JPS63166975A - Production of permanent magnet having excellent oxidation resistance - Google Patents

Production of permanent magnet having excellent oxidation resistance

Info

Publication number
JPS63166975A
JPS63166975A JP31397486A JP31397486A JPS63166975A JP S63166975 A JPS63166975 A JP S63166975A JP 31397486 A JP31397486 A JP 31397486A JP 31397486 A JP31397486 A JP 31397486A JP S63166975 A JPS63166975 A JP S63166975A
Authority
JP
Japan
Prior art keywords
permanent magnet
treatment
chemical conversion
oxalic acid
atomic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP31397486A
Other languages
Japanese (ja)
Other versions
JPH0586478B2 (en
Inventor
Shigeki Hamada
隆樹 浜田
Hiroko Nakamura
浩子 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to JP31397486A priority Critical patent/JPS63166975A/en
Publication of JPS63166975A publication Critical patent/JPS63166975A/en
Publication of JPH0586478B2 publication Critical patent/JPH0586478B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/46Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing oxalates

Abstract

PURPOSE:To produce a permanent magnet having excellent oxidation resistance by subjecting the surface of a sintered magnetic body of a tetragonal phase consisting of specific ratios of rate earth elements, B and Fe to a shot blast treatment and oxalic acid treatment, and thereafter executing a chemical conversion treatment thereto. CONSTITUTION:The surface of the sintered magnetic body consisting essentially of 10-30atom% R (formed with at least one kind among Nd, Pr, Dy, Ho and Tb, and furthermore formed with at least one kind among La, Ce, Sm, Gd, Er, Eu, Tm, Yb, Lu and Y). 2-30atom% B and 42-90atom% Fe, and the main phase thereof consisting of a tetragonal phase is subjected to the shot blast treatment with Al2O3 powder, etc. Said magnetic body is immersed in a satd. soln. of oxalic acid at the temp. of about 20-120 deg.C for an hour to execute the oxalic acid soln. treatment, and thereafter the chemical conversion treatment is executed by zinc phosphate, manganese phosphate, etc., to form a coated film of said magnetic body. The chemical conversion treatment can be industrially executed and the permanent magnet having the excellent oxidation resistance can obtd., by the above-mentioned manner.

Description

【発明の詳細な説明】 利用産業分野 この発明は、耐酸化性のすぐれたFe−B−R系永久磁
石の製造方法に係り、特にFe−B−R系永久磁石の耐
酸化性を改善する化成処理を工業的に容易にし、かつ耐
酸化性を著しく向上させ得る化成処理の前処理を有する
Fe−B−R系永久磁石の製造方法に関する。
[Detailed description of the invention] Industrial field of application The present invention relates to a method for manufacturing Fe-BR permanent magnets with excellent oxidation resistance, and in particular improves the oxidation resistance of Fe-BR permanent magnets. The present invention relates to a method for producing a Fe-BR permanent magnet having a chemical conversion pretreatment that facilitates chemical conversion treatment industrially and significantly improves oxidation resistance.

背景技術 出願人は先に、高価なSmやCoを含有しない新しい高
性能永久磁石として、Fe−B−R系(RはYを含む希
土類元素のうち少なくとも1種)永久磁石を提案した(
特願昭57−145072号)。
Background Art The applicant previously proposed a Fe-BR-based permanent magnet (R is at least one rare earth element including Y) as a new high-performance permanent magnet that does not contain expensive Sm or Co.
(Japanese Patent Application No. 145072/1982).

この永久磁石は、RとしてNdやPrを中心とする資源
的に豊富な軽希土類を用い、Feを主成分として25M
GOe以上の極めて高いエネルギー積を示す、すぐれた
永久磁石である。
This permanent magnet uses resource-rich light rare earths such as Nd and Pr as R, and is made of 25M with Fe as the main component.
It is an excellent permanent magnet that exhibits an extremely high energy product exceeding GOe.

しかしながら、上記のすぐれた磁気特性を有するFe−
B−R系磁気異方性焼結体からなる永久磁石は主成分と
して、空気中で酸化して次第に安定な酸化物を生成し易
い希土類元素、特にNd及び鉄を含有するため、磁気回
路に組込んだ際に、磁石表面に生成する酸化物により、
磁気回路の出力低下及び磁気回路間のばらつきを惹起し
、また、表面酸化物の脱落による周辺機器への汚染の問
題があった。
However, Fe-
Permanent magnets made of B-R magnetic anisotropic sintered bodies contain rare earth elements, especially Nd and iron, which tend to oxidize in the air and gradually form stable oxides, so they are difficult to use in magnetic circuits. Due to oxides generated on the magnet surface when incorporated,
This causes a decrease in the output of the magnetic circuit and variations between the magnetic circuits, and there is also the problem of contamination of peripheral equipment due to shedding of surface oxides.

そこで出願人は、先に上記のFe−B−R系永久磁石の
耐食性の改善のため、磁石体表面に化成処理を施して、
燐酸塩被膜またはクロム酸塩被膜を被着した永久磁石、
及び前記化成被膜上に、スプレー法、浸漬法、または電
着塗装法にて、耐酸化樹脂層を被膜した永久磁石(特開
昭60−63903号、特開昭60−63902号、特
開昭60−63901号)を提案した。
Therefore, in order to improve the corrosion resistance of the above-mentioned Fe-B-R permanent magnet, the applicant first applied a chemical conversion treatment to the surface of the magnet body,
Permanent magnets with phosphate or chromate coatings,
and permanent magnets in which an oxidation-resistant resin layer is coated on the chemical conversion coating by spraying, dipping, or electrodeposition coating (JP-A-60-63903, JP-A-60-63902, JP-A-Sho 60-63902, 60-63901).

しかし、前記化成被膜を被覆した永久磁石は、耐食性の
十分なる改善が得られないため、前記化成被膜表面に耐
酸化樹脂層を形成した場合、樹脂づ、′ 層との密着性は改善されるが、十分なる耐食性の向上は
得られなかった。
However, permanent magnets coated with the chemical conversion film do not have sufficient corrosion resistance, so when an oxidation-resistant resin layer is formed on the surface of the chemical conversion film, the adhesion with the resin layer is improved. However, a sufficient improvement in corrosion resistance could not be obtained.

発明の目的 この発明は、Fe−B−R系焼結磁石体に設けた化成被
膜の耐食性改善を目的とし、化成被膜処理を工業的に容
易にし、かつ耐酸化性を著しく向上させ得るFe−B−
R系永久磁石の製造方法を目的としている。
Purpose of the Invention The present invention aims to improve the corrosion resistance of a chemical conversion coating provided on a Fe-B-R based sintered magnet body. B-
The purpose is a method for manufacturing R-based permanent magnets.

発明の構成と効果 この発明は、Fe−B−R系焼結磁石に施す燐酸塩ある
いはクロム酸塩による化成処理法を改良し、耐酸化性の
改善向上を計るため、化成処理並びにその前処理につい
て、種々検討1−だ結果、以下の知見を得て、この発明
を完成したものである。
Structure and Effects of the Invention The present invention improves the chemical conversion treatment method using phosphate or chromate applied to Fe-B-R sintered magnets, and improves the chemical conversion treatment and its pretreatment in order to improve the oxidation resistance. As a result of various studies, the following findings were obtained and the present invention was completed.

Fe−B−R系焼結磁石体表面を化成処理するにあたり
、その前処理として、シュウ酸処理することにより、化
成被膜の耐食性が著しく改善されることを知見した。
It has been found that the corrosion resistance of the chemical conversion coating is significantly improved by treating the surface of the Fe-BR-based sintered magnet with oxalic acid as a pretreatment.

この効果は、焼結磁石体中の酸化し易いR,待にNdの
シュウ酸による不動態化が計られたものと考えられる。
This effect is thought to be due to the passivation of easily oxidized R and Nd in the sintered magnet body by oxalic acid.

しかし、シュウ酸溶液によるNdの不動態化処理には、
長時間を要して工業的ではないため、さらに検討を重ね
た結果、シュウ酸処理に先立ち、Fe−B−R系焼結磁
石体にショツトブラスト処理を施すことにより、磁石体
中のNdは不動態化が短時間に行われ、耐食性が著しく
改善されることを知見した。
However, in the passivation treatment of Nd with oxalic acid solution,
As it takes a long time and is not industrially practical, after further study, we decided to perform shot blasting on the Fe-B-R sintered magnet body prior to the oxalic acid treatment to eliminate Nd in the magnet body. It has been found that passivation takes place in a short time and corrosion resistance is significantly improved.

すなわち、この発明は、R(RはNd、 Pr、 Dy
、Ho、 Tbのうち少なくとも1種あるいはさらに、
La、 Ce、 Sm、 Gd、 Er、 Eu、 T
m、 Yb、 Lu、 Yのうち少なくとも1種からな
る)10%〜30原子%、B2原子%〜28原子%、 Fe42原子%〜90原子%を主成分とし、主相が正方
晶相からなる焼結磁石体表面に、 ショツトブラストを施してシュウ酸処理した後、化成処
理することを特徴とする耐酸化性のすぐれた永久磁石の
製造方法である。
That is, this invention provides R (R is Nd, Pr, Dy
, Ho, and at least one of Tb, or further,
La, Ce, Sm, Gd, Er, Eu, T
(consisting of at least one of m, Yb, Lu, and Y) 10% to 30 at%, B2 at% to 28 at%, Fe42 at% to 90 at%, and the main phase is a tetragonal phase. This method of manufacturing a permanent magnet with excellent oxidation resistance is characterized in that the surface of a sintered magnet body is shot blasted, treated with oxalic acid, and then subjected to chemical conversion treatment.

さらに、この発明を詳述すると、 前記組成及び結晶相を有する焼結磁石体表面に、平均粒
径20μm〜35%m 、モース硬度5以上の粉末の少
なくとも1種からなる不定形粉末を、圧力1.0kg/
cm2〜6.0kg/cm2の加圧気体とともに、0.
5分〜60分間噴射するショツトブラストを施した後、
シュウ酸溶液にて、スプレー法、浸漬法、蒸気処理法に
より処理して、Fe−B−R系焼結磁石体中の酸化し易
い成分R1特にNdの不動態化を促進した後、 化成処理を行うことを特徴とするもので、さらに、必要
により耐酸化性を改善するために、後続工程にて、スプ
レー法、浸漬法等により、樹脂被膜、あるいは金属めっ
き被膜を形成するものである。
Further, to describe this invention in detail, an amorphous powder consisting of at least one type of powder having an average particle size of 20 μm to 35% m and a Mohs hardness of 5 or more is applied to the surface of the sintered magnet having the above composition and crystalline phase under pressure. 1.0kg/
cm2~6.0kg/cm2 of pressurized gas and 0.
After applying shot blast for 5 to 60 minutes,
After treating with an oxalic acid solution by a spray method, dipping method, or steam treatment method to promote passivation of easily oxidized components R1, especially Nd, in the Fe-B-R sintered magnet body, chemical conversion treatment is performed. Furthermore, if necessary, in order to improve oxidation resistance, a resin film or a metal plating film is formed by a spray method, a dipping method, etc. in a subsequent step.

発明の好ましい実施態様 この発明において、焼結磁石体中のR1特にNdの不動
態化処理の第1段階のショツトブラスト処理法としては
、以下の構成が好ましい。
Preferred Embodiments of the Invention In the present invention, the following configuration is preferable as the shot blast treatment method in the first stage of the passivation treatment for R1, particularly Nd, in the sintered magnet body.

この発明において、ショツトブラストに使用するモース
硬度5以上の不定形硬質粉末としては、Al2O2系、
炭化けい素系、ZrO□系、炭化硼素系、ガーネット系
等の粉末があり、硬度の高いAe203第203好まし
い。
In this invention, the amorphous hard powder with a Mohs hardness of 5 or more used for shot blasting includes Al2O2-based powder,
There are silicon carbide-based, ZrO□-based, boron carbide-based, garnet-based powders, etc., and Ae203 No. 203, which has high hardness, is preferred.

上記の不定形硬質粉末のモース硬度が、5未満では、研
削力が小さすぎて、研削処理時間に長時間を要して好ま
しくない。
If the Mohs hardness of the above-mentioned amorphous hard powder is less than 5, the grinding force is too small and the grinding process takes a long time, which is not preferable.

また、不定形硬質粉末の平均粒度を201trn〜35
0prnとするのは、20pm未満では、研削力が小さ
すぎて研削に長時間を要し、また、350工を越えると
、焼結磁石体表面の面粗度が粗くなりすぎ、研削量が不
均一となり、好ましくないためである。
In addition, the average particle size of the amorphous hard powder is 201 trn to 35 trn.
The reason for setting 0 prn is that if it is less than 20 pm, the grinding force is too small and it takes a long time to grind, and if it exceeds 350 machining, the surface roughness of the sintered magnet surface becomes too rough and the amount of grinding is insufficient. This is because it becomes uniform, which is not preferable.

また、不定形硬質粉末の噴射条件として、圧力1.0k
g/cm2未満では、研削処理に長時間を要し、また、
圧力6.0kg/cm2を越えると磁石体表面の研削量
が不均一となり、面粗度の劣化が懸念される。
In addition, the injection conditions for the amorphous hard powder were set at a pressure of 1.0 k.
If it is less than g/cm2, the grinding process will take a long time, and
If the pressure exceeds 6.0 kg/cm2, the amount of grinding on the surface of the magnet body becomes uneven, and there is a concern that the surface roughness may deteriorate.

さらに、噴射時間が0.5分間未満では、研削量が小さ
くかつ不均一であり、また、60分を越えると磁石体表
面の研削量が多くなり、面粗度が悪化して好ましくない
Furthermore, if the spraying time is less than 0.5 minutes, the amount of grinding will be small and non-uniform, and if it exceeds 60 minutes, the amount of grinding on the magnet surface will increase, which is undesirable as the surface roughness will deteriorate.

また、硬質粉末の噴射用加圧流体としては、空気あるい
はAr、 N2ガス等の不活性ガスが利用できるが、磁
石体の酸化防止のためには、不活性ガスが好ましく、ま
た、空気を用いる場合は、除湿を行なった空気が望まし
い。
In addition, air or an inert gas such as Ar or N2 gas can be used as the pressurized fluid for injecting the hard powder, but in order to prevent oxidation of the magnet body, an inert gas is preferable. In such cases, dehumidified air is preferable.

また、第2段階のシュウ酸溶液による処理法としては、
浸漬法、スプレー法、蒸気処理法等があるが、浸漬法が
作業能率、品質安定化の点より好ましく、浸漬条件とし
ては溶液濃度はシュウ酸臨和溶液、溶液温度20℃〜1
20℃、特に60℃〜80”Cが好ましく、また浸漬時
間としては、1時間以内、特に1分〜15分が好ましい
In addition, as the second stage treatment method using oxalic acid solution,
There are immersion methods, spray methods, steam treatment methods, etc., but the immersion method is preferable from the point of view of work efficiency and quality stabilization, and the immersion conditions include a solution concentration of oxalic acid diluted solution, and a solution temperature of 20°C to 1.
The temperature is preferably 20°C, particularly 60°C to 80''C, and the immersion time is preferably within 1 hour, particularly 1 minute to 15 minutes.

また、この発明による化成処理被膜としては、燐酸亜鉛
、燐酸マンガン等による燐酸塩被膜が好ましく、化成被
膜厚みとしては、燐酸塩被膜の場合は耐酸化性、強度、
コストの点より10pm以下、クロム酸塩被膜の場合は
5μm以下が好ましい。
In addition, as the chemical conversion coating according to the present invention, a phosphate coating made of zinc phosphate, manganese phosphate, etc. is preferable, and as for the thickness of the chemical conversion coating, in the case of a phosphate coating, oxidation resistance, strength,
From the viewpoint of cost, the thickness is preferably 10 pm or less, and in the case of a chromate film, 5 μm or less.

さらに、耐食性を改善するためには、前記化成処理被膜
上に、浸漬法、スプレー法等により、耐酸化性樹脂を被
着したり、あるいは無電解めっきまたは電解めっき法に
より、Ni、 Cu、 Zn等の耐酸化性金属または合
金めっき、あるいはこれらの複合めっき層を被着しても
よい。
Furthermore, in order to improve corrosion resistance, an oxidation-resistant resin may be deposited on the chemical conversion coating by dipping, spraying, etc., or Ni, Cu, Zn may be coated by electroless plating or electrolytic plating. An oxidation-resistant metal or alloy plating such as oxidation-resistant metal or alloy plating, or a composite plating layer thereof may be applied.

この発明において、浸漬法、スプレー法により化成被膜
上に被着する樹脂としては、エポキシ樹脂、ウレタン樹
脂、フェノール樹脂、弗素樹脂、フラン樹脂、ポリシロ
キサン樹脂等及びこれらの複合樹脂が好ましい。
In this invention, as the resin to be deposited on the chemical conversion film by dipping or spraying, epoxy resins, urethane resins, phenol resins, fluororesins, furan resins, polysiloxane resins, etc., and composite resins thereof are preferable.

永久磁石の成分限定理由 この発明の永久磁石に用いる希土類元素Rは、組成の8
原子%〜30原子%を占めるが、Nd、 Pr。
Reason for limiting the composition of the permanent magnet The rare earth element R used in the permanent magnet of this invention has a composition of 8
Although Nd and Pr account for atomic% to 30 atomic%.

Dy、 Ho、 Tbのうち少なくとも1種、あるいは
さらに、La、 Ce、 Sm、 Gd、 Er、 E
u、 Tm、 Yb、 Lu、Yのうち少なくとも1種
を含むものが好ましい。
At least one of Dy, Ho, Tb, or in addition, La, Ce, Sm, Gd, Er, E
Preferably, it contains at least one of u, Tm, Yb, Lu, and Y.

また、通常Rのうち1種をもって足りるが、実用上は2
種以上の混合物(ミツシュメタル、ジジム等)を入手」
二の便宜等の理由により用いることができる。
Also, normally one type of R is sufficient, but in practice two types are sufficient.
Obtain a mixture of seeds or higher (Mitushmetal, Jijim, etc.)
It can be used for reasons such as convenience as described in 2.

なお、このRは純希土類元素でなくてもよく、工業上入
手可能な範囲で製造上不可避な不純物を含有するもので
も差支えない。
Note that this R does not have to be a pure rare earth element, and may contain impurities that are unavoidable in production within an industrially available range.

Rは、上記系永久磁石における、必須元素であって、8
原子%未満では、結晶構造がα−鉄と同一構造の立方晶
組織となるため、高磁気特性、特に高保磁力が得られず
、30原子%を越えると、Rリッチな非磁性相が多くな
り、残留磁束密度(Br)が低下して、すぐれた特性の
永久磁石が得られない。よって、希土類元素は、8原子
%〜3o原子%の範囲とする。
R is an essential element in the above-mentioned permanent magnet, and 8
If it is less than 30 atomic %, the crystal structure becomes a cubic structure that is the same as α-iron, so high magnetic properties, especially high coercive force, cannot be obtained, and if it exceeds 30 atomic %, R-rich nonmagnetic phase increases. , the residual magnetic flux density (Br) decreases, making it impossible to obtain a permanent magnet with excellent characteristics. Therefore, the rare earth element is in the range of 8 atomic % to 30 atomic %.

Bは、この発明による永久磁石における、必須元素であ
って、2原子%未満では、菱面体構造が主相となり、高
い保磁力(iHc)は得られず、28原子%を越えると
、Bリッチな非磁性相が多くなり、残留磁束密度(Br
)が低下するため、すぐれた永久磁石が得られない。よ
って、Bは、2原子%〜28原子%の範囲とする。
B is an essential element in the permanent magnet according to the present invention. If it is less than 2 at %, the rhombohedral structure becomes the main phase and high coercive force (iHc) cannot be obtained, and if it exceeds 28 at %, B-rich The number of non-magnetic phases increases, and the residual magnetic flux density (Br
) decreases, making it impossible to obtain an excellent permanent magnet. Therefore, B is in the range of 2 atomic % to 28 atomic %.

Feは、上記系永久磁石において、必須元素であり、4
2原子%未満では残留磁束密度(Br)が低下し、90
原子%を越えると、高い保磁力が得られないので、Fe
は42原子%〜90原子%の含有とする。
Fe is an essential element in the above-mentioned permanent magnet, and 4
If it is less than 2 atomic %, the residual magnetic flux density (Br) decreases, and 90
If it exceeds atomic%, high coercivity cannot be obtained, so Fe
The content is 42 atomic % to 90 atomic %.

また、この発明の永久磁石において、Feの一部をCo
で置換することは、得られる磁石の磁気特性を損うこと
なく、温度特性を改善することができるが、Co置換量
がFeの20%を越えると、逆に磁気特性が劣化するた
め、好ましくない。Coの置換量がFeとCoの合計量
で5原子%〜15原子%の場合は、(Br)は置換しな
い場合に比較して増加するため、高磁束密度を得るため
に好ましい。
Further, in the permanent magnet of the present invention, a part of Fe is replaced with Co.
Substitution with Co can improve the temperature characteristics without impairing the magnetic properties of the resulting magnet, but if the amount of Co substitution exceeds 20% of Fe, the magnetic properties will deteriorate, so it is preferable. do not have. When the amount of Co substitution is 5 at % to 15 at % in total of Fe and Co, (Br) increases compared to the case where no substitution is made, which is preferable in order to obtain a high magnetic flux density.

また、この発明の永久磁石は、R,B、Feの他、工業
的生産上不可避的不純物の存在を許容できるが、Bの一
部を4.0原子%以下のC13,5原子%以下のP、2
.5原子%以下のS、3.5原子%以下のCuのうち少
なくとも1種、合計量で4.0原子%以下で置換するこ
とにより、永久磁石の製造性改善、低価格化が可能であ
る。
In addition, the permanent magnet of the present invention can tolerate the presence of unavoidable impurities in industrial production in addition to R, B, and Fe; P, 2
.. By replacing at least one of S at 5 atomic % or less and Cu at 3.5 atomic % or less, with a total amount of 4.0 atomic % or less, it is possible to improve the manufacturability and lower the price of permanent magnets. .

また、下記添加元素のうち少なくとも1種は、R−B−
Fe系永久磁石に対してその保磁力、減磁曲線の角型性
を改侍あるいは製造性の改善、低価格化に効果があるた
め添加することができる。
Furthermore, at least one of the following additional elements is R-B-
It can be added to Fe-based permanent magnets because it is effective in modifying the coercive force and squareness of the demagnetization curve, improving manufacturability, and reducing costs.

9.5原子%以下のAI、4.5原子%以下のTi、9
.5原子%以下のV、8.5原子%以下のCr、8.0
原子%以下のMn、5.0原子%以下のBi、9.5原
子%以下のNb、9.5原子%以下のTa、9.5原子
%以下のMo、9.5原子%以下のW、2.5原子%以
下のsb、7 原子%以下のGe、3.5原子%以下の
Sn、5.5原子%以下のZr、9.0原子%以下のN
i、9.0原子%以下のSi、1.1原子%以下のZn
、5.5原子%以下のHf、のうち少なくとも1種を添
加含有、但し、2種以上含有する場合は、その最大含有
量は当該添加元素のうち最大値を有するものの原子%以
下の含有させることにより、永久磁石の高保磁力化が可
能になる。
9.5 atom% or less of AI, 4.5 atom% or less of Ti, 9
.. 5 at% or less V, 8.5 at% or less Cr, 8.0
Mn below 5.0 atom %, Bi below 5.0 atom %, Nb below 9.5 atom %, Ta below 9.5 atom %, Mo below 9.5 atom %, W below 9.5 atom % , 2.5 atom% or less sb, 7 atom% or less Ge, 3.5 atom% or less Sn, 5.5 atom% or less Zr, 9.0 atom% or less N
i, 9.0 at% or less Si, 1.1 at% or less Zn
, 5.5 atomic % or less of Hf.However, if two or more types are contained, the maximum content shall be atomic % or less of the one having the maximum value among the added elements. This makes it possible to increase the coercive force of the permanent magnet.

結晶相は主相が正方品であることが、微細で均一な合金
粉末より、すぐれた磁気特性を有する焼結永久磁石を作
製するのに不可欠である。
It is essential that the main phase of the crystalline phase is a tetragonal one in order to produce a sintered permanent magnet having superior magnetic properties than a fine and uniform alloy powder.

また、この発明の永久磁石は平均結晶粒径が1〜80p
mの範囲にある正方晶系の結晶構造を有する化合物を主
相とし、体積比で1%〜50%の非磁性相(酸化物相を
除く)を含むことを特徴とする。
Further, the permanent magnet of this invention has an average crystal grain size of 1 to 80p.
It is characterized by having a main phase of a compound having a tetragonal crystal structure in the range of m, and containing a nonmagnetic phase (excluding oxide phase) of 1% to 50% by volume.

この発明による永久磁石は、保磁力iHc≧1koe、
残留磁束密度Br>4kG、を示し、最大エネルギー積
(BH)maxは、(BH)max≧10MGOeを示
し、最大値は25MGOe以上に達する。
The permanent magnet according to the present invention has a coercive force iHc≧1koe,
The residual magnetic flux density Br>4kG is shown, and the maximum energy product (BH)max is (BH)max≧10MGOe, and the maximum value reaches 25MGOe or more.

また、この発明による永久磁石のRの主成分が、その5
0%以上をNd及びPrを主とする軽希土類金属が占め
る場合で、R12原子%〜20原子%、B44原子〜2
4原子%、Fe 74原子%〜80原子%、を主成分と
するとき、(BH)max 35MGOe以上のすぐれ
た磁気特性を示し、特に軽希土類金属がNdの場合には
、その最大値が45MGOe以上に達する。
Further, the main component of R of the permanent magnet according to the present invention is 5
In the case where 0% or more is occupied by light rare earth metals mainly consisting of Nd and Pr, R12 atomic % to 20 atomic %, B44 atomic % to 2
When the main component is 4 at% Fe and 74 at% to 80 at% Fe, it exhibits excellent magnetic properties of (BH)max 35MGOe or more, and especially when the light rare earth metal is Nd, the maximum value is 45MGOe. reach more than that.

また、この発明において、60℃、相対温度90%の環
境に長時間放置する耐食試験で、極めて高い耐食性示す
永久磁石として、 Ndllat%〜15at%、Dy 0.2at%〜3
.Oat%、かつNdとDyの総量が12at%〜17
at%であり、B 5at%〜8at%、Co O,5
at%〜13at%、AeO,5at%〜4at%、C
1000ppm以下を含有し、残部Fe及び不可避的不
純物からなる場合が好ましい。
In addition, in this invention, as a permanent magnet that shows extremely high corrosion resistance in a corrosion resistance test where it is left in an environment of 60°C and a relative temperature of 90% for a long time, Ndllat% ~ 15 at%, Dy 0.2 at% ~ 3
.. Oat%, and the total amount of Nd and Dy is 12at% to 17
at%, B 5at% to 8at%, CoO,5
at%~13at%, AeO, 5at%~4at%, C
It is preferable that the Fe content is 1000 ppm or less, with the remainder consisting of Fe and unavoidable impurities.

実施例 実施例1 出発原料として、純度99.9%の電解鉄、B19.4
%を含有し残部はFe及びAI、 Si、 C等の不純
物からなるフェロボロン合金、純度99.7%以上のN
d、 Dy、 Co、 AIを使用し、これらを高周波
溶解し、その後水冷銅鋳型に鋳造した。
Examples Example 1 As a starting material, electrolytic iron with a purity of 99.9%, B19.4
% and the remainder is Fe and impurities such as AI, Si, C, etc., N with a purity of 99.7% or more
d, Dy, Co, and AI, which were radio-frequency melted and then cast into water-cooled copper molds.

その後インゴットを、粗粉砕し、次に微粉砕し、平均粒
度3pmの微粉末を得た。
The ingot was then coarsely ground and then finely ground to obtain a fine powder with an average particle size of 3 pm.

この微粉末を金型に挿入し、10KOeの磁界中で配向
し、1.5t/cm2の圧力で成形した。
This fine powder was inserted into a mold, oriented in a magnetic field of 10 KOe, and molded at a pressure of 1.5 t/cm 2 .

得られた成形体を、1060℃、1時間、Ar中の条件
で焼結し、その後放冷し、さらにAr中で580℃、2
時間の時効処理を施して、この発明による永久磁石を作
成した。
The obtained compact was sintered at 1060°C for 1 hour in Ar, then allowed to cool, and further sintered in Ar at 580°C for 2 hours.
A permanent magnet according to the present invention was produced by subjecting it to a time aging treatment.

このときの成分組成は、13.5Nd  7.5B−6
Co −2A1−1.5Dy−Fe残部であった。
The component composition at this time is 13.5Nd 7.5B-6
The remainder was Co-2A1-1.5Dy-Fe.

得られた永久磁石から4mm X 8mm X 10m
m寸法に試験片を切り出し、試験片を脱脂後、平均粒径
65ユ、不定形硬質A6203系粉末を、圧力2.0k
g/cm2のN2ガス加圧気体とともに、10分間噴射
する条件のショツトブラストを施した。
4mm x 8mm x 10m from the obtained permanent magnet
A test piece was cut into a size of m, and after degreasing the test piece, amorphous hard A6203 powder with an average particle size of 65 U was heated under a pressure of 2.0 k.
Shot blasting was performed for 10 minutes with pressurized N2 gas at g/cm2.

さらに、下記条件のシュウ酸溶液処理並びに化成処理と
して燐酸塩処理を行った。
Further, oxalic acid solution treatment and phosphate treatment as chemical conversion treatment were performed under the following conditions.

次いで、各試料の耐酸化性試験、塩水噴霧試験、磁石特
性の測定を行った。その結果を第1表に示す。
Next, each sample was subjected to an oxidation resistance test, a salt spray test, and a measurement of magnetic properties. The results are shown in Table 1.

シュウ酸溶液九埋条件 濃度/A胞和シュウ酸水溶液 溶液温度80℃ 浸漬時間10分 渥鼓瓜立皿永庄 亜鉛12g/ぞ 燐酸根100g/e 溶温50℃ 1呆持時間3分 耐酸化性試験は、上記試験片を80℃の温度、90%の
湿度の雰囲気に放置した場合の発錆までの時間及び発錆
状況にて評価した。
Conditions for oxalic acid solution Concentration/A oxalic acid aqueous solution Temperature: 80°C Immersion time: 10 min. The test piece was evaluated based on the time until rusting and the state of rusting when the test piece was left in an atmosphere of 80° C. and 90% humidity.

また、塩水噴霧試験は、液温35℃の5%NaCe溶液
に浸漬して生成する発錆状況にて評価した。
In addition, the salt spray test was evaluated based on the rust generated by immersion in a 5% NaCe solution at a liquid temperature of 35°C.

また、比較のため、この発明の実施例と同一成分の試験
片に、ショツトブラスト処理及びシュウ酸溶液による不
動態化処理を施すことなく、化成処理した試験片を耐酸
化試験として、上記と同一の80℃、湿度90%の雰囲
気11月こて、また塩水噴霧試験も前記と同一条件にて
試験を行って、発錆状況及び磁気特性を測定した。その
結果を第1表に示す。
For comparison, a test piece with the same components as the example of this invention was subjected to chemical conversion treatment without shot blasting and passivation treatment with an oxalic acid solution. A salt water spray test was conducted under the same conditions as above, using a trowel in November in an atmosphere of 80° C. and 90% humidity, to measure the rusting state and magnetic properties. The results are shown in Table 1.

第1表 実施例2 実施例1と同一組成、同−製造条f′1−にて得られた
試験片を、実施例1と同一のショツトブラスト処理、シ
ュウ酸処理及び燐酸亜鉛処理を行った。
Table 1 Example 2 A test piece obtained in the same composition as in Example 1 and in the same manufacturing process f'1- was subjected to the same shot blasting, oxalic acid treatment, and zinc phosphate treatment as in Example 1. .

その後、試験片をポリシロキサン樹脂系のMS−170
0(コリコーン社製)中に浸漬し、室温にて3時間乾燥
させたのち、150℃、15分間の焼付処理を行い、表
面に樹脂を被着した試験片を作製し、実施例1と同様に
、耐酸化性試験、塩水噴霧試験及び磁石特性を測定した
。その結果を第2表に表す。
After that, the test piece was coated with polysiloxane resin MS-170.
0 (manufactured by Collicone), dried at room temperature for 3 hours, and then baked at 150°C for 15 minutes to prepare a test piece with resin coated on the surface, the same as in Example 1. Next, an oxidation resistance test, a salt spray test, and magnetic properties were measured. The results are shown in Table 2.

比較のため、前記と同一組成、同一製造条件にて得られ
た試験片を、ショツトブラスト処理、シュウ酸溶液処理
の不動態化処理を施すことなく、直接、前記と同じ化成
処理、樹脂浸漬法により表面に樹脂を接着した試験片に
ついて、前記と同様に磁石特性、耐酸化性試験、塩水噴
霧試験及び接着強度を測定した。その結果を第2表に表
す。
For comparison, a test piece obtained under the same composition and manufacturing conditions as above was directly subjected to the same chemical conversion treatment and resin dipping method as above, without shot blasting or passivation treatment such as oxalic acid solution treatment. Magnetic properties, oxidation resistance test, salt spray test, and adhesive strength were measured in the same manner as described above for the test piece with resin adhered to the surface. The results are shown in Table 2.

第2表 昭和62年4月 6日 昭和61年 特許願 第313974号2、発明の名称 耐酸化性のすぐれた永久磁石の製造方法3、補正をする
者 事件との関係    出願人 4、代理人 5、補正命令の日付       昭和62年3月31
日6、補正の対象 明細書の発明の名称、特許請求の範囲、発明の詳細な説
明の欄 7、補正の内容 別紙のとおり
Table 2 April 6, 1988 Patent Application No. 313974 2, Name of the invention Method for manufacturing a permanent magnet with excellent oxidation resistance 3, Relationship with the person making the amendment Case Applicant 4, Agent 5. Date of amendment order March 31, 1985
Day 6, as shown in the title of the invention, scope of claims, and detailed description of the invention column 7 of the specification to be amended, and the content of the amendment as shown in the attached sheet.

Claims (1)

【特許請求の範囲】[Claims] (1)R(RはNd、Pr、Dy、Ho、Tbのうち少
なくとも1種あるいはさらに、La、Ce、Sm、Gd
、Er、Eu、Tm、Yb、Lu、Yのうち少なくとも
1種からなる)10%〜30原子%、 B2原子%〜28原子%、 Fe42原子%〜90原子%を主成分とし、主相が正方
晶相からなる焼結磁石体表面に、ショットブラストを施
してシュウ酸処理した後、化成処理することを特徴とす
る耐酸化性のすぐれた永久磁石の製造方法。
(1) R (R is at least one of Nd, Pr, Dy, Ho, Tb, or in addition, La, Ce, Sm, Gd
, Er, Eu, Tm, Yb, Lu, Y) 10% to 30 atomic%, B2 atomic% to 28 atomic%, Fe42 atomic% to 90 atomic%, and the main phase is A method for producing a permanent magnet with excellent oxidation resistance, characterized in that the surface of a sintered magnet having a tetragonal phase is shot blasted, treated with oxalic acid, and then subjected to chemical conversion treatment.
JP31397486A 1986-12-26 1986-12-26 Production of permanent magnet having excellent oxidation resistance Granted JPS63166975A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31397486A JPS63166975A (en) 1986-12-26 1986-12-26 Production of permanent magnet having excellent oxidation resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31397486A JPS63166975A (en) 1986-12-26 1986-12-26 Production of permanent magnet having excellent oxidation resistance

Publications (2)

Publication Number Publication Date
JPS63166975A true JPS63166975A (en) 1988-07-11
JPH0586478B2 JPH0586478B2 (en) 1993-12-13

Family

ID=18047721

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31397486A Granted JPS63166975A (en) 1986-12-26 1986-12-26 Production of permanent magnet having excellent oxidation resistance

Country Status (1)

Country Link
JP (1) JPS63166975A (en)

Also Published As

Publication number Publication date
JPH0586478B2 (en) 1993-12-13

Similar Documents

Publication Publication Date Title
KR100877875B1 (en) Corrosion Resistant Rare Earth Magnet and Its Preparation
JP2791659B2 (en) Manufacturing method of corrosion resistant permanent magnet
JPS61130453A (en) Permanent magnet material having superior corrosion resistance and its manufacture
JPH0569282B2 (en)
JP4161169B2 (en) Method for producing corrosion-resistant rare earth magnet
JPS6377103A (en) Rare-earth magnet excellent in corrosion resistance and manufacture thereof
JP2631493B2 (en) Manufacturing method of corrosion resistant permanent magnet
JP3208057B2 (en) Corrosion resistant permanent magnet
JPS63166975A (en) Production of permanent magnet having excellent oxidation resistance
JPS61185910A (en) Manufacture of permanent magnet with excellent corrosion-resisting property
JPH0613211A (en) Permanent magnet having excellent corrosion resistance and manufacture thereof
JPH04288804A (en) Permanent magnet and manufacture thereof
JP2631492B2 (en) Manufacturing method of corrosion resistant permanent magnet
JPS62120004A (en) Permanent magnet with excellent corrosion resistance and manufacture thereof
JPH05226125A (en) Manufacture of highly corrosion-resistant rare-earth magnet
JPS62120003A (en) Permanent magnet with excellent corrosion resistance and manufacture thereof
JPH0545045B2 (en)
JPS63166944A (en) Corrosion-resisting permanent magnet
JPS6362303A (en) Permanent magnet of good corrosion-resisting property and manufacture thereof
JPS63150905A (en) Manufacture of permanent magnet having excellent oxidation resistance
JP2720038B2 (en) Manufacturing method of permanent magnet
JP3411605B2 (en) Corrosion resistant permanent magnet
JPS63254702A (en) Manufacture of corrosion resisting permanent magnet
JPH0576521B2 (en)
JPH0666173B2 (en) Permanent magnet having excellent corrosion resistance and method of manufacturing the same