromate film is brittle and the adhesion is poor, but also the treatment time becomes long and the productivity deteriorates. Within the range of ˜100 nm.
[0011]
There is no particular limitation on the chromate treatment method, and etching chromate, electrolytic chromate, coating chromate, or the like may be used. The chromate treatment liquid may be any of alkali chromate, acidic chromate, etc., but is generally performed by a method of immersing the magnet body in an aqueous solution using chromic anhydride for a predetermined time.
It may also be pretreated to chromate treatment immediately before if necessary. This pretreatment is performed for the purpose of removing the oxide film on the surface of the magnet body and the deteriorated layer due to processing to form a more uniform chromate film. In general, the surface of the magnet body is generally uniform. Pickling with nitric acid, acetic acid or a mixed acid to be dissolved is performed, followed by washing with ultrasonic water to remove smut.
[0012]
Drying after chromate treatment should be 100 ° C. or lower, preferably 80 ° C. or lower. When the drying temperature exceeds 100 ° C., the film is excessively dehydrated. In some cases, the film is cracked or further pulverized and falls off, so that the reliability of the film is lowered.
[0013]
【Example】
Embodiments of the present invention will be specifically described below with reference to examples and comparative examples, but the present invention is not limited to these embodiments.
(Example 1, Comparative Example 1)
An Nd—Fe—B permanent magnet of composition formula Nd 14.5 Fe 75.5 Co 4 B 6 is processed into a shape of 20 × 40 × 2 mm, and then immersed in 0.3N nitric acid (25 ° C.) for 1 minute as a pretreatment, Thereafter, ultrasonic cleaning was performed in pure water (25 ° C.) for 1 minute. The magnet body of the above treatment was immersed in chromic anhydride concentration 5 g / l at 50 ° C. for 30 minutes, then washed with pure water (25 ° C.) for 30 seconds, and dried at 60 ° C. for 5 minutes. Example 1 was adopted. Further, Comparative Example 1 was treated in the same manner as in Example 1 except that it was not immersed in chromic anhydride and then washed with water. Ten samples were prepared for each sample.
Table 1 shows the film thickness of the chromate film of Example 1 and Comparative Example 1 and the abundance ratio of trivalent chromium / hexavalent chromium in the film measured using an X-ray photoelectron spectrometer (XPS).
In order to evaluate the corrosion resistance, five of each of these samples were exposed to an environment of a temperature of 80 ° C. and a humidity of 90% RH for 500 hours, and examined for the presence and occurrence of rust. Further, each of the remaining 5 pieces was subjected to a pressure cooker test (120 ° C. × 100% RH) for 100 hours, and the antirust effect was evaluated by weight reduction after the test. The results are shown in Table 2.
[0014]
[Table 1]
Figure 0003638423
[0015]
[Table 2]
Figure 0003638423
[0016]
(Example 2, comparative example 2)
An Nd—Fe—B permanent magnet having the same composition and shape as in Example 1 was prepared, immersed in a mixed acid of 0.2N nitric acid and 2N acetic acid (25 ° C.) for 30 seconds, and then in pure water (25 ° C.). Ultrasonic cleaning was performed for 1 minute. The magnet surface of the above treatment is immersed in chromic anhydride concentration of 3 g / l for 10 minutes at 60 ° C., then washed with pure water (25 ° C.) for 30 seconds, and then immersed in methanol (25 ° C.) for 5 seconds. Thereafter, the sample of Example 2 was prepared by drying at 30 ° C. for 1 minute.
Further, as Comparative Example 2, a sample was prepared that was treated in the same manner as in Example 2 except that the sample was immersed in a chromate solution in which 5 g / l of anhydrous chromate was mixed in 3 g / l of anhydrous chromic acid.
Table 3 shows the film thicknesses of the chromate films of Example 2 and Comparative Example 2 and the abundance ratio of trivalent chromium / hexavalent chromium in the films measured using an X-ray photoelectron spectrometer (XPS). Table 4 shows the results of the corrosion resistance test of Example 2 and Comparative Example 2 measured under the same conditions as in Example 1.
[0017]
[Table 3]
Figure 0003638423
[0018]
[Table 4]
Figure 0003638423
[0019]
As can be seen from Tables 1 to 4, by applying a chromate film having a trivalent chromium / hexavalent chromium ratio of 10 or more and a film thickness of 1 to 100 nm to the R-T-B permanent magnet, It turns out that it has corrosion resistance.
[0020]
【The invention's effect】
By forming the chromate film of the present invention on the surface of the R-T-B system permanent magnet, the aesthetics of the appearance is maintained for a long time even with a very thin film thickness, and it has high corrosion resistance. Is extremely expensive.

Claims (1)

R−T−B系永久磁石(RはYを含む希土類元素の少なくとも一種、TはFeまたはFeおよびCo)に、クロメート処理した後、水洗し80℃以下で乾燥して得られる三価クロムCr3+/六価クロムCr6+の存在比が10以上である膜厚1〜100nmのクロメート皮膜を有することを特徴とする高耐食性永久磁石。Trivalent chromium Cr obtained by subjecting an R-T-B permanent magnet (R is at least one of rare earth elements including Y, T is Fe or Fe and Co), followed by washing with water and drying at 80 ° C. or lower. A highly corrosion-resistant permanent magnet having a chromate film having a film thickness of 1 to 100 nm and an abundance ratio of 3 + / hexavalent chromium Cr 6+ of 10 or more.
JP35691697A 1997-12-25 1997-12-25 High corrosion resistance permanent magnet Expired - Fee Related JP3638423B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35691697A JP3638423B2 (en) 1997-12-25 1997-12-25 High corrosion resistance permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35691697A JP3638423B2 (en) 1997-12-25 1997-12-25 High corrosion resistance permanent magnet

Publications (2)

Publication Number Publication Date
JPH11186013A JPH11186013A (en) 1999-07-09
JP3638423B2 true JP3638423B2 (en) 2005-04-13

Family

ID=18451417

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35691697A Expired - Fee Related JP3638423B2 (en) 1997-12-25 1997-12-25 High corrosion resistance permanent magnet

Country Status (1)

Country Link
JP (1) JP3638423B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102333482B (en) 2009-02-27 2014-05-28 日立金属株式会社 Magnetic field generator

Also Published As

Publication number Publication date
JPH11186013A (en) 1999-07-09

Similar Documents

Publication Publication Date Title
US6777097B2 (en) Corrosion resistant rare earth magnet and its preparation
JP2844269B2 (en) Corrosion resistant permanent magnet and method for producing the same
EP1180771B1 (en) Rare earth metal-based permanent magnet having corrosion-resistant film and method for producing the same
EP0481224B1 (en) Permanent magnet having high corrosion resistance, a process for making the same and a process for making a bonded magnet having high corrosion resistance
JP3638423B2 (en) High corrosion resistance permanent magnet
JP3994847B2 (en) Method for producing rare earth based permanent magnet having copper plating film on its surface
JPS63217601A (en) Corrosion-resistant permanent magnet and manufacture thereof
JP3580521B2 (en) Manufacturing method of high corrosion resistant permanent magnet
JP2002198241A (en) Rare earth permanent magnet having corrosion resistant film, and its manufacturing method
JPH09289108A (en) R-fe-b permanent magnet having electric insulating film excellent in adhesion and its manufacture
US5286366A (en) Surface treatment for iron-based permanent magnet including rare-earth element
JPH09326308A (en) Manufacture of r-fe-b permanent magnet having electric insulation coating with excellent adhesion
JP3976126B2 (en) Rare-earth permanent magnet having a corrosion-resistant coating on its surface and method for producing the same
JPH10340823A (en) Manufacture of r-iron-boron permanent magnet having excellent salt water resistance
JP2631493B2 (en) Manufacturing method of corrosion resistant permanent magnet
JPS61185910A (en) Manufacture of permanent magnet with excellent corrosion-resisting property
JPS62120004A (en) Permanent magnet with excellent corrosion resistance and manufacture thereof
JP2002060961A (en) Method for forming chemical film on sintered compact and rare earth metal magnet subjected to chemical film
JP3411605B2 (en) Corrosion resistant permanent magnet
JPH04276603A (en) R-tm-b permanent magnet improved in corrosion resistance
JPS63254702A (en) Manufacture of corrosion resisting permanent magnet
JPH06140226A (en) Corrosion-resistant permanent magnet
JP2606904B2 (en) Permanent magnet having good touch resistance and method for producing the same
JPH097867A (en) High corrosion-resistant permanent magnet and manufacture thereof
JPH09260120A (en) R-fe-b type permanent magnet superior in electric insulation, heat resistance and corrosion resistance and manufacturing method thereof

Legal Events

Date Code Title Description
A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050111

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080121

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110121

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees