JPH10259459A - Raw material alloy for producing rare earth magnet powder and production of rare earth magnet powder using this raw material alloy - Google Patents

Raw material alloy for producing rare earth magnet powder and production of rare earth magnet powder using this raw material alloy

Info

Publication number
JPH10259459A
JPH10259459A JP9269928A JP26992897A JPH10259459A JP H10259459 A JPH10259459 A JP H10259459A JP 9269928 A JP9269928 A JP 9269928A JP 26992897 A JP26992897 A JP 26992897A JP H10259459 A JPH10259459 A JP H10259459A
Authority
JP
Japan
Prior art keywords
intermetallic compound
rare earth
raw material
material alloy
earth magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP9269928A
Other languages
Japanese (ja)
Inventor
Yoshiyuki Nagatomo
義幸 長友
Tamotsu Ogawa
保 小川
Kiichi Komada
紀一 駒田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP9269928A priority Critical patent/JPH10259459A/en
Publication of JPH10259459A publication Critical patent/JPH10259459A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0579Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B with exchange spin coupling between hard and soft nanophases, e.g. nanocomposite spring magnets

Abstract

PROBLEM TO BE SOLVED: To obtain a raw material alloy producing rare earth magnet powder having excellent magnetic properties by composing the intergranular precipitates of a raw material alloy in which the componental compsn. and structure are specified of intermetallic compound phases and boride phases. SOLUTION: A raw material alloy for producing rare earth magnet powder having a compsn. contg., by at.%, 10.0 to 16.0% rare earth element including Y (R), 5.0 to 30.0% Co or Ni (T), 4.0 to 10.0% B, one or more kinds among Zr, Hf, Ti and Ni (M1) by 0.001 to 3.0% one or more kinds among Ga, Al and Sn (M2) by 0.001 to 5.0%, and the balance Fe with inevitable impurities and consisting of the main phases composed of R2 (Fe, T)14 B type intermetallic compound phases in which M1 and M2 are partially allowed to enter into solid solutions and intergranular precipitates precipitated into the boundaries of the crystal grains thereof is prepd. This intergranular precipitates are composed of Ra (Fe, T)100-a intermetallic compound phases, Rb T100-b intermetallic compound phases, M1c B100-c boride phases, Rd Te M2100-(d+e) intermetallic compound phases and Rf (Fe, T)g B100-(f+g) intermetallic compound phases.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、優れた磁気特性
を有する希土類磁石粉末を製造するための原料合金およ
びその原料合金を使用してさらに一層優れた磁気特性を
有する希土類磁石粉末を製造する方法に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a raw material alloy for producing a rare earth magnet powder having excellent magnetic properties and a method for producing a rare earth magnet powder having even more excellent magnetic properties by using the raw material alloy. It is about.

【0002】[0002]

【従来の技術】微細な希土類金属間化合物相の集合組織
からなる希土類磁石粉末を製造するには、R2 14B金
属間化合物相を主相とするインゴットのR2 Fe14B相
に500〜1000℃の水素中で水素を吸蔵させて、R
2 ,FeおよびFe2 Bの3相に相変態させ、続けて
同じ温度領域の真空雰囲気に保持し脱水素を行った後、
不活性ガス雰囲気中で常温に冷却し、ついで粉砕する
と、上記水素吸蔵により発生したRH2 ,FeおよびF
2 Bの3相は脱水素によりR2 Fe14B相に再変態
し、微細なR2 Fe14B金属間化合物の再結晶集合組織
を有する磁気特性に優れた希土類磁石粉末が得られる。
この製法は、水素化(Hydrogenation )、相分解(Deco
mposition )、脱水素化(Desorption)および再結合
(Recombination)の工程からなるところからHDDR
処理と呼ばれている。
2. Description of the Related Art In order to produce a rare earth magnet powder having a texture of a fine rare earth intermetallic compound phase, 500 parts are added to the R 2 Fe 14 B phase of an ingot having an R 2 F 14 B intermetallic compound phase as a main phase. By absorbing hydrogen in hydrogen at ~ 1000 ° C, R
After undergoing phase transformation into three phases of H 2 , Fe and Fe 2 B, and subsequently maintaining in a vacuum atmosphere in the same temperature range and performing dehydrogenation,
After cooling to room temperature in an inert gas atmosphere and then pulverizing, RH 2 , Fe and F
The three phases of e 2 B are re-transformed into R 2 Fe 14 B phase by dehydrogenation, and a rare earth magnet powder having a fine recrystallized texture of R 2 Fe 14 B intermetallic compound and excellent in magnetic properties is obtained.
This process involves the steps of hydrogenation and phase decomposition (Deco
mposition), dehydrogenation (Desorption) and recombination (Recombination)
Called processing.

【0003】このHDDR処理される原料合金として、
Yを含む希土類元素(以下、Rで示す):10.0〜1
6.0原子%、CoまたはNi(以下、Tで示す):
5.0〜30.0原子%、B:4.0〜10.0原子
%、Zr,Hf,TiおよびNbの内の少なくとも1種
以上(以下、M1で示す):0.001〜3.0原子
%、Ga,AlおよびSnの内の少なくとも1種以上
(以下、M2で示す):0.001〜5.0原子%を含
み、残部:Feおよび不可避不純物からなる成分組成を
有し、かつM1およびM2が一部固溶しているR2 (F
e,T)14M型金属間化合物相からなる主相の結晶粒と
その結晶粒の粒界に析出している粒界析出物からなる組
織を有する原料合金[以下、この原料合金をR−(F
e,T)−M1−M2系原料合金という]が使用される
ことも知られている。
[0003] As a raw material alloy to be subjected to the HDDR treatment,
Rare earth elements containing Y (hereinafter, indicated by R): 10.0 to 1
6.0 atomic%, Co or Ni (hereinafter, referred to as T):
5.0 to 30.0 atomic%, B: 4.0 to 10.0 atomic%, at least one or more of Zr, Hf, Ti and Nb (hereinafter, referred to as M1): 0.001 to 3. 0 atomic%, at least one or more of Ga, Al and Sn (hereinafter, referred to as M2): 0.001 to 5.0 atomic%, the balance being: a component composition comprising Fe and unavoidable impurities, And R 2 (F
e, T) 14 M type intermetallic consists compound phase of the main phase crystal grains and the crystal grains of the material alloy having a structure consisting of grain boundary precipitates are precipitated in the grain boundaries [hereinafter, the material alloy R- (F
e, T) -M1-M2 raw material alloy] is also known.

【0004】また、HDDR処理される原料合金とし
て、R:10.0〜16.0原子%、T:5.0〜3
0.0原子%、B:4.0〜10.0原子%、M1:
0.001〜3.0原子%を含み、残部:Feおよび不
可避不純物からなる成分組成を有し、かつM1が一部固
溶しているR2 (Fe,T)14M型金属間化合物相から
なる主相の結晶粒とその結晶粒の粒界に析出している粒
界析出物からなる組織を有する原料合金[以下、この原
料合金をR−(Fe,T)−M1系原料合金という]が
使用されることも知られている。
As raw material alloys to be subjected to HDDR treatment, R: 10.0-16.0 at%, T: 5.0-3%
0.0 atomic%, B: 4.0 to 10.0 atomic%, M1:
R 2 (Fe, T) 14 M-type intermetallic compound phase containing 0.001 to 3.0 atomic%, the balance being: having a component composition of Fe and unavoidable impurities, and in which M1 is partially dissolved. Raw material alloy having a structure composed of main phase crystal grains composed of the following and grain boundary precipitates precipitated at the grain boundaries of the crystal grains [hereinafter, this raw material alloy is referred to as an R- (Fe, T) -M1-based raw material alloy] ] Is also known to be used.

【0005】さらにHDDR処理される原料合金とし
て、R:10.0〜16.0原子%、T:5.0〜3
0.0原子%、B:4.0〜10.0原子%、M2:
0.001〜5.0原子%を含み、残部:Feおよび不
可避不純物からなる成分組成を有し、かつM2が一部固
溶しているR2 (Fe,T)14M型金属間化合物相から
なる主相の結晶粒とその結晶粒の粒界に析出している粒
界析出物からなる組織を有する原料合金[以下、この原
料合金をR−(Fe,T)−M2系原料合金という]が
使用されることも知られている。
Further, as raw material alloys to be subjected to HDDR treatment, R: 10.0 to 16.0 atomic%, T: 5.0 to 3
0.0 atomic%, B: 4.0 to 10.0 atomic%, M2:
R 2 (Fe, T) 14 M-type intermetallic compound phase containing 0.001 to 5.0 atomic%, the balance being: having a component composition of Fe and unavoidable impurities, and in which M2 is partially dissolved. Alloy having a structure consisting of a main phase crystal grain composed of the following and grain boundary precipitates precipitated at the grain boundary of the crystal grain [hereinafter, this material alloy is referred to as an R- (Fe, T) -M2-based material alloy. ] Is also known to be used.

【0006】[0006]

【発明が解決しようとする課題】前記R−(Fe,T)
−M1−M2系原料合金、R−(Fe,T)−M1系原
料合金またはR−(Fe,T)−M2系原料合金を50
0℃〜1000℃の温度範囲で水素吸蔵処理し、引き続
きその温度範囲で脱水素処理するHDDR処理を施して
も十分な磁気異方性を示さず、したがって、十分な磁気
特性を有する希土類磁石粉末は得られなていない。
The above R- (Fe, T)
-M1-M2 material alloy, R- (Fe, T) -M1 material alloy or R- (Fe, T) -M2 material alloy
Rare earth magnet powder which does not show sufficient magnetic anisotropy even if it is subjected to a hydrogen absorbing treatment in a temperature range of 0 ° C. to 1000 ° C. and subsequently subjected to an HDDR treatment in which it is subjected to a dehydrogenation treatment in that temperature range. Has not been obtained.

【0007】[0007]

【課題を解決するための手段】そこで、本発明者等は、
従来よりも一層磁気特性に優れた希土類磁石粉末を得る
べく研究を行った結果、HDDR処理して得られた希土
類磁石粉末の磁気特性は、使用する原料合金の組織、特
に結晶粒界の析出物が大きく影響を及ぼし、(a)R−
(Fe,T)−M1−M2系原料合金の組織を、M1お
よびM2が一部固溶しているR2 (Fe,T)14B型金
属間化合物相からなる主相の結晶粒とその結晶粒の粒界
に析出している粒界析出物からなる組織を有するR−
(Fe,T)−M1−M2系原料合金において、前記粒
界析出物がRa (Fe,T)100- a 金属間化合物相、R
b 100-b 金属間化合物相、M1c 100-c ホウ化合物
相、Rd e M2100-(d+e) 金属間化合物相およびRf
(Fe,T)g 100-(f+g ) 金属間化合物相(但し、3
0.0<a<40.0、65.0<b<75.0、3
0.0<c<40.0、60.0<d<70.0、2
0.0<e<30.0、85.0<d+e<99.9、
10.0<f<15.0、40.0<g<50.0、5
0.0<f+g<65.0)(a〜gの単位は原子%、
以下同じ)で構成されているR−(Fe,T)−M1−
M2系原料合金をHDDR処理すると、従来よりも一層
磁気異方性にすぐれた磁石粉末が得られる、(b)R−
(Fe,T)−M1系原料合金の組織を、M1が一部固
溶しているR 2 (Fe,T)14B型金属間化合物相から
なる主相の結晶粒とその結晶粒の粒界に析出している粒
界析出物からなる組織を有するR−(Fe,T)−M1
系原料合金において、前記粒界析出物がRa (Fe,
T)100-a 金属間化合物相、Rb100-b 金属間化合物
相、M1c 100-c ホウ化合物相、およびRf (Fe,
T)g 100-(f+g) 金属間化合物相(但し、30.0<
a<40.0、65.0<b<75.0、30.0<c
<40.0、10.0<f<15.0、40.0<g<
50.0、50.0<f+g<65.0)で構成されて
いるR−(Fe,T)−M1−M2系原料合金をHDD
R処理すると、従来よりも一層磁気異方性にすぐれた磁
石粉末が得られる、(c)R−(Fe,T)−M2系原
料合金の組織を、M2が一部固溶しているR 2 (Fe,
T)14B型金属間化合物相からなる主相の結晶粒とその
結晶粒の粒界に析出している粒界析出物からなる組織を
有するR−(Fe,T)−M2系原料合金において、前
記粒界析出物がRa (Fe,T)100-a 金属間化合物
相、Rb100-b 金属間化合物相、Rd e M2
100-(d+e) 金属間化合物相およびRf (Fe,T)g
100-(f+g) 金属間化合物相(但し、30.0<a<4
0.0、65.0<b<75.0、60.0<d<7
0.0、20.0<e<30.0、85.0<d+e<
99.9、10.0<f<15.0、40.0<g<5
0.0、50.0<f+g<65.0)で構成されてい
るR−(Fe,T)−M2系原料合金をHDDR処理す
ると、従来よりも一層磁気異方性にすぐれた磁石粉末が
得られる、という研究結果を得たのである。
Means for Solving the Problems Accordingly, the present inventors have
Obtain rare earth magnet powder with better magnetic properties than before
Rare earth obtained by HDDR processing
The magnetic properties of similar magnet powders depend on the structure of the raw material alloy used,
The precipitates at the grain boundaries have a great effect on (a) R-
The structure of the (Fe, T) -M1-M2 raw material alloy was changed to M1 and M1.
And R in which M2 and M2 are partially dissolvedTwo(Fe, T)14B mold
Grains of main phase composed of intergeneric compound phases and grain boundaries of the grains
Having a structure composed of grain boundary precipitates precipitated on
In the (Fe, T) -M1-M2 raw material alloy, the particles
The boundary precipitate is Ra(Fe, T)100- aIntermetallic compound phase, R
bT100-bIntermetallic compound phase, M1cB100-cBor compound
Phase, RdTeM2100- (d + e)Intermetallic compound phase and Rf
(Fe, T)gB100- (f + g )Intermetallic compound phase (however, 3
0.0 <a <40.0, 65.0 <b <75.0, 3
0.0 <c <40.0, 60.0 <d <70.0, 2
0.0 <e <30.0, 85.0 <d + e <99.9,
10.0 <f <15.0, 40.0 <g <50.0, 5
0.0 <f + g <65.0) (a to g are in atomic%,
R- (Fe, T) -M1-
HDDR treatment of M2-based raw material alloys,
A magnet powder having excellent magnetic anisotropy can be obtained.
The structure of the (Fe, T) -M1 raw material alloy is such that M1 is partially solidified.
R dissolved Two(Fe, T)14From B-type intermetallic compound phase
Grains of the main phase and grains precipitated at the grain boundaries of the grains
R- (Fe, T) -M1 having structure composed of intergranular precipitates
In the base material alloy, the grain boundary precipitate is Ra(Fe,
T)100-aIntermetallic compound phase, RbT100-bIntermetallic compound
Phase, M1cB100-cBorate phase and Rf(Fe,
T)gB100- (f + g)Intermetallic compound phase (however, 30.0 <
a <40.0, 65.0 <b <75.0, 30.0 <c
<40.0, 10.0 <f <15.0, 40.0 <g <
50.0, 50.0 <f + g <65.0)
R- (Fe, T) -M1-M2 raw material alloy
When the R treatment is performed, the magnetic anisotropy that is more excellent
(C) R- (Fe, T) -M2-based material from which stone powder is obtained
The structure of the material alloy is changed to R in which M2 is partially dissolved. Two(Fe,
T)14Main phase crystal grains composed of B-type intermetallic compound phase
The structure consisting of grain boundary precipitates precipitated at the grain boundaries of crystal grains
R- (Fe, T) -M2-based raw material alloy having
The grain boundary precipitate is Ra(Fe, T)100-aIntermetallic compound
Phase, RbT100-bIntermetallic compound phase, RdTeM2
100- (d + e)Intermetallic compound phase and Rf(Fe, T)gB
100- (f + g)Intermetallic compound phase (however, 30.0 <a <4
0.0, 65.0 <b <75.0, 60.0 <d <7
0.0, 20.0 <e <30.0, 85.0 <d + e <
99.9, 10.0 <f <15.0, 40.0 <g <5
0.0, 50.0 <f + g <65.0)
R- (Fe, T) -M2 material alloy
Then, a magnet powder with more excellent magnetic anisotropy than before
The research result was obtained.

【0008】この発明は、かかる研究結果に基づいてな
されたものであって、(1)R−(Fe,T)−M1−
M2系原料合金の組織を、M1およびM2が一部固溶し
ているR2 (Fe,T)14B型金属間化合物相からなる
主相の結晶粒とその結晶粒の粒界に析出している粒界析
出物からなる組織を有するR−(Fe,T)−M1−M
2系原料合金において、前記粒界析出物がRa (Fe,
T)100-a (30.0<a<40.0)金属間化合物
相、Rb 100-b (65.0<b<75.0)金属間化
合物相、M1c 100-c (30.0<c<40.0)ホ
ウ化物相、Rd e M2100-(d+e) (60.0<d<7
0.0、20.0<e<30.0、85.0<d+e<
99.9)金属間化合物相、およびRf (Fe,T)g
100-(f+g) (10.0<f<15.0、40.0<g
<50.0、50.0<f+g<65.0)金属間化合
物相で構成されている希土類磁石粉末製造用原料合金、
(2)R−(Fe,T)−M1系原料合金の組織を、M
1が一部固溶しているR 2 (Fe,T)14B型金属間化
合物相からなる主相の結晶粒とその結晶粒の粒界に析出
している粒界析出物からなる組織を有するR−(Fe,
T)−M1系原料合金において、前記粒界析出物がRa
(Fe,T)100-a (30.0<a<40.0)金属間
化合物相、Rb 100-b (65.0<b<75.0)金
属間化合物相、M1c 100-c (30.0<c<40.
0)ホウ化物相、およびRf (Fe,T)g
100-(f+g) (10.0<f<15.0、40.0<g<
50.0、50.0<f+g<65.0)金属間化合物
相で構成されている希土類磁石粉末製造用原料合金、
(3)R−(Fe,T)−M2系原料合金の組織を、M
2が一部固溶しているR 2 (Fe,T)14B型金属間化
合物相からなる主相の結晶粒とその結晶粒の粒界に析出
している粒界析出物からなる組織を有するR−(Fe,
T)−M2系原料合金において、前記粒界析出物がRa
(Fe,T)100-a (30.0<a<40.0)金属間
化合物相、Rb 100-b (65.0<b<75.0)金
属間化合物相、Rd e M2100-(d+e) (60.0<d
<70.0、20.0<e<30.0、85.0<d+
e<99.9)金属間化合物相、およびRf (Fe,
T)g 100-(f+g) (10.0<f<15.0、40.
0<g<50.0、50.0<f+g<65.0)金属
間化合物相で構成されている希土類磁石粉末製造用原料
合金、に特徴を有するものである。
[0008] The present invention is based on the results of such research.
(1) R- (Fe, T) -M1-
M1 and M2 are partially dissolved in the structure of the M2 material alloy.
RTwo(Fe, T)14Consists of B-type intermetallic compound phase
Main phase grains and grain boundary precipitates precipitated at the grain boundaries of the grains
R- (Fe, T) -M1-M having a structure consisting of exudates
In the binary raw material alloy, the grain boundary precipitate is Ra(Fe,
T)100-a(30.0 <a <40.0) intermetallic compound
Phase, RbT100-b(65.0 <b <75.0) intermetallic
Compound phase, M1cB100-c(30.0 <c <40.0)
Uride phase, RdTeM2100- (d + e)(60.0 <d <7
0.0, 20.0 <e <30.0, 85.0 <d + e <
99.9) Intermetallic compound phase, and Rf(Fe, T)g
B100- (f + g)(10.0 <f <15.0, 40.0 <g
<50.0, 50.0 <f + g <65.0) Intermetallic compound
Raw material alloy for the production of rare earth magnet powder composed of solid phase,
(2) The structure of the R- (Fe, T) -M1-based raw material alloy is represented by M
R in which 1 is partially dissolved Two(Fe, T)14Type B intermetallic
Crystal grains of the main phase composed of compound phase and precipitation at grain boundaries of the crystal grains
R- (Fe, having a structure consisting of grain boundary precipitates
T) In the -M1-based raw material alloy, the grain boundary precipitate is Ra
(Fe, T)100-a(30.0 <a <40.0) between metals
Compound phase, RbT100-b(65.0 <b <75.0) gold
Intergeneric compound phase, M1cB100-c(30.0 <c <40.
0) boride phase and Rf(Fe, T)gB
100- (f + g)(10.0 <f <15.0, 40.0 <g <
50.0, 50.0 <f + g <65.0) Intermetallic compound
Raw material alloy for the production of rare earth magnet powder composed of phases,
(3) The structure of the R- (Fe, T) -M2 raw material alloy is represented by M
R in which 2 is partially dissolved Two(Fe, T)14Type B intermetallic
Crystal grains of the main phase composed of compound phase and precipitation at grain boundaries of the crystal grains
R- (Fe, having a structure consisting of grain boundary precipitates
T) In the -M2-based raw material alloy, the grain boundary precipitate is Ra
(Fe, T)100-a(30.0 <a <40.0) between metals
Compound phase, RbT100-b(65.0 <b <75.0) gold
Intergeneric compound phase, RdTeM2100- (d + e)(60.0 <d
<70.0, 20.0 <e <30.0, 85.0 <d +
e <99.9) intermetallic compound phase, and Rf(Fe,
T)gB100- (f + g)(10.0 <f <15.0, 40.
0 <g <50.0, 50.0 <f + g <65.0) Metal
For the production of rare earth magnet powder composed of intermetallic compound phases
Alloys.

【0009】前記粒界析出物を構成するM1c 100-c
(30.0<c<40.0)ホウ化物相は凸レンズ形状
を有しており、この凸レンズ形状を有するM1c
100-c (30.0<c<40.0)ホウ化物相の切断面
の顕微鏡組織は、長径が1〜50μm、短径が0.01
〜10μmの寸法を有している。さらに、前記粒界析出
物を構成するRd e M2100-(d+e) (60.0<d<
70.0、20.0<e<30.0、85.0<d+e
<99.9)金属間化合物相は、Rb 100-b (65.
0<b<75.0)金属間化合物相内の周縁部に偏在し
ている。
M1 c B 100-c constituting the grain boundary precipitate
(30.0 <c <40.0) The boride phase has a convex lens shape, and M1 c B having this convex lens shape
The microstructure of the cut surface of the 100-c (30.0 <c <40.0) boride phase has a major axis of 1 to 50 μm and a minor axis of 0.01.
It has a size of 〜1010 μm. Furthermore, R d T e M2 100- ( d + e) constituting the grain boundary precipitates (60.0 <d <
70.0, 20.0 <e <30.0, 85.0 <d + e
<99.9) intermetallic compound phase, R b T 100-b ( 65.
0 <b <75.0) It is unevenly distributed in the peripheral part in the intermetallic compound phase.

【0010】前記組織を有するこの発明の希土類磁石合
金製造用原料合金は、R−(Fe,T)−M1−M2系
原料合金のインゴット、R−(Fe,T)−M1系原料
合金のインゴットまたはR−(Fe,T)−M2系原料
合金のインゴットに施す熱処理を改良することにより得
ることができる。この発明の希土類磁石合金製造用原料
合金を製造する一つの具体的方法は、前記インゴットを
Ar雰囲気中、昇温速度:5〜10℃/minで昇温
し、Ar雰囲気中、温度:1000〜1200℃で5〜
50時間保持した後、冷却速度:2〜4℃/minで温
度:550〜650℃まで冷却してその温度に0.5〜
1時間保持し、さらにAr雰囲気中、470〜550℃
未満まで冷却速度:2〜4℃/minで冷却した後その
温度に0.5〜2時間保持し、さらにAr雰囲気中、3
50〜470℃未満まで冷却速度:2〜4℃/minで
冷却した後その温度に0.5〜2時間保持し、さらにA
r雰囲気中、冷却速度:2〜4℃/minで温度:15
0〜250℃まで冷却した後その温度に0.5〜4時間
保持し、最終的にAr囲気中で室温まで冷却速度:2〜
4℃/minで冷却することにより得られる。しかし、
この発明はこの方法に限定されるものではない。
The raw material alloy for producing a rare earth magnet alloy according to the present invention having the above-mentioned structure is an ingot of an R- (Fe, T) -M1-M2 type raw material alloy, and an ingot of an R- (Fe, T) -M1 type raw material alloy. Alternatively, it can be obtained by improving the heat treatment applied to the ingot of the R- (Fe, T) -M2 raw material alloy. One specific method for producing a raw material alloy for producing a rare earth magnet alloy according to the present invention is to raise the temperature of the ingot in an Ar atmosphere at a rate of temperature increase of 5 to 10 ° C./min. 5 at 1200 ° C
After holding for 50 hours, the cooling rate is 2 to 4 ° C./min, and the temperature is cooled to 550 to 650 ° C.
Hold for 1 hour, and further in an Ar atmosphere, 470-550 ° C
Cooling rate: less than 2 to 4 ° C./min, hold at that temperature for 0.5 to 2 hours,
After cooling at a cooling rate of 2 to 4 ° C./min to 50 to less than 470 ° C., the temperature is maintained for 0.5 to 2 hours.
r atmosphere, cooling rate: 2 to 4 ° C./min, temperature: 15
After cooling to 0 to 250 ° C., the temperature is maintained for 0.5 to 4 hours, and finally the cooling rate to room temperature in an Ar atmosphere is:
It is obtained by cooling at 4 ° C./min. But,
The invention is not limited to this method.

【0011】この発明の希土類磁石合金製造用原料合金
に500〜1000℃の水素中で水素を吸蔵させ、引き
続いて同じ温度領域の真空雰囲気に保持し脱水素を行っ
た後、不活性ガス雰囲気中で冷却し、ついで粉砕する公
知のHDDR処理を施すと、優れた磁気特性を有する希
土類磁石粉末が得られるが、このHDDR処理において
不活性ガス雰囲気中での冷却を2段階の冷却速度で行
い、図4に示されるように、前記脱水素終了後、第一冷
却速度:5〜15℃/min.で冷却し、300〜40
0℃の範囲内の中間温度に30〜60分保持時した後、
さらに第二冷却速度:1〜4℃/min.で室温まで冷
却することにより一層優れた磁気特性を有する希土類磁
石粉末が得られることが分かったのである。
The raw material alloy for producing a rare earth magnet alloy of the present invention is made to absorb hydrogen in hydrogen at 500 to 1000 ° C., and is subsequently dehydrogenated in a vacuum atmosphere in the same temperature range. A known rare earth magnet powder having excellent magnetic properties can be obtained by performing a known HDDR process of cooling and then grinding. In this HDDR process, cooling in an inert gas atmosphere is performed at a two-stage cooling rate, As shown in FIG. 4, after the completion of the dehydrogenation, the first cooling rate: 5 to 15 ° C./min. Cool with 300 ~ 40
After holding at an intermediate temperature in the range of 0 ° C. for 30 to 60 minutes,
Further, a second cooling rate: 1 to 4 ° C / min. It was found that cooling to room temperature at room temperature gave a rare earth magnet powder having even better magnetic properties.

【0012】したがって、この発明は、前記(1)〜
(3)記載の希土類磁石粉末製造用原料合金を、500
〜1000℃の水素中で水素を吸蔵させ、引き続いて5
00〜1000℃の真空雰囲気に保持し脱水素を行った
後、不活性ガス雰囲気中で第一冷却速度:5〜15℃/
min.で冷却し、300〜400℃の範囲内の中間温
度に30〜60分保持時した後、さらに第二冷却速度:
1〜4℃/min.で常温まで冷却し、ついで粉砕する
希土類磁石粉末の製造方法およびこの製造方法で得られ
た希土類磁石粉末、に特徴を有するものである。
Therefore, the present invention provides the above (1) to
(3) The raw material alloy for producing rare earth magnet powder described in
Absorb hydrogen in hydrogen at ~ 1000 ° C, followed by 5
After dehydrogenation while maintaining a vacuum atmosphere of 00 to 1000 ° C, the first cooling rate is 5 to 15 ° C / in an inert gas atmosphere.
min. After maintaining at an intermediate temperature in the range of 300 to 400 ° C. for 30 to 60 minutes, a second cooling rate:
1-4 ° C / min. The method is characterized by a method of producing a rare earth magnet powder which is cooled to room temperature and then pulverized, and a rare earth magnet powder obtained by this production method.

【0013】[0013]

【発明の実施の形態】R−(Fe,T)−M1−M2系
原料合金として表1の成分組成を有する合金a〜iを用
意し、R−(Fe,T)−M1系原料合金として表1の
成分組成を有する合金m〜pを用意し、さらにR−(F
e,T)−M2系原料合金として表1の成分組成を有す
る合金q〜sを用意し、この合金a〜sをAr雰囲気の
プラズマアーク溶解炉にて溶解し、上記合金a〜sの溶
湯を鋳造してインゴットを作製した。
BEST MODE FOR CARRYING OUT THE INVENTION Alloys a to i having the component compositions shown in Table 1 are prepared as R- (Fe, T) -M1-M2 raw material alloys, and are used as R- (Fe, T) -M1 raw material alloys. Alloys m to p having the component compositions shown in Table 1 were prepared, and R- (F
e, T) -M2 based alloys q to s having the composition shown in Table 1 were prepared, and the alloys a to s were melted in a plasma arc melting furnace in an Ar atmosphere to obtain a melt of the alloys a to s. Was cast to produce an ingot.

【0014】[0014]

【表1】 [Table 1]

【0015】実施例1〜19 これら合金a〜sのインゴットをAr雰囲気中、昇温速
度:10℃/minで昇温し、Ar雰囲気中、温度:1
100℃で10時間保持し、その後Ar雰囲気中で冷却
速度:3℃/minで600℃まで冷却した後その温度
に1時間保持し、さらにAr雰囲気中、冷却速度:3℃
/minで温度:500℃まで冷却した後その温度に1
時間保持し、さらにAr雰囲気中、冷却速度:3℃/m
inで温度:450℃まで冷却した後その温度に1時間
保持し、さらにAr雰囲気中、冷却速度:3℃/min
で温度:200℃まで冷却した後その温度に2時間保持
し、最終的にAr囲気中で室温まで冷却速度:3℃/m
inで冷却することにより本発明希土類磁石粉末製造用
原料合金(以下、本発明原料合金と云う)1〜19を作
製し、得られた本発明原料合金1〜19の主相の結晶粒
の粒界に析出している粒界析出物をEPMA(X線マイ
クロアナライザ)により特定し、その結果を表2および
表3に示した。
Examples 1 to 19 The ingots of these alloys a to s were heated in an Ar atmosphere at a rate of temperature increase of 10 ° C./min.
It is kept at 100 ° C. for 10 hours, then cooled in an Ar atmosphere at a cooling rate of 3 ° C./min to 600 ° C., kept at that temperature for 1 hour, and further cooled in an Ar atmosphere at a cooling rate of 3 ° C.
/ Min at a temperature of 500 ° C.
Hold for a time and further in an Ar atmosphere, cooling rate: 3 ° C./m
After cooling to 450 ° C. in, the temperature was maintained for 1 hour, and further, in an Ar atmosphere, cooling rate: 3 ° C./min.
After cooling to 200 ° C., the temperature is maintained for 2 hours, and finally to room temperature in an Ar atmosphere at a cooling rate of 3 ° C./m.
By cooling in, raw material alloys (hereinafter, referred to as raw material alloys) 1 to 19 of the present invention for producing rare earth magnet powder are produced, and grains of main phases of the obtained raw material alloys 1 to 19 of the present invention are obtained. Grain boundary precipitates precipitated in the boundaries were identified by EPMA (X-ray microanalyzer), and the results are shown in Tables 2 and 3.

【0016】[0016]

【表2】 [Table 2]

【0017】[0017]

【表3】 [Table 3]

【0018】この発明の希土類磁石粉末製造用原料合金
の粒界析出部分の組織を一層具体的に説明する。この発
明のR−(Fe,T)−M1−M2系原料合金の内の代
表的合金である本発明原料合金1の顕微鏡組織の写生図
を図1に示す。図1に示されるように、本発明原料合金
1はZrおよびGaが一部固溶している主相(Nd12 .5
Co17.25.6 Zr0.06Ga0.14Fe64.5金属間化合物
相)の結晶粒とその結晶粒の粒界に析出している粒界析
出物からなる組織を有し、粒界析出物は、Nd35.1Co
33.1Fe31.8金属間化合物相、Nd71.9Co21.8金属間
化合物相、Zr31.468.6ホウ化物相、Nd64.8Co
24.0Ga11.2金属間化合物相、Nd13.3Co10.941.5
Fe34.2金属間化合物相で構成されていることがわか
る。
The structure of the grain boundary precipitation portion of the raw material alloy for producing a rare earth magnet powder according to the present invention will be described more specifically. FIG. 1 shows a micrograph of a microstructure of a raw material alloy 1 of the present invention, which is a typical alloy among the R- (Fe, T) -M1-M2 raw material alloys of the present invention. As shown in FIG. 1, the present invention starting alloy 1 is Zr and Ga is dissolved part main phase (Nd 12 .5
Co 17.2 B 5.6 Zr 0.06 Ga 0.14 Fe 64.5 intermetallic compound phase) and grain boundary precipitates precipitated at the grain boundaries of the crystal grains, and the grain boundary precipitate is Nd 35.1 Co
33.1 Fe 31.8 intermetallic compound phase, Nd 71.9 Co 21.8 intermetallic compound phase, Zr 31.4 B 68.6 boride phase, Nd 64.8 Co
24.0 Ga 11.2 intermetallic compound phase, Nd 13.3 Co 10.9 B 41.5
It can be seen that it is composed of the Fe 34.2 intermetallic compound phase.

【0019】この発明のR−(Fe,T)−M1系原料
合金の代表的合金である本発明原料合金13の粒界析出
部分の顕微鏡組織の写生図を図2に示す。図2に示され
るように、本発明原料合金13はZrが一部固溶してい
る主相(Nd12.5Co17.2 5.6 Zr0.06Fe65.9金属
間化合物相)の結晶粒とその結晶粒の粒界に析出してい
る粒界析出物からなる組織を有し、前記粒界析出物は、
Nd35.1Co33.1Fe31.8金属間化合物相、Nd71.9
21.8金属間化合物相、Zr31.468.6ホウ化物相、N
13.3Co10.941.5Fe34.2金属間化合物相で構成さ
れていることがわかる。
R- (Fe, T) -M1 raw material of the present invention
Boundary precipitation of the material alloy 13 of the present invention as a typical alloy
FIG. 2 shows a sketch of the microstructure of the portion. Shown in FIG.
As described above, in the material alloy 13 of the present invention, Zr is partially dissolved.
Main phase (Nd12.5Co17.2B 5.6Zr0.06Fe65.9metal
Intergranular phase) and precipitated at the grain boundaries of the crystal grains.
Having a structure consisting of grain boundary precipitates, wherein the grain boundary precipitates
Nd35.1Co33.1Fe31.8Intermetallic compound phase, Nd71.9C
o21.8Intermetallic compound phase, Zr31.4B68.6Boride phase, N
d13.3Co10.9B41.5Fe34.2Consists of an intermetallic compound phase
You can see that it is.

【0020】また、この発明のR−(Fe,T)−M2
系原料合金の代表的合金である本発明原料合金17の粒
界析出部分の顕微鏡組織の写生図を図3に示す。図3に
示されるように、本発明原料合金17はGaが一部固溶
している主相(Nd12.5Co 17.25.6 Ga0.14Fe
64.56 金属間化合物相)の結晶粒とその結晶粒の粒界に
析出している粒界析出物からなる組織を有し、前記粒界
析出物は、Nd35.1Co33.1Fe31.8金属間化合物相、
Nd71.9Co21.8金属間化合物相、Nd64.8Co24.0
11.2金属間化合物相、Nd13.3Co10.941.5Fe
34.2金属間化合物相で構成されていることがわかる。
The R- (Fe, T) -M2 of the present invention
Of the alloy 17 of the present invention, which is a typical alloy of the base alloy
FIG. 3 shows a sketch of the microstructure of the boundary precipitation portion. In FIG.
As shown, in the material alloy 17 of the present invention, Ga was partially dissolved.
Main phase (Nd12.5Co 17.2B5.6Ga0.14Fe
64.56Intergranular phase) and the grain boundaries of the crystal grains
Having a structure consisting of precipitated grain boundary precipitates, wherein the grain boundary
The precipitate is Nd35.1Co33.1Fe31.8Intermetallic compound phase,
Nd71.9Co21.8Intermetallic compound phase, Nd64.8Co24.0G
a11.2Intermetallic compound phase, Nd13.3Co10.9B41.5Fe
34.2It can be seen that it is composed of an intermetallic compound phase.

【0021】さらに、図1〜図3から、M1c 100-c
(30.0<c<40.0)ホウ化物相の一例のZr
31.468.6ホウ化物相は凸レンズ形状をしており、また
d e M2100-(d+e) (60.0<d<70.0、2
0.0<e<30.0、85.0<d+e<99.9)
金属間化合物相の一例のNd64.8Co24.0Ga11.2金属
間化合物相はRb 100-b (65.0<b<75.0)
金属間化合物相内の周縁部に偏在していることもわか
る。
Further, from FIGS. 1 to 3, M1cB100-c
(30.0 <c <40.0) Zr as an example of a boride phase
31.4B68.6The boride phase has a convex lens shape, and
RdT eM2100- (d + e)(60.0 <d <70.0, 2
0.0 <e <30.0, 85.0 <d + e <99.9)
Nd as an example of an intermetallic compound phase64.8Co24.0Ga11.2metal
The inter-compound phase is RbT100-b(65.0 <b <75.0)
It can also be seen that it is unevenly distributed at the periphery in the intermetallic compound phase
You.

【0022】表1の成分組成および表2〜表3の粒界析
出物を有する本発明原料合金1〜19のインゴットを1
気圧の水素雰囲気中、850℃に1時間保持の水素化処
理を施した後、温度を850℃に保持しながらArで5
分間雰囲気置換し、引き続いて真空中で850℃に保持
しながら脱水素処理を行った。その後、真空度が7.0
×10-2Torrに達したのを確認してArガスで室温
まで冷却した。これら水素処理および脱水素処理を施し
た本発明原料合金1〜19のインゴットを500μmア
ンダーに粉砕して希土類磁石粉末を作製し、得られた希
土類磁石粉末に対して3.0重量%のエポキシ樹脂を混
練し、20kOeの磁場中で成形圧力:6.0t/cm
2 で圧縮成形し、得られた成形体を大気中、温度:50
℃で1時間保持の硬化処理を行うことによりボンド磁石
を作製した。このようにして得られたボンド磁石の磁気
特性をB−Hループトレーサーを用いて測定し、その結
果を表4〜表5に示した。
The ingots of the alloys 1 to 19 of the present invention having the component composition shown in Table 1 and the grain boundary precipitates shown in Tables 2 and 3
After performing a hydrogenation treatment at 850 ° C. for 1 hour in a hydrogen atmosphere at a pressure of 5 atm.
The atmosphere was replaced for a minute, followed by a dehydrogenation treatment while maintaining the temperature at 850 ° C. in a vacuum. Then, the degree of vacuum is set to 7.0.
After confirming that the pressure reached × 10 -2 Torr, the mixture was cooled to room temperature with Ar gas. The ingots of the raw material alloys 1 to 19 of the present invention which have been subjected to the hydrogen treatment and the dehydrogenation treatment are pulverized under 500 μm to produce a rare earth magnet powder, and 3.0% by weight of the epoxy resin based on the obtained rare earth magnet powder. And molding pressure: 6.0 t / cm in a magnetic field of 20 kOe.
And compression molding in step 2.
A bond magnet was produced by performing a curing treatment of holding at 1 ° C. for 1 hour. The magnetic properties of the bond magnet thus obtained were measured using a BH loop tracer, and the results are shown in Tables 4 and 5.

【0023】従来例1〜19 表1に示される合金a〜sのインゴットにそのまま実施
例1〜19と同じ水素処理および脱水素処理を施し、5
00μmアンダーに粉砕して得られた希土類磁石粉末に
対して3.0重量%のエポキシ樹脂を混練し、20kO
eの磁場中で成形圧力:6.0t/cm2 で圧縮成形
し、得られた成形体を大気中、温度:50℃で1時間保
持の硬化処理を行い、これによって得られたボンド磁石
の磁気特性をB−Hループトレーサーを用いて測定し、
その結果を表4〜表5に示した。
Conventional Examples 1 to 19 Ingots of alloys a to s shown in Table 1 were subjected to the same hydrogen treatment and dehydrogenation treatment as in Examples 1 to 19,
An epoxy resin of 3.0% by weight was kneaded with the rare earth magnet powder obtained by pulverizing the powder to under 00 μm, and 20 kO
compression molding at a molding pressure of 6.0 t / cm 2 in a magnetic field of e, and a hardening treatment of holding the obtained molded body at a temperature of 50 ° C. for 1 hour in the air. Magnetic properties were measured using a BH loop tracer,
The results are shown in Tables 4 and 5.

【0024】[0024]

【表4】 [Table 4]

【0025】[0025]

【表5】 [Table 5]

【0026】表4に示される結果から、本発明原料合金
1を使用して製造した希土類磁石粉末のボンド磁石の磁
気特性と従来原料合金1を使用して製造した希土類磁石
粉末のボンド磁石の磁気特性を比べると、BrおよびB
Hmaxが共に向上しているところから、成分組成は同
じであっても本発明原料合金1を使用して得られた希土
類磁石粉末は、従来原料合金1を使用して得られた希土
類磁石粉末に比べて優れた磁気特性を示すことが分か
る。
From the results shown in Table 4, the magnetic properties of the bonded magnet of the rare earth magnet powder manufactured using the raw material alloy 1 of the present invention and the magnetic properties of the bonded magnet of the rare earth magnet powder manufactured using the conventional raw material alloy 1 are shown. Comparing the characteristics, Br and B
Since both Hmax are improved, the rare earth magnet powder obtained by using the material alloy 1 of the present invention is different from the rare earth magnet powder obtained by using the conventional material alloy 1 even if the component composition is the same. It can be seen that excellent magnetic characteristics are shown.

【0027】同様にして、表4〜表5に示される結果か
ら、本発明原料合金2〜19を使用して製造した希土類
磁石粉末のボンド磁石の磁気特性と従来原料合金2〜1
9を使用して製造した希土類磁石粉末のボンド磁石の磁
気特性をそれぞれ比較すると、共にBrおよびBHma
xが向上しているところから、成分組成は同じであって
も本発明原料合金2〜19を使用して得られた希土類磁
石粉末は従来原料合金2〜19を使用して得られた希土
類磁石粉末に比べて優れた磁気特性を示すことが分か
る。
Similarly, from the results shown in Tables 4 and 5, the magnetic properties of the bonded magnets of the rare earth magnet powders manufactured using the raw material alloys 2 to 19 of the present invention and the conventional raw material alloys 2 to 1 are shown.
9, the magnetic properties of the bond magnets of the rare earth magnet powders manufactured using Br. 9 were both Br and BHma.
From the fact that x is improved, the rare earth magnet powder obtained by using the material alloys 2 to 19 of the present invention is the same as the rare earth magnet powder obtained by using the material alloys 2 to 19 of the present invention, even if the component composition is the same. It can be seen that the magnetic properties are superior to those of the powder.

【0028】実施例20〜38 表1の成分組成および表2〜表3の粒界析出物を有する
本発明原料合金1〜19のインゴットを1気圧の水素雰
囲気中、850℃に1時間保持の水素化処理を施した
後、温度を850℃に保持しながらArで5分間雰囲気
置換し、引き続いて真空中で850℃に保持しながら脱
水素処理を行った。その後、真空度が7.0×10-2
orrに達したのを確認してArガスにより表6〜表7
に示される第一冷却速度で冷却し、表6〜表7に示され
る中間温度に表6〜表7に示される時間保持した後、さ
らに表6〜表7に示される第二冷却速度で室温まで冷却
し、500μmアンダーに粉砕して本発明法による希土
類磁石粉末を作製し、得られた希土類磁石粉末に対して
3.0重量%のエポキシ樹脂を混練し、20kOeの磁
場中で成形圧力:6.0t/cm2 で圧縮成形し、得ら
れた成形体を大気中、温度:50℃で1時間保持の硬化
処理を行うことによりボンド磁石を作製した。このよう
にして得られたボンド磁石の磁気特性をB−Hループト
レーサーを用いて測定し、その結果を表6〜表7に示し
た。
Examples 20 to 38 Ingots of the alloys 1 to 19 of the present invention having the component compositions shown in Table 1 and the grain boundary precipitates shown in Tables 2 and 3 were maintained at 850 ° C. for 1 hour in a hydrogen atmosphere at 1 atm. After the hydrogenation treatment, the atmosphere was replaced with Ar for 5 minutes while maintaining the temperature at 850 ° C., and subsequently the dehydrogenation treatment was performed while maintaining the temperature at 850 ° C. in a vacuum. Thereafter, the degree of vacuum is 7.0 × 10 −2 T.
orr was confirmed, and Ar gas was used to confirm Table 6 and Table 7.
After cooling at a first cooling rate shown in Table 6 and maintaining at an intermediate temperature shown in Tables 6 and 7 for the time shown in Tables 6 and 7, room temperature was further reduced at a second cooling rate shown in Tables 6 and 7 And then pulverized to 500 μm under to prepare a rare earth magnet powder according to the method of the present invention, kneaded with 3.0% by weight of an epoxy resin based on the obtained rare earth magnet powder, and molded under a magnetic field of 20 kOe: Compression molding was performed at 6.0 t / cm 2 , and the obtained molded body was subjected to a curing treatment in air at a temperature of 50 ° C. for 1 hour to produce a bonded magnet. The magnetic properties of the bond magnet thus obtained were measured using a BH loop tracer, and the results are shown in Tables 6 and 7.

【0029】[0029]

【表6】 [Table 6]

【0030】[0030]

【表7】 [Table 7]

【0031】表6〜表7に示される結果から、本発明原
料合金1〜19を使用して実施例20〜38の本発明法
により製造した希土類磁石粉末のボンド磁石の磁気特性
は、実施例1〜19で製造した希土類磁石粉末のボンド
磁石よりもさらに一層優れた磁気特性を示すことが分か
る。
From the results shown in Tables 6 and 7, the magnetic properties of the bonded magnets of the rare earth magnet powders manufactured by the method of the present invention in Examples 20 to 38 using the alloys 1 to 19 of the present invention are shown in the examples. It can be seen that the bonded magnets of the rare-earth magnet powders manufactured in Nos. 1 to 19 exhibit even more excellent magnetic properties.

【0032】[0032]

【発明の効果】上述のように、この発明の原料合金を使
用すると、従来よりも優れた磁気特性を有する希土類磁
石粉末を製造することができ、産業上すぐれた効果を奏
するものである。
As described above, when the raw material alloy of the present invention is used, it is possible to produce a rare earth magnet powder having superior magnetic properties as compared with the conventional one, and it has excellent industrial effects.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の希土類磁石粉末製造用原料合金の組
織の写生図である。
FIG. 1 is a sketch of the structure of a raw material alloy for producing a rare earth magnet powder according to the present invention.

【図2】この発明の希土類磁石粉末製造用原料合金の組
織の写生図である。
FIG. 2 is a sketch of a structure of a raw material alloy for producing a rare earth magnet powder according to the present invention.

【図3】この発明の希土類磁石粉末製造用原料合金の組
織の写生図である。
FIG. 3 is a sketch of a structure of a raw material alloy for producing a rare earth magnet powder according to the present invention.

【図4】この発明の希土類磁石粉末製造用原料合金を使
用して希土類磁石粉末を製造する方法を説明するための
パターン図である。
FIG. 4 is a pattern diagram for explaining a method of producing a rare earth magnet powder using the raw material alloy for producing a rare earth magnet powder of the present invention.

フロントページの続き (51)Int.Cl.6 識別記号 FI H01F 1/053 H01F 1/04 H 1/06 1/06 A Continued on the front page (51) Int.Cl. 6 Identification code FI H01F 1/053 H01F 1/04 H 1/06 1/06 A

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 Yを含む希土類元素(以下、Rで示
す):10.0〜16.0原子%、 CoまたはNi(以下、Tで示す):5.0〜30.0
原子%、 B:4.0〜10.0原子%、 Zr,Hf,TiおよびNbの内の少なくとも1種(以
下、M1で示す):0.001〜3.0原子%、 Ga,AlおよびSnの内の少なくとも1種(以下、M
2で示す):0.001〜5.0原子%、を含み、残
部:Feおよび不可避不純物からなる成分組成を有し、
かつM1およびM2が一部固溶しているR2 (Fe,
T)14B型金属間化合物相からなる主相の結晶粒とその
結晶粒の粒界に析出している粒界析出物からなる組織を
有する原料合金において、前記粒界析出物は、a〜gの
単位を原子%とすると、 Ra (Fe,T)100-a (30.0<a<40.0)金
属間化合物相、 Rb 100-b (65.0<b<75.0)金属間化合物
相、 M1c 100-c (30.0<c<40.0)ホウ化物
相、 Rd e M2100-(d+e) (60.0<d<70.0、2
0.0<e<30.0、85.0<d+e<99.9)
金属間化合物相、およびRf (Fe,T)g
100-(f+g) (10.0<f<15.0、40.0<g<
50.0、50.0<f+g<65.0)金属間化合物
相で構成されていることを特徴とする希土類磁石粉末製
造用原料合金。
1. A rare earth element containing Y (hereinafter, represented by R): 10.0 to 16.0 atomic%, Co or Ni (hereinafter, represented by T): 5.0 to 30.0
Atomic%, B: 4.0 to 10.0 atomic%, at least one of Zr, Hf, Ti and Nb (hereinafter referred to as M1): 0.001 to 3.0 atomic%, Ga, Al and At least one of Sn (hereinafter, M
2): 0.001 to 5.0 atomic%, the balance being: having a component composition consisting of Fe and unavoidable impurities,
And R 2 (Fe,
T) In a raw material alloy having a structure composed of crystal grains of a main phase composed of a 14 B-type intermetallic compound phase and grain boundary precipitates precipitated at the grain boundaries of the crystal grains, the grain boundary precipitates are a to Assuming that the unit of g is atomic%, R a (Fe, T) 100-a (30.0 <a <40.0) intermetallic compound phase, R b T 100-b (65.0 <b <75. 0) intermetallic phase, M1 c B 100-c ( 30.0 <c <40.0) boride phase, R d T e M2 100- ( d + e) (60.0 <d <70.0 , 2
0.0 <e <30.0, 85.0 <d + e <99.9)
Intermetallic compound phase and R f (Fe, T) g B
100- (f + g) (10.0 <f <15.0, 40.0 <g <
(50.0, 50.0 <f + g <65.0) A raw material alloy for producing a rare earth magnet powder, which is constituted by an intermetallic compound phase.
【請求項2】 前記粒界析出物の内のM1c
100-c (30.0<c<40.0)ホウ化物相は凸レン
ズ形状を有しており、Rd e M2100-(d+e) (60.
0<d<70.0、20.0<e<30.0、85.0
<d+e<99.9)金属間化合物相はRb
100-b (65.0<b<75.0)金属間化合物相内の
周縁部に偏在していることを特徴とする請求項1記載の
希土類磁石粉末製造用原料合金。
2. M1 c B among the grain boundary precipitates
100-c (30.0 <c < 40.0) boride phase has a convex lens shape, R d T e M2 100- ( d + e) (60.
0 <d <70.0, 20.0 <e <30.0, 85.0
<D + e <99.9) The intermetallic compound phase is R b T
2. The raw material alloy for producing rare earth magnet powder according to claim 1, wherein 100-b (65.0 <b <75.0) is unevenly distributed at a peripheral portion in the intermetallic compound phase.
【請求項3】 R:10.0〜16.0原子%、 T:5.0〜30.0原子%、 B:4.0〜10.0原子%、 M1:0.001〜3.0原子%、を含み、残部:Fe
および不可避不純物からなる成分組成を有し、かつM1
が一部固溶しているR2 (Fe,T)14B型金属間化合
物相からなる主相の結晶粒とその結晶粒の粒界に析出し
ている粒界析出物からなる組織を有する原料合金におい
て、前記粒界析出物は、a〜gの単位を原子%とする
と、 Ra (Fe,T)100-a (30.0<a<40.0)金
属間化合物相、 Rb 100-b (65.0<b<75.0)金属間化合物
相、 M1c 100-c (30.0<c<40.0)、およびR
f (Fe,T)g 100-(f+g) (10.0<f<15.
0、40.0<g<50.0、50.0<f+g<6
5.0)金属間化合物相で構成されていることを特徴と
する希土類磁石粉末製造用原料合金。
3. R: 10.0 to 16.0 at%, T: 5.0 to 30.0 at%, B: 4.0 to 10.0 at%, M1: 0.001 to 3.0 at%. Atomic%, the balance being Fe
And a component composition comprising unavoidable impurities, and M1
Has a structure consisting of crystal grains of the main phase composed of the R 2 (Fe, T) 14 B type intermetallic compound phase in which a part of the solid solution forms and grain boundary precipitates precipitated at the grain boundaries of the crystal grains. In the raw material alloy, when the unit of a to g is atom%, the intergranular precipitates are R a (Fe, T) 100-a (30.0 <a <40.0) intermetallic compound phase, R b T 100-b (65.0 <b <75.0) intermetallic phase, M1 c B 100-c (30.0 <c <40.0), and R
f (Fe, T) g B 100- (f + g) (10.0 <f <15.
0, 40.0 <g <50.0, 50.0 <f + g <6
5.0) A raw material alloy for producing a rare earth magnet powder, which is composed of an intermetallic compound phase.
【請求項4】 前記粒界析出物のM1c 100-c (3
0.0<c<40.0)ホウ化物相は凸レンズ形状を有
していることを特徴とする請求項3記載の希土類磁石粉
末製造用原料合金。
4. The M1 c B 100-c (3
4. The material alloy for producing a rare earth magnet powder according to claim 3, wherein the boride phase has a convex lens shape (0.0 <c <40.0).
【請求項5】 R:10.0〜16.0原子%、 T:5.0〜30.0原子%、 B:4.0〜10.0原子%、 M2:0.001〜5.0原子%、を含み、残部:Fe
および不可避不純物からなる成分組成を有し、かつM2
が一部固溶しているR2 (Fe,T)14B型金属間化合
物相からなる主相の結晶粒とその結晶粒の粒界に析出し
ている粒界析出物からなる組織を有する原料合金におい
て、前記粒界析出物は、a〜gの単位を原子%とする
と、 Ra (Fe,T)100-a (30.0<a<40.0)金
属間化合物相、 Rb 100-b (65.0<b<75.0)金属間化合物
相、 Rd e M2100-(d+e) (60.0<d<70.0、2
0.0<e<30.0、85.0<d+e<99.9)
金属間化合物相、およびRf (Fe,T)g
100-(f+g) (10.0<f<15.0、40.0<g<
50.0、50.0<f+g<65.0)金属間化合物
相で構成されていることを特徴とする希土類磁石粉末製
造用原料合金。
5. R: 10.0 to 16.0 at%, T: 5.0 to 30.0 at%, B: 4.0 to 10.0 at%, M2: 0.001 to 5.0 Atomic%, the balance being Fe
And a component composition comprising unavoidable impurities, and M2
Has a structure consisting of crystal grains of the main phase composed of the R 2 (Fe, T) 14 B type intermetallic compound phase in which a part of the solid solution forms and grain boundary precipitates precipitated at the grain boundaries of the crystal grains. In the raw material alloy, when the unit of a to g is atom%, the intergranular precipitates are R a (Fe, T) 100-a (30.0 <a <40.0) intermetallic compound phase, R b T 100-b (65.0 <b <75.0) intermetallic phase, R d T e M2 100- ( d + e) (60.0 <d <70.0,2
0.0 <e <30.0, 85.0 <d + e <99.9)
Intermetallic compound phase and R f (Fe, T) g B
100- (f + g) (10.0 <f <15.0, 40.0 <g <
(50.0, 50.0 <f + g <65.0) A raw material alloy for producing a rare earth magnet powder, which is constituted by an intermetallic compound phase.
【請求項6】 前記粒界析出物のRd e M2
100-(d+e) (60.0<d<70.0、20.0<e<
30.0、85.0<d+e<99.9)金属間化合物
相はRb 100-b (65.0<b<75.0)金属間化
合物相内の周縁部に偏在していることを特徴とする請求
項5記載の希土類磁石粉末製造用原料合金。
6. The R d Te M2 of the grain boundary precipitate.
100- (d + e) (60.0 <d <70.0, 20.0 <e <
30.0,85.0 <d + e <99.9) that the intermetallic compound phase which are unevenly distributed on the periphery of the R b T 100-b (65.0 <b <75.0) in the intermetallic compound phase The raw material alloy for producing a rare earth magnet powder according to claim 5, characterized in that:
【請求項7】 請求項1、2、3、4、5または6記載
の希土類磁石粉末製造用原料合金に、500〜1000
℃の水素中で水素を吸蔵させ、引き続いて500〜10
00℃の真空雰囲気に保持し脱水素を行った後、不活性
ガス雰囲気中で第一冷却速度:5〜15℃/min.で
冷却し、300〜400℃の範囲内の中間温度に30〜
60分保持時した後、さらに第二冷却速度:1〜4℃/
min.で室温まで冷却し、ついで粉砕する希土類磁石
粉末の製造方法。
7. The raw material alloy for producing a rare earth magnet powder according to claim 1, 2, 3, 4, 5, or 6,
Hydrogen in hydrogen at 500 ° C.
After dehydrogenation while maintaining the vacuum atmosphere at 00 ° C, the first cooling rate is 5 to 15 ° C / min. In an inert gas atmosphere. And cooled to an intermediate temperature within the range of 300 to 400 ° C.
After holding for 60 minutes, a second cooling rate: 1-4 ° C. /
min. A method for producing a rare earth magnet powder which is cooled to room temperature and then ground.
【請求項8】 請求項7記載の希土類磁石粉末の製造方
法により得られた希土類磁石粉末。
8. A rare earth magnet powder obtained by the method for producing a rare earth magnet powder according to claim 7.
JP9269928A 1997-01-14 1997-10-02 Raw material alloy for producing rare earth magnet powder and production of rare earth magnet powder using this raw material alloy Withdrawn JPH10259459A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9269928A JPH10259459A (en) 1997-01-14 1997-10-02 Raw material alloy for producing rare earth magnet powder and production of rare earth magnet powder using this raw material alloy

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP9-4226 1997-01-14
JP422697 1997-01-14
JP9269928A JPH10259459A (en) 1997-01-14 1997-10-02 Raw material alloy for producing rare earth magnet powder and production of rare earth magnet powder using this raw material alloy

Publications (1)

Publication Number Publication Date
JPH10259459A true JPH10259459A (en) 1998-09-29

Family

ID=26337959

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9269928A Withdrawn JPH10259459A (en) 1997-01-14 1997-10-02 Raw material alloy for producing rare earth magnet powder and production of rare earth magnet powder using this raw material alloy

Country Status (1)

Country Link
JP (1) JPH10259459A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1061532A1 (en) * 1999-06-11 2000-12-20 Seiko Epson Corporation Magnetic powder and isotropic bonded magnet
US6444052B1 (en) 1999-10-13 2002-09-03 Aichi Steel Corporation Production method of anisotropic rare earth magnet powder
US6558482B1 (en) 1999-07-22 2003-05-06 Seiko Epson Corporation Magnetic powder and isotropic bonded magnet
EP1460650A1 (en) * 2002-09-30 2004-09-22 TDK Corporation R-t-b based rare earth element permanent magnet
EP1460652A1 (en) * 2002-09-30 2004-09-22 TDK Corporation R-t-b rare earth permanent magnet
EP1460653A1 (en) * 2002-09-30 2004-09-22 TDK Corporation R-t-b based rare earth element permanent magnet and magnet composition
EP1462531A2 (en) * 2003-03-27 2004-09-29 TDK Corporation R-T-B system rare earth permanent magnet
WO2006046050A1 (en) * 2004-10-26 2006-05-04 Less Common Metals Ltd. Iron containing rare earth-transition metal-boron type alloys with reduced free iron phase and methods for production thereof
US7255752B2 (en) 2003-03-28 2007-08-14 Tdk Corporation Method for manufacturing R-T-B system rare earth permanent magnet
CN100385575C (en) * 1999-06-11 2008-04-30 精工爱普生株式会社 Magnetic powder and isotropic bonded magnet
CN105913989A (en) * 2016-04-22 2016-08-31 山西三益强磁业股份有限公司 High-remanence material and preparation method

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1061532A1 (en) * 1999-06-11 2000-12-20 Seiko Epson Corporation Magnetic powder and isotropic bonded magnet
CN100385575C (en) * 1999-06-11 2008-04-30 精工爱普生株式会社 Magnetic powder and isotropic bonded magnet
US6558482B1 (en) 1999-07-22 2003-05-06 Seiko Epson Corporation Magnetic powder and isotropic bonded magnet
US7087185B2 (en) 1999-07-22 2006-08-08 Seiko Epson Corporation Magnetic powder and isotropic bonded magnet
US6444052B1 (en) 1999-10-13 2002-09-03 Aichi Steel Corporation Production method of anisotropic rare earth magnet powder
EP1460653A1 (en) * 2002-09-30 2004-09-22 TDK Corporation R-t-b based rare earth element permanent magnet and magnet composition
EP1460652A4 (en) * 2002-09-30 2005-04-20 Tdk Corp R-t-b rare earth permanent magnet
EP1460650A1 (en) * 2002-09-30 2004-09-22 TDK Corporation R-t-b based rare earth element permanent magnet
EP1465212A1 (en) * 2002-09-30 2004-10-06 TDK Corporation R-t-b based rare earth element permanent magnet
EP1465213A1 (en) * 2002-09-30 2004-10-06 TDK Corporation Method for producing r-t-b based rare earth element permanent magnet
EP1460651A4 (en) * 2002-09-30 2005-03-23 Tdk Corp Method for producing r-t-b based rare earth element permanent magnet
EP1465213A4 (en) * 2002-09-30 2005-03-23 Tdk Corp Method for producing r-t-b based rare earth element permanent magnet
US7311788B2 (en) 2002-09-30 2007-12-25 Tdk Corporation R-T-B system rare earth permanent magnet
EP1465212A4 (en) * 2002-09-30 2005-03-30 Tdk Corp R-t-b based rare earth element permanent magnet
EP1460650A4 (en) * 2002-09-30 2005-03-30 Tdk Corp R-t-b based rare earth element permanent magnet
EP1460653A4 (en) * 2002-09-30 2005-04-20 Tdk Corp R-t-b based rare earth element permanent magnet and magnet composition
EP1460652A1 (en) * 2002-09-30 2004-09-22 TDK Corporation R-t-b rare earth permanent magnet
US7255751B2 (en) 2002-09-30 2007-08-14 Tdk Corporation Method for manufacturing R-T-B system rare earth permanent magnet
EP1460651A1 (en) * 2002-09-30 2004-09-22 TDK Corporation Method for producing r-t-b based rare earth element permanent magnet
US7192493B2 (en) 2002-09-30 2007-03-20 Tdk Corporation R-T-B system rare earth permanent magnet and compound for magnet
US7199690B2 (en) 2003-03-27 2007-04-03 Tdk Corporation R-T-B system rare earth permanent magnet
EP1462531A3 (en) * 2003-03-27 2005-03-30 TDK Corporation R-T-B system rare earth permanent magnet
EP1884574A1 (en) * 2003-03-27 2008-02-06 TDK Corporation R-T-B system rare earth permanent magnet
EP1462531A2 (en) * 2003-03-27 2004-09-29 TDK Corporation R-T-B system rare earth permanent magnet
US7255752B2 (en) 2003-03-28 2007-08-14 Tdk Corporation Method for manufacturing R-T-B system rare earth permanent magnet
WO2006046050A1 (en) * 2004-10-26 2006-05-04 Less Common Metals Ltd. Iron containing rare earth-transition metal-boron type alloys with reduced free iron phase and methods for production thereof
CN105913989A (en) * 2016-04-22 2016-08-31 山西三益强磁业股份有限公司 High-remanence material and preparation method

Similar Documents

Publication Publication Date Title
JP2007287865A (en) Process for producing permanent magnet material
JPH10259459A (en) Raw material alloy for producing rare earth magnet powder and production of rare earth magnet powder using this raw material alloy
JPH06151132A (en) Manufacture of powder of anisotropic magnet material and manufacture of magnet using anisotropic magnet material powder obtained by same manufacture
JPH1131610A (en) Manufacture of rare-earth magnet powder with superior magnetic anisotropy
JPS6348805A (en) Manufacture of rare-earth magnet
JPH10256014A (en) Manufacture of rare-earth magnet powder of excellent magnetic anisotropy
JP3097387B2 (en) Manufacturing method of rare earth magnet material powder
JPH0644526B2 (en) Rare earth magnet manufacturing method
JPS6386502A (en) Rare earth magnet and manufacture thereof
JPH0475303B2 (en)
JPH06151137A (en) Powder of rare earth magnet material with excellent anisotropy
JPH0796694B2 (en) Method of manufacturing permanent magnet material
JP3227613B2 (en) Manufacturing method of powder for rare earth sintered magnet
JPS6144155A (en) Permanent magnet alloy
JP2730441B2 (en) Manufacturing method of alloy powder for permanent magnet
JP3529551B2 (en) Manufacturing method of rare earth sintered magnet
JPH1022110A (en) Rare-earth permanent magnet and method for manufacturing the same, and rare-earth permanent bond magnet
JP2024020710A (en) Permanent magnets and devices
JPH05343217A (en) Manufacture of rare earth magnet material
JPH06224015A (en) Manufacture of rare earth-fe-n intermetallic compound magnetic material particle and magnetic material powder of rare earth-fe-n intermetallic compound produced by same
JPH0770745A (en) Production of target for rare earth magnetic film
JPH0513208A (en) Manufacture of rare-earth bonded magnet
JPS5848607A (en) Production of rare earth cobalt magnet
JPH05345947A (en) Anisotropic rare earth alloy powder for permanent magnet and its production
JPS6386404A (en) Manufacture of rare earth magnet

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20041207