JPH05343217A - Manufacture of rare earth magnet material - Google Patents

Manufacture of rare earth magnet material

Info

Publication number
JPH05343217A
JPH05343217A JP4177540A JP17754092A JPH05343217A JP H05343217 A JPH05343217 A JP H05343217A JP 4177540 A JP4177540 A JP 4177540A JP 17754092 A JP17754092 A JP 17754092A JP H05343217 A JPH05343217 A JP H05343217A
Authority
JP
Japan
Prior art keywords
alloy
rare earth
magnet material
hydrogen
cast
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP4177540A
Other languages
Japanese (ja)
Inventor
Hiroyuki Yagi
裕幸 八木
Takayuki Nishio
孝幸 西尾
Takashi Furuya
嵩司 古谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP4177540A priority Critical patent/JPH05343217A/en
Publication of JPH05343217A publication Critical patent/JPH05343217A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0573Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes obtained by reduction or by hydrogen decrepitation or embrittlement

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To obtain anisotropic materials with stable high orientability by using a rare earth-Fe-B alloy having columnar crystals in its cast macrotexture, and performing hydrogen occulusion and dehydrogenation processing of this alloy. CONSTITUTION:An alloy composed of 8-30atom.% of one or more kinds of rare earth elements, 3-15atom.% of B, and the rest; Fe, are arc-melted and poured into a casting die. And the casting die is cooled matching its cooling direction upwards from the bottom, and an alloy cast is manufactured so as to have more than 50vol.% of columnar crystals in its cast macrotexture. Following this, homogenization processing of this alloy cast is performed in an Ar atmosphere. After that, it is heated to a temperature in a range of 500-1,000 deg.C in a hydrogen gas atmosphere to occlude hydrogen. Following this, holding it at the same temperature in a vacuum atmosphere dehydrogenation is performed, and quenching is performed after that. Consequently, it becomes possible to orient crystals stably and obtain rare earth magnet materials having high coercive force and high magnetic anisotropy.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、希土類磁石材料の製造
方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a rare earth magnet material.

【0002】[0002]

【従来の技術】希土類磁石材料としては希土類−Fe −
B系合金が提供されている。上記希土類−Fe −B系磁
石材料を製造する方法としては、従来希土類−Fe −B
系合金のインゴットまたは粉末を水素ガス雰囲気中で5
00〜1000℃の範囲で加熱して該合金のインゴット
または粉末に水素を吸蔵させた後真空雰囲気中に保持し
て脱水素せしめ、その後冷却する方法が提供されている
(特開平2−4901号)。
2. Description of the Related Art As a rare earth magnet material, rare earth --Fe--
B-based alloys are provided. As a method for producing the above-mentioned rare earth-Fe-B based magnet material, conventional rare earth-Fe-B magnet materials have been used.
Ingots or powders of series alloys in hydrogen gas atmosphere
There is provided a method of heating in an ingot or powder of the alloy by heating in the range of 00 to 1000 ° C., then holding in a vacuum atmosphere for dehydrogenation, and then cooling (Japanese Patent Laid-Open No. 2-4901). ).

【0003】上記方法によれば水素吸蔵−脱水素工程に
よって合金中に均一な結晶粒を形成させ、もって高保磁
力と磁気異方性を有する希土類磁石材料が得られると云
われている。
According to the above method, it is said that uniform crystal grains are formed in the alloy by the hydrogen absorption-dehydrogenation process, and thus a rare earth magnet material having high coercive force and magnetic anisotropy can be obtained.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記方
法においては高保磁力と磁気異方性を有する希土類磁石
材料が得られるけれども、脱水素工程での結晶配向が不
十分で、また結晶が安定して配向しないと云う欠点があ
った。
However, although a rare earth magnet material having a high coercive force and magnetic anisotropy can be obtained by the above method, the crystal orientation in the dehydrogenation step is insufficient and the crystal is stable. There was a defect that it was not oriented.

【0005】[0005]

【課題を解決するための手段】本発明は上記従来の課題
を解決するための手段として、鋳造マクロ組織が柱状晶
となるように鋳造された希土類−Fe −B系合金を用い
るものである。
As a means for solving the above-mentioned conventional problems, the present invention uses a rare earth-Fe-B type alloy cast so that the cast macrostructure becomes columnar crystals.

【0006】本発明に用いられる希土類−Fe −B系合
金は、希土類元素RとしてLa ,Ce ,Pr ,Nd ,P
m ,Sm ,Eu ,Gd ,Tb ,Dy ,Ho ,Er ,Tm
,Tb ,Lu ,Sc ,Y,およびAc の1種または2
種以上が8〜30原子%、Bが3〜15原子%、残余が
Fe および不可避不純物からなるものであり、該合金に
おいて、Fe の一部を0.01〜50原子%のCo で置
換してもよい。更に該合金には添加元素としてC,N,
O,F,Al ,Si ,P,S,Cl ,Sc ,Ti,V,
Cr ,Mn ,Ni ,Cu ,Zn ,Ga ,Ge ,As ,S
e ,Br ,Zr ,Nb ,Mo ,Tc ,Rn ,Rh ,Pd
,Ag ,Cd ,In ,Sn ,Sb ,Te ,I,Hf ,
Ta ,W,Re ,Os ,Ir ,Pt ,Hg ,Tl ,Pb
,Bi ,Po,At の1種または2種以上が0.01〜
10原子%添加されてもよい。
The rare earth-Fe-B system alloy used in the present invention has a rare earth element R of La, Ce, Pr, Nd, P.
m, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm
, Tb, Lu, Sc, Y, and Ac, or 2
The alloy is composed of at least 8 to 30 atomic% of B, 3 to 15 atomic% of B, and the balance of Fe and unavoidable impurities. In the alloy, a part of Fe is replaced by 0.01 to 50 atomic% of Co. May be. Furthermore, C, N, and
O, F, Al, Si, P, S, Cl, Sc, Ti, V,
Cr, Mn, Ni, Cu, Zn, Ga, Ge, As, S
e, Br, Zr, Nb, Mo, Tc, Rn, Rh, Pd
, Ag, Cd, In, Sn, Sb, Te, I, Hf,
Ta, W, Re, Os, Ir, Pt, Hg, Tl, Pb
, Bi, Po and At are 0.01 to
You may add 10 atomic%.

【0007】上記Co あるいは添加元素は、上記添加量
範囲において本発明の希土類磁石材料の磁気特性を向上
せしめるものである。
The above Co or additive element improves the magnetic characteristics of the rare earth magnet material of the present invention within the above additive amount range.

【0008】工程1では上記合金はアーク溶解または高
周波溶解等によって溶解され、鋳造型に注入冷却されて
インゴットとなるが、該インゴット中の鋳造マクロ組織
が柱状晶になるように鋳造するには、鋳造型における溶
湯の冷却方向を例えば型底から上方へ、あるいは型周囲
から中央部へと云うように整合させる。このような冷却
方向を整合することによって結晶の成長方向も整合さ
れ、柱状晶となる。本発明においては合金鋳造物内に5
0体積%以上の柱状晶が存在することが望ましい。
In step 1, the alloy is melted by arc melting, high frequency melting, or the like and poured into a casting mold to be cooled to form an ingot. In order to cast the cast macrostructure in the ingot into columnar crystals, The cooling direction of the molten metal in the casting mold is aligned, for example, from the bottom of the mold to the top or from the periphery of the mold to the center. By aligning the cooling directions as described above, the crystal growth directions are also aligned to form columnar crystals. In the present invention, 5 in the alloy casting
It is desirable that 0% by volume or more of columnar crystals be present.

【0009】工程1で得られた上記合金鋳造物に対し
て、所望なれば均質化処理が施されてもよい。即ち上記
合金鋳造物をインゴットとしてそのまゝ、あるいは粉体
に粉砕して900〜1200℃の範囲で均質化処理を行
なう。上記均質化処理温度が900℃未満であると均質
化に長時間を要し、また1200℃を越えると合金が溶
解してしまう。このような均質化処理によって偏折が除
去される。
If desired, the alloy casting obtained in step 1 may be homogenized. That is, the above alloy casting is used as an ingot or as it is, or pulverized into powder, and homogenized at 900 to 1200 ° C. If the homogenization temperature is lower than 900 ° C, it takes a long time to homogenize, and if it exceeds 1200 ° C, the alloy is melted. Bias is removed by such homogenization treatment.

【0010】工程2は水素吸蔵工程であって上記合金鋳
造物を水素ガスまたは水素ガスと不活性ガスとの混合ガ
ス雰囲気において、500〜1000℃の範囲に加熱し
て水素を吸蔵させる。上記水素吸蔵工程においてはRが
水素と化合して水素化物を形成すると考えられる。
Step 2 is a hydrogen storage step in which the alloy casting is heated to 500 to 1000 ° C. in a hydrogen gas or a mixed gas atmosphere of hydrogen gas and an inert gas to store hydrogen. It is considered that in the hydrogen storage step, R combines with hydrogen to form a hydride.

【0011】工程3は脱水素工程であって工程2に引続
き同温度範囲で水素吸蔵合金鋳造物を通常水素ガス圧が
1×10-1Torr 以下の真空雰囲気において脱水素を行
なう。上記脱水素工程によりR水素化物は水素を放出し
て再び高い磁性を有するRの金属間化合物となるが、こ
のような水素吸蔵−放出により合金鋳造物内の結晶が一
定方向に配列する。この時元の柱状晶組織がこの配列に
影響を及ぼし、該結晶を安定して配向させることが可能
となる。脱水素の後は該合金鋳造物は急冷却される。
Step 3 is a dehydrogenation step. Following step 2, dehydrogenation of the hydrogen-absorbing alloy casting is performed in the same temperature range in a vacuum atmosphere where the hydrogen gas pressure is usually 1 × 10 -1 Torr or less. In the dehydrogenation step, the R hydride releases hydrogen to become an R intermetallic compound having a high magnetic property again, but due to such hydrogen absorption-release, the crystals in the alloy casting are arranged in a certain direction. At this time, the original columnar crystal structure affects this arrangement, and the crystals can be stably oriented. After dehydrogenation, the alloy casting is quenched.

【0012】[0012]

【作用】本発明においては鋳造マクロ組織に柱状晶が存
在する希土類−Fe −B系合金を用い、該合金について
水素吸蔵−脱水素処理を行なうから、該柱状晶にもとづ
いて従来のものよりも高い配向性を示し、したがって高
い磁気特性を有する異方性希土類磁石材料が得られる。
特に本発明では該磁石材料の粒径が大きくても高特性の
異方性が得られることが確認された。
In the present invention, a rare earth-Fe-B system alloy having columnar crystals in the cast macrostructure is used, and hydrogen absorption-dehydrogenation treatment is performed on the alloy. An anisotropic rare earth magnet material is obtained which exhibits high orientation and thus high magnetic properties.
In particular, in the present invention, it was confirmed that high characteristic anisotropy can be obtained even if the particle size of the magnet material is large.

【0013】[0013]

【実施例】表1の組成を有するR−Fe −B系合金をア
ーク溶解して鋳造型に注入し、該鋳造型を底部から上方
へ冷却方向を整合して冷却して合金鋳造物を製造した。
該合金鋳造物の鋳造マクロ組織には50体積%以上の柱
状晶が存在することが確認された。図1に該合金鋳造物
の組織を表す写真模写図を示す。
EXAMPLE An R-Fe-B alloy having the composition shown in Table 1 was arc-melted and poured into a casting mold, and the casting mold was cooled from the bottom to the upper side in the same cooling direction to produce an alloy casting. did.
It was confirmed that 50% by volume or more of columnar crystals were present in the casting macrostructure of the alloy casting. FIG. 1 shows a photographic copy showing the structure of the alloy casting.

【0014】上記合金鋳造物は1100℃,20時間,
Ar 雰囲気中にて均質化処理を行ない、次いで水素ガス
雰囲気中にて850℃,3時間加熱して水素を吸蔵させ
た後、引続いて同温度で1時間水素ガス圧1×10-1
orr 以下の真空雰囲気中に保持して脱水素を行ない、そ
の後急冷却して異方性希土類磁石材料を得た。
The above-mentioned alloy castings were stored at 1100 ° C. for 20 hours,
After homogenizing treatment in an Ar atmosphere, and then heating in a hydrogen gas atmosphere at 850 ° C. for 3 hours to occlude hydrogen, and subsequently at the same temperature for 1 hour, hydrogen gas pressure 1 × 10 −1 T
Dehydrogenation was performed by holding in a vacuum atmosphere at orr or lower, and then rapidly cooled to obtain an anisotropic rare earth magnet material.

【0015】[0015]

【表1】 [Table 1]

【0016】上記異方性希土類磁石材料を400μm以
下に粉砕し、3.0重量%のエポキシ樹脂をバインダー
として添加混合し、15KOe の磁場中で8ton /cm2
の圧力でプレス成形し、次いで150℃,1時間の熱硬
化処理を施して異方性ボンド磁石を作製した。該ボンド
磁石について夫々残留磁束密度Br,保磁力 iHc,最大エ
ネルギー積(BH)max を測定した。その結果を表2に
示す。
The above anisotropic rare earth magnet material was pulverized to 400 μm or less, 3.0 wt% of epoxy resin was added and mixed as a binder, and 8 ton / cm 2 in a magnetic field of 15 KOe.
Press molding was performed under the pressure of, and then thermosetting treatment was performed at 150 ° C. for 1 hour to produce an anisotropic bonded magnet. The residual magnetic flux density Br, the coercive force iHc, and the maximum energy product (BH) max of each of the bonded magnets were measured. The results are shown in Table 2.

【0017】〔比較例〕表1の組成を有するR−Fe −
B系合金をアーク溶解して鋳造型に注入し、該鋳造型の
全面から冷却方向を整合させずに冷却して合金鋳造物を
製造した。該合金鋳造物の鋳造マクロ組織は略10体積
%の柱状晶が存在することが確認された。上記合金鋳造
物に対して実施例と同様な均質化処理および水素吸蔵−
脱水素処理を行ない、その後急冷却して異方性希土類磁
石材料を得た。上記異方性希土類磁石材料によって実施
例と同様に異方性ボンド磁石を作製し、該ボンド磁石に
ついて夫々Br, iHc,(BH)max を測定した。その結
果も表2に示される。
[Comparative Example] R-Fe-having the composition shown in Table 1
The B-based alloy was arc-melted, poured into a casting mold, and cooled from the entire surface of the casting mold without matching the cooling directions to manufacture an alloy casting. It was confirmed that the cast macrostructure of the alloy casting had columnar crystals of about 10% by volume. Homogenization treatment and hydrogen storage similar to the example for the above alloy castings
Dehydrogenation treatment was performed, followed by rapid cooling to obtain an anisotropic rare earth magnet material. An anisotropic bonded magnet was produced from the above anisotropic rare earth magnet material in the same manner as in the example, and Br, iHc, (BH) max of each of the bonded magnets were measured. The results are also shown in Table 2.

【表2】 [Table 2]

【0018】表2において、実施例と比較例とを比べる
と、実施例は何れも同組成の比較例に対してBr, iHc,
(BH)max ともに高い値を示し、磁気特性に優れてい
ることが確認される。
In Table 2, comparing the examples with the comparative examples, the examples show that Br, iHc,
Both (BH) max show high values, and it is confirmed that the magnetic properties are excellent.

【0019】[0019]

【発明の効果】したがって本発明においては、磁気特性
の極めて良好な異方性希土類磁石材料が得られる。
Therefore, according to the present invention, an anisotropic rare earth magnet material having extremely good magnetic properties can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例の合金鋳造物の組織を表す写真模写図FIG. 1 is a photocopy drawing showing the structure of an alloy casting of an example.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 B22F 9/04 D C22C 33/02 D 38/00 303 D 38/10 H01F 1/06 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Office reference number FI Technical display location B22F 9/04 D C22C 33/02 D 38/00 303 D 38/10 H01F 1/06

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】希土類元素の1種または2種以上が8〜3
0原子%、Bが3〜15原子%、残余がFe および不可
避不純物からなる合金を溶解し、鋳造マクロ組織に柱状
晶が存在するように鋳造する工程1 工程1で得られた合金鋳造物を水素ガス雰囲気中で50
0〜1000℃の範囲で加熱して水素を吸蔵させる工程
2 工程2に続いて同温度範囲で該水素吸蔵合金鋳造物を真
空雰囲気中に保持して脱水素せしめ、その後急冷する工
程3 以上の工程1,2,3からなる希土類磁石材料の製造方
1. One or more rare earth elements of 8 to 3
Step 1 of melting an alloy composed of 0 atomic%, B of 3 to 15 atomic% and the balance of Fe and inevitable impurities and casting so that columnar crystals are present in the casting macrostructure. 50 in hydrogen gas atmosphere
Step 2 of heating in the range of 0 to 1000 ° C. to occlude hydrogen. Subsequent to Step 2, in the same temperature range, the hydrogen occlusive alloy casting is held in a vacuum atmosphere for dehydrogenation and then rapidly cooled. Method for producing rare earth magnet material comprising steps 1, 2 and 3
【請求項2】該合金において、Fe の一部を0.01〜
50原子%のCo で置換した合金を使用する請求項1に
記載の希土類磁石材料の製造方法
2. A part of Fe in the alloy is 0.01 to
The method for producing a rare earth magnet material according to claim 1, wherein an alloy substituted with 50 atomic% of Co is used.
【請求項3】該合金にC,N,O,F,Al ,Si ,
P,S,Cl ,Sc ,Ti ,V,Cr ,Mn ,Ni ,C
u ,Zn ,Ga ,Ge ,As ,Se ,Br ,Zr ,Nb
,Mo ,Tc ,Rn ,Rh ,Pd ,Ag ,Cd ,In
,Sn ,Sb ,Te ,I,Hf ,Ta ,W,Re ,Os
,Ir ,Pt ,Hg ,Tl ,Pb ,Bi,Po ,At の
1種または2種以上が0.01〜10原子%添加された
合金を使用する請求項1または2に記載の希土類磁石材
料の製造方法
3. The alloy containing C, N, O, F, Al, Si,
P, S, Cl, Sc, Ti, V, Cr, Mn, Ni, C
u, Zn, Ga, Ge, As, Se, Br, Zr, Nb
, Mo, Tc, Rn, Rh, Pd, Ag, Cd, In
, Sn, Sb, Te, I, Hf, Ta, W, Re, Os
Of the rare earth magnet material according to claim 1 or 2, wherein an alloy containing 0.01 to 10 atom% of one or more of Ir, Pt, Hg, Tl, Pb, Bi, Po and At is used. Production method
JP4177540A 1992-06-10 1992-06-10 Manufacture of rare earth magnet material Withdrawn JPH05343217A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4177540A JPH05343217A (en) 1992-06-10 1992-06-10 Manufacture of rare earth magnet material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4177540A JPH05343217A (en) 1992-06-10 1992-06-10 Manufacture of rare earth magnet material

Publications (1)

Publication Number Publication Date
JPH05343217A true JPH05343217A (en) 1993-12-24

Family

ID=16032735

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4177540A Withdrawn JPH05343217A (en) 1992-06-10 1992-06-10 Manufacture of rare earth magnet material

Country Status (1)

Country Link
JP (1) JPH05343217A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004006767A (en) * 2002-03-29 2004-01-08 Tdk Corp Permanent magnet

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004006767A (en) * 2002-03-29 2004-01-08 Tdk Corp Permanent magnet

Similar Documents

Publication Publication Date Title
US4322257A (en) Permanent-magnet alloy
JP2746818B2 (en) Manufacturing method of rare earth sintered permanent magnet
JP4743211B2 (en) Rare earth sintered magnet and manufacturing method thereof
US20060016515A1 (en) Sinter magnet made from rare earth-iron-boron alloy powder for magnet
US4192696A (en) Permanent-magnet alloy
JP2586198B2 (en) Rare earth-Fe-B permanent magnet powder and bonded magnet with excellent magnetic anisotropy and corrosion resistance
JP2011222966A (en) Rare-earth magnetic alloy and manufacturing method of the same
JP2665590B2 (en) Rare earth-iron-boron based alloy thin plate for magnetic anisotropic sintered permanent magnet raw material, alloy powder for magnetic anisotropic sintered permanent magnet raw material, and magnetic anisotropic sintered permanent magnet
JPH10259459A (en) Raw material alloy for producing rare earth magnet powder and production of rare earth magnet powder using this raw material alloy
JPH03129703A (en) Rare-earth-fe-co-b-based permanent magnet powder and bonded magnet excellent in magnetic anisotropy and corrosion resistance
JPH05343217A (en) Manufacture of rare earth magnet material
JPH09237708A (en) Rare earth fen group sintered magnet and manufacture thereof
JP2745042B2 (en) Rare earth-iron-boron alloy thin plate, alloy powder and method for producing permanent magnet
JP3151087B2 (en) Method for producing raw material powder for R-Fe-B-based permanent magnet and alloy powder for adjusting raw material powder
JP3097387B2 (en) Manufacturing method of rare earth magnet material powder
JP2770248B2 (en) Manufacturing method of rare earth cobalt magnet
JPH01155603A (en) Manufacture of oxidation-resistant rare-earth permanent magnet
JPH06151137A (en) Powder of rare earth magnet material with excellent anisotropy
JPH07109504A (en) Production of raw powder for anisotropic bond magnet
JPH07211570A (en) Manufacture of rare-earth permanent magnet
JP3755902B2 (en) Magnet powder for anisotropic bonded magnet and method for producing anisotropic bonded magnet
JP2789269B2 (en) Raw material powder for R-Fe-B permanent magnet
JP3427765B2 (en) Rare earth-Fe-Co-B based magnet powder, method for producing the same, and bonded magnet using the powder
JP3529551B2 (en) Manufacturing method of rare earth sintered magnet
JP2827643B2 (en) Method for producing rare earth-Fe-B based magnet alloy powder

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990831