JPS62120003A - Permanent magnet with excellent corrosion resistance and manufacture thereof - Google Patents

Permanent magnet with excellent corrosion resistance and manufacture thereof

Info

Publication number
JPS62120003A
JPS62120003A JP60260770A JP26077085A JPS62120003A JP S62120003 A JPS62120003 A JP S62120003A JP 60260770 A JP60260770 A JP 60260770A JP 26077085 A JP26077085 A JP 26077085A JP S62120003 A JPS62120003 A JP S62120003A
Authority
JP
Japan
Prior art keywords
atomic
permanent magnet
less
magnet
corrosion resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60260770A
Other languages
Japanese (ja)
Other versions
JPH0569283B2 (en
Inventor
Shigeki Hamada
隆樹 浜田
Tetsuharu Hayakawa
早川 徹治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to JP60260770A priority Critical patent/JPS62120003A/en
Priority to CN85109695A priority patent/CN1007847B/en
Priority to DE8585116598T priority patent/DE3584243D1/en
Priority to EP85116598A priority patent/EP0190461B1/en
Priority to US06/818,238 priority patent/US4837114A/en
Publication of JPS62120003A publication Critical patent/JPS62120003A/en
Priority to US07/360,101 priority patent/US5089066A/en
Priority to US07/740,442 priority patent/US5316595A/en
Publication of JPH0569283B2 publication Critical patent/JPH0569283B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/026Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets protecting methods against environmental influences, e.g. oxygen, by surface treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0572Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes with a protective layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered

Abstract

PURPOSE:To improve the corrosion resistance of a permanent magnet by providing a corrosion resistant vapor-phase plating layer on the sintered permanent magnet which mainly contains R (R is at least one of rare earth elements including Y) B and Fe, and tetragonal crystal of main phase and filling a resin in the fine pores of the plating layer. CONSTITUTION:Rare earth elements R are included in a range of 10-30atom%. If less than 10atom%, high magnetic property and hence high coercive force is not obtained, and if more than 30atom%, its remaining magnetic flux density Br decreases. B is included in a range of 2-28atom%. If less than 2atom%, high coercive force (iHc) is not obtained, and if more than 28atom%, its remaining magnetic flux density Br decreases. Fe is included in a range of 65-80atom%. If less than 65atom%, the remaining magnetic flux density Br decreases, and if more than 80atom%, high coercive force is not obtained. After the surface layer of the sintered magnet is removed, the surface of the magnet is covered with a thin corrosion resistant plating layer, then shot peened, impreg nated with thermoset resin, cleaned, dried and then thermoset.

Description

【発明の詳細な説明】 利用産業分野 この発明は、耐食性にすぐれたFa−B−R系永久磁石
とその製造方法に係り、焼結永久磁石表面の少なくとも
1主面に残存する黒皮、あるいは磁石表面の研削加工等
に伴なう磁石特性の劣化を防止し、ざらに磁石材料の耐
食性被膜の密着性並びに被膜の微細孔による耐食性の劣
化を改善した耐食性のすぐれたFe−B−R系永久磁石
とその製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Application This invention relates to an Fa-B-R permanent magnet with excellent corrosion resistance and a method for manufacturing the same. Fe-B-R system with excellent corrosion resistance that prevents deterioration of magnetic properties due to grinding of the magnet surface, and improves the adhesion of the corrosion-resistant coating of the magnet material and the deterioration of corrosion resistance due to fine pores in the coating. Permanent magnets and their manufacturing methods.

背景技術 現在の代表的な永久磁石材料は、アルニコ、ハードフェ
ライトおよび希土類コバルト磁石であるが、磁気特性が
すぐれ、かつ安価で、さらに資源的に豊富で今後の安定
供給が可能な組成元素からなる永久磁石材料が切望され
てきた。
BACKGROUND ART Current typical permanent magnet materials are alnico, hard ferrite, and rare earth cobalt magnets, which have excellent magnetic properties, are inexpensive, and are composed of elements that are abundant in resources and can be stably supplied in the future. Permanent magnetic materials have been desperately needed.

本出願人は先に、高価なSmf)Coを含有しない新し
い高性能永久磁石としてFe −B −R系(RはYを
含む希土類元素のうち少なくとも1種)永久磁石を提案
した(特開昭59−46008号、特開昭59−647
33号、特開昭59−89401号、特開昭59−13
2104号)。
The present applicant previously proposed a Fe-B-R-based permanent magnet (R is at least one rare earth element including Y) as a new high-performance permanent magnet that does not contain expensive Smf)Co (Japanese Patent Application Laid-Open No. No. 59-46008, Japanese Patent Publication No. 59-647
No. 33, JP-A-59-89401, JP-A-59-13
No. 2104).

この永久磁石は、Rとして陶や円を中心とする資源的に
豊富な軽希土類を用い、B、Feを主成分として258
GOa以上、最高では458GOe以上にも達する極め
て高いエネルギー積を示す、すぐれた永久磁石である。
This permanent magnet uses resource-rich light rare earths such as ceramics and circles as R, and contains 258% B and Fe as main components.
It is an excellent permanent magnet that exhibits an extremely high energy product of over GOa, reaching up to over 458 GOe.

最近、磁気回路の高性能化、小形化に伴ない、Fe−B
−R系永久磁石材料が益々注目されてぎた。
Recently, with the improvement in performance and miniaturization of magnetic circuits, Fe-B
-R-based permanent magnet materials have been attracting more and more attention.

かかる用途の永久磁石材料を製造するには、成形焼結し
た焼結磁石体表面の凹凸や歪みを除去するため、あるい
は表面酸化層を除去するため、さらには磁気回路に組込
むために、磁石体の全面おるいは所要表面を切削加工お
るいは研削加工する必要があり、加工には外周刃切断殿
、内周刃切断機。
In order to manufacture permanent magnet materials for such uses, it is necessary to remove irregularities and distortions on the surface of the sintered magnet body, to remove surface oxidation layers, and to incorporate the magnet body into a magnetic circuit. It is necessary to cut or grind the entire surface or the required surface, and for processing, an outer peripheral blade cutting machine and an inner peripheral blade cutting machine are used.

表面研削殿、センタレスグラインダー、ラッピングマシ
ン等が使用される。
Surface grinders, centerless grinders, lapping machines, etc. are used.

しかしながら、Fe−B−R系永久磁石材料を切削また
は研削加工すると、Fe−B−R系永久磁石材料は、主
成分として、空気中で極めて酸化しやすく、直ちに安定
な酸化物を生成する希土類元素及び鉄を含有するため、
発熱したり大気と加工面との接触により酸化層が生成し
、磁気特性の劣化を招来する問題があった。
However, when the Fe-B-R permanent magnet material is cut or ground, the main component of the Fe-B-R permanent magnet material is rare earth, which is extremely easily oxidized in the air and immediately forms stable oxides. Because it contains elements and iron,
There is a problem in that an oxide layer is generated due to heat generation or contact between the atmosphere and the machined surface, leading to deterioration of magnetic properties.

また、Fa  B  R系磁気異方性焼結体からなる永
久磁石を、磁気回路に組込んだ場合に、磁石表面に生成
する酸化物により、磁気回路の出力低下及び磁気回路間
の特性にばらつきを惹起し、また、表面酸化物の脱落に
よる周辺機器への汚染の問題があった。
In addition, when a permanent magnet made of an FaBR-based magnetically anisotropic sintered body is incorporated into a magnetic circuit, oxides generated on the magnet surface may cause a decrease in the output of the magnetic circuit and variations in characteristics between the magnetic circuits. There was also the problem of contamination of peripheral equipment due to shedding of surface oxides.

そこで、出願人は先に、上記のFa  B  R系永久
磁石の耐食性の改善のため、磁石体表面に無電解めっき
法あるいは電解めっき法により耐食性金属めっき層を被
覆した永久磁石(特願昭58−162350号)及び磁
石体表面にスプレー法おるいは浸漬法によって耐食性樹
脂層を被覆した永久磁石を提案(特願昭58−1719
07@) L/た。
Therefore, in order to improve the corrosion resistance of the above-mentioned Fa BR permanent magnet, the applicant first developed a permanent magnet (patent application filed in 1983) whose surface was coated with a corrosion-resistant metal plating layer by electroless plating or electrolytic plating. -162350) and proposed a permanent magnet in which the surface of the magnet body was coated with a corrosion-resistant resin layer by spraying or dipping (Japanese Patent Application No. 58-1719).
07@) L/ta.

しかし、前者のめっき法では永久磁石体が焼結体であり
有孔性のため、この孔内にめっき前処理で酸性溶液また
はアルカリ性溶液が残留し、経年変化とともに発錆する
恐れがあり、また磁石体の耐薬品性が劣るため、めっき
時に磁石表面が腐食されて密着性・防食性が劣る問題が
あった。
However, in the former plating method, since the permanent magnet body is a sintered body and is porous, there is a risk that acidic or alkaline solutions may remain in the pores during plating pretreatment, leading to rusting over time. Due to the poor chemical resistance of the magnet body, there was a problem that the magnet surface was corroded during plating, resulting in poor adhesion and corrosion resistance.

また後者のスプレー法による樹脂の塗装には方向性があ
るため、被処理物表面全体に均一な樹脂被膜を施すのに
多大の工程1手間を要し、特に形状が複雑な異形磁石体
に均一厚みの被膜を施すことは困難であり、また浸漬法
では樹脂被膜厚みが不均一になり、製品寸法精度が悪い
問題があった。
Furthermore, since resin coating using the latter spray method is directional, it takes a lot of time and effort to apply a uniform resin coating to the entire surface of the object to be treated, and it is especially difficult to apply uniformly to odd-shaped magnets with complex shapes. It is difficult to apply a thick coating, and the dipping method results in uneven resin coating thickness, resulting in poor product dimensional accuracy.

このため発明者らは、Fe −B −R系永久磁石の耐
食性を改善する方法として、焼結磁石体表面に、特定粒
径、硬度を有する硬質粉末よるグリッドブラストを施し
た後、薄膜形成技術にて、磁石体表面にM薄膜層を被着
した永久磁石材料(特願昭60−110793号、特願
昭60−200890号)を提案した。
Therefore, as a method for improving the corrosion resistance of Fe-B-R permanent magnets, the inventors applied a thin film forming technique to the surface of the sintered magnet by grid blasting with hard powder having a specific particle size and hardness. proposed a permanent magnet material (Japanese Patent Application No. 110793/1982, Patent Application No. 200890/1982) in which a thin M film layer was deposited on the surface of the magnet body.

これにより、F13−B−R系永久磁石は著しく耐食性
を増したが、上記M薄膜は、蒸着法等において、蒸発し
たN粒子が、磁石体表面に堆積して形成されるため、密
度不足を生じ、薄膜内に微細孔が存在し、例えば、この
薄膜上にクロム酸塩被膜を形成しても微細孔の完全な消
失は不可能でおり、長期間にわたる使用において、局部
的にM薄膜が剥離したり、薄膜層に亀裂を生じたりし、
局部的な錆発生が懸念される問題がおった。
As a result, the corrosion resistance of F13-B-R permanent magnets has increased significantly, but the M thin film described above is formed by evaporated N particles deposited on the magnet surface during vapor deposition, etc., so it is difficult to maintain sufficient density. For example, even if a chromate film is formed on this thin film, it is impossible to completely eliminate the micropores. It may peel off or cause cracks in the thin film layer.
There was a problem of localized rust formation.

発明の目的 この発明は、希土類・ボロン・鉄を主成分とする新規な
永久la石材料において、焼結磁石体の切削加工あるい
は研削加工に伴なう磁気特性の劣化を改善し、さらに、
腐蝕性薬品等を使用あるいは接触させることなく、密着
性、防蝕性を向上させ、さらに薄膜内の微細孔を、消失
させた耐食性薄膜層表面を有し、極めて苛酷な環境条件
でも長期間使用できる耐食性にすぐれた永久磁石とその
製造方法を目的としている。
Purpose of the Invention The present invention improves the deterioration of magnetic properties caused by cutting or grinding of a sintered magnet body in a new permanent laminated material containing rare earth elements, boron, and iron as main components, and further,
It has improved adhesion and corrosion resistance without the use or contact with corrosive chemicals, and has a corrosion-resistant thin film layer surface that eliminates micropores within the thin film, allowing it to be used for long periods of time even in extremely harsh environmental conditions. The purpose is to create a permanent magnet with excellent corrosion resistance and a method for manufacturing the same.

発明の構成と効果 この発明は、 R(RはNd、 Pr、 Dy、 Ho、 Tbのうち
少なくとも1種あるいはさらに、La、 Ce、 Sm
、 Gd、 Er、 Eu、 rm。
Structure and Effects of the Invention The present invention provides the following features:
, Gd, Er, Eu, rm.

Yb、 Lu、 Yのうち少なくとも1種からなる)1
0%〜30原子%、 B2原子%〜28原子%、 Fe65原子%〜80原子%を主成分とし、主相が正方
晶相からなる焼結永久磁石体の表面に、耐食性気相めっ
き層を有し、 さらに、気相めっき層の微細孔内に充填された樹脂を有
することを特徴する永久磁石材料である。
consisting of at least one of Yb, Lu, and Y)1
A corrosion-resistant vapor phase plating layer is provided on the surface of a sintered permanent magnet body whose main components are 0% to 30 at%, B2 at% to 28 at%, and Fe65 at% to 80 at%, and whose main phase is a tetragonal phase. The permanent magnet material further comprises a resin filled in the fine pores of the vapor plating layer.

さらに、この発明は、 R(RはNa、 Pr、 Dy、 l−に+、 Thの
うち少なくとも1種あるいはさらに、La、 Ce、 
Sm、 (A、 Er、 Eu、 Tm。
Further, the present invention provides R (R is at least one of Na, Pr, Dy, +, Th, or furthermore, La, Ce,
Sm, (A, Er, Eu, Tm.

Yb、 Lu、 Yのうち少なくとも1種からなる)1
0%〜30原子%、 B2原子%〜28原子%、 Fe65原子%〜80原子%を主成分とし、主相が正方
晶相からなる焼結永久磁石体の表面に、平均粒径20/
、tm〜35011m、モース硬度5以上の粉末の少な
くとも1種からなる不定形の硬質粉末を、圧力i、oh
、J〜e、ohmの加圧気体とともに、0.5分〜60
分間噴射するグリッドブラストを施し、上記磁石体の表
面層を除去したのち、 上記磁石体表面に、薄膜形成技術により、M、”In。
consisting of at least one of Yb, Lu, and Y)1
The main components are 0% to 30 atomic%, B2 atomic% to 28 atomic%, and Fe65 atomic% to 80 atomic%, and the main phase is a tetragonal phase.
, tm ~ 35011m, an amorphous hard powder consisting of at least one powder having a Mohs hardness of 5 or more is heated at a pressure of i, oh
, J~e, with pressurized gas of ohm, 0.5 min~60
After removing the surface layer of the magnet body by applying grid blasting for a minute, M, "In" was applied to the surface of the magnet body using a thin film forming technique.

TL、 NL、 Cr等の耐食性気相めっき薄膜層を被
着し、さらに、平均粒径30虜〜300011m、モー
ス硬度3以上の粉末の少なくとも1種からなる球状粉末
を、圧力1.0k14〜5.0JJの加圧気体とともに
、1分〜60分間噴射するショットピーニングを施し、
その後、大気中あるいは真空中もしくは真空化後加圧を
行なって焼結磁石体表面に熱硬化性樹脂を含浸させ、 その後溶剤または水にて該磁石体表面を洗浄し、乾燥後
に熱硬化処理し、 焼結磁石体の耐食性を改善したことを特徴する永久磁石
材料の製造方法である。
A corrosion-resistant vapor phase plating thin film layer of TL, NL, Cr, etc. is applied, and a spherical powder consisting of at least one type of powder with an average particle size of 30 to 300011 m and a Mohs hardness of 3 or more is coated under a pressure of 1.0 k to 5 k. Shot peening is performed by spraying .0JJ of pressurized gas for 1 minute to 60 minutes,
Thereafter, the surface of the sintered magnet body is impregnated with a thermosetting resin by applying pressure in the air or in a vacuum, or after vacuuming, and then the surface of the magnet body is washed with a solvent or water, and after drying, it is subjected to a thermosetting treatment. , a method for producing a permanent magnet material characterized by improved corrosion resistance of a sintered magnet body.

詳述すれば、この発明は、焼結磁石体表面に、所要性状
からなる硬質粉末を、加圧気体とともに、噴射し、焼結
磁石体の黒皮、酸化層や加工歪層等の表面層を除去して
、酸化や切削加工にともなう磁石特性の劣化を改善し、
清浄化された磁石体表面に気相めっき薄膜層°を被着し
、さらに、所要形状からなる特定の粉末を加圧気体とと
もに噴射して、該気相めっき薄膜層の緻密化を計り、材
料と表面薄膜層との密着性の改善した後、さらに、該被
膜に熱硬化性樹脂を含浸させて、気相めっき層の微細孔
を消滅させ、永久磁石材料の耐食性をなお一層向上させ
たものである。
Specifically, the present invention injects hard powder having desired properties onto the surface of a sintered magnet together with pressurized gas to eliminate surface layers such as black crust, oxidized layer, and strained layer of the sintered magnet. to improve the deterioration of magnetic properties caused by oxidation and cutting.
A vapor-phase plating thin film layer is deposited on the cleaned magnet surface, and a specific powder having a desired shape is injected together with pressurized gas to densify the vapor-phase plating thin film layer. After improving the adhesion between the film and the surface thin film layer, the film is further impregnated with a thermosetting resin to eliminate the micropores in the vapor plating layer, further improving the corrosion resistance of the permanent magnet material. It is.

また、この発明の永久磁石材料は平均結晶粒径が1〜8
0.izmの範囲にある正方晶系の結晶構造を有する化
合物を主相とし、体積比で1%〜50%の非磁性相(酸
化物相を除く)を含むことを特徴とする。
Further, the permanent magnet material of this invention has an average crystal grain size of 1 to 8.
0. It is characterized by having a compound having a tetragonal crystal structure in the range of .

この発明の製造方法は、Rとして陶や円を中心とする資
源的に豊富な軽希土類を用い、B、Feを主成分として
258GOE1以上、最高では45t4GOe以上にも
達する極めて高いエネルギー積並びに、高残留磁束密度
、高保磁力を示す、すぐれた永久磁石であり、かつ研削
加工及び酸化層による磁気特性の劣化を防止し、かつ微
細孔を消滅させて極めて高い防蝕性を示す気相めっき薄
膜を表面に安定被着したFa−BR系永久磁石材料を、
安価に得ることができる。
The manufacturing method of this invention uses resource-rich light rare earths such as ceramics and circles as R, and uses B and Fe as the main components to produce an extremely high energy product reaching 258 GOE1 or more, and at most 45 t4 GOE1 or more. It is an excellent permanent magnet that exhibits high residual magnetic flux density and high coercive force, and its surface is coated with a vapor-phase plating thin film that prevents deterioration of magnetic properties due to grinding and oxidized layers, and eliminates micropores and exhibits extremely high corrosion resistance. Fa-BR permanent magnet material stably adhered to
It can be obtained cheaply.

発明の好ましい実M態様 この発明において、ショツトブラストに使用するモース
硬度5以上の不定形硬質粉末としては、#203系、炭
化けい素系、 ZrO2系、炭化硼素系。
Preferred Embodiment of the Invention In the present invention, the amorphous hard powder having a Mohs hardness of 5 or more used for shot blasting includes #203 type, silicon carbide type, ZrO2 type, and boron carbide type.

ガーネット系等の粉末があり、硬度の高いM、、O3系
粉末が好ましい。
Garnet-based powders are available, and M, O3-based powders with high hardness are preferred.

上記の不定形硬質粉末のモース硬度が、5未満では、研
削力が小さすぎて、研削処理時間に長時間を要して好ま
しくない。
If the Mohs hardness of the above-mentioned amorphous hard powder is less than 5, the grinding force is too small and the grinding process takes a long time, which is not preferable.

また、不定形硬質粉末の平均粒度を20.um〜350
項とするのは、20μm未満では、研削力が小さすぎて
研削に長時間を要し、また、350umを越えると、焼
結磁石体表面の面粗度が粗くなりすぎ、研削母が不均一
となり、好ましくないためである。
In addition, the average particle size of the amorphous hard powder was 20. um~350
If the diameter is less than 20 μm, the grinding force will be too small and it will take a long time to grind, and if it exceeds 350 μm, the surface roughness of the sintered magnet will become too rough and the ground surface will be uneven. This is because it is not desirable.

また、不定形硬質粉末の噴射条件として、圧力1.0k
i4未満では、研削処理に長時間を要し、また、圧力6
. okL34を越えると磁石体表面の研削量が不均一
となり、面粗度の劣化が懸念される。
In addition, the injection conditions for the amorphous hard powder were set at a pressure of 1.0 k.
If it is less than i4, the grinding process will take a long time and the pressure will be less than 6.
.. When okL34 is exceeded, the amount of grinding on the surface of the magnet body becomes uneven, and there is a concern that the surface roughness may deteriorate.

さらに、噴射時間が0.5分間未満では、研削量が小さ
くかつ不均一であり、また、60分を越えると磁石体表
面の研削量が多くなり、面粗度が悪化して好ましくない
Furthermore, if the spraying time is less than 0.5 minutes, the amount of grinding will be small and non-uniform, and if it exceeds 60 minutes, the amount of grinding on the magnet surface will increase, which is undesirable as the surface roughness will deteriorate.

また、硬質粉末の噴射用加圧流体としては、空気あるい
はAr、  N2ガス等の不活性ガスが利用できるが、
磁石体の酸化防止のためには、不活性ガスが好ましく、
また、空気を用いる場合は、除湿を行なった空気が望ま
しい。
In addition, air or an inert gas such as Ar or N2 gas can be used as the pressurized fluid for injecting hard powder.
In order to prevent oxidation of the magnet, an inert gas is preferable.
Furthermore, when air is used, it is desirable to use dehumidified air.

また、この発明において、ショットピーニング用粉末と
しては、モース硬度3以上の球状硬質粉末を用い、スチ
ールボールやガラスピーズ等が利用でき、被着した気相
めっき薄膜層の硬度と同等以上の硬度であればよく、ガ
ラスピーズが好ましい。
In addition, in this invention, as the powder for shot peening, a spherical hard powder with a Mohs hardness of 3 or more is used, and steel balls, glass beads, etc. can be used, and the powder has a hardness equivalent to or higher than that of the vapor phase plated thin film layer. Glass peas are preferred.

ピーニング用球状粉末のモース硬度が、3未満では気相
めっき薄膜層の硬度より小さくなり、ピーニング効果が
得られないため好ましくない。
If the Mohs hardness of the peening spherical powder is less than 3, the hardness will be lower than that of the vapor phase plated thin film layer, and the peening effect will not be obtained, which is not preferable.

また、ピーニング用球状粉末の平均粒度を3011m〜
3000ρとするのは、30項未満では、気相めっき薄
膜層に対する押圧力が小さく処理に長時間を要し、また
、300011mを越えると、焼結磁石体表面の面粗度
が粗くなりすぎ、仕上面が不均一となり、好ましくない
ためである。さらに好ましい平均粒度は、40加から2
000廟である。
In addition, the average particle size of spherical powder for peening is 3011 m~
The reason for setting 3000ρ is that if it is less than 30 terms, the pressing force against the vapor phase plated thin film layer is small and it takes a long time to process, and if it exceeds 300011 m, the surface roughness of the sintered magnet body surface becomes too rough. This is because the finished surface becomes uneven, which is not desirable. A more preferable average particle size is from 40 to 2
000 temple.

また、球状粉末の噴射条件としては、圧力1.0に13
4未満では、気相めっき薄膜層に対する押圧力が小さく
処理に長時間を要し、また、圧力5.Oki着を越える
と気相めっき薄膜層への押圧力が不均一となり、面粗度
の悪化を招来する さらに、噴射時間が1分間未満では、全表面を均一に処
理できず、また、噴射時間の上限は、ピーニングの処理
量、処理条件によって決定されるが、60分を越えると
、面粗度が悪化して好ましくない。
In addition, the injection conditions for the spherical powder are as follows: pressure 1.0, 13
If the pressure is less than 5.4, the pressing force against the vapor phase plating thin film layer will be small and the processing will take a long time. If the Oki deposition is exceeded, the pressing force on the vapor phase plated thin film layer becomes uneven, leading to deterioration of the surface roughness.Furthermore, if the spraying time is less than 1 minute, the entire surface cannot be uniformly treated, and the spraying time The upper limit of peening is determined by the amount of peening and processing conditions, but if it exceeds 60 minutes, the surface roughness will deteriorate, which is undesirable.

この発明において、焼結磁石体の酸化表面相を除去した
清浄表面に、気相めっき薄膜層を被着させるには、真空
蒸着、スパッタリング、イオンブレーティング等の薄膜
形成方法が適宜選定利用できる。また、気相めっき材料
としては、M、’ln。
In the present invention, in order to deposit a vapor phase plated thin film layer on the clean surface of the sintered magnet body from which the oxidized surface phase has been removed, thin film forming methods such as vacuum evaporation, sputtering, and ion blasting can be appropriately selected and utilized. Moreover, as a vapor phase plating material, M, 'ln.

Tj、 Nj、 Cr等の金属おるいはその合金が好ま
しい。
Metals such as Tj, Nj, Cr, or alloys thereof are preferred.

さらに、薄膜層の厚みは、薄膜層の剥離あるいは数域的
強度の低下並びに防蝕性の確保等を考慮して、30々m
以下の厚みが好ましく、ざらに好ましくは5項〜25g
の層厚みである。
Furthermore, the thickness of the thin film layer is approximately 30 m, taking into account peeling of the thin film layer, reduction in strength in several areas, and ensuring corrosion resistance.
The following thickness is preferable, preferably 5 to 25 g
The layer thickness is .

この発明において、気相めっき薄膜層の微細孔内に、含
浸させる樹脂としては、アルコール溶性で分子量の小さ
い熱硬化性フェノール樹脂が好ましく、熱硬化条件とし
ては、含浸する熱硬化性樹脂の種類により適宜前提でき
る。
In this invention, the resin to be impregnated into the micropores of the vapor-phase plated thin film layer is preferably an alcohol-soluble thermosetting phenolic resin with a small molecular weight, and the thermosetting conditions vary depending on the type of thermosetting resin to be impregnated. You can make assumptions as appropriate.

また、熱硬化性樹脂の該薄膜微細孔への含浸方法として
は、浸漬含浸法、真空含浸法、真空加圧含浸法が採用で
き、不純物等を微細孔へ含浸させないように、真空中等
で実施されれば、その手段。
In addition, as a method for impregnating the thermosetting resin into the micropores of the thin film, immersion impregnation method, vacuum impregnation method, and vacuum pressure impregnation method can be adopted. If so, the means.

条件は適宜選定できる。Conditions can be selected as appropriate.

永久磁石材料の成分限定理由 この発明の永久磁石材料に用いる希土類元素Rは、組成
の10原子%〜30原子%を占めるが、陶。
Reasons for limiting the components of the permanent magnet material The rare earth element R used in the permanent magnet material of the present invention accounts for 10 to 30 at% of the composition.

Pr、 Dν、Ho、Tbのうち少なくとも1種、ある
いはさらに、La、 C8,Sm、 CA、 Er、 
Eu、 Tm、 Yt)、 Lu。
At least one of Pr, Dν, Ho, Tb, or further, La, C8, Sm, CA, Er,
Eu, Tm, Yt), Lu.

Yのうち少なくとも1種を含むものが好ましい。Those containing at least one type of Y are preferred.

また、通常Rのうち1種をもって足りるが、実用上は2
種以上の混合物(ミツシュメタル、ジジム等)を入手上
の便宜等の理由により用いることができる。
Also, normally one type of R is sufficient, but in practice two types are sufficient.
A mixture of more than one species (Mitushmetal, Didim, etc.) can be used for reasons such as availability.

なお、このRは純希土類元素でなくてもよく、工業上入
手可能な範囲で製造上不可避な不純物を含有するもので
も差支えない。
Note that this R does not have to be a pure rare earth element, and may contain impurities that are unavoidable in production within an industrially available range.

Rは、新規な上記系永久磁石材料における、必須元素で
あって、10原子%未満では、結晶構造がα−鉄と同一
構造の立方品組織となるため、高磁気特性、特に高保磁
力が1qられず、30原子%を越えると、Rリッチな非
磁性相が多くなり、残留磁束密度(Br)が低下して、
すぐれた特性の永久磁石が得られない。よって、希土類
元素は、10原子%〜30原子%原子間とする。
R is an essential element in the new above-mentioned permanent magnet material, and if it is less than 10 atomic %, the crystal structure becomes a cubic structure that is the same as α-iron, so it has high magnetic properties, especially a high coercive force of 1q If it exceeds 30 at%, the R-rich nonmagnetic phase increases, and the residual magnetic flux density (Br) decreases.
Permanent magnets with excellent characteristics cannot be obtained. Therefore, the amount of rare earth elements is 10 atomic % to 30 atomic %.

Bは、この発明による永久磁石材料における、必須元素
であって、2原子%未満では、菱面体構造が主相となり
、高い保磁力(iHc)は得られず、28原子%を越え
ると、Bリッチな非磁性相が多くなり、残留磁束密度(
Br)が低下するため、すぐれた永久磁石が得られない
。よって、Bは、2原子%〜28原子%の範囲とする。
B is an essential element in the permanent magnet material according to the present invention, and if it is less than 2 atomic %, the rhombohedral structure becomes the main phase and high coercive force (iHc) cannot be obtained, and if it exceeds 28 atomic %, B The rich nonmagnetic phase increases, and the residual magnetic flux density (
Br) decreases, making it impossible to obtain an excellent permanent magnet. Therefore, B is in the range of 2 atomic % to 28 atomic %.

Feは、新規な上記系永久磁石において、必須元素であ
り、65原子%未満では残留磁束密度(B r)が低下
し、80原子%を越えると、高い保磁力が得られないの
で、Feは65原子%〜80原子%の含有とする。
Fe is an essential element in the new above-mentioned permanent magnet.If it is less than 65 at%, the residual magnetic flux density (Br) decreases, and if it exceeds 80 at%, high coercive force cannot be obtained. The content is 65 atomic % to 80 atomic %.

また、この発明による永久磁石材料において、FBの一
部を−で置換することは、得られる磁石の磁気特性を損
うことなく、温度特性を改善することができるが、Co
置換量がFBの20%を越えると、逆に磁気特性が劣化
するため、好ましくない。Gの置換量がFsと−の合計
量で5原子%〜15原子%の場合は、(Br)は置換し
ない場合に比較して増加するため、高磁束密度を1qる
ために好ましい。
In addition, in the permanent magnet material according to the present invention, replacing a part of FB with - can improve the temperature characteristics without impairing the magnetic properties of the resulting magnet.
If the amount of substitution exceeds 20% of FB, the magnetic properties will deteriorate, which is not preferable. When the amount of G substitution is 5 at % to 15 at % in the total amount of Fs and -, it is preferable to increase the high magnetic flux density by 1q, since (Br) increases compared to the case where no substitution is made.

また、この発明による永久磁石材料は、R,B。Further, the permanent magnet material according to the present invention includes R, B.

FBの他、工業的生産上不可避的不純物の存在を許容で
きるが、Bの一部を4.0原子%以下のC13,5原子
%以下のP、2.5原子%以下のS、3.5原子%以下
の気のうち少なくとも1種、合計量で4.0原子%以下
で置換することにより、永久!i石の製造性改善、低価
格化が可能である。
In addition to FB, the presence of unavoidable impurities in industrial production can be tolerated, but a portion of B may be 4.0 atomic % or less of C13, 5 atomic % or less of P, 2.5 atomic % or less of S, 3. Permanent by replacing at least one type of Qi with a total amount of 4.0 atomic % or less of 5 atomic % or less! It is possible to improve the manufacturability and lower the price of i-stone.

また、下記添加元素のうち少なくとも1種は、RB−F
s系永久磁石に対してその保磁力、減磁曲線の角型性を
改善あるいは製造性の改善、低価格化に効果があるため
添加することができる。
Furthermore, at least one of the following additional elements is RB-F
It can be added to s-based permanent magnets because it is effective in improving the coercive force and squareness of the demagnetization curve, improving manufacturability, and reducing costs.

9.5原子%以下のA1.4.5原子%以下のTi、9
.5原子%以下のV、8,5原子%以下のCr、8.0
原子%以下のHn、  5.0原子%以下のBi、9.
5原子%以下のNb、9.5原子%以下の丁a、9.5
原子%以下の)fo、9.5原子%以下の縁、2.5原
子%以下のsb、7 原子%以下のGe、3.5原子%
以下のSn、  5.5原子%以下のZr、9.0原子
%以下のNi、  9.0原子%以下のSi、1.1原
子%以下のZn、  5.5原子%以下のHf。
A1 of 9.5 atom% or less; Ti of 4.5 atom% or less, 9
.. 5 at% or less V, 8.5 at% or less Cr, 8.0
Hn of atomic % or less, Bi of 5.0 atomic % or less, 9.
Nb of 5 at% or less, Dye a of 9.5 at% or less, 9.5
(at % or less) fo, 9.5 atomic % or less edge, 2.5 atomic % or less sb, 7 atomic % or less Ge, 3.5 atomic %
The following Sn, 5.5 atomic % or less Zr, 9.0 atomic % or less Ni, 9.0 atomic % or less Si, 1.1 atomic % or less Zn, 5.5 atomic % or less Hf.

のうち少なくとも1種を添加含有、但し、2種以上含有
する場合は、その最大含有量は当該添加元素のうち最大
値を有するものの原子%以下の含有させることにより、
永久磁石の高保磁力化が可能になる。
At least one of these elements is added and contained; however, when two or more types are contained, the maximum content is less than or equal to the atomic percent of the element having the maximum value among the added elements.
It becomes possible to increase the coercive force of permanent magnets.

結晶相は主相が正方品であることが、微細で均一な合金
粉末より、すぐれた磁気特性を有する焼結永久磁石を作
製するのに不可欠である。
It is essential that the main phase of the crystalline phase is a tetragonal one in order to produce a sintered permanent magnet having superior magnetic properties than a fine and uniform alloy powder.

また、この発明の永久磁石は、磁場中プレス成型するこ
とにより磁気的異方性磁石が得られ、また、無磁界中で
プレス成型することにより、磁気的等方性磁石を得るこ
とができる。
Further, the permanent magnet of the present invention can be press-molded in a magnetic field to obtain a magnetically anisotropic magnet, and can be press-molded in a non-magnetic field to obtain a magnetically isotropic magnet.

この発明による永久磁石材料は、保磁力iHc≧1 k
Oe、残留磁束密度8r> 4 kG、を示し、最大エ
ネルギー積(BH)maXは、(BH)maX≧10H
GOaを示し、最大値は258GOe以上に達する。
The permanent magnet material according to the present invention has a coercive force iHc≧1 k
Oe, residual magnetic flux density 8r > 4 kG, maximum energy product (BH) maX is (BH) maX ≧ 10H
GOa, and the maximum value reaches 258 GOe or more.

また、この発明による永久磁石のRの主成分が、その5
0%以上をNd及び円を主とする軽希土類金属が占める
場合で、R12原子%〜20原子%、B44原子〜24
原子%、F874原子%〜80原子%、を主成分とする
とき、(BH)max 35)fGoθ以上のすぐれた
磁気特性を示し、特に軽希土類金属が陶の場合には、そ
の最大値が458GOe以上に達する。
Further, the main component of R of the permanent magnet according to the present invention is 5
In the case where 0% or more is occupied by light rare earth metals mainly composed of Nd and Yen, R12 at % to 20 at%, B44 at to 24
When the main component is F874 at% to 80 at%, it exhibits excellent magnetic properties of (BH)max 35)fGoθ or more, and especially when the light rare earth metal is ceramic, the maximum value is 458GOe. reach more than that.

実施例 疋酊l− 出発原料として、純度99.9%の電解鉄、フェロボロ
ン合金、純度99.7%以上の陶を使用し、これらを配
合俊高周波溶解し、その後水冷銅鋳型に鋳造し、15.
 ONd 8. OB 77、 OFeなる組成の鋳塊
を得た。
Example 1- As starting materials, electrolytic iron with a purity of 99.9%, ferroboron alloy, and ceramics with a purity of 99.7% or more were used, and these were mixed and high-frequency melted, and then cast in a water-cooled copper mold. 15.
ONd8. An ingot having a composition of OB 77 and OFe was obtained.

その後このインゴットを、スタンプミルにより粗粉砕し
、次にボールミルにより微粉砕し、平均粒度31Enの
微粉末を得た。
Thereafter, this ingot was coarsely ground using a stamp mill, and then finely ground using a ball mill to obtain a fine powder with an average particle size of 31En.

この微粉末を金型に挿入し、12 kosの磁界中で配
向し、磁界に垂直方向に、1.5t4の圧力で成形した
This fine powder was inserted into a mold, oriented in a magnetic field of 12 kos, and molded at a pressure of 1.5 t4 in a direction perpendicular to the magnetic field.

得られた成形体を、1100’C,1時間、 Ar雰囲
気中、の条件で焼結し、長ざ25mmX幅40mmX厚
み30mm寸法の焼結体を得た。
The obtained molded body was sintered at 1100'C for 1 hour in an Ar atmosphere to obtain a sintered body with dimensions of 25 mm in length, 40 mm in width, and 30 mm in thickness.

さらにAr中での800’C,1時間と630°C,1
,5時間の2段時効処理を施した。
Furthermore, 800'C, 1 hour and 630°C, 1 hour in Ar
, a two-stage aging treatment of 5 hours was performed.

上記の永久磁石体を、大気中で、ダイヤモンド1200
番を砥石として、回転数240Orpm 、送り速度5
mm/minで、長ざ5mmX幅10mmX厚み3mm
寸法に切出した。
The above permanent magnet was placed in the atmosphere using a diamond 1200 magnet.
Using a grinding wheel, rotation speed 240 rpm, feed speed 5
mm/min, length 5mm x width 10mm x thickness 3mm
Cut out to size.

さらに、この切出し試料に、平均粒径50々m、モース
硬度9の不定形/V 203硬質粉末を用いて、圧力2
.5に9.J、N2ガスの加圧気体とともに、20分間
噴射する条件のグリッドブラストを施し、上記磁石体の
表面層を除去した。
Furthermore, using an amorphous /V 203 hard powder with an average particle size of 50 m and a Mohs hardness of 9, a pressure of 2
.. 5 to 9. Grid blasting was performed for 20 minutes with pressurized J and N2 gases to remove the surface layer of the magnet.

次に、真空度5X 10″″5Torrの真空容器内に
、上記試料を入れ、Arガスを送入し、1xtO−2T
orrのArガス中、 500 Vの電圧で15分間の
放電を行なった後、引続き、コーティング材料として、
純度99、99%のN板を用い、これを加熱し、蒸発N
をイオン化し、これらイオン化粒子が電界に引かれて、
陰極を構成する前記試験片に付着し、MWJ膜を形成し
た。試験片表面に形成した薄膜厚みは15左であった。
Next, the above sample was placed in a vacuum container with a vacuum degree of 5X 10''''5 Torr, Ar gas was introduced, and 1xtO-2T
After discharging for 15 minutes at a voltage of 500 V in Ar gas at
Using an N plate with a purity of 99%, it is heated to evaporate N.
ionized, and these ionized particles are attracted by the electric field,
It was attached to the test piece constituting the cathode to form a MWJ film. The thickness of the thin film formed on the surface of the test piece was 15 mm.

上記イオン・ブレーティング条件は、電圧1.5kV、
 10分間処理であった。
The above ion brating conditions are a voltage of 1.5 kV,
The treatment was for 10 minutes.

さらに、AIWJ膜層を被着した磁石体試料に、平均粒
径120加、モース硬度6の球状カラスビーズ粉末を用
いて、圧力1=5ki4、N2ガスの加圧気体とともに
、5分間噴射する条件のショットピーニングを施して試
験片を1qた。
Furthermore, conditions were set in which spherical glass bead powder with an average particle size of 120 and a Mohs hardness of 6 was injected onto the magnet sample coated with the AIWJ film layer at a pressure of 1=5ki4 for 5 minutes with pressurized N2 gas. The test piece was subjected to shot peening and weighed 1 q.

前記試験片を、IP2 Torrの真空容器内にて、熱
硬化性樹脂(商品名、ヒタノール、日立化成社製)に浸
漬し、含浸時間3分間(本発明例1)及び5分間(本発
明例2)の条件で、樹脂含浸を行なった後、該試験片の
表面を溶剤で洗浄し、25°Cで乾燥させ、さらに、大
気中、  140’C,30分の条件で熱硬化処理した
The test piece was immersed in a thermosetting resin (trade name: Hytanol, manufactured by Hitachi Chemical Co., Ltd.) in a vacuum container of IP2 Torr, and the impregnation time was 3 minutes (present invention example 1) and 5 minutes (present invention example). After resin impregnation under the conditions of 2), the surface of the test piece was washed with a solvent, dried at 25°C, and then heat-cured at 140°C for 30 minutes in the air.

これらの試験片に耐食性試験と耐食性試験後の薄膜の密
着強度試験を行なうた。また、耐食性試験前後の磁気特
性を測定した。試験結果及び測定結果を第1表に示す。
These test pieces were subjected to a corrosion resistance test and a thin film adhesion strength test after the corrosion resistance test. In addition, the magnetic properties before and after the corrosion resistance test were measured. The test results and measurement results are shown in Table 1.

また、比較のため、熱硬化性樹脂の含浸を施さない以外
は本発明例と同一条件で製造した試験片(比較例3)、
前記の切出したままの試験片(比較例4)及び上記試験
片に、トリクレンにて3分間溶剤脱脂し、5%Na0)
lにて60℃、3分間のアルカリ脱脂した後、2%HC
jにて室温、10秒間の酸洗しワット浴にて、電流密度
4A/dm2.浴温度60’C,20分間の条件にて、
電気ニッケルめっきを行ない表面に2011m厚みのニ
ッケルめっき層を有する比較試験片(比較例5)を得た
In addition, for comparison, a test piece (Comparative Example 3) manufactured under the same conditions as the present invention example except that it was not impregnated with a thermosetting resin,
The as-cut test piece (Comparative Example 4) and the above test piece were solvent degreased with trichloride for 3 minutes and treated with 5% Na0).
After alkaline degreasing at 60°C for 3 minutes, 2% HC
J at room temperature in a pickling Watts bath for 10 seconds at a current density of 4 A/dm2. Under the conditions of bath temperature 60'C, 20 minutes,
A comparative test piece (Comparative Example 5) having a 2011 m thick nickel plating layer on the surface was obtained by electro-nickel plating.

これらの比較試験片に上記の耐食性試験と耐食性試験後
の薄膜の密着強度試験及び耐食性試験前後の磁気特性の
測定を行ない、その結果を同様に第1表に示す。
These comparative test pieces were subjected to the above corrosion resistance test, a thin film adhesion strength test after the corrosion resistance test, and measurement of magnetic properties before and after the corrosion resistance test, and the results are also shown in Table 1.

耐食性試験は、上記試験片を70’Cの温度90%の湿
度の雰囲気に、1000時間放置した場合の試験片外観
状況及び密着強度、耐蝕試験前後の磁気特性でもって評
価した。
The corrosion resistance test was evaluated based on the appearance of the test piece, adhesion strength, and magnetic properties before and after the corrosion test when the test piece was left in an atmosphere of 70'C, 90% humidity, and 1000 hours.

また、密着強度試験は、耐食性試験後の本発明1.2及
び比較例3,5の各試験片を、破断して破断面を観察す
ることで評価した。
In addition, the adhesion strength test was evaluated by breaking the test pieces of Invention 1.2 and Comparative Examples 3 and 5 after the corrosion resistance test and observing the broken surfaces.

第1表より明らかなように、この発明方法により、切削
加工による磁気特性の劣化が防止され、さらに、寸法精
度にすぐれ、かつ極めてすぐれた耐食性を示す永久磁石
が得られ、その効果の著しいことが分る。
As is clear from Table 1, the method of the present invention prevents the deterioration of magnetic properties due to cutting, and also provides a permanent magnet with excellent dimensional accuracy and extremely high corrosion resistance. I understand.

Claims (1)

【特許請求の範囲】 1 R(RはNd、Pr、Dy、Ho、Tbのうち少な
くとも1種あるいはさらに、La、Ce、Sm、Gd、
Er、Eu、Tm、Yb、Lu、Yのうち少なくとも1
種からなる)10%〜30原子%、 B2原子%〜28原子%、 Fe65原子%〜80原子%を主成分とし、主相が正方
晶相からなる焼結永久磁石体の表面に、耐食性気相めつ
き層を有し、 さらに、気相めっき層の微細孔内に充填された樹脂を有
することを特徴する永久磁石材料。 2 R(RはNd、Pr、Dy、Ho、Tbのうち少な
くとも1種あるいはさらに、La、Ce、Sm、Gd、
Er、Eu、Tm、Yb、Lu、Yのうち少なくとも1
種からなる)10%〜30原子%、 B2原子%〜28原子%、 Fe65原子%〜80原子%を主成分とし、主相が正方
晶相からなる焼結永久磁石体の表面に、 グリッドブラストを施して上記磁石体の表面層を除去し
たのち、 上記磁石体表面に気相めっき処理を施し、 さらに、ショットピーニングを施した後に、焼結磁石体
表面に熱硬化性樹脂を含浸させ、その後溶剤または水に
て該磁石体表面を洗浄し、乾燥後に熱硬化処理したこと
を特徴する耐食性のすぐれた永久磁石の製造方法。
[Claims] 1 R (R is at least one of Nd, Pr, Dy, Ho, Tb, or furthermore, La, Ce, Sm, Gd,
At least one of Er, Eu, Tm, Yb, Lu, Y
The main components are 10% to 30 atomic% (consisting of seeds), 2 atomic% to 28 atomic% B, and 65 atomic% to 80 atomic% Fe, and the main phase is a tetragonal phase. A permanent magnet material comprising a mating layer and further comprising a resin filled in micropores of the vapor plating layer. 2 R (R is at least one of Nd, Pr, Dy, Ho, Tb, or furthermore, La, Ce, Sm, Gd,
At least one of Er, Eu, Tm, Yb, Lu, Y
Grid blasting is applied to the surface of a sintered permanent magnet body whose main components are 10% to 30 atomic% (consisting of seeds), 2 atomic% to 28 atomic% B, and 65 atomic% to 80 atomic% Fe, the main phase of which is a tetragonal phase. After removing the surface layer of the magnet body, the surface of the magnet body is subjected to vapor phase plating treatment, and after shot peening, the surface of the sintered magnet body is impregnated with a thermosetting resin, and then A method for producing a permanent magnet with excellent corrosion resistance, characterized in that the surface of the magnet body is washed with a solvent or water, dried, and then subjected to a heat curing treatment.
JP60260770A 1984-12-24 1985-11-20 Permanent magnet with excellent corrosion resistance and manufacture thereof Granted JPS62120003A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP60260770A JPS62120003A (en) 1985-11-20 1985-11-20 Permanent magnet with excellent corrosion resistance and manufacture thereof
CN85109695A CN1007847B (en) 1984-12-24 1985-12-24 Process for producing magnets having improved corrosion resistance
DE8585116598T DE3584243D1 (en) 1984-12-24 1985-12-27 METHOD FOR PRODUCING PERMANENT MAGNETS AND PERMANENT MAGNET.
EP85116598A EP0190461B1 (en) 1984-12-24 1985-12-27 Process for producing permanent magnets and permanent magnet
US06/818,238 US4837114A (en) 1984-12-24 1986-01-13 Process for producing magnets having improved corrosion resistance
US07/360,101 US5089066A (en) 1984-12-24 1989-06-01 Magnets having improved corrosion resistance
US07/740,442 US5316595A (en) 1984-12-24 1991-08-05 Process for producing magnets having improved corrosion resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60260770A JPS62120003A (en) 1985-11-20 1985-11-20 Permanent magnet with excellent corrosion resistance and manufacture thereof

Publications (2)

Publication Number Publication Date
JPS62120003A true JPS62120003A (en) 1987-06-01
JPH0569283B2 JPH0569283B2 (en) 1993-09-30

Family

ID=17352484

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60260770A Granted JPS62120003A (en) 1984-12-24 1985-11-20 Permanent magnet with excellent corrosion resistance and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS62120003A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01149403A (en) * 1987-12-04 1989-06-12 Sumitomo Special Metals Co Ltd Corrosion-resistant permanent magnet and manufacture thereof
JPH02101146A (en) * 1988-10-06 1990-04-12 Masato Sagawa Nd-fe-b-type sintered magnet excellent in heat treatment characteristic
CN106119844A (en) * 2016-08-24 2016-11-16 烟台首钢磁性材料股份有限公司 A kind of method of permanent magnet ndfeb magnet steel electroplating surface corronil coating

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01149403A (en) * 1987-12-04 1989-06-12 Sumitomo Special Metals Co Ltd Corrosion-resistant permanent magnet and manufacture thereof
JPH02101146A (en) * 1988-10-06 1990-04-12 Masato Sagawa Nd-fe-b-type sintered magnet excellent in heat treatment characteristic
CN106119844A (en) * 2016-08-24 2016-11-16 烟台首钢磁性材料股份有限公司 A kind of method of permanent magnet ndfeb magnet steel electroplating surface corronil coating

Also Published As

Publication number Publication date
JPH0569283B2 (en) 1993-09-30

Similar Documents

Publication Publication Date Title
EP0190461B1 (en) Process for producing permanent magnets and permanent magnet
JPH0283905A (en) Corrosion-resistant permanent magnet and manufacture thereof
US6444328B1 (en) FE-B-R based permanent magnet having corrosion-resistant film, and process for producing the same
US6281774B1 (en) Corrosion-resistant permanent magnet and method for producing the same
JP2791659B2 (en) Manufacturing method of corrosion resistant permanent magnet
JPS61150201A (en) Permanent magnet with excellent anticorrosion property
JPS62120003A (en) Permanent magnet with excellent corrosion resistance and manufacture thereof
JPS62120004A (en) Permanent magnet with excellent corrosion resistance and manufacture thereof
JPS6377103A (en) Rare-earth magnet excellent in corrosion resistance and manufacture thereof
JPH0569282B2 (en)
JPH0613211A (en) Permanent magnet having excellent corrosion resistance and manufacture thereof
JPS6260212A (en) Manufacture of permanent magnet material
JPH0945567A (en) Rare earth-iron-boron permanent magnet manufacturing method
JP3208057B2 (en) Corrosion resistant permanent magnet
JPH04288804A (en) Permanent magnet and manufacture thereof
JPH0554683B2 (en)
JPS61281850A (en) Permanent magnet material
JP2631493B2 (en) Manufacturing method of corrosion resistant permanent magnet
JP2553843B2 (en) Method of manufacturing permanent magnet with excellent corrosion resistance
JPH0666173B2 (en) Permanent magnet having excellent corrosion resistance and method of manufacturing the same
JPH0576521B2 (en)
JP2631492B2 (en) Manufacturing method of corrosion resistant permanent magnet
JPH10256012A (en) Permanent magnet with excellent corrosion resistance
JPS63166975A (en) Production of permanent magnet having excellent oxidation resistance
JP2720038B2 (en) Manufacturing method of permanent magnet

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term