JPH05345947A - Anisotropic rare earth alloy powder for permanent magnet and its production - Google Patents
Anisotropic rare earth alloy powder for permanent magnet and its productionInfo
- Publication number
- JPH05345947A JPH05345947A JP4179075A JP17907592A JPH05345947A JP H05345947 A JPH05345947 A JP H05345947A JP 4179075 A JP4179075 A JP 4179075A JP 17907592 A JP17907592 A JP 17907592A JP H05345947 A JPH05345947 A JP H05345947A
- Authority
- JP
- Japan
- Prior art keywords
- atomic
- alloy powder
- rare earth
- powder
- less
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000843 powder Substances 0.000 title claims abstract description 77
- 229910045601 alloy Inorganic materials 0.000 title claims abstract description 59
- 239000000956 alloy Substances 0.000 title claims abstract description 59
- 229910052761 rare earth metal Inorganic materials 0.000 title claims abstract description 23
- 150000002910 rare earth metals Chemical class 0.000 title claims abstract description 12
- 238000004519 manufacturing process Methods 0.000 title claims description 12
- 230000005291 magnetic effect Effects 0.000 claims abstract description 53
- 239000013078 crystal Substances 0.000 claims abstract description 37
- RKTYLMNFRDHKIL-UHFFFAOYSA-N copper;5,10,15,20-tetraphenylporphyrin-22,24-diide Chemical compound [Cu+2].C1=CC(C(=C2C=CC([N-]2)=C(C=2C=CC=CC=2)C=2C=CC(N=2)=C(C=2C=CC=CC=2)C2=CC=C3[N-]2)C=2C=CC=CC=2)=NC1=C3C1=CC=CC=C1 RKTYLMNFRDHKIL-UHFFFAOYSA-N 0.000 claims abstract description 25
- 230000004907 flux Effects 0.000 claims abstract description 24
- 230000005415 magnetization Effects 0.000 claims abstract description 23
- 238000000034 method Methods 0.000 claims abstract description 21
- 239000000203 mixture Substances 0.000 claims abstract description 18
- 239000002994 raw material Substances 0.000 claims abstract description 16
- 229910052777 Praseodymium Inorganic materials 0.000 claims abstract description 13
- 238000001816 cooling Methods 0.000 claims abstract description 6
- 150000001875 compounds Chemical class 0.000 claims description 32
- 229910052779 Neodymium Inorganic materials 0.000 claims description 12
- 238000010438 heat treatment Methods 0.000 claims description 11
- 239000002245 particle Substances 0.000 claims description 10
- 229910052782 aluminium Inorganic materials 0.000 claims description 7
- 229910052750 molybdenum Inorganic materials 0.000 claims description 7
- 229910052758 niobium Inorganic materials 0.000 claims description 7
- 229910052719 titanium Inorganic materials 0.000 claims description 7
- 229910052720 vanadium Inorganic materials 0.000 claims description 7
- 229910052726 zirconium Inorganic materials 0.000 claims description 7
- 229910052735 hafnium Inorganic materials 0.000 claims description 6
- 229910052715 tantalum Inorganic materials 0.000 claims description 6
- 229910052721 tungsten Inorganic materials 0.000 claims description 6
- 229910052738 indium Inorganic materials 0.000 claims description 5
- 229910052804 chromium Inorganic materials 0.000 claims description 4
- 229910052717 sulfur Inorganic materials 0.000 claims 2
- 238000006356 dehydrogenation reaction Methods 0.000 abstract description 3
- 229910001172 neodymium magnet Inorganic materials 0.000 abstract 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical group [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 39
- 229910052739 hydrogen Inorganic materials 0.000 description 20
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 19
- 239000001257 hydrogen Substances 0.000 description 19
- 239000007789 gas Substances 0.000 description 17
- 230000007423 decrease Effects 0.000 description 7
- 238000010298 pulverizing process Methods 0.000 description 6
- 238000000354 decomposition reaction Methods 0.000 description 5
- 239000002244 precipitate Substances 0.000 description 5
- 229910052718 tin Inorganic materials 0.000 description 5
- 229910052733 gallium Inorganic materials 0.000 description 4
- 238000001556 precipitation Methods 0.000 description 4
- 238000006467 substitution reaction Methods 0.000 description 3
- 102000020897 Formins Human genes 0.000 description 2
- 108091022623 Formins Proteins 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 229910052740 iodine Inorganic materials 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 229910000521 B alloy Inorganic materials 0.000 description 1
- 229910052684 Cerium Inorganic materials 0.000 description 1
- 229910052692 Dysprosium Inorganic materials 0.000 description 1
- 229910052691 Erbium Inorganic materials 0.000 description 1
- 229910052688 Gadolinium Inorganic materials 0.000 description 1
- 229910052689 Holmium Inorganic materials 0.000 description 1
- 229910052765 Lutetium Inorganic materials 0.000 description 1
- 229910052772 Samarium Inorganic materials 0.000 description 1
- 229910052771 Terbium Inorganic materials 0.000 description 1
- 229910052775 Thulium Inorganic materials 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000005347 demagnetization Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000005294 ferromagnetic effect Effects 0.000 description 1
- 238000009689 gas atomisation Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- 229910001004 magnetic alloy Inorganic materials 0.000 description 1
- 239000006249 magnetic particle Substances 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 238000005191 phase separation Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/032—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
- H01F1/04—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
- H01F1/047—Alloys characterised by their composition
- H01F1/053—Alloys characterised by their composition containing rare earth metals
- H01F1/055—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
- H01F1/058—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IVa elements, e.g. Gd2Fe14C
Landscapes
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Hard Magnetic Materials (AREA)
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
- Powder Metallurgy (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】この発明は、各種モーター、アク
チュエーター等に用いることが可能な高保磁力を有する
R(希土類元素)−T(鉄属元素)−M(添加元素)−
B−C系のボンド磁石用および焼結磁石用永久磁石合金
粉末及びその製造方法に係り、特に本系粗粉砕粉をH2
ガス中で加熱処理、並びに所定雰囲気で加熱保持する脱
H2処理を行い、結晶粒を1μm以下の極微細結晶とし
た、磁気的に高い異方性を有し高保磁力を有するR−T
−M−B−C系永久磁石用合金粉末及びその製造方法に
関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to R (rare earth element) -T (iron group element) -M (additive element) -which has a high coercive force and can be used in various motors and actuators.
B-C system for bonded magnets and relates to a permanent magnet alloy powder and its manufacturing method for a sintered magnet, in particular the present system coarsely pulverized powder H 2
An RT-T having a high magnetic anisotropy and a high coercive force, which is obtained by performing heat treatment in a gas and H 2 treatment for heating and holding in a predetermined atmosphere to obtain ultrafine crystal grains of 1 μm or less.
-MBC system alloy powder for permanent magnets and a method for producing the same.
【0002】[0002]
【従来の技術】永久磁石用希土類合金粉末の、水素処理
法による製造方法は、例えば特開平1−132106号
公報に開示されている。前記水素処理法とは、R−T−
M−B系原料合金インゴットまたは粉末を、H2ガス雰
囲気またはH2ガスと不活性ガスの混合雰囲気中で温度
500℃〜1000℃に保持して上記合金のインゴット
または粉末にH2を吸蔵させた後、H2ガス圧力13Pa
(1×10-1Torr)以下の真空雰囲気またはH2ガ
ス分圧13Pa(1×10-1Torr)以下の不活性ガ
ス雰囲気になるまで、温度500℃〜1000℃で脱H
2処理し、ついで冷却することを特徴とする、R−T−
M−B系合金粉末の製造方法である。2. Description of the Related Art A method for producing a rare earth alloy powder for permanent magnets by a hydrogen treatment method is disclosed, for example, in Japanese Patent Application Laid-Open No. 1-132106. The hydrogen treatment method is RT-
The MB raw material alloy ingot or powder is kept at a temperature of 500 ° C. to 1000 ° C. in a H 2 gas atmosphere or a mixed atmosphere of H 2 gas and an inert gas to cause H 2 to be occluded in the alloy ingot or powder. And then H 2 gas pressure 13 Pa
(1 × 10 -1 Torr) until the following vacuum atmosphere or H 2 gas partial pressure 13 Pa (1 × 10 -1 Torr) or less inert gas atmosphere, de-H at a temperature 500 ° C. to 1000 ° C.
2 treatment, followed by cooling, RT-
This is a method for producing an M-B alloy powder.
【0003】[0003]
【発明が解決しようとする課題】上記方法で製造された
R−T−M−B系合金粉末は、大きな保磁力と磁気異方
性を有する。これは、上記処理によって、非常に微細な
再結晶粒径、実質的には0.1〜1μmの平均再結晶粒
径を持つ組織となり、磁気的には正方晶Nd2Fe14B
系化合物の単磁区臨界粒径に近い結晶粒径となってお
り、なおかつこれらの極微細結晶が、ある程度結晶方位
を揃えて再結晶しているためである。The R-T-M-B type alloy powder produced by the above method has large coercive force and magnetic anisotropy. This treatment results in a structure having a very fine recrystallized grain size, substantially having an average recrystallized grain size of 0.1 to 1 μm, and magnetically tetragonal Nd 2 Fe 14 B.
This is because the crystal grain size is close to the single domain critical grain size of the system compound, and these ultrafine crystals are recrystallized with their crystal orientations aligned to some extent.
【0004】ところが、上記方法で製造されたR−T−
M−B系磁石用合金粉末の磁気的性質は、特に磁気異方
性については不充分であり、原料合金そのものが本質的
に有する磁気異方性に達しておらず、磁気特性的には残
留磁束密度Brが小さいという欠点があった。However, the RT- manufactured by the above method
The magnetic properties of the alloy powder for MB-based magnets are particularly insufficient with respect to magnetic anisotropy, and the magnetic anisotropy inherent in the raw material alloy itself has not been reached, and the magnetic properties remain. There is a drawback that the magnetic flux density Br is small.
【0005】この発明は、R−T−M−B系合金粉末の
磁気異方性を向上させて磁石化した際の残留磁束密度B
rが高くすぐれた磁気特性を有するR−T−M−B系永
久磁石を提供できるR−T−M−B系合金粉末とその製
造方法の提供を目的としている。According to the present invention, the residual magnetic flux density B when magnetizing the R-T-M-B type alloy powder by improving the magnetic anisotropy
An object of the present invention is to provide an R-T-M-B based alloy powder capable of providing an R-T-M-B based permanent magnet having a high r and excellent magnetic characteristics, and a method for producing the same.
【0006】[0006]
【課題を解決するための手段】この発明は上記残留磁束
密度Brを大きくするため、原料組成の検討を行った結
果、大きな磁気異方性を得ることができる置換元素及び
添加元素を見い出したものである。すなわち、Bの一部
をCで置換することによって、安定して大きな磁気異方
性を得ることを知見したものである。さらに、Al,N
i,Ga,Zr,In,Sn.Hf,Ti,V,Nb,
Mo,Ta,Wの1種または2種以上を添加することに
より磁気特性を改善向上することを見いだした。さら
に、かかる成分系の組成範囲を限定し、水素処理法にお
ける水素圧力を10kPa以上とし、脱水素工程の水素
圧力を10Pa以下とすることにより、安定して磁気的
異方性を有する粉末を製造することができ、この異方性
粉末をバインダーと結合したボンド磁石用の原料として
用いることができることを知見し、この発明を完成し
た。In order to increase the residual magnetic flux density Br in the present invention, the raw material composition was examined, and as a result, a substitution element and an addition element capable of obtaining a large magnetic anisotropy were found. Is. That is, it was found that a large magnetic anisotropy can be stably obtained by substituting a part of B with C. Furthermore, Al, N
i, Ga, Zr, In, Sn. Hf, Ti, V, Nb,
It was found that adding one or more of Mo, Ta and W improves and improves the magnetic properties. Furthermore, by limiting the composition range of such a component system, setting the hydrogen pressure in the hydrogen treatment method to 10 kPa or higher and the hydrogen pressure in the dehydrogenation step to 10 Pa or lower, a powder having stable magnetic anisotropy can be produced. It was found that this anisotropic powder can be used as a raw material for a bonded magnet in which a binder is combined, and the present invention has been completed.
【0007】すなわち、この発明は、 R:10〜20原子%(R;希土類元素の少なくとも1
種でかつPrまたはNdの1種または2種をRのうち5
0原子%以上含有)、 T:67〜85原子%(T:FeまたはFeの1部を5
0原子%以下のCoにて置換)、B,Cの量が B+C
=4〜10原子% C/(B+C)=0.01〜0.8
を満足する値を有する組成の合金粉末からなり、合金粉
末の70vol%以上が正方晶Nd2Fe14B型結晶構
造を有する化合物で、かつ該化合物のうち体積比で少な
くとも50%以上の結晶粒径が0.05〜1μmで、平
均粒径が10〜1000μmからなり、その磁化容易方
向の残留磁束密度が0.9〜1.6Tを有する合金粉末
からなることを特徴とする永久磁石用異方性希土類合金
粉末である。That is, the present invention provides R: 10 to 20 atomic% (R; at least 1 of rare earth elements).
And one or two of Pr or Nd is 5 out of R
0 atom% or more), T: 67 to 85 atom% (T: Fe or 1 part of Fe is 5
Substituted by Co of 0 atomic% or less), and the amount of B and C is B + C
= 4 to 10 atomic% C / (B + C) = 0.01 to 0.8
Which is a compound having a tetragonal Nd 2 Fe 14 B type crystal structure, and 70% by volume or more of the alloy powder is a crystal grain of at least 50% by volume of the compound. A permanent magnet alloy having a diameter of 0.05 to 1 μm, an average particle diameter of 10 to 1000 μm, and an alloy powder having a residual magnetic flux density in the easy magnetization direction of 0.9 to 1.6 T. It is a rare earth alloy powder.
【0008】また、この発明は、 R:10〜20原子%(R;希土類元素の少なくとも1
種でかつPrまたはNdの1種または2種をRのうち5
0原子%以上含有)、 T:67〜85原子%(T:FeまたはFeの1部を5
0原子%以下のCoにて置換)、 M;10原子%以下(M;Al、Ti、V、Cr、N
i、Ga、Zr、Nb、Mo、In、Sn、Hf、T
a、Wのうち1種または2種以上)、B,Cの量が B
+C=4〜10原子% C/(B+C)=0.01〜
0.8を満足する値を有する組成の合金粉末からなり、
合金粉末の70vol%以上が正方晶Nd2Fe14B型
結晶構造を有する化合物で、かつ該化合物のうち体積比
で少なくとも50%以上の結晶粒径が0.05〜1μm
で、平均粒径が10〜1000μmからなり、その磁化
容易方向の残留磁束密度が0.9〜1.6Tを有する合
金粉末からなることを特徴とする永久磁石用異方性希土
類合金粉末である。The present invention also provides R: 10 to 20 atomic% (R: at least 1 of rare earth element).
And one or two of Pr or Nd is 5 out of R
0 atom% or more), T: 67 to 85 atom% (T: Fe or 1 part of Fe is 5
Substituted with 0 atomic% or less of Co), M; 10 atomic% or less (M; Al, Ti, V, Cr, N)
i, Ga, Zr, Nb, Mo, In, Sn, Hf, T
a, W, one or more, and the amounts of B and C are B
+ C = 4 to 10 atom% C / (B + C) = 0.01 to
Consisting of alloy powder having a composition satisfying 0.8,
70% by volume or more of the alloy powder is a compound having a tetragonal Nd 2 Fe 14 B type crystal structure, and at least 50% by volume of the compound has a crystal grain size of 0.05 to 1 μm.
And an anisotropic rare earth alloy powder for permanent magnets, wherein the average particle diameter is 10 to 1000 μm and the residual magnetic flux density in the easy magnetization direction is 0.9 to 1.6 T. ..
【0009】また、この発明は、 1) R:10〜20原子%(R;希土類元素の少なく
とも1種でかつPrまたはNdの1種または2種をRの
うち50原子%以上含有)、 T:67〜85原子%(T:FeまたはFeの1部を5
0原子%以下のCoにて置換)、B,Cの量が B+C
=4〜10原子% C/(B+C)=0.01〜0.8
を満足する値を有する組成の合金鋳塊を粗粉砕後、 2) 前記粗粉砕粉を原料粉末として、10kPa〜1
000kPaのH2ガス中で500℃〜900℃に15
分〜8時間加熱保持し、 3) 更にH2分圧10Pa以下にて500℃〜900
℃に15分〜8時間保持の脱H2処理を行なったのち冷
却して、 4) 合金粉末の70vol%以上が正方晶Nd2Fe
14B型結晶構造を有する化合物で、かつ該化合物のうち
体積比で少なくとも50%以上の結晶粒径が0.05〜
1μmで、平均粒径が10〜1000μmからなり、そ
の磁化容易方向の残留磁束密度が0.9〜1.6Tを有
する合金粉末を得ることを特徴とする永久磁石用異方性
希土類合金粉末の製造方法である。The present invention also provides: 1) R: 10 to 20 atomic% (R: at least one rare earth element and one or two Pr or Nd contained in 50 or more atomic% of R), T : 67 to 85 atomic% (T: Fe or 1 part of Fe is 5
Substituted by Co of 0 atomic% or less), and the amount of B and C is B + C
= 4 to 10 atomic% C / (B + C) = 0.01 to 0.8
After roughly crushing an alloy ingot having a composition having a value satisfying 2), 2) using the roughly crushed powder as a raw material powder, 10 kPa to 1
15 at 500 to 900 ° C. in H 2 gas of 000 kPa
Hold by heating for min to 8 hours, and 3) 500 to 900 at H 2 partial pressure of 10 Pa or less.
After dehydrogenating H 2 for 15 minutes to 8 hours, cooling is performed, and 4) 70% by volume or more of the alloy powder is tetragonal Nd 2 Fe.
14 A compound having a B-type crystal structure, and the crystal grain size of at least 50% by volume of the compound is 0.05 to
An anisotropic rare earth alloy powder for permanent magnets, characterized in that it has an average particle size of 10 to 1000 μm and a residual magnetic flux density in the easy magnetization direction of 0.9 to 1.6 T. It is a manufacturing method.
【0010】また、この発明は、 1) R:10〜20原子%(R;希土類元素の少なく
とも1種でかつPrまたはNdの1種または2種をRの
うち50原子%以上含有)、T:67〜85原子%
(T:FeまたはFeの1部を50原子%以下のCoに
て置換)、M;10原子%以下(M;Al、Ti、V、
Cr、Ni、Ga、Zr、Nb、Mo、In、Sn、H
f、Ta、Wのうち1種または2種以上)、B,Cの量
が B+C=4〜10原子% C/(B+C)=0.0
1〜0.8 を満足する値を有する組成の合金鋳塊を粗
粉砕後、 2) 前記粗粉砕粉を原料粉末として、10kPa〜1
000kPaのH2ガス中で500℃〜900℃に15
分〜8時間加熱保持し、 3) 更にH2分圧10Pa以下にて500℃〜900
℃に15分〜8時間保持の脱H2処理を行なったのち冷
却して、 4) 合金粉末の70vol%以上が正方晶Nd2Fe
14B型結晶構造を有する化合物で、かつ該化合物のうち
体積比で少なくとも50%以上の結晶粒径が0.05〜
1μmで、平均粒径が10〜1000μmからなり、そ
の磁化容易方向の残留磁束密度が0.9〜1.6Tを有
する合金粉末を得ることを特徴とする永久磁石用異方性
希土類合金粉末の製造方法である。The present invention also provides: 1) R: 10 to 20 atomic% (R; at least one rare earth element and one or two Pr or Nd contained in 50 or more atomic% of R), T : 67-85 atom%
(T: Fe or a part of Fe is replaced by 50 atomic% or less of Co), M; 10 atomic% or less (M; Al, Ti, V,
Cr, Ni, Ga, Zr, Nb, Mo, In, Sn, H
f, Ta, W, one or more, and the amount of B and C is B + C = 4 to 10 atom% C / (B + C) = 0.0
After roughly crushing an alloy ingot having a composition having a value satisfying 1 to 0.8, 2) 10 kPa to 1 using the coarsely crushed powder as a raw material powder
15 at 500 to 900 ° C. in H 2 gas of 000 kPa
Hold by heating for min to 8 hours, and 3) 500 to 900 at H 2 partial pressure of 10 Pa or less.
After dehydrogenating H 2 for 15 minutes to 8 hours, cooling is performed, and 4) 70% by volume or more of the alloy powder is tetragonal Nd 2 Fe.
14 A compound having a B-type crystal structure, and the crystal grain size of at least 50% by volume of the compound is 0.05 to
An anisotropic rare earth alloy powder for permanent magnets, characterized in that it has an average particle size of 10 to 1000 μm and a residual magnetic flux density in the easy magnetization direction of 0.9 to 1.6 T. It is a manufacturing method.
【0011】組成の限定理由 この発明に使用する原料合金に用いるR、すなわち希土
類元素は、Y、La、Ce、Pr、Nd、Sm、Gd、
Tb、Dy、Ho、Er、Tm、Luが包括され、この
うち少なくとも1種以上でかつPr、Ndのうち少なく
とも1種または2種をRのうち50原子%以上含有し、
さらにRの全てがPr、Ndのうち1種または2種の場
合がある。Rの50原子%以上をPr、Ndのうち少な
くとも1種以上とするのは50原子%未満では充分な磁
化が得られないためである。Reasons for limiting the composition R used in the raw material alloy used in the present invention, that is, the rare earth elements are Y, La, Ce, Pr, Nd, Sm, Gd,
Tb, Dy, Ho, Er, Tm, Lu are included, and at least one of them is contained and at least one or two of Pr and Nd are contained in 50 at% or more of R.
Further, all of R may be one or two of Pr and Nd. The reason why 50 atomic% or more of R is at least one of Pr and Nd is that sufficient magnetization cannot be obtained if the atomic ratio is less than 50 atomic%.
【0012】Rは、10原子%未満ではαFe相の析出
により保磁力が低下し、また20原子%を超えると、目
的とする正方晶Nd2Fe14B型化合物以外に、Rリッ
チの第2相が多く析出し、この第2相が多すぎると合金
の磁化を低下させる。従って、Rの範囲は10〜20原
子%とする。When R is less than 10 atomic%, the coercive force is lowered due to precipitation of αFe phase, and when it exceeds 20 atomic%, in addition to the intended tetragonal Nd 2 Fe 14 B type compound, R-rich second A large amount of phases precipitate, and an excessive amount of this second phase lowers the magnetization of the alloy. Therefore, the range of R is 10 to 20 atomic%.
【0013】Tは鉄族元素であって、FeまたはFeの
1部を50%以下のCoにて置換できる。Tは、67原
子%未満では低保磁力、低磁化の第2相が析出して磁気
的特性が低下し、85原子%を超えるとαFe相の析出
により保磁力、角型性が低下するため、67〜85原子
%とする。また、Coの50%以下の添加はキュリー温
度の向上に有効であるが、FeとCoの原子比において
Feが50%未満となるとNd2Fe14B型化合物の飽
和磁化そのものの減少量が大きくなってしまうため、T
のうちFeの原子比でFeを50%以上とした。T is an iron group element, and Fe or a part of Fe can be replaced by 50% or less of Co. When T is less than 67 atomic%, the second coercive force and low magnetization precipitates and the magnetic properties are deteriorated. When it exceeds 85 atomic%, coercive force and squareness are deteriorated due to the precipitation of αFe phase. , 67 to 85 atom%. Further, addition of 50% or less of Co is effective in improving the Curie temperature, but when Fe is less than 50% in the atomic ratio of Fe and Co, the amount of decrease in the saturation magnetization of the Nd 2 Fe 14 B type compound itself is large. Because it will be T
Of these, the atomic ratio of Fe was 50% or more.
【0014】Mのうち、Al、Ni、Ga、Zr、I
n、Sn、Hfは、脱H2処理時の再結晶粒を0.05
〜1μmのサイズにまで成長させ、粉末に磁気異方性を
付与するのに有効な元素であり、C添加時にも磁気異方
性を安定して得るために必要である。Ti、V、Nb、
Mo、Ta、Wは、脱H2処理時の再結晶粒が、1μm
以上に粗大化するのを防止し、結果として保磁力が低下
するのを抑制する効果を有する。従って、Mとしては全
く加えない場合もあるが、上記の元素を目的に応じて組
み合せて用いることが得策である。添加量は10原子%
を越えると強磁性でない第2相が析出して磁化を低下さ
せることから、Mは10原子%以下が望ましい。Of M, Al, Ni, Ga, Zr, I
n, Sn, and Hf have a recrystallized grain content of 0.05 when de-H 2 treatment is applied.
It is an element effective for imparting magnetic anisotropy to the powder by growing it to a size of up to 1 μm, and is necessary for obtaining stable magnetic anisotropy even when C is added. Ti, V, Nb,
Mo, Ta, and W have a recrystallized grain size of 1 μm during de-H 2 treatment.
As described above, it has an effect of preventing the coarsening, and as a result, suppressing a decrease in the coercive force. Therefore, although it may not be added as M at all, it is a good idea to use the above elements in combination according to the purpose. Addition amount is 10 atom%
If M exceeds, the second phase that is not ferromagnetic precipitates and the magnetization decreases, so M is preferably 10 atomic% or less.
【0015】Bについては、正方晶Nd2Fe14B型結
晶構造を安定して析出させるためには必須であるが、一
部を後述のCで置換することが可能である。添加量は、
BとCの和が4原子%以下ではR2T17相が析出して保
磁力を低下させ、また減磁曲線の角型性が著しく損なわ
れる。また、10原子%を越えて添加した場合は、磁化
の小さい第2相が析出して粉末の磁化を低下させるの
で、BとCの和は4〜10原子%とした。また、C/
(B+C)=0.01〜0.8に限定した理由は、0.
01未満では、水素処理後の合金粉末の磁気的異方性の
改善効果がなく、0.8を越えるとR炭化物が生成しや
すく、かつ高温域でTh2Zn17型構造が安定化するの
恐れがあり、αFeの析出量が多くなって、鋳塊中の正
方晶比率が低下し、残留磁束密度が減少するだけでな
く、水素処理後の合金粉末の保磁力が大きく低下するの
で好ましくなく、C/(B+C)の好ましい範囲は0.
1〜0.5である。B is essential for stable precipitation of a tetragonal Nd 2 Fe 14 B type crystal structure, but part of it can be replaced with C described later. The addition amount is
When the sum of B and C is 4 atomic% or less, the R 2 T 17 phase precipitates to lower the coercive force, and the squareness of the demagnetization curve is significantly impaired. Further, when added in excess of 10 atomic%, the second phase having small magnetization precipitates and reduces the magnetization of the powder, so the sum of B and C was set to 4 to 10 atomic%. Also, C /
The reason for limiting (B + C) = 0.01 to 0.8 is 0.
If it is less than 01, there is no effect of improving the magnetic anisotropy of the alloy powder after hydrogen treatment, and if it exceeds 0.8, R carbides are easily generated, and the Th 2 Zn 17 type structure is stabilized in the high temperature region. There is a risk that the amount of αFe precipitation will increase, the tetragonal ratio in the ingot will decrease, and not only the residual magnetic flux density will decrease, but the coercive force of the alloy powder after hydrogen treatment will also decrease significantly, which is not desirable. , C / (B + C) is preferably 0.
It is 1 to 0.5.
【0016】合金粉末組織の限定理由 この発明において、正方晶Nd2Fe14B型化合物の存
在比率は、70vol%未満であると、磁気特性、特に
残留磁束密度が低下する。より具体的には、混在する第
2相がαFe相の場合は保磁力を低下させ、Rリッチ相
やBリッチ相の場合には磁化が低下する。従って、正方
晶Nd2Fe14B型化合物の存在比を70vol%以上
とした。体積比で70%以上の正方晶Nd2Fe14B型
化合物を有する粗粉砕粉を得るためには、望ましくは合
金鋳塊の段階で800℃〜1200℃の温度で1時間以
上焼鈍するか、造塊工程で鋳型の冷却速度を制御するな
どの手段を適宜選定すれば良い。この鋳塊における正方
晶の存在比率は、水素処理後にもほぼそのまま維持され
る。Reason for Limitation of Alloy Powder Structure In the present invention, if the abundance ratio of the tetragonal Nd 2 Fe 14 B type compound is less than 70 vol%, the magnetic properties, especially the residual magnetic flux density are lowered. More specifically, the coercive force is reduced when the mixed second phase is the αFe phase, and the magnetization is reduced when the mixed second phase is the R-rich phase or the B-rich phase. Therefore, the abundance ratio of the tetragonal Nd 2 Fe 14 B type compound is set to 70 vol% or more. In order to obtain a coarsely pulverized powder having a tetragonal Nd 2 Fe 14 B type compound in a volume ratio of 70% or more, it is preferable to anneal at a temperature of 800 ° C. to 1200 ° C. for 1 hour or more at the stage of alloy ingot, or Means such as controlling the cooling rate of the mold in the ingot making process may be appropriately selected. The abundance ratio of tetragonal crystals in this ingot is maintained almost as it is after the hydrogen treatment.
【0017】この発明において、正方晶Nd2Fe14B
型化合物は、結晶粒径1μm以下で高保磁力が得られる
が、1μmを越える結晶粒径を有するものがあったとし
ても、1μm以下の結晶が体積比で50%以上存在すれ
ば、全体としては高保磁力を維持できる。また、0.0
5μm以下の結晶は、事実上作製困難であり、たとえ得
られたとしても、磁気特性的に特に優れたところはな
い。従って、主相であるNd2Fe14B型化合物の結晶
粒径は、体積比で50%以上の部分を0.05〜1μm
の結晶が占めていることが好ましい。さらに好ましく
は、0.1〜0.5μmの結晶が体積比で80%以上を
占めていればよい。In the present invention, tetragonal Nd 2 Fe 14 B
High coercive force can be obtained with a crystal grain size of 1 μm or less, but even if there are crystal compounds with a crystal grain size of 1 μm or more, if the crystal grains of 1 μm or less are present in a volume ratio of 50% or more, as a whole, High coercive force can be maintained. Also, 0.0
Crystals having a size of 5 μm or less are practically difficult to manufacture, and even if they are obtained, there are no particularly excellent magnetic properties. Therefore, the crystal grain size of the Nd 2 Fe 14 B-type compound, which is the main phase, is 0.05 to 1 μm when the volume ratio is 50% or more.
It is preferable that the crystals are occupied. More preferably, crystals of 0.1 to 0.5 μm occupy 80% or more by volume.
【0018】残留磁束密度の限定理由 この発明による永久磁石用合金粉末は、磁気的に高い異
方性を有することが特徴である。この合金粉末の主相で
あるNd2Fe14B型化合物の飽和磁化は1.6Tであ
り、合金粉末の残留磁束密度が1.6Tを越えることは
不可能である。一方、残留磁束密度が0.9T未満であ
ると、理論的には0.8Tの残留磁束密度が得られる等
方性永久磁石用希土類合金粉末に対して、磁気特性的に
優位性がなく、実用的な意味がない。そこで、残留磁束
密度の値は、0.9〜1.6Tとした。Reason for Limitation of Residual Magnetic Flux Density The alloy powder for permanent magnets according to the present invention is characterized by having a magnetically high anisotropy. The saturation magnetization of the Nd 2 Fe 14 B type compound, which is the main phase of this alloy powder, is 1.6 T, and the residual magnetic flux density of the alloy powder cannot exceed 1.6 T. On the other hand, if the residual magnetic flux density is less than 0.9T, theoretically, there is no superior magnetic property to the rare earth alloy powder for isotropic permanent magnets that can obtain a residual magnetic flux density of 0.8T. It has no practical meaning. Therefore, the value of the residual magnetic flux density is set to 0.9 to 1.6T.
【0019】製造条件の限定理由 水素処理法は、所要粒度の粗粉砕粉が外観上その大きさ
を変化させることなく、極微細結晶組織の集合体が得ら
れることを特徴とする。すなわち、正方晶Nd2Fe14
B型化合物に対し、高温でH2ガスと反応させると、R
H2■3、αFe、Fe2Bなどに相分離し、さらにH2ガ
スを脱H2処理により除去すると、再度正方晶Nd2Fe
14B型化合物の再結晶組織が得られる。Reasons for Limiting Manufacturing Conditions The hydrogen treatment method is characterized in that a coarsely pulverized powder having a required particle size does not change its size in appearance and an aggregate having an ultrafine crystal structure can be obtained. That is, tetragonal Nd 2 Fe 14
When a B-type compound is reacted with H 2 gas at a high temperature, R
After phase separation into H 2 ■ 3 , αFe, Fe 2 B, etc., and further removing H 2 gas by de-H 2 treatment, tetragonal Nd 2 Fe
14 A recrystallized structure of the B-type compound is obtained.
【0020】出発原料の粗粉砕法は、従来の機械的粉砕
法やガスアトマイズ法の他、H2吸蔵による、いわゆる
水素粉砕法を用いてもよく、工程の簡略化のためにこの
水素粉砕による粗粉砕工程と、極微細結晶を得るための
水素処理法を同一装置内で連続して行なっても良い。ま
た、得られた粗粉砕粉の平均粒度は50〜1000μm
が好ましい。As the coarse pulverization method of the starting material, a so-called hydrogen pulverization method by H 2 occlusion may be used in addition to the conventional mechanical pulverization method or gas atomization method. To simplify the process, the coarse pulverization method by the hydrogen pulverization is used. The crushing step and the hydrogen treatment method for obtaining ultrafine crystals may be continuously performed in the same apparatus. The average particle size of the obtained coarsely pulverized powder is 50 to 1000 μm.
Is preferred.
【0021】この発明において、H2ガス中での加熱に
際し、H2ガス圧力が10kPa未満では、前述の分解
反応が充分に進行せず、また1000kPaを超えると
処理設備が大きくなりすぎ、工業的にコスト面、また安
全面で好ましくないため、圧力範囲を10kPa〜10
00kPaとした。さらに好ましくは50kPa〜15
0kPaである。[0021] In this invention, when heating with H 2 gas, H in 2 gas pressure is less than 10 kPa, it does not proceed sufficiently that the above decomposition reaction, also processing facility becomes too large and exceeds 1000 kPa, industrial Since it is not preferable in terms of cost and safety, the pressure range is 10 kPa to 10 kPa.
It was set to 00 kPa. More preferably 50 kPa to 15
It is 0 kPa.
【0022】H2ガス中での加熱処理温度は、500℃
未満ではRH2■3、αFe、Fe2Bなどへの分解反応
が起こらず、また900℃を超えるとRH2■3が不安定
となり、かつ生成物が粒成長して正方晶Nd2Fe14B
型化合物の極微細結晶組織を得ることが困難になるた
め、温度範囲を500℃〜900℃とする。また、加熱
処理保持時間については、上記の分解反応を充分に行わ
せるため、15分〜8時間の加熱保持が必要である。The heat treatment temperature in H 2 gas is 500 ° C.
If the temperature is less than 1, the decomposition reaction into RH 2 ■ 3 , αFe, Fe 2 B, etc. does not occur, and if the temperature exceeds 900 ° C., the RH 2 ■ 3 becomes unstable, and the product grows grains to form tetragonal Nd 2 Fe 14. B
Since it becomes difficult to obtain an ultrafine crystal structure of the type compound, the temperature range is set to 500 ° C to 900 ° C. Regarding the heat treatment holding time, it is necessary to hold the heating treatment for 15 minutes to 8 hours in order to sufficiently carry out the above decomposition reaction.
【0023】この発明の脱H2処理時のH2分圧は、10
Paを超えると下記の温度範囲、すなわち900℃以下
ではRH2■3相の分解条件に至らないか、平衡論的には
分解条件に達していたとしても実用的な脱H2速度が得
られないため、脱H2処理時のH2分圧は10Pa以下と
した。The H 2 partial pressure during de H 2 treatment of the present invention, 10
If it exceeds Pa, the decomposition condition of the RH 2 3 phase will not be reached in the following temperature range, that is, 900 ° C or lower, or a practical de-H 2 rate will be obtained even if the decomposition condition is reached in equilibrium theory. Therefore, the partial pressure of H 2 at the time of removing H 2 was set to 10 Pa or less.
【0024】この発明において、脱H2処理の温度が5
00℃未満ではRH2■3相からのH2の離脱が起こら
ず、そのため正方晶Nd2Fe14B型化合物が再結晶し
ない。また、900℃を超えると正方晶Nd2Fe14B
型化合物は生成するが、再結晶粒が粗大に成長し、高い
保磁力が得られない。そのため、脱H2処理の温度範囲
は500℃〜900℃とする。また、加熱処理保持時間
は、上記の再結晶反応を充分に行わせるためには15分
〜8時間の加熱保持が必要である。In the present invention, the temperature for the H 2 removal treatment is 5
If the temperature is lower than 00 ° C., H 2 is not released from the RH 2 3 phase, so that the tetragonal Nd 2 Fe 14 B type compound is not recrystallized. Further, when the temperature exceeds 900 ° C., tetragonal Nd 2 Fe 14 B
Although a type compound is produced, recrystallized grains grow coarsely and a high coercive force cannot be obtained. Therefore, the temperature range of the H 2 removal treatment is 500 ° C. to 900 ° C. The heat treatment holding time is required to be 15 minutes to 8 hours in order to sufficiently carry out the recrystallization reaction.
【0025】脱H2処理後の正方晶Nd2Fe14B型化合
物の再結晶粒径は実質的に0.05μm以下の平均再結
晶粒径を得ることは困難であり、また、たとえ得られた
としても、磁気特性上の利点がない。一方、平均再結晶
粒径が1μmを超えると、粉末の保磁力が低下するため
好ましくない。そのため、平均再結晶粒径を0.05〜
1μmとした。The recrystallized grain size of the de H 2 treatment tetragonal Nd 2 Fe 14 B type compound after is substantially difficult to obtain an average recrystallized grain size of less 0.05 .mu.m, also obtained if Even if it does, there is no advantage in magnetic characteristics. On the other hand, if the average recrystallized grain size exceeds 1 μm, the coercive force of the powder decreases, which is not preferable. Therefore, the average recrystallized grain size is 0.05 to
1 μm.
【0026】[0026]
【作用】この発明はR−T−B系永久磁石粉末におい
て、Bの一部をCで置換することによって、安定して大
きな磁気異方性が得られて残留磁束密度Brを大きくす
ることができ、さらに、Al,Ni,Ga,Zr,I
n,Sn.Hf,Ti,V,Nb,Mo,Ta,Wの1
種または2種以上を添加することにより磁気特性を改善
向上することが可能である。さらに、特定組成範囲のR
−T−M−B−C系合金粗粉砕粉を用いて、水素処理法
における水素圧力を10kPa以上とし、脱水素工程の
水素圧力を10Pa以下とすることにより、平均結晶粒
径が0.05〜1μmの再結晶粒よりなる磁気的に異方
性の大きな、高い保磁力を有する磁粉を安定して得るこ
とができる。In the present invention, by substituting C for a part of B in the RTB permanent magnet powder, a large magnetic anisotropy can be stably obtained and the residual magnetic flux density Br can be increased. And further, Al, Ni, Ga, Zr, I
n, Sn. Hf, Ti, V, Nb, Mo, Ta, W 1
It is possible to improve and improve the magnetic characteristics by adding one kind or two or more kinds. Furthermore, R in a specific composition range
By using the -T-M-B-C based alloy coarsely pulverized powder, the hydrogen pressure in the hydrogen treatment method is set to 10 kPa or more and the hydrogen pressure in the dehydrogenation step is set to 10 Pa or less, so that the average crystal grain size is 0.05. Magnetic particles having a large magnetic anisotropy and high coercive force, which are composed of recrystallized grains of ˜1 μm, can be stably obtained.
【0027】[0027]
実施例1 高周波誘導溶解法によって溶製して得られた、表1に示
すNo.1〜17の組成の鋳塊を、1100℃、24時
間、10Pa以下の真空中で焼鈍して、鋳塊中の正方晶
Nd2Fe14B型化合物の体積比を90%以上とした。
この鋳塊を、Arガス雰囲気中(O2量0.5%以下)
でスタンプミルにて平均粒度100μmに粗粉砕した
後、この粗粉砕粉を管状炉に入れ、1Pa以下にまで真
空排気した。その後、純度99.9999%以上の10
0kPaのH2ガスを導入しつつ、原料温度800℃に
て2時間保持した。引き続き原料を800℃に保持した
まま、H2ガスの供給を止め、ロータリーポンプ、油拡
散ポンプによって炉内を真空排気し、1時間保持した。
このときの原料処理室内の圧力は最終的に0.05Pa
まで低下した。その後炉内に純度99.999%以上の
Arガスを導入すると共に原料を冷却し、原料温度が5
0℃以下となったところで原料を取り出した。得られた
この発明による各磁石用粉末は、結晶粒径が0.05〜
1μmのものが体積比で80%〜95%の範囲にあり、
平均粒径は0.3μm〜0.5μmの範囲であり、それ
ぞれの保磁力HcJ、磁化I、磁化容易方向の残留磁束
密度Brを測定して表1に示す。なお、磁化の値は外部
磁界0.8MA/mの時の値で、磁界中で配向して測定
した。Example 1 No. 1 shown in Table 1 obtained by melting by a high frequency induction melting method. The ingots having the compositions of 1 to 17 were annealed at 1100 ° C. for 24 hours in a vacuum of 10 Pa or less so that the volume ratio of the tetragonal Nd 2 Fe 14 B type compound in the ingot was 90% or more.
This ingot was placed in an Ar gas atmosphere (O 2 amount of 0.5% or less).
After roughly pulverizing with a stamp mill to an average particle size of 100 μm, this coarsely pulverized powder was put into a tubular furnace and evacuated to 1 Pa or less. Then, the purity of 99.9999% or more 10
While introducing 0 kPa of H 2 gas, the raw material temperature was kept at 800 ° C. for 2 hours. Subsequently, while keeping the raw material at 800 ° C., the supply of H 2 gas was stopped, the inside of the furnace was evacuated by a rotary pump and an oil diffusion pump, and it was kept for 1 hour.
The pressure inside the raw material processing chamber at this time is finally 0.05 Pa.
Fell to. After that, Ar gas having a purity of 99.999% or more was introduced into the furnace, and the raw material was cooled to a raw material temperature of 5
The raw material was taken out when the temperature became 0 ° C or lower. The obtained powder for magnets according to the present invention has a crystal grain size of 0.05 to
The volume ratio of 1 μm is 80% to 95%,
The average particle size is in the range of 0.3 μm to 0.5 μm, and the coercive force HcJ, the magnetization I, and the residual magnetic flux density Br in the easy magnetization direction are measured and shown in Table 1. The value of magnetization is the value when the external magnetic field is 0.8 MA / m, and the orientation was measured in the magnetic field.
【0028】比較例 表1に示すNo.18〜23の6種類の組成の粗粉砕粉
について、実施例と同様の処理を行い、水素処理による
永久磁石用合金粉末を得た。得られた比較例による磁石
用粉末の保磁力HcJ、磁化I、残留磁束密度Brを測
定して表1に示す。Comparative Example No. 1 shown in Table 1 The coarsely pulverized powders having the six compositions of 18 to 23 were treated in the same manner as in the example to obtain alloy powder for permanent magnet by hydrogen treatment. The coercive force HcJ, magnetization I, and residual magnetic flux density Br of the obtained magnet powder according to the comparative example were measured and shown in Table 1.
【0029】実施例2 基本組成をNd12.5Fe70.0Co11.0Ga0.5B6.0と
し、Bの1部を種々のC量で置換した鋳塊(Nd12.5F
e70.0Co11.0Ga0.5B6.0-xCx)を作製し、その後
実施例1と同様の処理を行い、水素処理による永久磁石
用合金粉末を得た。この粉末の磁気特性を、C置換量x
に対して示したものが図1である。Example 2 A basic composition was Nd 12.5 Fe 70.0 Co 11.0 Ga 0.5 B 6.0, and an ingot (Nd 12.5 F) in which a part of B was replaced with various C amounts was used.
to produce e 70.0 Co 11.0 Ga 0.5 B 6.0 -x C x), then subjected to the same treatment as in Example 1 to obtain an alloy powder for permanent magnets according to hydrotreating. The magnetic characteristics of this powder are expressed as C substitution amount x
Is shown in FIG.
【0030】[0030]
【表1】 [Table 1]
【0031】[0031]
【発明の効果】この発明の組成によるR−T−M−B−
C系永久磁石用粉末は、特定組成範囲のR−T−M−B
−C系粗粉砕粉を、例えば水素吸蔵合金より放出された
高純度のH2ガス中で、水素圧力を10kPa以上の加
熱処理並びに水素圧力を10Pa以下の所定雰囲気で加
熱保持する脱H2処理を行うことで、平均結晶粒径が
0.05〜1μmの再結晶粒よりなる磁気的に異方性の
大きな、高い保磁力を有する磁性合金粉末を得ることが
でき、例えば高性能ボンド磁石を製造できる。According to the composition of the present invention, R-T-M-B-
C-based permanent magnet powder has a specific composition range of R-T-M-B.
-C-based coarsely pulverized powder is heat-treated at a hydrogen pressure of 10 kPa or more in a high-purity H 2 gas released from, for example, a hydrogen storage alloy, and de-H 2 treatment is performed by heating and holding the hydrogen pressure at a predetermined atmosphere of 10 Pa or less. By performing the above, it is possible to obtain a magnetic alloy powder having a large magnetic anisotropy and a high coercive force, which is composed of recrystallized grains having an average crystal grain size of 0.05 to 1 μm. Can be manufactured.
─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───
【手続補正書】[Procedure amendment]
【提出日】平成5年2月25日[Submission date] February 25, 1993
【手続補正1】[Procedure Amendment 1]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】図面の簡単な説明[Name of item to be corrected] Brief explanation of the drawing
【補正方法】追加[Correction method] Added
【補正内容】[Correction content]
【図面の簡単な説明】[Brief description of drawings]
【図1】C置換量と保磁力、磁化I及び残留密度との関
係を示すグラフである。FIG. 1 is a graph showing the relationship among C substitution amount, coercive force, magnetization I, and residual density.
フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 C22C 38/00 303 D H01F 1/053 1/06 Continuation of the front page (51) Int.Cl. 5 Identification code Office reference number FI technical display location C22C 38/00 303 D H01F 1/053 1/06
Claims (4)
の少なくとも1種でかつPrまたはNdの1種または2
種をRのうち50原子%以上含有)、T:67〜85原
子%(T:FeまたはFeの1部を50原子%以下のC
oにて置換)、B,Cの量が B+C=4〜10原子%
C/(B+C)=0.01〜0.8を満足する値を有
する組成の合金粉末からなり、合金粉末の70vol%
以上が正方晶Nd2Fe14B型結晶構造を有する化合物
で、かつ該化合物のうち体積比で少なくとも50%以上
の結晶粒径が0.05〜1μmで、平均粒径が10〜1
000μmからなり、その磁化容易方向の残留磁束密度
が0.9〜1.6Tを有する合金粉末からなることを特
徴とする永久磁石用異方性希土類合金粉末。1. R: 10 to 20 atomic% (R; at least one rare earth element and one or two Pr or Nd).
Seed content of R is 50 atomic% or more), T: 67 to 85 atomic% (T: Fe or a part of Fe is 50 atomic% or less of C).
the amount of B and C is B + C = 4 to 10 atom%.
C / (B + C) = consisting of an alloy powder having a composition satisfying a value of 0.01 to 0.8, 70 vol% of the alloy powder
The above is a compound having a tetragonal Nd 2 Fe 14 B type crystal structure, and at least 50% or more by volume of the compound has a crystal grain size of 0.05 to 1 μm and an average grain size of 10 to 1.
An anisotropic rare earth alloy powder for permanent magnets, which is made of an alloy powder having a residual magnetic flux density of 000 μm and a residual magnetic flux density in the easy magnetization direction of 0.9 to 1.6 T.
の少なくとも1種でかつPrまたはNdの1種または2
種をRのうち50原子%以上含有)、T:67〜85原
子%(T:FeまたはFeの1部を50原子%以下のC
oにて置換)、M;10原子%以下(M;Al、Ti、
V、Cr、Ni、Ga、Zr、Nb、Mo、In、S
n、Hf、Ta、Wのうち1種または2種以上)、B,
Cの量がB+C=4〜10原子% C/(B+C)=
0.01〜0.8 を満足する値を有する組成の合金粉
末からなり、合金粉末の70vol%以上が正方晶Nd
2Fe14B型結晶構造を有する化合物で、かつ該化合物
のうち体積比で少なくとも50%以上の結晶粒径が0.
05〜1μmで、平均粒径が10〜1000μmからな
り、その磁化容易方向の残留磁束密度が0.9〜1.6
Tを有する合金粉末からなることを特徴とする永久磁石
用異方性希土類合金粉末。2. R: 10 to 20 atomic% (R: at least one rare earth element and one or two Pr or Nd).
Seed content of R is 50 atomic% or more), T: 67 to 85 atomic% (T: Fe or a part of Fe is 50 atomic% or less of C).
Substituted with o), M; 10 atomic% or less (M; Al, Ti,
V, Cr, Ni, Ga, Zr, Nb, Mo, In, S
one or more of n, Hf, Ta, W), B,
The amount of C is B + C = 4 to 10 atomic% C / (B + C) =
It is composed of an alloy powder having a composition satisfying a value of 0.01 to 0.8, and 70 vol% or more of the alloy powder is tetragonal Nd.
2 Fe 14 B-type crystal structure compound, and the crystal grain size of at least 50% by volume of the compound is 0.
It has an average particle size of 10 to 1000 μm and a residual magnetic flux density in the easy magnetization direction of 0.9 to 1.6.
An anisotropic rare earth alloy powder for permanent magnets, which is composed of an alloy powder having T.
の少なくとも1種でかつPrまたはNdの1種または2
種をRのうち50原子%以上含有)、T:67〜85原
子%(T:FeまたはFeの1部を50原子%以下のC
oにて置換)、B,Cの量が B+C=4〜10原子%
C/(B+C)=0.01〜0.8を満足する値を有
する組成の合金鋳塊を粗粉砕後、前記粗粉砕粉を原料粉
末として、10kPa〜1000kPaのH2ガス中で
500℃〜900℃に15分〜8時間加熱保持し、更に
H2分圧10Pa以下にて500℃〜900℃に15分
〜8時間保持の脱H2処理を行なったのち冷却して、合
金粉末の70vol%以上が正方晶Nd2Fe14B型結
晶構造を有する化合物で、かつ該化合物のうち体積比で
少なくとも50%以上の結晶粒径が0.05〜1μm
で、平均粒径が10〜1000μmからなり、その磁化
容易方向の残留磁束密度が0.9〜1.6Tを有する合
金粉末を得ることを特徴とする永久磁石用異方性希土類
合金粉末の製造方法。3. R: 10 to 20 atomic% (R; at least one rare earth element and one or two Pr or Nd).
Seed content of R is 50 atomic% or more), T: 67 to 85 atomic% (T: Fe or a part of Fe is 50 atomic% or less of C).
the amount of B and C is B + C = 4 to 10 atom%.
After roughly crushing an alloy ingot having a composition having a value satisfying C / (B + C) = 0.01 to 0.8, the coarsely crushed powder is used as a raw material powder in H 2 gas of 10 kPa to 1000 kPa at 500 ° C. After heating and holding at 900 ° C. for 15 minutes to 8 hours, and further performing de-H 2 treatment of maintaining H 2 partial pressure of 10 Pa or less at 500 ° C. to 900 ° C. for 15 minutes to 8 hours, and cooling, 70 vol of alloy powder is added. % Or more is a compound having a tetragonal Nd 2 Fe 14 B type crystal structure, and at least 50% or more by volume of the compound has a crystal grain size of 0.05 to 1 μm.
To obtain an alloy powder having an average particle size of 10 to 1000 μm and a residual magnetic flux density in the easy magnetization direction of 0.9 to 1.6 T, and manufacturing an anisotropic rare earth alloy powder for permanent magnets. Method.
の少なくとも1種でかつPrまたはNdの1種または2
種をRのうち50原子%以上含有)、T:67〜85原
子%(T:FeまたはFeの1部を50原子%以下のC
oにて置換)、M;10原子%以下(M;Al、Ti、
V、Cr、Ni、Ga、Zr、Nb、Mo、In、S
n、Hf、Ta、Wのうち1種または2種以上)、B,
Cの量がB+C=4〜10原子% C/(B+C)=
0.01〜0.8 を満足する値を有する組成の合金鋳
塊を粗粉砕後、前記粗粉砕粉を原料粉末として、10k
Pa〜1000kPaのH2ガス中で500℃〜900
℃に15分〜8時間加熱保持し、更にH2分圧10Pa
以下にて500℃〜900℃に15分〜8時間保持の脱
H2処理を行なったのち冷却して、合金粉末の70vo
l%以上が正方晶Nd2Fe14B型結晶構造を有する化
合物で、かつ該化合物のうち体積比で少なくとも50%
以上の結晶粒径が0.05〜1μmで、平均粒径が10
〜1000μmからなり、その磁化容易方向の残留磁束
密度が0.9〜1.6Tを有する合金粉末を得ることを
特徴とする永久磁石用異方性希土類合金粉末の製造方
法。4. R: 10 to 20 atomic% (R; at least one rare earth element and one or two Pr or Nd).
Seed content of R is 50 atomic% or more), T: 67 to 85 atomic% (T: Fe or a part of Fe is 50 atomic% or less of C).
Substituted with o), M; 10 atomic% or less (M; Al, Ti,
V, Cr, Ni, Ga, Zr, Nb, Mo, In, S
one or more of n, Hf, Ta, W), B,
The amount of C is B + C = 4 to 10 atomic% C / (B + C) =
After roughly crushing an alloy ingot having a composition having a value satisfying 0.01 to 0.8, the coarsely crushed powder is used as a raw material powder for 10 k
500 ° C. to 900 in H 2 gas of Pa to 1000 kPa
Heat and hold at 15 ℃ for 8 minutes, then H 2 partial pressure 10Pa
The following treatment is carried out at 500 ° C. to 900 ° C. for 15 minutes to 8 hours to remove H 2 and then cooled to 70 vo of the alloy powder.
1% or more is a compound having a tetragonal Nd 2 Fe 14 B type crystal structure, and at least 50% by volume of the compound
The above crystal grain size is 0.05 to 1 μm, and the average grain size is 10
A method for producing anisotropic rare earth alloy powders for permanent magnets, characterized in that an alloy powder having a residual magnetic flux density in the easy magnetization direction of 0.9 to 1.6 T is obtained.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP04179075A JP3086334B2 (en) | 1992-06-12 | 1992-06-12 | Anisotropic rare earth alloy powder for permanent magnet |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP04179075A JP3086334B2 (en) | 1992-06-12 | 1992-06-12 | Anisotropic rare earth alloy powder for permanent magnet |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH05345947A true JPH05345947A (en) | 1993-12-27 |
JP3086334B2 JP3086334B2 (en) | 2000-09-11 |
Family
ID=16059654
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP04179075A Expired - Lifetime JP3086334B2 (en) | 1992-06-12 | 1992-06-12 | Anisotropic rare earth alloy powder for permanent magnet |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3086334B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2005015580A1 (en) * | 2003-08-12 | 2006-10-05 | 株式会社Neomax | R-T-B system sintered magnet and rare earth alloy |
JP2008045216A (en) * | 1998-07-29 | 2008-02-28 | Dowa Holdings Co Ltd | Permanent magnet alloy having improved heat resistance |
-
1992
- 1992-06-12 JP JP04179075A patent/JP3086334B2/en not_active Expired - Lifetime
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008045216A (en) * | 1998-07-29 | 2008-02-28 | Dowa Holdings Co Ltd | Permanent magnet alloy having improved heat resistance |
JPWO2005015580A1 (en) * | 2003-08-12 | 2006-10-05 | 株式会社Neomax | R-T-B system sintered magnet and rare earth alloy |
JP4605013B2 (en) * | 2003-08-12 | 2011-01-05 | 日立金属株式会社 | R-T-B system sintered magnet and rare earth alloy |
Also Published As
Publication number | Publication date |
---|---|
JP3086334B2 (en) | 2000-09-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0521218A (en) | Production of rare-earth permanent magnet | |
JP3250551B2 (en) | Method for producing anisotropic rare earth magnet powder | |
JPS6110209A (en) | Permanent magnet | |
JPH04245403A (en) | Rare earth-fe-co-b-based anisotropic magnet | |
JP3368295B2 (en) | Method for producing anisotropic rare earth alloy powder for permanent magnet | |
JPH06207203A (en) | Production of rare earth permanent magnet | |
JP3368294B2 (en) | Method for producing anisotropic rare earth alloy powder for permanent magnet | |
JPH06207204A (en) | Production of rare earth permanent magnet | |
JP3423965B2 (en) | Method for producing anisotropic rare earth alloy powder for permanent magnet | |
JP3086334B2 (en) | Anisotropic rare earth alloy powder for permanent magnet | |
JPH0461042B2 (en) | ||
JP3860372B2 (en) | Rare earth magnet manufacturing method | |
JP2002025813A (en) | Anisotropic rare earth magnet powder | |
JPH10326705A (en) | Rare-earth magnet powder and manufacture thereof | |
JP2927987B2 (en) | Manufacturing method of permanent magnet powder | |
JP3481653B2 (en) | Method for producing anisotropic rare earth alloy powder for permanent magnet | |
JPH04247604A (en) | Rare earth-fe-co-b anisotropic magnet | |
JP3529551B2 (en) | Manufacturing method of rare earth sintered magnet | |
JP2978004B2 (en) | Method for producing rare earth composite magnet having magnetic anisotropy | |
JPH0521219A (en) | Production of rare-earth permanent magnet | |
JPH06112027A (en) | Manufacture of high-quality magnet material | |
JPS61139638A (en) | Manufacture of sintered permanent magnet material | |
JPH07278615A (en) | Production of anisotropic rare-earth alloy powder for permanent magnet | |
JPH05267027A (en) | Manufacture of raw material powder for r-fe-b group permanent magnet and alloy powder for adjusting raw material powder | |
JP3053344B2 (en) | Rare earth magnet manufacturing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080707 Year of fee payment: 8 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080707 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090707 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100707 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110707 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120707 Year of fee payment: 12 |
|
EXPY | Cancellation because of completion of term |