JPS6260212A - Manufacture of permanent magnet material - Google Patents
Manufacture of permanent magnet materialInfo
- Publication number
- JPS6260212A JPS6260212A JP60200890A JP20089085A JPS6260212A JP S6260212 A JPS6260212 A JP S6260212A JP 60200890 A JP60200890 A JP 60200890A JP 20089085 A JP20089085 A JP 20089085A JP S6260212 A JPS6260212 A JP S6260212A
- Authority
- JP
- Japan
- Prior art keywords
- permanent magnet
- atomic
- magnet body
- sintered
- thin film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/032—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
- H01F1/04—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
- H01F1/047—Alloys characterised by their composition
- H01F1/053—Alloys characterised by their composition containing rare earth metals
- H01F1/055—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
- H01F1/057—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
- H01F1/0571—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
- H01F1/0575—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
- H01F1/0577—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/032—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
- H01F1/04—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
- H01F1/047—Alloys characterised by their composition
- H01F1/053—Alloys characterised by their composition containing rare earth metals
- H01F1/055—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
- H01F1/057—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
- H01F1/0571—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
- H01F1/0572—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes with a protective layer
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F41/00—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
- H01F41/02—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
- H01F41/0253—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
- H01F41/026—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets protecting methods against environmental influences, e.g. oxygen, by surface treatment
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Environmental & Geological Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Hard Magnetic Materials (AREA)
- Manufacturing Cores, Coils, And Magnets (AREA)
Abstract
Description
【発明の詳細な説明】
利用産業分野
この発明は、Fe−f3−R系永久磁石材料の製造方法
に係り、焼結永久磁石表面の少なくとも1主面に残存す
る黒皮、あるいは磁石表面の研削加工等に伴なう磁石特
性の劣化を防止し、さらに磁石材料の耐食性被膜の密着
性を改善した耐食性のすぐれたFe−B−R系永久磁石
材料の製造方法に関する。DETAILED DESCRIPTION OF THE INVENTION Field of Application The present invention relates to a method for producing Fe-f3-R-based permanent magnet materials, and includes methods for removing black flakes remaining on at least one main surface of a sintered permanent magnet surface or grinding the magnet surface. The present invention relates to a method for manufacturing a Fe-BR permanent magnet material with excellent corrosion resistance, which prevents deterioration of magnetic properties due to processing, etc., and improves the adhesion of a corrosion-resistant coating on the magnet material.
背景技術
現在の代表的な永久磁石材料は、アルニコ、ハードフェ
ライトおよび希土類コバルト磁石である。BACKGROUND ART Current typical permanent magnet materials are alnico, hard ferrite and rare earth cobalt magnets.
この希土類コバルト磁石は、磁気特性が格段にすぐれて
いるため、多種用途に利用されているが、主成分のSm
、Coは共に資源的に不足し、かつ高価であり、今後長
期間にわたって、安定して多量に供給されることは困難
である。This rare earth cobalt magnet has extremely excellent magnetic properties and is used for a variety of purposes, but the main component is S.
, Co are both in short supply and expensive, and it will be difficult to supply them in large quantities stably over a long period of time.
そのため、磁気特性がすぐれ、かつ安価で、さらに資源
的に豊富で今後の安定供給が可能な組成元素からなる永
久磁石材料が切望されてきた。Therefore, there has been a strong desire for a permanent magnet material that has excellent magnetic properties, is inexpensive, and is composed of constituent elements that are abundant in resources and can be stably supplied in the future.
本出願人は先に、高価なSmやらを含有しない新しい高
性能永久磁石としてFa−B−R系(RはYを含む希土
類元素のうち少なくとも1種)永久磁石を提案した(特
開昭59−46008号、特開昭59−64733号、
特開昭59−89401号、特開昭59−132104
@)。The present applicant previously proposed an Fa-BR-based permanent magnet (R is at least one rare earth element including Y) as a new high-performance permanent magnet that does not contain expensive Sm (Japanese Patent Application Laid-Open No. 59-1991). -46008, JP-A-59-64733,
JP-A-59-89401, JP-A-59-132104
@).
この永久磁石は、Rとして陶や円を中心とする資源的に
豊富な軽希土類を用い、B、Fsを主成分として25)
IGO8以上、最高では458GOe以上にも達する極
めて高いエネルギー積を示す、すぐれた永久磁石である
。This permanent magnet uses resource-rich light rare earth materials such as ceramics and circles as R, and has B and Fs as its main components25)
It is an excellent permanent magnet that exhibits an extremely high energy product of IGO8 or higher, reaching a maximum of 458GOe or higher.
最近、磁気回路の高性能化、小形化に伴ない、Fe−B
−R系永久磁石材料が益々注目されてきた。Recently, with the improvement in performance and miniaturization of magnetic circuits, Fe-B
-R-based permanent magnet materials have been attracting more and more attention.
かかる用途の永久磁石材料を製造するには、成形焼結し
た焼結磁石体表面の凹凸や歪みを除去するため、おるい
は表面酸化層を除去するため、ざらには磁気回路に組込
むために、磁石体の全面おるいは所要表面を切削加工あ
るいは研削加工する必要があり、加工には外周刃切断機
、内周刃切断機。In order to manufacture permanent magnet materials for such uses, it is necessary to remove irregularities and distortions on the surface of the sintered magnet body, to remove surface oxidation layers, and to incorporate it into magnetic circuits. , it is necessary to cut or grind the entire surface or the required surface of the magnet body, and the processing requires an outer peripheral blade cutting machine or an internal peripheral blade cutting machine.
表面研削機、センタレスグラインダー、ラッピングマシ
ン等が使用される。Surface grinders, centerless grinders, lapping machines, etc. are used.
しかしながら、Fe−B−R系永久磁石材利を切削また
は研削加工すると、Fe−B−R系永久1石材料は、主
成分として、空気中で極めて酸化しやすく、直ちに安定
な酸化物を生成する希土類元素及び鉄を含有するため、
発熱したり大気と加工面との接触により酸化層が生成し
、磁気特性の劣化を招来する問題があった。However, when Fe-B-R permanent magnet material is cut or ground, the Fe-B-R permanent magnet material, as a main component, is extremely easily oxidized in the air and immediately produces stable oxides. Because it contains rare earth elements and iron,
There is a problem in that an oxide layer is generated due to heat generation or contact between the atmosphere and the machined surface, leading to deterioration of magnetic properties.
また、Fe −B −R系磁気異方性焼結体からなる永
久磁石を、磁気回路に組込んだ場合に、磁石表面に生成
する酸化物により、磁気回路の出力低下及び磁気回路間
の特性ばらつきを惹起し、また、表面酸化物の脱落によ
る周辺機器への汚染の問題がめった。In addition, when a permanent magnet made of an Fe-B-R magnetically anisotropic sintered body is incorporated into a magnetic circuit, oxides generated on the magnet surface may cause a decrease in the output of the magnetic circuit and the characteristics between the magnetic circuits. In addition, the problem of contamination of peripheral equipment due to shedding of surface oxides was a frequent problem.
そこで、出願人は先に、上記のFa−B−R系永久磁石
の耐食性の改善のため、磁石体表面に無電解めっき法お
るいは電解めっき法により耐食性金属めっき層を被覆し
た永久磁石(特願昭58−162350@)及び磁石体
表面にスプレー法あるいは浸漬法によって耐食性樹脂層
を被覆した永久磁石を提案(特願昭58−171907
号)した。Therefore, in order to improve the corrosion resistance of the above-mentioned Fa-B-R permanent magnet, the applicant first developed a permanent magnet (with a corrosion-resistant metal plating layer coated on the surface of the magnet body by electroless plating or electrolytic plating). Patent application No. 58-162350@) and proposed a permanent magnet in which the surface of the magnet body is coated with a corrosion-resistant resin layer by spraying or dipping method (Patent application No. 58-171907)
No.).
しかし、前者のめっき法では永久磁石体が焼結体であり
有孔性のため、この孔内にめっき前処理で酸性溶液また
はアルカリ性溶液が残留し、経年変化とともに発錆する
恐れがおり、また磁石体の耐薬品性が劣るため、めっき
時に磁石表面が腐食されて密着性・防食性が劣る問題が
あった。However, in the former plating method, since the permanent magnet body is a sintered body and is porous, acidic or alkaline solutions may remain in the pores during plating pretreatment, which may cause rust over time. Due to the poor chemical resistance of the magnet body, there was a problem that the magnet surface was corroded during plating, resulting in poor adhesion and corrosion resistance.
また後者のスプレー法による樹脂の塗装には方向性があ
るため、被処理物表面全体に均一な樹脂被膜を施すのに
多大の工程2手間を要し、特に形状が複雑な異形磁石体
に均一厚みの被膜を施すことは困難であり、また浸漬法
では樹脂被膜厚みが不均一になり、製品寸法精度が悪い
問題があった。In addition, since resin coating using the latter spray method has a certain direction, it takes a lot of time and effort to apply a uniform resin coating to the entire surface of the object, and it is especially difficult to apply a uniform resin coating to irregularly shaped magnets with complex shapes. It is difficult to apply a thick coating, and the dipping method results in uneven resin coating thickness, resulting in poor product dimensional accuracy.
このため発明者らは、Fs −B −R系永久磁石の耐
食性を改善する方法として、焼結磁石体表面に、特定粒
径、硬度を有する硬質粉末よるグリッドブラストを施し
た後、薄膜形成技術にて、磁石体表面にM薄膜層を被着
した永久磁石材料(特願昭60−110793号)を提
案した。Therefore, as a method for improving the corrosion resistance of Fs-B-R permanent magnets, the inventors applied a thin film forming technique to the surface of the sintered magnet by grid blasting with hard powder having a specific particle size and hardness. proposed a permanent magnet material (Japanese Patent Application No. 110793/1983) in which an M thin film layer was deposited on the surface of the magnet body.
これにより、Fa −B −R系永久磁石は著しく耐食
性を増したが、上記AI薄膜は、蒸着法等において、蒸
発したへρ粒子が、磁石体表面に堆積して形成されるた
め、密度不足を生じ、長期間にわたる使用において、局
部的にA(1m膜が剥離したり、薄膜層に亀裂を生じた
りし、局部的な錆発生が懸念される問題があった。As a result, the corrosion resistance of Fa-B-R permanent magnets has increased significantly, but the above-mentioned AI thin film lacks density because it is formed by evaporated ρ particles deposited on the magnet surface during vapor deposition etc. When used for a long period of time, the A (1m film) may peel off locally or cracks may occur in the thin film layer, causing concerns about local rust formation.
発明の目的
この発明は、希土類・ボロン・鉄を主成分とする新規な
永久磁石材料において、焼結磁石体の切削加工あるいは
研削加工に伴なう磁気特性の劣化を改善し、さらに、腐
蝕性薬品等を使用あるいは接触させることなく、密着性
、防蝕性にすぐれた耐食性薄膜層を被着させた永久磁石
材料の製造方法を目的としている。Purpose of the Invention The present invention improves the deterioration of magnetic properties caused by cutting or grinding of sintered magnet bodies in a new permanent magnet material mainly composed of rare earth elements, boron, and iron, and also improves corrosion resistance. The object of the present invention is to provide a method for producing a permanent magnet material on which a corrosion-resistant thin film layer with excellent adhesion and corrosion resistance is deposited without using or contacting chemicals.
発明の構成と効果
この発明は、
R(RはNd、 Pr、 Dy、 Ho、 Tbのうち
少なくとも1種あるいはざらに、La、 Ce、 9r
TI、 (A、 Er、 Eu、 T[n。Structure and Effects of the Invention The present invention provides the following features:
TI, (A, Er, Eu, T[n.
Yb、 La、 Yのうち少なくとも1種からなる)1
0%〜30原子%、
B2原子%〜28原子%、
Fe65原子%〜80原子%を主成分とし、主相が正方
晶相からなる焼結永久磁石体の表面に、平均粒径201
Im〜3502@、モース硬度5以上の粉末の少なくと
も1種からなる不定形の硬質粉末を、圧力i、oh4〜
6.0kg、4の加圧気体とともに、0.5分〜60分
間噴射するグリッドブラストを施し、上記磁石体の表面
層を除去したのち、
上記磁石体表面にM薄膜層を被着し、
ざらに、平均粒径30.〜3000.is、モース硬度
3以上の粉末の少なくとも1種からなる球状粉末を、圧
力1.0kg4〜5.Okg着の加圧気体とともに、1
分〜60分間噴射するショットピーニングを施し、ある
いは必要に応じて、焼結磁石体表面にクロム酸塩処理を
施して、
焼結磁石体の耐食性を改善したことを特徴する永久磁石
材料の製造方法である。consisting of at least one of Yb, La, Y)1
The main components are 0% to 30 atomic%, B2 atomic% to 28 atomic%, and Fe65 atomic% to 80 atomic%, and the main phase is a tetragonal phase.
Im~3502@, an amorphous hard powder consisting of at least one kind of powder with a Mohs hardness of 5 or more is heated to a pressure of i, oh4~
Grid blasting is performed for 0.5 to 60 minutes with 6.0 kg of pressurized gas of 4 to remove the surface layer of the magnet, and then a M thin film layer is deposited on the surface of the magnet to create a rough texture. The average particle size is 30. ~3000. A spherical powder made of at least one type of powder having a Mohs hardness of 3 or more is heated at a pressure of 1.0 kg to 4 to 5. With pressurized gas of Okg, 1
A method for producing a permanent magnet material, characterized in that the corrosion resistance of the sintered magnet is improved by subjecting the sintered magnet to shot peening for 60 minutes or, if necessary, to chromate treatment on the surface of the sintered magnet. It is.
詳述すれば、この発明は、焼結磁石体表面に、所要性状
からなる硬質粉末を、加圧気体とともに、噴射し、焼結
磁石体の黒皮、酸化層や加工歪層等の表面層を除去した
のち、清浄化された磁石体表面にM薄膜層を被着し、酸
化や切削加工にともなう磁石特性の劣化を改善し、さら
に、所要形状からなる特定の粉末を加圧気体とともに噴
射して、該AI薄膜層の緻密化を計り、材料と表面薄膜
層との密着性の改善し、またさらには、Al薄膜層を被
着した磁石体にクロム酸塩処理を施して、Al薄膜層表
面にクロム酸塩被膜を形成して、材料の耐食性をなお一
層向上させたものである。Specifically, the present invention injects hard powder having desired properties onto the surface of a sintered magnet together with pressurized gas to eliminate surface layers such as black crust, oxidized layer, and strained layer of the sintered magnet. After removing the magnet, a M thin film layer is applied to the surface of the cleaned magnet body to improve the deterioration of magnetic properties caused by oxidation and cutting, and a specific powder of the desired shape is injected together with pressurized gas. Then, the AI thin film layer was densified, the adhesion between the material and the surface thin film layer was improved, and the magnet body coated with the Al thin film layer was subjected to chromate treatment to form an Al thin film. A chromate coating is formed on the surface of the layer to further improve the corrosion resistance of the material.
また、この発明の永久磁石材料は平均結晶粒径が1〜8
0胡の範囲にある正方晶系の結晶構造を有する化合物を
主相とし、体積比で1%〜50%の非磁性相(酸化物相
を除く)を含むことを特徴とする。Further, the permanent magnet material of this invention has an average crystal grain size of 1 to 8.
It is characterized by having a main phase of a compound having a tetragonal crystal structure in the range of 0 Hu, and containing a non-magnetic phase (excluding the oxide phase) in a volume ratio of 1% to 50%.
この発明の製造方法は、Rとして陶や円を中心とする資
源的に豊富な軽希土類を用い、B、Feを主成分として
258GOe以上、最高では45HGOe以上にも達す
る極めて高いエネルギー積並びに、高残留磁束密度、高
保磁力を示す、すぐれた永久磁石であり、かつ研削加工
及び酸化層による磁気特性の劣化を防止し、かつ防蝕性
にすぐれたM薄膜あるいはさらにクロム酸塩被膜を表面
に安定被着したFe−El−R系永久磁石材料を、安価
に得ることh<できる。The manufacturing method of this invention uses resource-rich light rare earths such as ceramics and circles as R, and has an extremely high energy product of 258 GOe or more, reaching a maximum of 45 HGOe or more, with B and Fe as the main components. It is an excellent permanent magnet that exhibits high residual magnetic flux density and high coercive force. It also prevents deterioration of magnetic properties due to grinding and oxidation layers, and has a stable coating of M thin film or chromate film with excellent corrosion resistance on the surface. The deposited Fe-El-R permanent magnet material can be obtained at low cost.
この発明において、ショツトブラストに使用するモース
硬度5以上の不定形硬質粉末としては、M2O3系、炭
化けい素系、 ZrO2系、炭化硼素系。In this invention, the amorphous hard powder with a Mohs hardness of 5 or more used for shot blasting includes M2O3 type, silicon carbide type, ZrO2 type, and boron carbide type.
ガーネット系等の粉末があり、硬度の高いN2O3系粉
末が好ましい。Garnet-based powders are available, and N2O3-based powders with high hardness are preferred.
上記の不定形硬質粉末のモース硬度が、5未満では、研
削力が小さすぎて、研削処理時間に長時間を要して好ま
しくない。If the Mohs hardness of the above-mentioned amorphous hard powder is less than 5, the grinding force is too small and the grinding process takes a long time, which is not preferable.
また、不定形硬質粉末の平均粒度を201Jm〜350
Iとするのは、201Jm未満では、研削力が小さすぎ
て研削に長時間を要し、また、35077mを越えると
、焼結磁石体表面の面粗度が粗くなりすぎ、研削量が不
均一となり、好ましくないためである。In addition, the average particle size of the amorphous hard powder is 201 Jm to 350 Jm.
The reason for I is that if the grinding force is less than 201 Jm, the grinding force will be too small and it will take a long time to grind, and if it exceeds 35,077 m, the surface roughness of the sintered magnet surface will become too rough and the amount of grinding will be uneven. This is because it is not desirable.
また、不定形硬質粉末の噴射条件として、圧力1、ok
g4未満では、研削処理に長時間を要し、また、圧力6
.0に94を越えると磁石体表面の研削量が不均一とな
り、面粗度の劣化が懸念される。In addition, as the injection conditions for the amorphous hard powder, the pressure is 1, OK
If the pressure is less than 4, the grinding process will take a long time and the pressure will be lower than 6.
.. If it exceeds 0 to 94, the amount of grinding on the surface of the magnet body will become non-uniform, and there is a concern that the surface roughness will deteriorate.
さらに、噴射時間が0.5分間未満では、研削量が小さ
くかつ不均一であり、また、60分を越えると磁石体表
面の研削量が多くなり、面粗度が悪化して好ましくない
。Furthermore, if the spraying time is less than 0.5 minutes, the amount of grinding will be small and non-uniform, and if it exceeds 60 minutes, the amount of grinding on the magnet surface will increase, which is undesirable as the surface roughness will deteriorate.
また、硬質粉末の噴射用加圧流体としては、空気あるい
はAr、 N2ガス等の不活性ガスが利用できるが、
磁石体の酸化防止のためには、不活性ガスが好ましく、
また、空気を用いる場合は、除湿を行なった空気が望ま
しい。In addition, air or an inert gas such as Ar or N2 gas can be used as the pressurized fluid for injecting hard powder.
In order to prevent oxidation of the magnet, an inert gas is preferable.
Furthermore, when air is used, it is desirable to use dehumidified air.
また、この発明において、ショットピーニング用粉末と
しては、モース硬度3以上の球状硬質粉末を用い、スチ
ールポールやガラスピーズ等が利用でき、被着したAg
a膜層の硬度と同等以上の硬度であればよく、ガラスピ
ーズが好ましい。In addition, in this invention, as the powder for shot peening, a spherical hard powder with a Mohs hardness of 3 or more is used, and steel poles, glass beads, etc. can be used, and the attached Ag
The hardness may be equal to or higher than that of the a-film layer, and glass beads are preferred.
ピーニング用球状粉末のモース硬度が、3未満ではA(
1m膜層の硬度より小さくなり、ピーニング効果が得ら
れないため好ましくない。If the Mohs hardness of the peening spherical powder is less than 3, it is A(
This is not preferable because the hardness is lower than that of a 1 m film layer and no peening effect can be obtained.
また、ピーニング用球状粉末の平均粒度を30万〜30
00μmとするのは、3011m未満では、Ag薄膜層
に対する押圧力が小さく処理に長時間を要し、また、3
000左を越えると、焼結磁石体表面の面粗度が粗くな
りすぎ、仕上面が不均一となり、好ましくないためであ
る。さらに好ましい平均粒度は、40.zmから200
0A用である。In addition, the average particle size of the spherical powder for peening is 300,000 to 30,000
00 μm is because if it is less than 3011 m, the pressing force against the Ag thin film layer is small and it takes a long time to process.
This is because if it exceeds 000 left, the surface roughness of the sintered magnet surface becomes too rough, resulting in an uneven finished surface, which is not desirable. A more preferable average particle size is 40. 200 from zm
It is for 0A.
また、球状粉末の噴射条件としては、圧力1.Or4未
満では、All膜層に対する押圧力が小さく処理に長時
間を要し、また、圧力5.os4を越えるとAg薄膜層
への押圧力が不均一となり、面粗度の悪化を招来する
さらに、噴射時間が1分間未満ては、全表面を均一に処
理できず、また、噴射時間の上限は、ピーニングの処理
量、処理条件によって決定されるが、60分を越えると
、面粗度が悪化して好ましくない。In addition, the injection conditions for the spherical powder are as follows: pressure 1. If the pressure is less than Or4, the pressing force against the All film layer will be small and the process will take a long time, and if the pressure is less than 5. If it exceeds os4, the pressing force on the Ag thin film layer becomes uneven, leading to deterioration of the surface roughness.Furthermore, if the spraying time is less than 1 minute, the entire surface cannot be uniformly treated, and the upper limit of the spraying time is determined by the throughput of peening and the processing conditions, but if it exceeds 60 minutes, the surface roughness will deteriorate, which is not preferable.
この発明において、焼結磁石体の酸化表面相を除去した
清浄表面に、N層を被着させるには、真空蒸着、スパッ
タリング、イオンブレーティング等の薄膜形成方法が適
宜選定利用できる。また、薄膜層の厚みは、薄膜層の剥
離あるいは機械的強度の低下並びに防蝕性の確保等を考
慮して、30通以下の厚みが好ましく、最も好ましくは
5如〜25、柵の層厚みである。In the present invention, in order to deposit the N layer on the clean surface of the sintered magnet from which the oxidized surface phase has been removed, thin film forming methods such as vacuum evaporation, sputtering, and ion blasting can be appropriately selected and utilized. In addition, the thickness of the thin film layer is preferably 30 or less, most preferably 5 to 25, in consideration of peeling of the thin film layer, reduction in mechanical strength, and ensuring corrosion resistance. be.
また、A&薄膜層上に被着するクロム酸塩被膜厚みは、
1項一0 Bmが好ましく、その外観は、明るい玉虫色
から黄金色を帯びた黄褐色に仕上げるのが好ましい。In addition, the thickness of the chromate coating deposited on the A & thin film layer is:
1 item 10 Bm is preferable, and the appearance is preferably finished from bright iridescent to golden yellowish brown.
永久磁石材料の成分限定理由
この発明の永久磁石材料に用いる希土類元素Rは、組成
の10原子%〜301’7子%を占めるが、Nd。Reason for limiting the components of the permanent magnet material The rare earth element R used in the permanent magnet material of the present invention accounts for 10 atomic % to 301'7% of the composition, and Nd.
Pr、 Dy、 Ho、 Tbのうち少なくとも1種、
あるいはざら(こ、La、 Ce、 Sm、 Cd、
Er、 Eu、1m、 Yb、 La。At least one of Pr, Dy, Ho, and Tb,
Or Zara (Ko, La, Ce, Sm, Cd,
Er, Eu, 1m, Yb, La.
Yのうち少なくとも1種を含むものが好ましい。Those containing at least one type of Y are preferred.
また、通常Rのうち1種をもって足りるが、実用上は2
種以上の混合物(ミツシュメタル、ジジム等)を入手上
の便宜等の理由により用いることかC゛きる。Also, normally one type of R is sufficient, but in practice two types are sufficient.
It is possible to use a mixture of more than one species (such as Mitsumemetal, dididium, etc.) for reasons such as availability.
なお、このRは純希土類元素でなくてもよく、工業F−
人手可能な範囲で製造上不可避な不純物を含イjするも
のでも差支えない。Note that this R does not need to be a pure rare earth element, and may be an industrial F-
It may contain impurities that are unavoidable during manufacturing to the extent that it is possible to do so manually.
1くは、新規な−「記系永久磁石材料にお(プる、必須
元素であって、10原子%未満では、結晶構造がα−鉄
と同一構造の立方晶組織となるため、高磁気14性、特
に高保磁力が得られず、30原子%を越えると、Rリッ
チな非磁性相が多くなり、残留磁束密度(Br)が低下
して、すぐれた特性の永久磁石がjqら机ない。にっで
、希土類元素は、10原子%〜30原子%の範囲とする
。First, it is an essential element for permanent magnet materials, and if it is less than 10 atomic %, the crystal structure becomes cubic, which is the same structure as α-iron, so it has high magnetic properties. 14 properties, especially high coercive force cannot be obtained, and when the content exceeds 30 at%, R-rich nonmagnetic phase increases, the residual magnetic flux density (Br) decreases, and permanent magnets with excellent characteristics cannot be obtained. .The rare earth element is in the range of 10 atomic % to 30 atomic %.
Bは、この発明による永久磁石材料にお(プる、必須元
素であって、2原子%未満では、菱面体溝造が主相とな
り、高い保磁力(iHC)は得られず、28原子%を越
えると、Bリッチな非磁性相が多くなり、残留磁束密度
(Br)が低下するため、すぐれた永久磁石が得られな
い。よって、Bは、2原子%〜28原子%の範囲とする
。B is an essential element for the permanent magnet material according to the present invention, and if it is less than 2 atomic %, the rhombohedral groove structure becomes the main phase, and a high coercive force (iHC) cannot be obtained; If it exceeds B, the amount of B-rich non-magnetic phase increases and the residual magnetic flux density (Br) decreases, making it impossible to obtain an excellent permanent magnet.Therefore, B should be in the range of 2 atomic % to 28 atomic %. .
Feは、新規な上記系永久磁石において、必須元素であ
り、65原子%未満では残留磁束密度(Br)が低下し
、80原子%を越えると、高い保磁力が得られないので
、Feは65原子%〜80原子%の含有とする。Fe is an essential element in the new above-mentioned permanent magnet.If it is less than 65 at%, the residual magnetic flux density (Br) decreases, and if it exceeds 80 at%, high coercive force cannot be obtained. The content is from atomic % to 80 atomic %.
また、この発明による永久磁石材料において、Feの一
部をCoで置換することは、得られる磁石の磁気特性を
損うことなく、温度特性を改善することができるが、C
O置換量がFeの20%を越えると、逆に磁気特性が劣
化するため、好ましくない。C。In addition, in the permanent magnet material according to the present invention, replacing a part of Fe with Co can improve the temperature characteristics without impairing the magnetic properties of the resulting magnet.
If the amount of O substitution exceeds 20% of Fe, the magnetic properties will deteriorate, which is not preferable. C.
の置換量が「eとCOの合計量で5原子%〜15原子%
の場合は、(Br)は置換しない場合に比較して増加す
るため、高磁束密度を得るために好ましい。The amount of substitution is 5 at% to 15 at% in total amount of e and CO.
In this case, since (Br) increases compared to the case without substitution, it is preferable to obtain a high magnetic flux density.
また、この発明による永久磁石材料は、R,B。Further, the permanent magnet material according to the present invention includes R, B.
Feの他、工業的生産上不可避的不純物の存在を許容で
きるが、Bの一部を4.0原子%以下のC13,5原子
%以下のP、2.5原子%以下のS、 3゜5原子%
以下の髄のうち少なくとも1種、合計量で4.0原子%
以下で置換することにより、永久磁石の製造性改善、低
価格化が可能である。In addition to Fe, the presence of unavoidable impurities in industrial production can be tolerated, but a part of B can be replaced by 4.0 atom% or less of C13, 5 atom% or less of P, 2.5 atom% or less of S, 3゜5 atomic%
At least one of the following marrow, total amount 4.0 atomic%
By substituting with the following, it is possible to improve the manufacturability and reduce the cost of permanent magnets.
また、下記添加元素のうち少なくとも1種は、R−B−
Fa系永久磁石に対してその保磁力、減磁曲線の角型性
を改善あるいは製造性の改善、低価格化に効果があるた
め添加することができる。Furthermore, at least one of the following additional elements is R-B-
It can be added to Fa-based permanent magnets because it is effective in improving the coercive force and squareness of the demagnetization curve, improving manufacturability, and reducing costs.
9.5原子%以下のA1.4,5原子%以下の丁119
.5原子%以下のVl B、5m子%以下のCr。A1.4 of 9.5 atom% or less, D119 of 5 atom% or less
.. VlB of 5 atomic % or less, Cr of 5 m atomic % or less.
8.0原子%以下のHn、5.0原子%以下のB119
.5原子%以下のNb、 9.5原子%以下のTa。Hn of 8.0 atom% or less, B119 of 5.0 atom% or less
.. Nb of 5 atomic % or less, Ta of 9.5 atomic % or less.
9.5原子%以下のt(o、 9.5原子%以下のり
、2.5原子%以下のsb、7 原子%以下のGe。t(o) of 9.5 atom% or less, glue of 9.5 atom% or less, sb of 2.5 atom% or less, Ge of 7 atom% or less.
3.5原子%以下のSn、 5.5原子%以下のZr
。Sn of 3.5 atomic% or less, Zr of 5.5 atomic% or less
.
9.0原子%以下のNi、9.0原子%以下のSi、1
.1原子%以下のZn、5.5原子%以下のHf、のう
ち少なくとも1種を添加含有、但し、2種以上含有する
場合は、その最大含有量は当該添加元素のうち最大値を
有するものの原子%以下の含有させることにより、永久
磁石の高保磁力化が可能になる。Ni of 9.0 atomic % or less, Si of 9.0 atomic % or less, 1
.. At least one of Zn of 1 atomic % or less and Hf of 5.5 atomic % or less is added. However, if two or more types are contained, the maximum content is the maximum value of the added elements. By containing atomic percent or less, it becomes possible to increase the coercive force of the permanent magnet.
結晶相は主相が正方品であることが、微細で均一な合金
粉末より、ずぐれた磁気特性を有する焼結永久磁石を作
製するのに不可欠である。It is essential that the main phase of the crystalline phase be a tetragonal one in order to produce a sintered permanent magnet having superior magnetic properties to that of a fine and uniform alloy powder.
また、この発明の永久磁石は、磁場中プレス成型するこ
とにより磁気的異方性磁石が得られ、また、無磁界中で
プレス成型することにより、磁気的等方性磁石を得るこ
とができる。Further, the permanent magnet of the present invention can be press-molded in a magnetic field to obtain a magnetically anisotropic magnet, and can be press-molded in a non-magnetic field to obtain a magnetically isotropic magnet.
この発明による永久磁石材料は、保磁力iHc≧1 k
os、残昭磁束密度Br> 4 kG、を示し、最大エ
ネルギー積(BH)maXは、(Btl)max≧10
HGOsを示し、最大値は25HGOe以上に達する。The permanent magnet material according to the present invention has a coercive force iHc≧1 k
os, the residual magnetic flux density Br > 4 kG, and the maximum energy product (BH) max is (Btl) max ≧ 10
HGOs, and the maximum value reaches 25HGOe or more.
また、この発明による永久@石のRの主成分が、その5
0%以上をNd及び円を主とする軽希土類金属が占める
場合で、R121i子%〜20原子%、B44原子〜2
4原子%、Fe 74原子%〜80原子%、を主成分
とするとぎ、(BH)max 35HGOe以上のすぐ
れた磁気特性を示し、特に軽希土類金属がNdの場合に
は、その最大値が45)IGQθ以上に達する。In addition, the main component of R of the permanent @stone according to this invention is the 5
In the case where 0% or more is occupied by light rare earth metals mainly composed of Nd and circles, R121i atoms % to 20 at%, B44 atoms to 2
When the main component is 4 at% Fe and 74 at% to 80 at% Fe, it exhibits excellent magnetic properties of (BH)max 35HGOe or more, and especially when the light rare earth metal is Nd, the maximum value is 45HGOe or more. ) reaches IGQθ or higher.
実施例
実施例1
出発原料として、純度99.9%の電解鉄、フェロボロ
ン合金、純度99.7%以上の陶を使用し、これらを配
合後高周波溶解し、その後水冷銅鋳型に鋳造し、16.
ONd 7. OB 77、 OFeなる組成の鋳塊
を得た。Examples Example 1 As starting materials, electrolytic iron with a purity of 99.9%, ferroboron alloy, and ceramics with a purity of 99.7% or more were used, and after blending these, they were high-frequency melted, and then cast in a water-cooled copper mold. ..
ONd7. An ingot having a composition of OB 77 and OFe was obtained.
その後このインゴットを、スタンプミルにより粗粉砕し
、次にボールミルにより微粉砕し、平均粒度2.8.q
mの微粉末を得た。Thereafter, this ingot was coarsely ground using a stamp mill, and then finely ground using a ball mill, with an average particle size of 2.8. q
A fine powder of m was obtained.
この微粉末を金型に挿入し、15 koeの磁界中で配
向し、磁界に垂直方向に、1.214の圧力で成形した
。This fine powder was inserted into a mold, oriented in a magnetic field of 15 koe, and molded at a pressure of 1.214 in a direction perpendicular to the magnetic field.
得られた成形体を、1100℃、1時間、 Ar雰囲気
中、の条件で焼結し、長さ2SmmX幅40mmX厚み
30mm寸法の焼結体を得た。The obtained molded body was sintered at 1100° C. for 1 hour in an Ar atmosphere to obtain a sintered body having dimensions of 2 S mm in length, 40 mm in width, and 30 mm in thickness.
さらにAt中での800’C,1時間と630’C,1
,5時間の2段時効処理を施した。Furthermore, 800'C, 1 hour and 630'C, 1 hour in At
, a two-stage aging treatment of 5 hours was performed.
上記の永久1’5体を、大気中で、ダイヤモンド112
00番を砥石として、回転数240Orpm 、送り速
度5mm/minで、長さ5m+nX幅10mmX厚み
3mm寸法に切出した。The above permanent 1'5 body is placed in the atmosphere with diamond 112
Using No. 00 as a grindstone, it was cut to a size of 5 m length + nx width 10 mm x thickness 3 mm at a rotation speed of 240 rpm and a feed rate of 5 mm/min.
さらに、この切出し試料に、平均粒径50成、モース硬
度9の不定形Al2O3硬質粉末を用いて、圧力2.5
に3着、N2ガスの加圧気体とともに、20分間噴射す
る条件のグリッドブラストを施し、上記磁石体の表面層
を除去した。Furthermore, amorphous Al2O3 hard powder with an average particle size of 50 and a Mohs hardness of 9 was used for this cut sample, and a pressure of 2.5
Third, grid blasting was performed for 20 minutes with pressurized N2 gas to remove the surface layer of the magnet.
次に、真空度5X10−5TOrrの真空容器内に、上
記試料を入れ、Arガスを送入し、I X 10−2
TorrのArガス中、 500 Vの電圧で15分間
の放電を行なった後、引続き、コーティング材料として
、純度99.99%のN板を用い、これを加熱し、蒸発
Alをイオン化し、これらイオン化粒子が電界に引かれ
て、陰極を構成する前記試験片に何着し、Al薄膜を形
成した。試験片表面に形成した薄膜厚みは15μmであ
った。Next, the above sample was placed in a vacuum container with a vacuum degree of 5X10-5 TOrr, Ar gas was introduced, and IX10-2
After discharging for 15 minutes at a voltage of 500 V in Ar gas under Torr, a N plate with a purity of 99.99% was used as a coating material, and this was heated to ionize the evaporated Al. The particles were attracted by the electric field and landed on the test piece constituting the cathode, forming an Al thin film. The thickness of the thin film formed on the surface of the test piece was 15 μm.
上記イオン・ブレーティング条件は、電圧1.5kV、
10分間処理であった。The above ion brating conditions are a voltage of 1.5 kV,
The treatment was for 10 minutes.
さらに、MN膜層を被着した磁石体試料に、平均粒径1
2077m、モース硬度6の球状がラスビーズ粉末を用
いて、圧力1.5kcJ4、N2ガスの加圧気体ととも
に、5分間噴射する条件のショットピーニングを施して
試験片を得た(本発明1)。Furthermore, the average grain size of 1
A test piece was obtained by shot peening using a spherical russian bead powder with a diameter of 2077 m and a Mohs hardness of 6 under conditions of spraying for 5 minutes at a pressure of 1.5 kcJ4 with a pressurized N2 gas (Invention 1).
また、さらに、ショットピーニング後に、磁石体試料を
、30℃に保持した2%アロジン#1200(商品名、
日本ペイント社製)溶液中に、1分間浸漬し、ピーニン
ク後のM薄膜層表面に、黄金色にクロム酸塩被膜を被着
して試験片を得た(本発明2)。Further, after shot peening, the magnet sample was heated to 2% alodine #1200 (trade name,
A test piece was obtained by immersing it in a solution (manufactured by Nippon Paint Co., Ltd.) for 1 minute and depositing a golden yellow chromate coating on the surface of the M thin film layer after peening (Invention 2).
これらの試験片に耐食性試験と耐食性試験後の薄膜の密
着強度試験を行なった。また、耐食性試験前後の磁気特
性を測定した。試験結果及び測定結果を第1表に示す。These test pieces were subjected to a corrosion resistance test and a thin film adhesion strength test after the corrosion resistance test. In addition, the magnetic properties before and after the corrosion resistance test were measured. The test results and measurement results are shown in Table 1.
また、比較のため、前記の切出しままの試験片(比較例
3)及び上記試験片に、トリクレンにて3分間溶剤脱脂
し、5%Na0)lにて60℃、3分間のアルカリ脱脂
した後、2%HCRにて室温、10秒間の酸洗しワット
浴にて、電流密度aA/dm2.浴温度60℃、 20
分間の条件にて、電気ニッケルめっきを行ない表面に2
0.qm厚みのニッケルめっき層を有する比較試験片(
比較例4)を得た。さらに、上記のAJ薄膜層を被着さ
せたのち、ショットピーニング処理しない比較試験片(
比較例5〉を得た。In addition, for comparison, the as-cut test piece (Comparative Example 3) and the above test piece were subjected to solvent degreasing with trichlorene for 3 minutes, and alkaline degreasing with 5% Na0)l at 60°C for 3 minutes. , 2% HCR in a pickling Watts bath for 10 seconds at room temperature, current density aA/dm2. Bath temperature 60℃, 20
Electrolytic nickel plating is performed under conditions of 2 minutes on the surface.
0. Comparative test piece with qm thick nickel plating layer (
Comparative Example 4) was obtained. Furthermore, after depositing the above AJ thin film layer, a comparative test piece (not treated with shot peening) (
Comparative Example 5> was obtained.
これらの比較試験片に上記の実施例1と同一の試験及び
測定を行ない、その結果を同様に第1表に示す。These comparative test pieces were subjected to the same tests and measurements as in Example 1 above, and the results are also shown in Table 1.
耐食性試験は、上記試験片を70°Cの温度90%の湿
度の雰囲気に、500時間放置した場合の試験片外観状
況及び密着強度、耐蝕試験前後の磁気特性でもって評価
した。また、この発明の試験片1と試験片2は、上記条
件で発錆するまでの時間を調べた。The corrosion resistance test was evaluated based on the appearance of the test piece, adhesion strength, and magnetic properties before and after the corrosion test when the test piece was left in an atmosphere of 70°C, 90% humidity, and 500 hours. In addition, the time required for rust to develop for Test Pieces 1 and 2 of the present invention was examined under the above conditions.
また、密着強度試験は、耐食性試験後の本発明1.2及
び比較例4,5試験片を、破断じて破断面を観察するこ
とで評価した。Further, the adhesion strength test was evaluated by breaking the test pieces of Invention 1.2 and Comparative Examples 4 and 5 after the corrosion resistance test and observing the fracture surfaces.
以下余白
第1表より明らかなように、この発明方法により、切削
加工あるいは研削加工による磁気特性の劣化が改善され
、さらに、耐食性にすぐれた永久磁石が得られ、その効
果が著しいことが分る。As is clear from Table 1 in the margin below, the method of this invention improves the deterioration of magnetic properties caused by cutting or grinding, and also provides a permanent magnet with excellent corrosion resistance, which shows that the effect is remarkable. .
Claims (1)
くとも1種あるいはさらに、La、Ce、Sm、Gd、
Er、Eu、Tm、Yb、La、Yのうち少なくとも1
種からなる)10%〜30原子%、 B2原子%〜28原子%、 Fe65原子%〜80原子%を主成分とし、主相が正方
晶相からなる焼結永久磁石体の表面に、グリッドブラス
トを施し、 上記磁石体の表面層を除去したのち、 上記磁石体表面にAl薄膜層を被着し、 さらに、ショットピーニングを施して焼結磁石体の耐食
性を改善したことを特徴する永久磁石材料の製造方法。 2 R(RはNd、Pr、Dy、Ho、Tbのうち少な
くとも1種あるいはさらに、La、Ce、Sm、Gd、
Er、Eu、Tm、Yb、La、Yのうち少なくとも1
種からなる)10%〜30原子%、 B2原子%〜28原子%、 Fe65原子%〜80原子%を主成分とし、主相が正方
晶相からなる焼結永久磁石体の表面に、グリッドブラス
トを施し、 上記磁石体の表面層を除去したのち、 上記磁石体表面にAl薄膜層を被着し、 さらに、ショットピーニングを施した後に、焼結磁石体
表面にクロム酸塩処理を施して焼結磁石体の耐食性を改
善したことを特徴する永久磁石材料の製造方法。[Claims] 1 R (R is at least one of Nd, Pr, Dy, Ho, Tb, or furthermore, La, Ce, Sm, Gd,
At least one of Er, Eu, Tm, Yb, La, Y
Grid blasting is applied to the surface of a sintered permanent magnet body whose main components are 10% to 30 atomic% (consisting of seeds), 2 atomic% to 28 atomic% B, and 65 atomic% to 80 atomic% Fe, the main phase of which is a tetragonal phase. A permanent magnet material characterized in that the surface layer of the sintered magnet body is removed, an Al thin film layer is deposited on the surface of the magnet body, and shot peening is further performed to improve the corrosion resistance of the sintered magnet body. manufacturing method. 2 R (R is at least one of Nd, Pr, Dy, Ho, Tb, or furthermore, La, Ce, Sm, Gd,
At least one of Er, Eu, Tm, Yb, La, Y
Grid blasting is applied to the surface of a sintered permanent magnet body whose main components are 10% to 30 atomic% (consisting of seeds), 2 atomic% to 28 atomic% B, and 65 atomic% to 80 atomic% Fe, the main phase of which is a tetragonal phase. After removing the surface layer of the magnet body, an Al thin film layer is deposited on the surface of the magnet body, and after shot peening, the surface of the sintered magnet body is subjected to chromate treatment and sintered. A method for producing a permanent magnet material, characterized in that the corrosion resistance of a compacted magnet body is improved.
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60200890A JPS6260212A (en) | 1985-09-10 | 1985-09-10 | Manufacture of permanent magnet material |
CN85109695A CN1007847B (en) | 1984-12-24 | 1985-12-24 | Process for producing magnets having improved corrosion resistance |
EP85116598A EP0190461B1 (en) | 1984-12-24 | 1985-12-27 | Process for producing permanent magnets and permanent magnet |
DE8585116598T DE3584243D1 (en) | 1984-12-24 | 1985-12-27 | METHOD FOR PRODUCING PERMANENT MAGNETS AND PERMANENT MAGNET. |
US06/818,238 US4837114A (en) | 1984-12-24 | 1986-01-13 | Process for producing magnets having improved corrosion resistance |
US07/360,101 US5089066A (en) | 1984-12-24 | 1989-06-01 | Magnets having improved corrosion resistance |
US07/740,442 US5316595A (en) | 1984-12-24 | 1991-08-05 | Process for producing magnets having improved corrosion resistance |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60200890A JPS6260212A (en) | 1985-09-10 | 1985-09-10 | Manufacture of permanent magnet material |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6260212A true JPS6260212A (en) | 1987-03-16 |
JPH0545045B2 JPH0545045B2 (en) | 1993-07-08 |
Family
ID=16431950
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60200890A Granted JPS6260212A (en) | 1984-12-24 | 1985-09-10 | Manufacture of permanent magnet material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6260212A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5849833A (en) * | 1995-07-21 | 1998-12-15 | Rohm And Haas Company | Method for improving drying speed in printing process and fast dry printing ink used therein |
EP1136587A2 (en) * | 2000-03-23 | 2001-09-26 | Sumitomo Special Metals Co., Ltd. | Deposited-film forming apparatus |
US6861089B2 (en) | 2000-07-10 | 2005-03-01 | Neomax Co. Ltd. | Method of inhibiting production of projections in metal deposited-film |
-
1985
- 1985-09-10 JP JP60200890A patent/JPS6260212A/en active Granted
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5849833A (en) * | 1995-07-21 | 1998-12-15 | Rohm And Haas Company | Method for improving drying speed in printing process and fast dry printing ink used therein |
EP1136587A2 (en) * | 2000-03-23 | 2001-09-26 | Sumitomo Special Metals Co., Ltd. | Deposited-film forming apparatus |
EP1136587A3 (en) * | 2000-03-23 | 2002-03-06 | Sumitomo Special Metals Co., Ltd. | Deposited-film forming apparatus |
SG95636A1 (en) * | 2000-03-23 | 2003-04-23 | Sumitomo Spec Metals | Deposited-film forming apparatus |
US6872260B2 (en) | 2000-03-23 | 2005-03-29 | Neomax Co., Ltd. | Deposited-film forming apparatus |
US6861089B2 (en) | 2000-07-10 | 2005-03-01 | Neomax Co. Ltd. | Method of inhibiting production of projections in metal deposited-film |
Also Published As
Publication number | Publication date |
---|---|
JPH0545045B2 (en) | 1993-07-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5316595A (en) | Process for producing magnets having improved corrosion resistance | |
JP6803462B2 (en) | Grain boundary diffusion method for R-Fe-B-based rare earth sintered magnets | |
JP5226520B2 (en) | Manufacturing method of NdFeB sintered magnet | |
JPS6274048A (en) | Permanent magnet material and its production | |
JPS62192566A (en) | Permanent magnet material and its production | |
JPS61150201A (en) | Permanent magnet with excellent anticorrosion property | |
JPS63217601A (en) | Corrosion-resistant permanent magnet and manufacture thereof | |
JPS6260212A (en) | Manufacture of permanent magnet material | |
JPS6377103A (en) | Rare-earth magnet excellent in corrosion resistance and manufacture thereof | |
JPH0613211A (en) | Permanent magnet having excellent corrosion resistance and manufacture thereof | |
JPS62120002A (en) | Permanent magnet with excellent corrosion resistance | |
JPS62120004A (en) | Permanent magnet with excellent corrosion resistance and manufacture thereof | |
JPS62120003A (en) | Permanent magnet with excellent corrosion resistance and manufacture thereof | |
JPS61281850A (en) | Permanent magnet material | |
JPH0945567A (en) | Rare earth-iron-boron permanent magnet manufacturing method | |
JPS61270308A (en) | Production of permanent magnet material | |
JPH0666173B2 (en) | Permanent magnet having excellent corrosion resistance and method of manufacturing the same | |
JPS61185910A (en) | Manufacture of permanent magnet with excellent corrosion-resisting property | |
JP3208057B2 (en) | Corrosion resistant permanent magnet | |
JP3248982B2 (en) | Permanent magnet and manufacturing method thereof | |
JP2631492B2 (en) | Manufacturing method of corrosion resistant permanent magnet | |
JPS63232304A (en) | Permanent magnet excellent in oxidation resistance and manufacture thereof | |
JPS6362303A (en) | Permanent magnet of good corrosion-resisting property and manufacture thereof | |
JPS63254702A (en) | Manufacture of corrosion resisting permanent magnet | |
JP2720038B2 (en) | Manufacturing method of permanent magnet |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
EXPY | Cancellation because of completion of term |