JPH097867A - High corrosion-resistant permanent magnet and manufacture thereof - Google Patents
High corrosion-resistant permanent magnet and manufacture thereofInfo
- Publication number
- JPH097867A JPH097867A JP7156197A JP15619795A JPH097867A JP H097867 A JPH097867 A JP H097867A JP 7156197 A JP7156197 A JP 7156197A JP 15619795 A JP15619795 A JP 15619795A JP H097867 A JPH097867 A JP H097867A
- Authority
- JP
- Japan
- Prior art keywords
- permanent magnet
- magnet
- protective layer
- treatment
- glass
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F41/00—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
- H01F41/02—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
- H01F41/0253—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
- H01F41/026—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets protecting methods against environmental influences, e.g. oxygen, by surface treatment
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Environmental & Geological Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Chemical Treatment Of Metals (AREA)
- Hard Magnetic Materials (AREA)
- Manufacturing Cores, Coils, And Magnets (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、高耐食性を有する希土
類永久磁石およびその製造方法に関し、特に焼結磁石表
面にアルカリけい酸塩水溶液による保護層を均一に被覆
したR−Fe−B系永久磁石およびその製造方法に関す
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rare earth permanent magnet having high corrosion resistance and a method for producing the same, and more particularly to an R-Fe-B permanent magnet in which the surface of a sintered magnet is uniformly covered with a protective layer of an aqueous alkali silicate solution. A magnet and a manufacturing method thereof.
【0002】[0002]
【従来の技術】希土類永久磁石はすぐれた磁気特性と経
済性のため電気・電子機器の分野で多用されており、近
年益々その高性能化が要求されている。これらのうちR
−Fe−B系永久磁石は、希土類コバルト磁石に比べて
主要元素であるNd がSm より豊富に存在すること、C
o を多量に使用しないことから原材料費が安価であり、
磁気特性も希土類コバルト磁石をはるかにしのぐ極めて
優れた永久磁石材料であるため、これまで希土類コバル
ト磁石が使用されてきた小型磁気回路がこれによって代
替されるだけでなく、ハードフェライトあるいは電磁石
が使われていた分野にも広く応用されようとしている。
しかし、R−Fe −B系永久磁石は主成分として希土類
元素および鉄を含有するため、湿気をおびた空気中で短
時間の内に容易に酸化するという欠点を有しており、磁
気回路に組み込んだ場合にこれらの酸化被膜により磁気
回路の出力が低下したり、機器周辺を汚染するという問
題があった。2. Description of the Related Art Rare earth permanent magnets have been widely used in the field of electric and electronic devices because of their excellent magnetic properties and economic efficiency, and in recent years, their performance has been required to increase. R of these
The --Fe--B system permanent magnet has a larger amount of Nd, which is a main element, than Sm, as compared with the rare earth cobalt magnet.
Raw materials cost is low because a large amount of o is not used,
Since it is a permanent magnet material with excellent magnetic properties far superior to those of rare earth cobalt magnets, it not only replaces the small magnetic circuit where rare earth cobalt magnets have been used until now, but also uses hard ferrites or electromagnets. It is about to be widely applied to other fields.
However, since the R-Fe-B system permanent magnet contains rare earth elements and iron as main components, it has a drawback that it is easily oxidized in humid air in a short period of time, and thus it has a drawback in magnetic circuits. When incorporated, there is a problem in that the output of the magnetic circuit is reduced due to these oxide films and the surroundings of the equipment are contaminated.
【0003】[0003]
【発明が解決しようとする課題】このような、R−Fe
−B系永久磁石の耐食性改善のために、樹脂塗装、イオ
ンプレーティング等の気相めっき、Ni めっき等の湿式
めっき等の各種表面処理法が提案されている。しかし、
上記の表面処理法は複雑な工程を必要とするため、R−
Fe −B系永久磁石に対する表面処理コストが高価であ
るという問題があった。また、より簡易な表面処理法と
してR−Fe −B系永久磁石にクロム酸処理のみを施す
技術(特開平6-302420号参照)が提案されているが、ク
ロム酸処理前に硝酸等による酸洗処理が必要であり、ま
た、クロム酸処理液は廃液を容易に処理することが難し
いため、必ずしも表面処理コストが安価であるとは言え
ない。本発明は、かかる課題を解決するために為された
もので、従来の表面処理法より安価にかつ簡便な方法で
高耐食性を有するR−Fe −B系永久磁石を提供するこ
とを目的としている。[Problems to be Solved by the Invention] Such R-Fe
Various surface treatment methods such as resin coating, vapor-phase plating such as ion plating, and wet plating such as Ni plating have been proposed for improving the corrosion resistance of B-type permanent magnets. But,
Since the above surface treatment method requires complicated steps, R-
There is a problem that the surface treatment cost for the Fe-B system permanent magnet is expensive. Further, as a simpler surface treatment method, a technique has been proposed in which only the chromic acid treatment is applied to the R-Fe-B system permanent magnet (see JP-A-6-302420). Since the washing treatment is necessary and the waste liquid of the chromic acid treatment liquid is difficult to treat easily, the surface treatment cost is not necessarily low. The present invention has been made to solve the above problems, and an object of the present invention is to provide an R-Fe-B system permanent magnet having high corrosion resistance in a cheaper and simpler method than conventional surface treatment methods. .
【0004】[0004]
【課題を解決するための手段】本発明者はR−Fe −B
系永久磁石に対する耐食性被膜およびその形成法につい
て鋭意検討した結果、アルカリけい酸塩水溶液からなる
処理液にR−Fe −B系永久磁石を浸漬するか、該処理
液を磁石表面に塗布した後、加熱処理を行い該永久磁石
表面にガラス状保護層を形成することにより、長時間に
わたって外観の美観性が保持され、従来の表面処理法よ
り安価に処理可能であり、かつ廃液処理が容易であるこ
とを知見し、諸条件を確立して本発明を完成したもの
で、その要旨は、アルカリけい酸塩水溶液からなる処理
液に、R−Fe −B系永久磁石(ここにRはYを含む希
土類元素の少なくとも1種)を浸漬あるいは該処理液を
塗布した後加熱処理を行うことにより、該磁石表面に厚
み5nm〜10μmのガラス状保護層を被覆することを特徴
とする高耐食性永久磁石の製造方法、または、超音波洗
浄による前処理をR−Fe −B系永久磁石表面に施した
後、該磁石をアルカリけい酸塩水溶液からなる処理液に
浸漬、あるいは該処理液を磁石表面に塗布し、加熱処理
を行うことにより、該磁石表面に厚み5nm〜10μmのガ
ラス状保護層を被覆することを特徴とする高耐食性永久
磁石の製造方法、および前記2種類の方法により製造さ
れた厚み5nm〜10μmのガラス状保護層を有することを
特徴とする高耐食性永久磁石にある。The present inventor has proposed that R-Fe-B
As a result of diligent studies on a corrosion resistant coating for a system permanent magnet and a method for forming the same, an R-Fe-B system permanent magnet was dipped in a treatment solution consisting of an alkali silicate aqueous solution, or after the treatment solution was applied to the magnet surface, By performing a heat treatment to form a glassy protective layer on the surface of the permanent magnet, the aesthetic appearance is maintained for a long time, the treatment can be performed at a lower cost than conventional surface treatment methods, and waste liquid treatment is easy. Therefore, the present invention has been completed by establishing various conditions, and the gist of the invention is to provide an R-Fe-B system permanent magnet (where R contains Y) in a treatment liquid composed of an aqueous alkali silicate solution. Highly corrosion-resistant permanent magnet characterized by coating the surface of the magnet with a glass-like protective layer having a thickness of 5 nm to 10 μm by dipping at least one rare earth element) or applying the treatment liquid and then performing heat treatment. Or a pretreatment by ultrasonic cleaning is applied to the surface of the R-Fe-B system permanent magnet, and then the magnet is immersed in a treatment solution containing an aqueous alkali silicate solution, or the treatment solution is applied to the magnet surface. A method for producing a highly corrosion-resistant permanent magnet, characterized by coating the surface of the magnet with a glass-like protective layer having a thickness of 5 nm to 10 μm by applying heat treatment, and the thickness produced by the above two methods. A highly corrosion-resistant permanent magnet having a glass-like protective layer of 5 nm to 10 μm.
【0005】以下、本発明を詳細に説明する。本発明の
最大の特徴であるガラス状保護層の形成方法において、
表面処理法の処理液としては、アルカリけい酸塩水溶液
にイオン交換水を加えて濃度の調整を行うが、下記ガラ
ス状保護層の膜厚(5nm〜10μm)を得るためにはSiO2
として3〜200g/Lとなるように調整する。3g/L 未満で
は十分な耐食性が得られず、 200g/L を越えるとアルカ
リけい酸塩水溶液の粘度が高くなり、加熱処理後膜厚に
ムラが出来てしまい外観上好ましくない。アルカリけい
酸塩としては具体的には水ガラス(Na2OとSiO2が主成
分)、けい酸カリウム、けい酸リチウムなどが挙げられ
る。Hereinafter, the present invention will be described in detail. In the method for forming a glassy protective layer, which is the greatest feature of the present invention,
As a treatment liquid for the surface treatment method, ion-exchanged water is added to an alkali silicate aqueous solution to adjust the concentration. To obtain the following glassy protective layer film thickness (5 nm to 10 μm), SiO 2 is used.
Adjust to be 3 to 200 g / L. If it is less than 3 g / L, sufficient corrosion resistance cannot be obtained, and if it exceeds 200 g / L, the viscosity of the aqueous alkali silicate solution becomes high and the film thickness becomes uneven after heat treatment, which is not preferable in appearance. Specific examples of the alkali silicate include water glass (mainly composed of Na 2 O and SiO 2 ), potassium silicate, lithium silicate and the like.
【0006】本発明においてアルカリけい酸水溶液より
形成されるガラス状保護層の膜厚は5nm〜10μmが適当
である。5nm未満では磁石表面の凹凸に対して十分な被
覆が出来ずに十分な耐食性は得られない。また、10μm
を越えると耐食性については実用上問題はないが、均一
な膜厚を得ることが難しくなり外観上も好ましくない。
さらに、ガラス状保護層を厚くすると外観形状が同一で
あっても、使用できるR−Fe −B系永久磁石の体積が
小さくなるため、磁石使用上も好ましくない。さらに、
ガラス状保護層の膜厚が 100nm〜3μmの範囲にあれば
本発明の効果が顕著に現われ好ましい。本発明の表面処
理法において、アルカリけい酸塩水溶液に浸漬、あるい
は磁石表面に塗布後の加熱処理は、水分の蒸発、シラノ
ール基の脱水縮合を十分に行なわさせるために、温度50
〜450 ℃、より好ましくは 120〜450 ℃であることが望
ましい。処理時間としては1〜120 分が好ましい。50℃
未満では水分の蒸発およびシラノール基の脱水縮合が十
分ではなく、また、処理時間が長時間になるためコスト
的にも好ましくない。なお、 120℃以上では水分の蒸発
およびシラノール基の脱水縮合がより十分になる。ま
た、 450℃を越えるとR−Fe −B系磁石組織に影響が
生じて磁気特性が劣化し好ましくない。また、処理時間
が1分未満では水分の蒸発およびシラノール基の脱水縮
合が十分に進行せず、 120分を越えると実用上問題はな
いが生産性が低下しコスト的に好ましくない。また、上
記の工程を2回以上繰り返すことも可能である。In the present invention, the glass-like protective layer formed from an aqueous solution of alkali silicic acid preferably has a thickness of 5 nm to 10 μm. If the thickness is less than 5 nm, sufficient coverage cannot be obtained for the irregularities on the magnet surface, and sufficient corrosion resistance cannot be obtained. Also, 10μm
If it exceeds, there is no practical problem in corrosion resistance, but it is difficult to obtain a uniform film thickness, which is not preferable in appearance.
Furthermore, if the glass-like protective layer is made thick, the volume of the R-Fe-B system permanent magnet that can be used will be small even if the outer appearance is the same, which is not preferable in terms of magnet usage. further,
When the thickness of the glassy protective layer is in the range of 100 nm to 3 μm, the effect of the present invention is remarkably exhibited, which is preferable. In the surface treatment method of the present invention, the heat treatment after dipping in an alkali silicate aqueous solution or coating on the surface of the magnet is carried out at a temperature of 50 in order to sufficiently evaporate water and dehydrate and condense silanol groups.
It is desirable that the temperature is ˜450 ° C., more preferably 120 to 450 ° C. The treatment time is preferably 1 to 120 minutes. 50 ° C
If the amount is less than this, evaporation of water and dehydration condensation of silanol groups are not sufficient, and the treatment time becomes long, which is not preferable in terms of cost. At 120 ° C or higher, evaporation of water and dehydration condensation of silanol groups will be more sufficient. On the other hand, if the temperature exceeds 450 ° C, the structure of the R-Fe-B system magnet is affected and the magnetic properties are deteriorated, which is not preferable. Further, when the treatment time is less than 1 minute, water evaporation and dehydration condensation of silanol groups do not proceed sufficiently, and when it exceeds 120 minutes, there is no problem in practical use, but productivity is lowered, which is not preferable in terms of cost. It is also possible to repeat the above steps twice or more.
【0007】本発明の表面処理方法において、前処理と
してはR−Fe −B系永久磁石のアルカリけい酸水溶液
への浸漬の直前、あるいは磁石表面へのアルカリけい酸
水溶液の塗布の直前に超音波洗浄を行うことが望まし
い。ガラス状保護層の密着力および耐食性を低下させる
原因である物理的に吸着あるいは磁気的に吸引されて磁
石表面に残存する微小な加工屑や磁粉を超音波洗浄によ
り磁石表面から脱離させてガラス状保護層の密着力およ
び耐食性を向上させることができる。通常、Ni めっき
等の湿式めっき法、りん酸亜鉛処理等の化成処理法にお
いては前処理として、油分の除去を行う脱脂工程、保護
層を被覆しにくい希土類元素酸化物等の相を除去するた
めの酸洗工程、保護層の形成を確実に行うための活性化
工程等の複雑な前処理を行うことにより、密着力および
耐食性の高い保護層を磁石表面に被覆している。しか
し、本発明により得られるガラス状保護層は湿式めっ
き、化成処理等により得られる保護層とは異なり、希土
類元素酸化物等の上にも容易に被膜を形成することが可
能であり、また、磁石表面と処理液が反応して保護層を
形成する方式ではないので、上記のような酸洗工程、活
性化工程等の前処理は必ずしも必要でなく、磁石表面の
微細な磁粉や加工屑を除去するだけの前処理でも十分な
密着力および耐食性を有するガラス状保護層を形成する
ことができる。従って、本発明の前処理としては脱脂工
程、酸洗工程、活性化工程等を行った後超音波洗浄を行
ってもよいが、超音波洗浄のみの前処理が工程の簡素化
およびコストの点からより好ましいと言える。In the surface treatment method of the present invention, as pretreatment, ultrasonic waves are applied immediately before the immersion of the R-Fe-B system permanent magnet in the alkaline silicic acid aqueous solution or immediately before the application of the alkaline silicic acid aqueous solution onto the magnet surface. It is desirable to perform cleaning. The minute processing dust or magnetic powder that is physically adsorbed or magnetically attracted and remains on the magnet surface, which causes the adhesion and corrosion resistance of the glass-like protective layer to desorb from the magnet surface by ultrasonic cleaning The adhesion and corrosion resistance of the protective layer can be improved. Usually, in a wet plating method such as Ni plating and a chemical conversion treatment method such as zinc phosphate treatment, a degreasing step for removing oil and a phase such as a rare earth element oxide that is difficult to cover the protective layer are performed as pretreatment. The surface of the magnet is coated with a protective layer having high adhesion and corrosion resistance by performing complicated pretreatments such as the acid pickling step and the activation step for surely forming the protective layer. However, the glass-like protective layer obtained by the present invention is different from the protective layer obtained by wet plating, chemical conversion treatment, etc., and it is possible to easily form a film on a rare earth element oxide or the like, and Since it is not a method of forming a protective layer by reacting the magnet surface with the treatment liquid, pretreatment such as the above-mentioned pickling step and activation step is not always necessary, and fine magnetic powder and processing waste on the magnet surface are not required. Even if the pretreatment is performed only for removal, the glass-like protective layer having sufficient adhesion and corrosion resistance can be formed. Therefore, as the pretreatment of the present invention, ultrasonic cleaning may be performed after performing a degreasing step, a pickling step, an activation step, etc. However, the pretreatment only with ultrasonic cleaning simplifies the steps and costs. Can be said to be more preferable.
【0008】本発明において、R−Fe −B系永久磁石
の希土類元素Rは、組成の5〜40重量%を占めるが、R
としてはYまたはLa、Ce、Pr、Nd、Pm、Sm、Gd、Tb、D
y、Ho、Er、Lu、Yb の内から選択される1種もしくは2
種以上が使用されるが、中でもCe、La、Nd、Pr、Dy、T
b の内少なくとも1種を含むのが好ましい。Bは 0.2〜
8重量%の範囲とする。Fe は50〜90重量%の範囲であ
るが、Fe の一部をCo で置換することにより温度特性
を改善することができる。ただし、Co の添加量が 0.1
重量%以下では十分な効果が得られず、一方、15重量%
を越えると保磁力が低下するのでその量は 0.1〜15重量
%が好ましい。また、磁気特性の改善、あるいは、コス
ト低減のためにNi、Nb、Al、Ti、Zr、Cr、V、Mn、Mo、
Si、Sn、Cu、Ca、Mg、Pb、Sb、Ga およびZn から選ば
れる少なくとも1種を添加することができる。In the present invention, the rare earth element R of the R-Fe-B system permanent magnet occupies 5 to 40% by weight of the composition.
As Y or La, Ce, Pr, Nd, Pm, Sm, Gd, Tb, D
1 or 2 selected from y, Ho, Er, Lu and Yb
More than one species are used, among which Ce, La, Nd, Pr, Dy, T
It is preferable to contain at least one of b. B is 0.2 ~
The range is 8% by weight. Fe is in the range of 50 to 90% by weight, but the temperature characteristics can be improved by substituting a part of Fe for Co. However, the addition amount of Co is 0.1
If it is less than 10% by weight, the sufficient effect cannot be obtained, while 15% by weight
If it exceeds 0.1%, the coercive force will decrease, so the amount is preferably 0.1 to 15% by weight. Further, Ni, Nb, Al, Ti, Zr, Cr, V, Mn, Mo, for improving the magnetic characteristics or reducing the cost.
At least one selected from Si, Sn, Cu, Ca, Mg, Pb, Sb, Ga and Zn can be added.
【0009】[0009]
【実施例】以下、本発明の実施態様を実施例を挙げて具
体的に説明するが、本発明はこれらに限定されるもので
はない。 (実施例1〜7、比較例1〜3)Ar 雰囲気の高周波溶
解により重量比で、32Nd- 1.2B−59.8Fe-7Co なる
組成の鋳塊を作製した。このインゴットをジョウクラッ
シャーで粗粉砕し、さらに窒素ガスによるジェットミル
で微粉砕を行なって平均粒径が 3.5μmの微粉末を得
た。次にこの微粉末を 10kOe磁界が印加された金型内に
充填し1.0t/cm2の圧力で成形した。ついで真空中1100℃
で2時間焼結し、さらに 550℃で1時間時効処理を施し
て永久磁石とした。得られた永久磁石から径21mm×厚み
5mm寸法の磁石体試験片を切り出し、さらにバレル研磨
処理を行なった。得られた試験片を前処理として純水中
で超音波洗浄を行った後、水ガラスを表1に示す濃度に
調整した処理液に浸漬後、熱風型オーブン中にて 150
℃、20分の加熱処理を行なった。試験片に形成されたガ
ラス状保護層の膜厚はXPS( X線光電子分光法)を用
いて測定した。耐食性の評価はプレッシャークッカー試
験(120℃、 100%RH)にて100時間後の試料の重量減少
により行なった。ただし、試験終了後、試験片に生成し
た錆等を十分に除去して重量測定を行ない、単位表面積
当りの重量減少を求めた。試験条件とその結果を表1に
示した。また、80℃、90%RH、 100時間後の外観を観察
して表1に併記した。比較例1〜3として適応範囲外の
処理液に浸漬したもの、および未処理の試験片について
の耐食性評価の結果を示した。表1から解かるように、
未処理品に比べて、ガラス状保護層を有する試験片は耐
食性がかなり向上している。EXAMPLES The embodiments of the present invention will be specifically described below with reference to examples, but the present invention is not limited thereto. (Examples 1 to 7 and Comparative Examples 1 to 3) Ingots having a composition of 32 Nd-1.2B-59.8Fe-7Co in weight ratio were produced by high frequency melting in an Ar atmosphere. This ingot was roughly crushed with a jaw crusher and further finely crushed with a jet mill using nitrogen gas to obtain fine powder having an average particle size of 3.5 μm. Next, this fine powder was filled in a mold to which a magnetic field of 10 kOe was applied and molded at a pressure of 1.0 t / cm 2 . Then in vacuum at 1100 ℃
Sintered for 2 hours and further aged at 550 ° C for 1 hour to obtain a permanent magnet. A magnet test piece having a diameter of 21 mm and a thickness of 5 mm was cut out from the obtained permanent magnet, and further subjected to barrel polishing treatment. The obtained test piece was subjected to ultrasonic cleaning in pure water as a pretreatment, immersed in a treatment solution whose water glass had a concentration shown in Table 1, and then placed in a hot air oven for 150 hours.
A heat treatment was performed at 20 ° C. for 20 minutes. The film thickness of the glassy protective layer formed on the test piece was measured using XPS (X-ray photoelectron spectroscopy). The corrosion resistance was evaluated by a pressure cooker test (120 ° C., 100% RH) by weight reduction of the sample after 100 hours. However, after the test was completed, the rust and the like formed on the test piece were sufficiently removed and the weight was measured to determine the weight reduction per unit surface area. The test conditions and the results are shown in Table 1. The appearance after 100 hours at 80 ° C. and 90% RH was observed and the results are shown in Table 1. As Comparative Examples 1 to 3, the results of the corrosion resistance evaluation of the ones immersed in the treatment liquid outside the applicable range and the untreated test pieces are shown. As you can see from Table 1,
Compared with the untreated product, the test piece having the glassy protective layer has significantly improved corrosion resistance.
【0010】[0010]
【表1】 [Table 1]
【0011】(実施例8〜13、比較例4)実施例1と同
様に作製した試験片を前処理としてアセトン中で超音波
洗浄を行った後、試験片を水ガラスをSiO2として40g/L
含む処理液に浸漬後、熱風型オーブン中にて表2に示す
温度にて20分の加熱処理を行なった。試験片に形成され
たガラス状保護層の膜厚はXPSを用いて測定を行ない
200nmであった。耐食性の評価は、プレッシャークッカ
ー試験(120℃、 100%RH)にて 100時間後の試料の重量
減少により行なった。ただし、試験終了後、試験片に生
成した錆等を十分に除去し、重量測定を行ない、単位表
面積当りの重量減少を求めた。また、80℃、90%RH、 1
00時間後の外観およびフラックスメーターを用いてコイ
ル引き抜き法でガラス状保護層を被覆前後の磁気特性を
測定し劣化率を求めて表2に併記した。表2からわかる
ように、加熱処理温度が 120℃未満でも耐食性はかなり
向上しているが、 120℃以上ではより耐食性の良いガラ
ス状保護層が形成されていることが分かる。また、 450
℃を越える高温では磁気特性の劣化が大きく使用に耐え
ないことがわかる。(Examples 8 to 13 and Comparative Example 4) A test piece prepared in the same manner as in Example 1 was subjected to ultrasonic cleaning in acetone as a pretreatment, and then the test piece was treated with water glass of SiO 2 at 40 g / L
After soaking in the treatment liquid containing it, a heat treatment was carried out for 20 minutes at the temperature shown in Table 2 in a hot air oven. The film thickness of the glass-like protective layer formed on the test piece is measured by using XPS.
It was 200 nm. The corrosion resistance was evaluated by a pressure cooker test (120 ° C., 100% RH) by weight reduction of the sample after 100 hours. However, after the test was completed, the rust and the like formed on the test piece were sufficiently removed and the weight was measured to determine the weight reduction per unit surface area. Also, 80 ℃, 90% RH, 1
The appearance after 00 hours and the magnetic properties before and after coating the glassy protective layer with the coil drawing method using a flux meter were measured to determine the deterioration rate, and the results are shown in Table 2. As can be seen from Table 2, even when the heat treatment temperature is lower than 120 ° C, the corrosion resistance is considerably improved, but at 120 ° C or higher, the glassy protective layer having better corrosion resistance is formed. Also, 450
It can be seen that at a high temperature exceeding ℃, the magnetic properties are greatly deteriorated and it cannot be used.
【0012】[0012]
【表2】 [Table 2]
【0013】(実施例14〜16、比較例5〜6)実施例1
と同様に作製した試験片を表3に示す前処理を行った
後、水ガラスをSiO2として40g/L 含む処理液に浸漬後、
熱風型オーブン中にて 150℃、20分の加熱処理を行なっ
た。試験片に形成されたガラス状保護層の膜厚はXPS
を用いて測定を行ない 200nmであった。耐食性の評価
は、プレッシャークッカー試験(120℃、 100%RH)に
て、 100時間後の試料の重量減少により行なった。ただ
し、試験終了後、試験片に生成した錆等を十分に除去し
て重量測定を行ない、単位表面積当りの重量減少を求め
た。また、ガラス状保護層の密着力の評価は、試験片を
エポキシ樹脂系接着剤を用いて鉄片に接着した後、剪断
力の測定を行い評価した。比較として超音波水洗を行い
ガラス状保護層を被覆しない試験片を比較例5に、脱脂
処理、酸洗処理(3vol %硝酸30秒浸漬)、超音波水洗
を行いガラス状保護膜を被覆しない試験片を比較例6に
示す。表3から、アルカリけい酸塩水溶液への浸漬、あ
るいは塗布前にR−Fe −B系永久磁石表面の磁粉およ
び加工屑を除去することでガラス状保護層の密着力、お
よび耐食性が向上していることが分かる。また酸洗処理
の有無に関わらずガラス状保護層の密着力および耐食性
に関しては問題ないことが分かる。(Examples 14 to 16 and Comparative Examples 5 to 6) Example 1
After performing the pretreatment shown in Table 3 on the test piece prepared in the same manner as above, after dipping in a treatment liquid containing 40 g / L of water glass as SiO 2 ,
Heat treatment was performed at 150 ° C for 20 minutes in a hot air oven. The film thickness of the glass-like protective layer formed on the test piece is XPS
The measurement was carried out by using a measuring instrument and it was 200 nm. The corrosion resistance was evaluated by a pressure cooker test (120 ° C., 100% RH) by weight reduction of the sample after 100 hours. However, after the test was completed, the rust and the like formed on the test piece were sufficiently removed and the weight was measured to determine the weight reduction per unit surface area. The adhesion of the glass-like protective layer was evaluated by adhering the test piece to the iron piece with an epoxy resin adhesive and then measuring the shearing force. For comparison, a test piece which was ultrasonically washed with water and was not coated with the glassy protective layer was used in Comparative Example 5 which was subjected to degreasing treatment, pickling treatment (3 vol% nitric acid 30 seconds immersion), and ultrasonic water washing which was not coated with the glassy protective film. A piece is shown in Comparative Example 6. From Table 3, it is possible to improve the adhesion and corrosion resistance of the glass-like protective layer by removing the magnetic powder and processing wastes on the surface of the R-Fe-B system permanent magnet before dipping in the aqueous solution of alkali silicate or before coating. I know that Further, it can be seen that there is no problem regarding the adhesion and the corrosion resistance of the glassy protective layer regardless of the presence or absence of the pickling treatment.
【0014】[0014]
【表3】 [Table 3]
【0015】[0015]
【発明の効果】本発明によれば、R−Fe −B系永久磁
石表面にガラス状保護層を被覆することにより、単純な
工程でかつ低コストで磁気特性の劣化のない高耐食性焼
結永久磁石を提供することができ、産業上その利用価値
は極めて高い。According to the present invention, by coating the surface of the R-Fe-B system permanent magnet with the glass-like protective layer, it is possible to perform a simple process, at low cost, and with high corrosion resistance and permanent sintering without deterioration of magnetic properties. A magnet can be provided, and its utility value is extremely high in industry.
Claims (3)
に、R−Fe −B系永久磁石(ここにRはYを含む希土
類元素の少なくとも1種)を浸漬、あるいは該処理液を
塗布した後、加熱処理を行うことにより、該磁石表面に
厚み5nm〜10μmのガラス状保護層を被覆することを特
徴とする高耐食性永久磁石の製造方法。1. An R-Fe-B system permanent magnet (where R is at least one rare earth element containing Y) is dipped in a treatment solution comprising an alkali silicate aqueous solution, or after the treatment solution is applied. A method for producing a highly corrosion-resistant permanent magnet, which comprises coating the surface of the magnet with a glass-like protective layer having a thickness of 5 nm to 10 μm by performing heat treatment.
永久磁石表面に施した後、該磁石をアルカリけい酸塩水
溶液からなる処理液に浸漬、あるいは該処理液を磁石表
面に塗布し、加熱処理を行うことにより、該磁石表面に
厚み5nm〜10μmのガラス状保護層を被覆することを特
徴とする高耐食性永久磁石の製造方法。2. A pretreatment by ultrasonic cleaning is applied to the surface of an R-Fe-B system permanent magnet, and then the magnet is dipped in a treatment solution containing an alkali silicate aqueous solution, or the treatment solution is applied to the magnet surface. Then, a heating treatment is performed to coat the surface of the magnet with a glass-like protective layer having a thickness of 5 nm to 10 μm.
された厚み5nm〜10μmのガラス状保護層を有すること
を特徴とする高耐食性永久磁石。3. A highly corrosion-resistant permanent magnet having a glass-like protective layer having a thickness of 5 nm to 10 μm, which is produced by the method according to claim 1.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7156197A JPH097867A (en) | 1995-06-22 | 1995-06-22 | High corrosion-resistant permanent magnet and manufacture thereof |
US08/661,877 US5840375A (en) | 1995-06-22 | 1996-06-12 | Method for the preparation of a highly corrosion resistant rare earth based permanent magnet |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7156197A JPH097867A (en) | 1995-06-22 | 1995-06-22 | High corrosion-resistant permanent magnet and manufacture thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH097867A true JPH097867A (en) | 1997-01-10 |
Family
ID=15622496
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7156197A Pending JPH097867A (en) | 1995-06-22 | 1995-06-22 | High corrosion-resistant permanent magnet and manufacture thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH097867A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6800967B2 (en) | 2000-06-09 | 2004-10-05 | Neomax Co., Ltd. | Integrated magnet body and motor incorporating it |
CN104124016A (en) * | 2013-04-26 | 2014-10-29 | 大同特殊钢株式会社 | Rare earth magnet and making method thereof |
-
1995
- 1995-06-22 JP JP7156197A patent/JPH097867A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6800967B2 (en) | 2000-06-09 | 2004-10-05 | Neomax Co., Ltd. | Integrated magnet body and motor incorporating it |
CN104124016A (en) * | 2013-04-26 | 2014-10-29 | 大同特殊钢株式会社 | Rare earth magnet and making method thereof |
JP2014216514A (en) * | 2013-04-26 | 2014-11-17 | 大同特殊鋼株式会社 | Rare-earth magnet and production method therefor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100877875B1 (en) | Corrosion Resistant Rare Earth Magnet and Its Preparation | |
KR100487081B1 (en) | High corrosion resistance rare earth permanent magnet | |
EP1734539B1 (en) | Corrosion-resistant rare earth magnets and process for production thereof | |
JPH04328804A (en) | Corrosion-proof permanent magnet and manufacture thereof | |
US5840375A (en) | Method for the preparation of a highly corrosion resistant rare earth based permanent magnet | |
WO2011081170A1 (en) | Corrosion-resistant magnet and method for producing the same | |
JP2000040609A (en) | High anti-corrosive permanent magnet and manufacture thereof | |
JP3966631B2 (en) | Rare earth / iron / boron permanent magnet manufacturing method | |
JPS63217601A (en) | Corrosion-resistant permanent magnet and manufacture thereof | |
JPH097867A (en) | High corrosion-resistant permanent magnet and manufacture thereof | |
JP3007557B2 (en) | High corrosion resistant permanent magnet and method of manufacturing the same | |
JP2006165218A (en) | Rtmb-based rare earth permanent magnet and manufacturing method therefor | |
JPH097868A (en) | High corrosion-resistant permanent magnet and manufacture thereof | |
JP3624263B2 (en) | High corrosion resistance permanent magnet and method of manufacturing the same | |
JP4372105B2 (en) | High corrosion resistance permanent magnet and method of manufacturing the same | |
JPH0569282B2 (en) | ||
JP3580521B2 (en) | Manufacturing method of high corrosion resistant permanent magnet | |
JPH09289108A (en) | R-fe-b permanent magnet having electric insulating film excellent in adhesion and its manufacture | |
JP3208057B2 (en) | Corrosion resistant permanent magnet | |
JPH0770382B2 (en) | Rare earth magnet having excellent corrosion resistance and method for manufacturing the same | |
JPS62120004A (en) | Permanent magnet with excellent corrosion resistance and manufacture thereof | |
JPH0554683B2 (en) | ||
JPS63232304A (en) | Permanent magnet excellent in oxidation resistance and manufacture thereof | |
JPS62120003A (en) | Permanent magnet with excellent corrosion resistance and manufacture thereof | |
JP3638423B2 (en) | High corrosion resistance permanent magnet |