JP2001076917A - Manufacture of anisotropic rare-earth magnet powder - Google Patents

Manufacture of anisotropic rare-earth magnet powder

Info

Publication number
JP2001076917A
JP2001076917A JP25282999A JP25282999A JP2001076917A JP 2001076917 A JP2001076917 A JP 2001076917A JP 25282999 A JP25282999 A JP 25282999A JP 25282999 A JP25282999 A JP 25282999A JP 2001076917 A JP2001076917 A JP 2001076917A
Authority
JP
Japan
Prior art keywords
hydrogen
phase
temperature
magnet powder
earth magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25282999A
Other languages
Japanese (ja)
Other versions
JP3250551B2 (en
Inventor
Yoshinobu Motokura
義信 本蔵
Chisato Mishima
千里 三嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aichi Steel Corp
Original Assignee
Aichi Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aichi Steel Corp filed Critical Aichi Steel Corp
Priority to JP25282999A priority Critical patent/JP3250551B2/en
Priority to GBGB9924247.1A priority patent/GB9924247D0/en
Publication of JP2001076917A publication Critical patent/JP2001076917A/en
Application granted granted Critical
Publication of JP3250551B2 publication Critical patent/JP3250551B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0573Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes obtained by reduction or by hydrogen decrepitation or embrittlement

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacture, in which anisotropic rare-earth magnet powder having high making-anisotropic rate and magnetic coercive force is industrially producible. SOLUTION: A method for manufacturing anisotropic rare-earth magnet powder contains a low-temperature hydrogenating process, in which raw material alloy is made to contain hydrogen required for three-phase decomposing reaction, a high-temperature hydrogenating process in which the forward construction transformation reaction is progressed quietly to obtain three-phase decomposed construction and further crystal orientation of a R2Fe14B phase of mother alloy is transferred to a Fe2B phase, and a dehydrogenating process, in which the reaction is progrressed with hydrogen pressure as high as possible to progress a reverse construction transformation reaction quietly to make the crystal orientation of a fine recombined R2Fe14BHx phase uniform with the crystal orientation of the Fe2B phase as a nucleus. In this manufacturing method, a recrystallized construction after hydrogen-treatment is made fine and uniform, and high making-anisotropic rate and magnetic coercive force are obtained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、異方性希土類磁石
粉末の製造方法に関する。
[0001] The present invention relates to a method for producing anisotropic rare earth magnet powder.

【0002】[0002]

【従来の技術】希土類元素(以下、Rと略記する)とホ
ウ素(B)と鉄(Fe)とを主成分とするRFeB系合
金からなる希土類磁石は、残留磁束密度(Br)や保磁
力(iHc)などの磁気特性に優れているため、従来か
ら広く利用されている。
2. Description of the Related Art A rare-earth magnet made of an RFeB-based alloy containing a rare-earth element (hereinafter abbreviated as R), boron (B) and iron (Fe) as main components has a residual magnetic flux density (Br) and a coercive force (R). Because of its excellent magnetic properties such as iHc), it has been widely used.

【0003】磁気特性に優れた希土類磁石粉末は、たと
えば、750〜950℃に加熱しつつ希土類磁石原料に
水素を吸蔵させる順組織変態を生じさる高温水素処理工
程の後に、吸蔵した水素を放出させて逆組織変態を生じ
させる脱水素化工程を施すことにより製造できる。
[0003] Rare earth magnet powders having excellent magnetic properties are obtained by releasing the occluded hydrogen after a high temperature hydrogen treatment step of causing a normal structure transformation in which the rare earth magnet raw material absorbs hydrogen while being heated to 750 to 950 ° C. And subjecting it to a dehydrogenation step to cause reverse structural transformation.

【0004】磁気特性は、BrとiHc、および両者の
積に比例する最大エネルギー積((BH)max)によ
り評価される。iHcは主に結晶粒の大きさに依存し、
結晶粒が微細化されることで大きくなる。また、Brは
結晶方位に依存し、結晶方位を整列化させることで結晶
方位が所定の一方向にそろえられることで異方性を高め
ることができ、かつBrが大きくなる。この結果、高い
(BH)maxが得られる。
The magnetic properties are evaluated by Br and iHc, and the maximum energy product ((BH) max) proportional to the product of both. iHc mainly depends on the crystal grain size,
It becomes larger as the crystal grains are refined. In addition, Br depends on the crystal orientation. By aligning the crystal orientation, the crystal orientation can be aligned in a predetermined direction, thereby increasing anisotropy and increasing Br. As a result, a high (BH) max is obtained.

【0005】ここで、異方性とは、以下のように数値定
義できる。すなわち、異方性は、異方化率Br/Bs
(Bsは、一律に16kGとする)で定義され、Br/
Bsの値が1.0の時に完全な異方性を意味し、0.5
0の時に理想的な等方性を意味する。さらに、Br/B
sの値により Br/Bs ≧ 0.8 : 異方性磁石粉末領域 0.6 ≦ Br/Bs < 0.8 : 異方性が不十分な領域 0.5 ≦ Br/Bs < 0.6 : 等方性磁石粉末領域 に分類される。
Here, the anisotropy can be numerically defined as follows. That is, the anisotropy is determined by the anisotropic ratio Br / Bs.
(Bs is uniformly set to 16 kG), and Br /
When the value of Bs is 1.0, it means complete anisotropy, and 0.5
When it is 0, it means ideal isotropy. Furthermore, Br / B
Depending on the value of s, Br / Bs ≧ 0.8: anisotropic magnet powder region 0.6 ≦ Br / Bs <0.8: region with insufficient anisotropy 0.5 ≦ Br / Bs <0.6: It is classified into the isotropic magnet powder area.

【0006】また、iHcは、一般的な実用磁石として
は9kOe以上が望まれている。
Further, iHc is desired to be 9 kOe or more as a general practical magnet.

【0007】磁気特性の向上を目的とした希土類磁石粉
末の製造方法については、以下の技術が開示されてい
る。
[0007] The following technology is disclosed as a method for producing a rare earth magnet powder for the purpose of improving magnetic properties.

【0008】特公平7−110965号に記載の製造方
法は、まず、RFeB系合金を溶製により製造した後に
粉砕し、得られた合金粉末を用いて圧粉体および焼結体
を製造する。つづいて、この焼結体に水素を吸蔵させた
後に、600℃〜1000℃に加熱する。この加熱昇温
中に吸蔵されている内蔵水素とNdFeBが反応して三
相に分解(順組織変態)する。同時に脱水素も進行して
いき最終的には再結合組織を得る製造方法である。
In the production method described in Japanese Patent Publication No. 7-110965, an RFeB-based alloy is first produced by melting and then pulverized, and a green compact and a sintered body are produced using the obtained alloy powder. Subsequently, after absorbing hydrogen into the sintered body, the sintered body is heated to 600 ° C to 1000 ° C. During this heating and heating, the stored hydrogen and NdFeB react and decompose into three phases (normal structure transformation). This is a production method in which dehydrogenation proceeds at the same time and finally a recombined tissue is obtained.

【0009】しかしながら、特公平7−110965号
の製造方法は、部分的にのみ三相分解後再結合した微細
なNdFeB組織が得られるだけで、そのため上記母材
の粗大なNdFeB組織と混在するような不均一な組織
となる。組織が不均一のため保磁力が減少し、磁石粉末
としては不十分であった。さらに、異方化率が0.75
であり、異方性が不十分であった。
However, the production method of Japanese Patent Publication No. Hei 7-110965 can only obtain a fine NdFeB structure which is recombined after three-phase decomposition only partially, so that it is mixed with the coarse NdFeB structure of the base material. A non-uniform organization. The coercive force was reduced due to the non-uniform structure, and was insufficient as a magnet powder. Furthermore, the anisotropic ratio is 0.75
And the anisotropy was insufficient.

【0010】また、特公平7−68561号の製造方法
は、RFeB系合金を作製した後に、10torr以上
の水素ガス雰囲気下で500〜1000℃で保持するこ
とで順組織変態を生じさせる高温水素処理を行った後
に、1×10-1torr以下の真空雰囲気で500〜1
000℃に保持することで水素を除去して逆変態組織を
生じさせる脱水素化処理を施す製造方法である。
[0010] The production method of Japanese Patent Publication No. 7-68161 is a high-temperature hydrogen treatment for producing an RFeB-based alloy and then holding the alloy at 500 to 1000 ° C. in a hydrogen gas atmosphere of 10 torr or more to cause forward structure transformation. Is performed in a vacuum atmosphere of 1 × 10 -1 torr or less.
This is a production method in which dehydrogenation treatment is performed in which hydrogen is removed by maintaining the temperature at 000 ° C. to generate a reverse transformed structure.

【0011】この特公平7−68561号の製造方法
は、原料合金を順組織変態および逆組織変態させて微細
再結晶組織を得て高い保磁力を得る製造方法である。し
かしながら、この製造方法は、異方化率が0.67とき
わめて低い等方性磁石粉末しか得ることができなかっ
た。このことは、単に順変態、逆変態を原料合金に施し
ただけでは、結晶方位が揃った高い異方化率を得ること
が出来ないことを示している。
The production method of Japanese Patent Publication No. 7-68161 is a production method in which a raw material alloy is subjected to forward structure transformation and reverse structure transformation to obtain a fine recrystallized structure and obtain a high coercive force. However, this manufacturing method could only obtain an isotropic magnet powder having an extremely low anisotropic ratio of 0.67. This indicates that simply applying the forward transformation and the reverse transformation to the raw material alloy does not make it possible to obtain a high anisotropic ratio with a uniform crystal orientation.

【0012】引き続き異方化率の向上を目標に、希土類
磁石粉末の合金組成および製造方法の改善が試みられて
きた。
[0012] With the aim of improving the anisotropic ratio, attempts have been made to improve the alloy composition and production method of the rare earth magnet powder.

【0013】また、特開平3−129703号および特
開平4−133407号には、RFeB系合金にCoを
添加し、さらにGa、Zr、Ti、V等の微量元素を添
加した組成の合金に、水素処理を施すことで異方化率は
最大で0.75となることが開示されている。しかしな
がら、これらの方法は、高価なCoを多量に添加するた
め高コストになる問題を有している。
JP-A-3-129703 and JP-A-4-133407 disclose an alloy having a composition in which Co is added to an RFeB-based alloy and a trace element such as Ga, Zr, Ti, or V is added. It is disclosed that the anisotropic ratio becomes 0.75 at the maximum by performing the hydrogen treatment. However, these methods have a problem that the cost becomes high because a large amount of expensive Co is added.

【0014】特開平3−129702号、および特開平
4−133406号には、RFeB系合金にCoを添加
してない組成の合金に水素処理を施すことで、異方性が
向上することが開示されている。しかしながら、異方化
率が最大で0.68と不十分であった。
JP-A-3-129702 and JP-A-4-133406 disclose that anisotropy is improved by subjecting an RFeB-based alloy to an alloy having a composition in which Co is not added to hydrogen treatment. Have been. However, the anisotropic ratio was insufficient at a maximum of 0.68.

【0015】特開平3−146608号および特開平4
−17604号には、RFeB系及びRFeCoB系合
金を蓄熱材と共に反応室に入れて、水素反応時の発熱・
吸熱問題に起因する異方化率の低下を防止する水素処理
方法が開示されている。しかしながら、これらの処理方
法を用いても、異方化率は最大で0.69と不十分であ
った。
JP-A-3-146608 and JP-A-Hei-4
No. -17604, RFeB-based and RFeCoB-based alloys are put into a reaction chamber together with a heat storage material to generate heat during a hydrogen reaction.
A hydrogen treatment method for preventing a decrease in anisotropic ratio due to an endothermic problem is disclosed. However, even with these treatment methods, the anisotropic ratio was insufficient at a maximum of 0.69.

【0016】特開平5−163509号には、RFeB
系及びRFeCoB系合金を均質化処理したインゴット
を均一粒度に粉砕することで、水素反応時の発熱・吸熱
問題に起因する異方化率の低下を防止する水素処理方法
が開示されている。しかしながら、この処理方法を用い
ても、異方化率は最大で0.74と不十分であった。
Japanese Patent Application Laid-Open No. 5-163509 discloses RFeB
A hydrogen treatment method is disclosed in which an ingot obtained by homogenizing a system and an RFeCoB-based alloy is pulverized to a uniform particle size, thereby preventing a decrease in anisotropic ratio due to a heat generation and endothermic problem during a hydrogen reaction. However, even when this treatment method was used, the anisotropic ratio was insufficient at 0.74 at the maximum.

【0017】特開平5−163510号には、RFeB
系及びRFeCoB系合金を真空管状炉内に挿入して水
素処理を行うことで、水素反応時の発熱・吸熱問題に起
因する異方化率の低下を防止する水素処理方法が開示さ
れている。しかしながら、この処理方法を用いても、異
方化率は最大で0.74と不十分であった。
Japanese Patent Application Laid-Open No. 5-163510 discloses RFeB
A hydrogen treatment method is disclosed in which a system and an RFeCoB-based alloy are inserted into a vacuum tube furnace to perform a hydrogen treatment, thereby preventing a decrease in anisotropic ratio due to heat generation and heat absorption during a hydrogen reaction. However, even when this treatment method was used, the anisotropic ratio was insufficient at 0.74 at the maximum.

【0018】特開平6−302412号には、RFeB
系及びRFeCoB系合金と水素ガスとの反応時に水素
雰囲気中の水素の圧力を上下に変動させることで、発熱
・吸熱問題に起因する異方化率の低下を防止する水素処
理方法が開示されている。しかしながら、この処理方法
を用いても、異方化率は最大で0.76と不十分であっ
た。
JP-A-6-302412 discloses RFeB
A hydrogen treatment method is disclosed in which the pressure of hydrogen in a hydrogen atmosphere is changed up and down during the reaction of a hydrogen gas with an RFeCoB-based alloy and an RFeCoB-based alloy to prevent a decrease in anisotropic ratio due to heat generation and heat absorption. I have. However, even with this treatment method, the anisotropic ratio was insufficient at 0.76 at the maximum.

【0019】特開平8−288113号には、RFeB
系及びRFeCoB系合金に水素処理を施した後に冷却
した合金原料を、500℃未満、水素圧力1〜760t
orrの水素雰囲気で”低温水素吸蔵処理”を施し、引
き続いて500〜1000℃の範囲で脱水素処理(最終
脱水素処理)を行い、R−rich相、B−rich相
等の析出相を粉砕しやすくし、かつNd2Fe14B相の
粒内破壊や歪みを抑制する水素処理方法が開示されてい
る。この処理方法によって最大で0.84の異方化率が
得られることが開示されている。しかしながら、この処
理方法では、水素処理後に再度低温水素吸蔵及び最終脱
水素を行うため、従来の水素処理法より1バッチあたり
の時間がかかり、工業的な規模で生産するのは難しかっ
た。
JP-A-8-288113 discloses RFeB
Alloy material cooled after performing hydrogen treatment on the RFeCoB-based alloy and the RFeCoB-based alloy is heated to a temperature of less than 500 ° C. and a hydrogen pressure of 1-760 t
In a hydrogen atmosphere of orr, a "low-temperature hydrogen storage process" is performed, followed by a dehydrogenation process (final dehydrogenation process) at a temperature in the range of 500 to 1000 [deg.] C. to crush the precipitated phases such as the R-rich phase and the B-rich phase. There is disclosed a hydrogen treatment method which facilitates the treatment and suppresses intragranular fracture and distortion of the Nd 2 Fe 14 B phase. It is disclosed that an anisotropic ratio of at most 0.84 can be obtained by this processing method. However, in this treatment method, since low-temperature hydrogen absorption and final dehydrogenation are performed again after the hydrogen treatment, it takes more time per batch than the conventional hydrogen treatment method, and it has been difficult to produce on an industrial scale.

【0020】特開平10−041113号には、RFe
CoB系合金を用いて第一水素吸蔵の途中でAr雰囲気
に切り替え急冷し、再度水素雰囲気及び真空雰囲気で加
熱し(急冷再加熱処理)、水素導入後第二水素吸蔵を施
して脱水素を行うことによって、R(FeCoM)2
を形成することを可能にする水素処理方法が開示されて
いる。しかしながら、この方法では、異方化率は最大で
0.69であり不十分であった。
Japanese Patent Laid-Open No. 10-041113 discloses RFe
Switching to an Ar atmosphere during the first hydrogen storage using a CoB-based alloy, rapidly cooling, heating again in a hydrogen atmosphere and a vacuum atmosphere (rapid cooling and reheating treatment), performing hydrogen storage after hydrogen introduction, and performing dehydrogenation. Thus, a hydrotreating method is disclosed that allows the formation of the R (FeCoM) 2 phase. However, in this method, the anisotropic ratio was 0.69 at the maximum, which was insufficient.

【0021】特開平10−259459号には、原料合
金となるRFeCo(Ni)B系合金の組織、特に粒界
析出相の影響及び水素処理後の冷却速度の影響が開示さ
れている。この方法によって異方化率が最大で0.8と
なることが開示されている。しかしながら、この方法
は、使用する原料合金の組織を複雑に制御する必要があ
るため通常の溶解技術では困難である。
Japanese Patent Application Laid-Open No. 10-259559 discloses the structure of an RFeCo (Ni) B-based alloy as a raw material alloy, particularly the influence of a grain boundary precipitation phase and the effect of a cooling rate after hydrogen treatment. It is disclosed that the anisotropic ratio becomes 0.8 at the maximum by this method. However, this method is difficult with a normal melting technique because it requires complicated control of the structure of the raw material alloy used.

【0022】特開平10−256014号には、RFe
B系及びRFeCoB系合金にMgを微量添加した組成
に水素処理を施すことにより、磁気異方性が向上するこ
とが開示されており、異方化率は最大で0.85が得ら
れている。しかしながら、Mgは融点が650℃、沸点
が1120℃ときわめて低いため、0.1at%以下に
制御するのは非常に困難である。
Japanese Patent Application Laid-Open No. Hei 10-256014 discloses RFe
It is disclosed that the magnetic anisotropy is improved by performing a hydrogen treatment on a composition obtained by adding a trace amount of Mg to a B-based and RFeCoB-based alloy, and an anisotropic ratio of 0.85 is obtained at the maximum. . However, since Mg has a very low melting point of 650 ° C. and a boiling point of 1120 ° C., it is very difficult to control it to 0.1 at% or less.

【0023】特開平6−128610号、特開平7−5
4003号、特開平7−76708号、特開平7−76
754号、特開平7−278615号、特開平9−16
5601号には、RFeB系及びRFeCoB系合金の
粗粉砕粉を真空中で750℃以上の温度にまで昇温した
後、反応炉内に10Pa〜1000kPaの水素ガスを
導入して750〜900℃で加熱保持し、三相分解組織
と再結晶時の結晶方位を決める核としての未変態Nd2
Fe14B相を残存させた後、H2分圧、不活性ガス雰囲
気または、真空排気で700〜900℃で脱水素する処
理方法が開示されている。この方法で、異方化率は最大
0.83が得られている。しかしながら、この水素処理
方法は未変態Nd2Fe14Bを適量残存させるための過
度現象を利用するため、工業生産は非常に困難である。
事実、これらの方法での量産化は、なされていない。
JP-A-6-128610, JP-A-7-5
No. 4003, JP-A-7-76708, JP-A-7-76
754, JP-A-7-278615, JP-A-9-16
No. 5601, RFeB-based and RFeCoB-based alloy coarsely pulverized powder is heated to a temperature of 750 ° C. or more in a vacuum, and then a hydrogen gas of 10 Pa to 1000 kPa is introduced into the reaction furnace, and 750 to 900 ° C. Untransformed Nd 2 as a nucleus that determines the three-phase decomposition structure and the crystal orientation during recrystallization by heating and holding
A treatment method is disclosed in which after the Fe 14 B phase is left, dehydrogenation is performed at 700 to 900 ° C. under a partial pressure of H 2 , an inert gas atmosphere, or vacuum evacuation. In this way, a maximum anisotropic ratio of 0.83 has been obtained. However, since this hydrotreating method utilizes a transient phenomenon for leaving an appropriate amount of untransformed Nd 2 Fe 14 B, industrial production is very difficult.
In fact, mass production by these methods has not been achieved.

【0024】これら異方化率を改善する研究はまとめて
Journal of Alloys and Com
pounds 231 (1995) 51 の論文に
要約されている。そこでは、HDDR(水素処理法:h
ydrogenation−decompositio
n−desorption−recombinatio
n)法は、 1)R2Fe14Bの微細再結合組織が得られること。
These studies for improving the anisotropy rate are collectively described in the Journal of Alloys and Com.
pounds 231 (1995) 51 papers. There, HDDR (hydrogen treatment method: h
hydrogenation-decomposition
n-desorption-recombination
The n) method is as follows: 1) A fine recombined structure of R 2 Fe 14 B is obtained.

【0025】2)RFeB三元系組成では等方性磁石粉
末が得られること。
2) An isotropic magnet powder can be obtained with an RFeB ternary composition.

【0026】3)異方化のメカニズムは不明であるが、
異方性磁石粉末を得るためには、合金組成としてCoの
添加が必須であること。のようにまとめられている。こ
の見解が、本分野の定説となっている。
3) Although the anisotropic mechanism is unknown,
In order to obtain anisotropic magnet powder, the addition of Co as an alloy composition is essential. It is summarized as follows. This view has become the norm in the field.

【0027】最大の問題は、異方性を得るためには、高
価なCoを多量に添加させざるをえないことである。
The biggest problem is that a large amount of expensive Co must be added in order to obtain anisotropy.

【0028】[0028]

【発明が解決しようとする課題】本発明は上記実状に鑑
みてなされたものである。つまり、高価なCoを必ずし
も添加せずに高い異方化率および保磁力を有する異方性
希土類磁石粉末の工業生産可能な製造方法を提供するこ
とを課題とする。
The present invention has been made in view of the above situation. That is, an object of the present invention is to provide a method for industrially producing an anisotropic rare earth magnet powder having a high anisotropic ratio and a coercive force without necessarily adding expensive Co.

【0029】[0029]

【課題を解決するための手段】上記課題を解決するため
に本発明者等は異方性希土類磁石粉末の製造方法におい
て、再結合RFeB組織の異方化率の向上および組織の
結晶粒微細化を行う方法について検討を重ねた結果、高
温水素処理工程の出発原料としてRFeB系原料合金を
水素ガス雰囲気下で保持し、原料合金と水素を600℃
以下の温度で反応させて水素化合物(R2Fe14BHx
とする低温水素化工程、この工程で三相分解反応に必要
な水素を内蔵させておく、次に、得られた水素化合物を
低温水素化工程における水素ガス圧より低圧の水素ガス
雰囲気下で組織変態温度に加熱し、順組織変態反応を穏
やかに進行させ、三相分解組織(RH2相、Fe相、F
2B相)を得ると同時に、母合金のR2Fe14B相の結
晶方位をFe2B相に転写させ(図1に、結晶方位の転
写を模式図で示した。母合金(正方晶)の結晶方位(矢
印)と順変態によって三相分解されたFe2B相(正方
晶)の結晶方位(矢印)が同方向になる)る高温水素化
工程、この工程で三相分解に伴って消費される内蔵水素
を外部の低圧下の水素で補い、反応をゆっくりと進める
ことが可能になり、結晶方位を保ったまま三相分解反応
を生じる。その後脱水素を行い再結合反応を進めるが、
この際に可及的に高い水素圧力で反応を進行させて逆組
織変態反応を穏やかに進め、Fe2B相の結晶方位を核
として微細再結合R2Fe14BHx相の結晶方位を揃える
第一排気工程(図1に、結晶方位の転写を示した。Fe
2B相の結晶方位と再結合したNd2Fe14BHx相の結
晶方位が同方向を向く。)とR2Fe14BHxの水素を強
制的に排気する第二排気工程からなる脱水素工程を有す
る水素処理方法をRFeB系合金に施すことで上記課題
を解決できることを見出した。
Means for Solving the Problems In order to solve the above problems, the present inventors have proposed a method for producing an anisotropic rare earth magnet powder, in which the anisotropy ratio of the recombined RFeB structure is improved and the crystal grains of the structure are refined. As a result of repeated examinations on the method of performing the above, an RFeB-based raw material alloy was held in a hydrogen gas atmosphere as a starting raw material in the high-temperature hydrogen treatment step, and the raw material alloy and hydrogen were heated at 600 ° C.
Hydrogen compound (R 2 Fe 14 BH x ) by reacting at the following temperature
Low-temperature hydrogenation step, in which hydrogen necessary for the three-phase decomposition reaction is incorporated, and then the obtained hydrogen compound is microstructured under a hydrogen gas atmosphere lower than the hydrogen gas pressure in the low-temperature hydrogenation step. By heating to the transformation temperature, the normal structure transformation reaction proceeds gently, and the three-phase decomposition structure (RH 2 phase, Fe phase, F phase
At the same time as obtaining the e 2 B phase, the crystal orientation of the R 2 Fe 14 B phase of the master alloy is transferred to the Fe 2 B phase (FIG. 1 schematically shows the transfer of the crystal orientation. Crystal orientation (arrow) and the crystal orientation (arrow) of the Fe 2 B phase (tetragonal) decomposed by the three-phase decomposition by forward transformation become the same direction). The accompanying internal hydrogen is supplemented by external low-pressure hydrogen, and the reaction can proceed slowly, resulting in a three-phase decomposition reaction while maintaining the crystal orientation. After that, dehydrogenation and recombination reaction proceed,
At this time, the reaction proceeds at a hydrogen pressure as high as possible, and the reverse structure transformation reaction proceeds gently, and the crystal orientation of the finely recombined R 2 Fe 14 BH x phase is aligned with the crystal orientation of the Fe 2 B phase as a nucleus. First evacuation step (FIG. 1 shows the transfer of the crystal orientation.
Crystal orientation of the crystal orientation and recombined Nd 2 Fe 14 BH x phase 2 B phase are oriented in the same direction. ) And a hydrogen treatment method having a dehydrogenation step including a second evacuation step of forcibly exhausting hydrogen of R 2 Fe 14 BH x was found to be able to solve the above-mentioned problem by applying to a RFeB-based alloy.

【0030】その結果、再結合組織の結晶方位は母合金
と同じ方向になり、高い異方化率が得られる。かつ、組
織変態に伴ってRFeB原料の粗大な結晶粒が微細化か
つ均一化するため、高い保磁力が得られる。
As a result, the crystal orientation of the recombination structure is the same as that of the master alloy, and a high anisotropic ratio can be obtained. Further, since the coarse crystal grains of the RFeB raw material are refined and made uniform with the structural transformation, a high coercive force is obtained.

【0031】本発明の製造方法は、異方化のために特に
Coの添加が必要ではなく、また未変態のR2Fe14
相を残存させる過度的現象を利用しないので工業生産に
適した方法である。
The production method of the present invention does not require the addition of Co in particular for anisotropy, and the untransformed R 2 Fe 14 B
This method is suitable for industrial production because it does not utilize the transient phenomenon of remaining phases.

【0032】本発明において初めてCoを添加せずにN
dFeB系合金組成で原料と水素との反応の仕方が明ら
かにされた。
In the present invention, for the first time, N is added without adding Co.
The manner of reaction between the raw material and hydrogen was clarified in the dFeB-based alloy composition.

【0033】本発明の異方性希土類磁石粉末の製造方法
により製造された異方性希土類磁石粉末は、優れた磁気
特性を有しているため、特に異方性ボンド磁石に用いる
ことが有効である。
The anisotropic rare-earth magnet powder produced by the method for producing anisotropic rare-earth magnet powder of the present invention has excellent magnetic properties, so that it is particularly effective to use it for an anisotropic bonded magnet. is there.

【0034】[0034]

【発明の実施の形態】本発明の異方性希土類磁石粉末の
製造方法は、低温水素化工程と、高温水素化工程と、脱
水素化工程を有する。
BEST MODE FOR CARRYING OUT THE INVENTION The method for producing anisotropic rare earth magnet powder of the present invention has a low-temperature hydrogenation step, a high-temperature hydrogenation step, and a dehydrogenation step.

【0035】RFeB系合金は、RとFeとBとを主成
分とし、不可避の不純物元素を含む合金である。Rとし
ては、イットリウム(Y)、ランタン(La)、セリウ
ム(Ce)、プラセオジム(Pr)、ネオジム(N
d)、サマリウム(Sm)、ガドリニウム(Gd)、テ
ルビウム(Tb)、ジスプロシウム(Dy)、ホルミウ
ム(Ho)、エルビウム(Er)、ツリウム(Tm)、
ルテチウム(Lu)から選ばれる1種あるいは2種以上
が利用できる。なかでもNdを用いるのが特に好まし
い。
The RFeB-based alloy is an alloy containing R, Fe, and B as main components and containing unavoidable impurity elements. R represents yttrium (Y), lanthanum (La), cerium (Ce), praseodymium (Pr), neodymium (N
d), samarium (Sm), gadolinium (Gd), terbium (Tb), dysprosium (Dy), holmium (Ho), erbium (Er), thulium (Tm),
One or more selected from lutetium (Lu) can be used. Among them, it is particularly preferable to use Nd.

【0036】RFeB系合金は、0.01〜1.0at
%のガリウム(Ga)、0.01〜0.6at%のニオ
ブ(Nb)の1種または2種を含有することが好まし
い。Gaを含有することで、異方性希土類磁石粉末の保
磁力が向上する。ここで、Gaの含有量が0.01at
%未満では保磁力の向上の効果が得られず、1.0at
%を超えると逆に保磁力を減少させる。Nbを含有する
ことで、順組織変態および逆組織変態の反応速度が容易
にコントロールできるようになる。ここで、Nbの含有
量が0.01at%未満では反応速度をコントロールす
るのが難しく、0.6at%を超えると保磁力を減少さ
せる。
The RFeB alloy is 0.01 to 1.0 at.
% Of gallium (Ga) and 0.01 to 0.6 at% of niobium (Nb). By containing Ga, the coercive force of the anisotropic rare earth magnet powder is improved. Here, the content of Ga is 0.01 at.
%, The effect of improving the coercive force cannot be obtained.
%, The coercive force is reduced. By containing Nb, it becomes possible to easily control the reaction rates of the forward structure transformation and the reverse structure transformation. Here, if the Nb content is less than 0.01 at%, it is difficult to control the reaction rate, and if it exceeds 0.6 at%, the coercive force is reduced.

【0037】特にGa、Nbを上記含有量内で複合添加
することで、単体で添加した場合に比べ保磁力及び異方
化とも向上させることができ、その結果(BH)max
を増加させる。
In particular, the co-addition of Ga and Nb within the above contents can improve both the coercive force and the anisotropic property as compared with the case where they are added alone, and as a result, (BH) max
Increase.

【0038】RFeB系合金にAl,Si,Ti,V,
Cr,Mn,Ni,Cu,Ge,Zr,Mo,In,S
n,Hf,Ta,W,Pbのうち1種または2種以上を
合計が0.001〜5.0at%を添加することが好ま
しい。これらの原子を添加することで、得られた磁石の
保磁力、角形比を改善することができる。また、添加量
が0.001at%未満では磁気特性の改善の効果が現
れず、5.0at%を超えると析出相などが析出し保磁
力が低下する。
Al, Si, Ti, V,
Cr, Mn, Ni, Cu, Ge, Zr, Mo, In, S
It is preferable to add one or more of n, Hf, Ta, W, and Pb in a total amount of 0.001 to 5.0 at%. By adding these atoms, the coercive force and the squareness ratio of the obtained magnet can be improved. If the addition amount is less than 0.001 at%, the effect of improving the magnetic properties will not be exhibited, and if it exceeds 5.0 at%, a precipitated phase or the like will precipitate and the coercive force will decrease.

【0039】RFeB系合金にCoを0.001〜20
at%で添加することが好ましい。Coを添加すること
で、RFeB系合金のキュリー温度を上げることがで
き、温度特性が改善される。ここで、Coの添加量が
0.001at%未満ではCo添加の効果が見られず、
20at%を超えると残留磁束密度が低下し磁気特性が
低下するようになる。
0.001-20 Co in RFeB alloy
It is preferable to add at%. By adding Co, the Curie temperature of the RFeB-based alloy can be increased, and the temperature characteristics are improved. Here, when the amount of Co added is less than 0.001 at%, the effect of Co addition is not seen,
If it exceeds 20 at%, the residual magnetic flux density will decrease, and the magnetic properties will decrease.

【0040】RFeB系合金は、RとFeとBとから構
成される金属間化合物であるR2Fe14B相を主相とす
る合金である。
The RFeB-based alloy is an alloy having an R 2 Fe 14 B phase, which is an intermetallic compound composed of R, Fe and B, as a main phase.

【0041】RFeB系合金は、11〜15at%のR
と、5.5〜8.0at%のBと、不可避な不純物とを
含み、残りがFeからなることが好ましい。Rが11a
t%未満ではαFe相が析出して磁気特性が低下し、1
5at%を超えるとR2Fe1 4B相が減少し磁気特性が
低下する。また、Bが5.5at%未満では、軟磁性の
2Fe17相が析出して磁気特性が低下し、8.0at
%を超えるとR2Fe14B相が減少し磁気特性が低下す
る。
The RFeB-based alloy has an R of 11 to 15 at%.
And 5.5 to 8.0 at% of B and unavoidable impurities.
It is preferable that the balance be made of Fe. R is 11a
If it is less than t%, the αFe phase precipitates and the magnetic properties deteriorate, and
If it exceeds 5 at%, RTwoFe1 FourB phase decreases and magnetic properties
descend. When B is less than 5.5 at%, soft magnetic
RTwoFe17The phase is precipitated and the magnetic properties are reduced, and 8.0 at
%TwoFe14B phase decreases and magnetic properties decrease
You.

【0042】RFeB系合金の調製方法は、特に限定さ
れないが、一般的な方法として、高純度の合金材料を用
い、所定の組成となるようにそれぞれを用意し、これら
を混合した後に、高周波溶解法や溶解炉等により溶解
し、これを鋳造して合金のインゴットを作成し、この原
料インゴットを原料合金として用いることができる。ま
た、この原料インゴットを粉砕して粗粉末状とし、これ
を原料合金とすることもできる。さらに、原料インゴッ
トに均質化処理を施して組成分布の偏りを減少させた合
金を原料合金とすることができる。加えて、この均質化
処理したインゴットを粉砕して粗粉末状とし、これを原
料合金とすることもできる。
The method of preparing the RFeB-based alloy is not particularly limited. As a general method, a high-purity alloy material is used, each is prepared so as to have a predetermined composition, and after mixing these, high-frequency melting is performed. It is melted by a method, a melting furnace, or the like, and is cast to produce an alloy ingot, and this raw material ingot can be used as a raw material alloy. Further, the raw material ingot may be pulverized into a coarse powder form to be used as a raw material alloy. Furthermore, an alloy obtained by subjecting a raw material ingot to a homogenization treatment to reduce the bias in the composition distribution can be used as the raw material alloy. In addition, the homogenized ingot may be pulverized into a coarse powder to be used as a raw material alloy.

【0043】低温水素化工程は、異方性希土類磁石粉末
の原料となるRFeB系合金を水素ガス雰囲気下で保持
し、原料合金と水素を600℃以下の温度で反応させて
水素化合物(R2Fe14BHx)とする工程である。
In the low-temperature hydrogenation step, an RFeB-based alloy as a raw material of the anisotropic rare earth magnet powder is held in a hydrogen gas atmosphere, and the raw material alloy and hydrogen are reacted at a temperature of 600 ° C. or less to form a hydrogen compound (R 2 Fe 14 BH x ).

【0044】この低温水素化工程により、RFeB系合
金をR2Fe14BHxとして水素を内蔵させることで、そ
の後の高温水素化工程における順組織変態の反応速度を
制御することができる。ここで、xは水素の量を表す。
なお、xは水素圧力の増加に伴って増加する。さらに、
xは、RFeB系合金と水素との反応時間が長くなるに
従って飽和値に達する。
[0044] The low-temperature hydrogenation process, by incorporating a hydrogen RFeB-based alloy as R 2 Fe 14 BH x, it is possible to control the reaction rate of the forward structural transformation in the subsequent high-temperature hydrogenation process. Here, x represents the amount of hydrogen.
Note that x increases as the hydrogen pressure increases. further,
x reaches a saturation value as the reaction time between the RFeB-based alloy and hydrogen increases.

【0045】低温水素化工程の具体的な方法としては、
RFeB系合金を0.3atm以上の水素ガス雰囲気に
1〜3時間程度保持されることが好ましい。ここで、水
素ガス雰囲気が0.3atm未満では、RFeB系合金
の水素化合物化が十分に進行せず時間がかかる。RFe
B系合金の水素化合物化は、1.0atm以下の水素ガ
ス雰囲気で十分に進行するため、0.3〜1.0atm
の水素ガス雰囲気に保持されることが好ましい。しかし
ながら、このことは1.0atm以上の水素ガス雰囲気
にRFeB系合金を保持して水素化合物化を生じさせる
ことを排除するものではない。ここで、水素ガス雰囲気
とは、水素ガスのみの雰囲気だけでなく、水素ガスと不
活性ガスとの混合ガス雰囲気であってもよい。このよう
な混合ガス雰囲気の場合においては、上記水素ガス圧
は、水素ガス分圧を示す。反応温度が600℃以上で
は、部分的に順組織変態が生じるようになり、組織が不
均一となるため好ましくない。
As a specific method of the low-temperature hydrogenation step,
It is preferable that the RFeB-based alloy be kept in a hydrogen gas atmosphere of 0.3 atm or more for about 1 to 3 hours. Here, when the hydrogen gas atmosphere is less than 0.3 atm, the hydride conversion of the RFeB-based alloy does not sufficiently proceed and it takes time. RFe
Since the hydrogenation of the B-based alloy proceeds sufficiently in a hydrogen gas atmosphere of 1.0 atm or less, the B-based alloy becomes 0.3 to 1.0 atm.
Is preferably maintained in a hydrogen gas atmosphere. However, this does not preclude the occurrence of hydride formation by holding the RFeB-based alloy in a hydrogen gas atmosphere of 1.0 atm or more. Here, the hydrogen gas atmosphere may be not only an atmosphere of only hydrogen gas but also a mixed gas atmosphere of hydrogen gas and an inert gas. In the case of such a mixed gas atmosphere, the hydrogen gas pressure indicates a hydrogen gas partial pressure. When the reaction temperature is 600 ° C. or higher, a forward structural transformation occurs partially and the structure becomes non-uniform, which is not preferable.

【0046】なお、低温水素化工程では、水素化合物化
させる際、母合金のR2Fe14B化合物が有している結
晶方位(例えばC軸方向)はR2Fe14BHx化合物にそ
のまま保存される。
In the low-temperature hydrogenation step, the crystal orientation (for example, the C-axis direction) of the R 2 Fe 14 B compound of the mother alloy is preserved as it is in the R 2 Fe 14 BH x compound when the compound is hydrogenated. Is done.

【0047】高温水素化工程は、得られた水素化合物を
600℃以上の組織変態温度に加熱し、水素化合物に順
組織変態を生じさせ三相分解組織を生じさせると共に、
異方化を付与させる工程である。
In the high-temperature hydrogenation step, the obtained hydrogen compound is heated to a structure transformation temperature of 600 ° C. or higher, which causes a normal structure transformation of the hydrogen compound to produce a three-phase decomposition structure.
This is a step of giving anisotropy.

【0048】高温水素化工程は、水素を内蔵した水素化
合物を出発原料にするため、三相分解に伴って消費され
る内蔵水素を外部の水素で補うだけで良く、高温水素処
理時の水素圧力を抑えることができ、そのため順組織変
態反応を穏やかに行うことができる。その結果、順変態
組織の反応速度が制御可能となり水素化合物の結晶方位
(例えばC軸方向)を三相分解組織のFe2B相の結晶
方位(例えばC軸方向)に保存させることができ、かつ
均一な三相分解組織を有する順組織変態が生じる。ここ
で、順組織変態とは、水素化合物であるR2Fe14BHx
系合金が水素と反応して、その組織がRH2相、αFe
相、Fe2B相の3相に分解されることを言う。
In the high-temperature hydrogenation step, since a hydrogen compound containing hydrogen is used as a starting material, it is only necessary to supplement the internal hydrogen consumed by the three-phase decomposition with external hydrogen. Can be suppressed, so that the forward tissue transformation reaction can be performed gently. As a result, the reaction rate of the normal transformation structure can be controlled, and the crystal orientation (for example, C-axis direction) of the hydrogen compound can be preserved in the crystal orientation (for example, C-axis direction) of the Fe 2 B phase of the three-phase decomposition structure. A forward structure transformation having a uniform three-phase decomposition structure occurs. Here, the forward structure transformation refers to a hydrogen compound R 2 Fe 14 BH x
System alloy reacts with hydrogen, and the structure becomes RH 2 phase, αFe
And Fe 2 B phase.

【0049】高温水素化工程は、予め組織変態温度に加
熱された反応装置中に水素化合物を投入することにより
実施することも可能である。また、高温水素化工程の水
素ガス圧は0.2〜0.6atmの範囲内であり、組織
変態温度は760〜860℃であることが好ましい。水
素ガス圧を0.2〜0.6atmとすることで、水素化
合物と水素ガスとの反応を穏やかに進行させることがで
きる。水素ガス圧が0.2atm未満では水素ガス圧が
低すぎて反応速度が極端に遅くなり未変態組織が残存し
て保磁力の大幅な低下を招く。一方、水素ガス圧が0.
6atmを超えると、水素化合物と水素ガスとの反応が
急速に進行し、結晶方位のC軸保存が乱れ、異方化率の
大幅な低下を招く。また、組織変態温度が760℃未満
では、順組織変態は生じるが三相分解の組織が不均一に
なり保磁力の低下を招く。さらに、860℃を超える温
度では、結晶粒の成長が生じ保磁力の低下を招く。
The high-temperature hydrogenation step can also be carried out by charging a hydrogen compound into a reactor which has been heated to a structural transformation temperature in advance. The hydrogen gas pressure in the high-temperature hydrogenation step is preferably in the range of 0.2 to 0.6 atm, and the structure transformation temperature is preferably 760 to 860 ° C. By setting the hydrogen gas pressure to 0.2 to 0.6 atm, the reaction between the hydrogen compound and the hydrogen gas can proceed gently. If the hydrogen gas pressure is less than 0.2 atm, the hydrogen gas pressure is too low, the reaction rate becomes extremely slow, and an untransformed structure remains to cause a significant decrease in coercive force. On the other hand, when the hydrogen gas pressure is 0.
If it exceeds 6 atm, the reaction between the hydrogen compound and the hydrogen gas proceeds rapidly, the C-axis preservation of the crystal orientation is disturbed, and the anisotropic ratio is greatly reduced. If the structural transformation temperature is lower than 760 ° C., normal structural transformation occurs, but the three-phase decomposition structure becomes non-uniform, resulting in a decrease in coercive force. Further, at a temperature exceeding 860 ° C., crystal grains grow and the coercive force decreases.

【0050】順組織変態反応は、発熱反応であるため順
組織変態の進行に伴って材料の温度が加速度的に高くな
る。さらに、水素化合物が水素吸蔵することによって水
素ガス圧が大きく変動し、化合物の周囲の水素ガス圧力
が大きく低下する。そのため順変態組織の反応速度を制
御可能にするためには、特開平9−251912号で開
示されている炉等の反応炉を用いて、厳密な温度管理お
よび水素ガス圧力管理がなされることが望ましい。
Since the forward structure transformation reaction is an exothermic reaction, the temperature of the material rapidly increases with the progress of the forward structure transformation. Furthermore, the hydrogen compound stores the hydrogen, so that the hydrogen gas pressure greatly fluctuates, and the hydrogen gas pressure around the compound is greatly reduced. Therefore, in order to control the reaction rate of the normally transformed structure, strict temperature control and hydrogen gas pressure control must be performed using a reaction furnace such as the furnace disclosed in JP-A-9-251912. desirable.

【0051】順変態組織の反応速度は、組織変態温度及
び水素ガス圧に相互に依存している。そのため、高い異
方化率を得るためには、順組織変態の相対反応速度が
0.05〜0.80となるように水素ガス圧及び温度を
組み合わせることが好ましい。一般に合金と水素との反
応速度Vは
The reaction rate of the normally transformed structure is mutually dependent on the structure transformation temperature and the hydrogen gas pressure. Therefore, in order to obtain a high anisotropy ratio, it is preferable to combine the hydrogen gas pressure and the temperature so that the relative reaction rate of the normal structure transformation is 0.05 to 0.80. In general, the reaction rate V between the alloy and hydrogen is

【0052】[0052]

【数1】V=V0・((PH2/P01/2−1)・exp
(−Ea/RT) で表される。なお、V0:頻度因子、PH2:水素ガス圧
力(Pa)、P0:解離圧力、Ea:活性化エネルギー
(J/molK)、T:温度(K)である。
V = V 0 · ((P H2 / P 0 ) 1/2 -1) · exp
(−Ea / RT). V 0 : frequency factor, P H2 : hydrogen gas pressure (Pa), P 0 : dissociation pressure, Ea: activation energy (J / molK), T: temperature (K).

【0053】この反応速度と組織の変態速度とは比例し
ていると考えられるので、組織の変態速度をこの反応速
度で評価することができる。
Since the reaction rate is considered to be proportional to the transformation rate of the structure, the transformation rate of the structure can be evaluated based on the reaction rate.

【0054】すなわち、組織の順変態反応の反応速度V
は、反応温度が830℃、水素ガス圧力が0.1MPa
(1atm)の時の反応速度VbをVb=1とする基準
反応速度とし、この基準反応速度に基づく相対反応速度
Vrで定義する。従って、相対反応速度Vrは次の式の
ようになる。
That is, the reaction rate V of the forward transformation reaction of the tissue
Is a reaction temperature of 830 ° C. and a hydrogen gas pressure of 0.1 MPa.
The reaction speed Vb at (1 atm) is defined as a reference reaction speed with Vb = 1, and is defined as a relative reaction speed Vr based on the reference reaction speed. Therefore, the relative reaction speed Vr is represented by the following equation.

【0055】[0055]

【数2】Vr=(1/0.576)・(((PH21/2
−0.39)/0.61)・exp(−Ea/RT)×
10-9 ここで、相対反応速度が0.05より小さい場合には未
変態組織が残存して保磁力が大幅に低下する。一方0.
80より大きい場合には、結晶方位が揃わず異方化率が
大幅に低下する。
Vr = (1 / 0.576) · (((PH 2 ) 1/2
−0.39) /0.61) · exp (−Ea / RT) ×
10-9 Here, the relative reaction rate when less than 0.05 coercivity remain untransformed tissue is greatly reduced. On the other hand, 0.
If it is larger than 80, the crystal orientation is not uniform, and the anisotropic ratio is greatly reduced.

【0056】脱水素化工程は、0.1〜0.001at
mの水素雰囲気下でFe2B相の結晶方位を保ったまま
2Fe14BHxを得るための反応速度を制御した第一排
気工程と、その後10-2torr以下になるまで合金か
ら強制的に水素を除去してR 2Fe14Bを得るための第
二排気工程とからなる。
The dehydrogenation step is performed at 0.1 to 0.001 at.
m hydrogen atmosphereTwoWhile maintaining the crystal orientation of the B phase
RTwoFe14BHxFirst exhaust with controlled reaction rate to obtain
Qi process and then 10-2alloy until it is below torr
To remove hydrogen from R TwoFe14No. to get B
It consists of two exhaust processes.

【0057】第一排気工程は、三相分解組織を0.1〜
0.001atmの水素雰囲気下で保持することで、逆
組織変態反応を穏やかに進行させる。この時、結晶方位
の揃ったFe2BのC軸結晶方位が、再結合R2Fe14
xのC軸結晶方位に転写される。続いて第二排気工程
において、水素化物中の残留している水素を除去しRF
eB合金を回復する。このようにして希土類磁石粉末の
異方性の低下を防止するとともに、結晶粒の微細化を行
う。
In the first exhaust step, the three-phase decomposition structure is reduced to 0.1 to
By maintaining the atmosphere under a hydrogen atmosphere of 0.001 atm, the reverse structure transformation reaction proceeds gently. At this time, the C-axis crystal orientation of Fe 2 B having a uniform crystal orientation is changed to the recombination R 2 Fe 14 B
It is transferred to the C-axis crystal orientation of H x. Subsequently, in the second exhaust step, the remaining hydrogen in the hydride is removed and RF
Recovers eB alloy. Thus, the anisotropy of the rare earth magnet powder is prevented from lowering and the crystal grains are refined.

【0058】脱水素化工程において、第一排気行程は、
保持される水素雰囲気が0.1atm以上では三相分解
組織のRH2相からの水素がなかなか分離せず、0.0
01atm未満では三相分解組織のRH2相からの水素
の離脱が急速に生じるようになることから反応速度が速
くなり、脱水素後の希土類磁石粉末の異方化率が低下す
る。ここで、三相分解組織が制御された水素雰囲気に保
持される保持時間は、10〜120分であることが好ま
しい。保持時間が短いと部分的に三相分解組織が残って
おりその組織の結晶方位の転写が完全ではなく、得られ
た磁石粉末の異方化率が低下する。また、保持時間が長
くなると方位の転写は十分に行われるが、逆に結晶粒の
異常粒成長が部分的に生じ保磁力の低下を招く。
In the dehydrogenation step, the first exhaust stroke includes:
When the retained hydrogen atmosphere is 0.1 atm or more, hydrogen is not easily separated from the RH 2 phase of the three-phase decomposition structure,
If the pressure is less than 01 atm, hydrogen is rapidly released from the RH 2 phase of the three-phase decomposition structure, so that the reaction rate is increased and the anisotropic ratio of the rare earth magnet powder after dehydrogenation is reduced. Here, the holding time during which the three-phase decomposition structure is maintained in a controlled hydrogen atmosphere is preferably 10 to 120 minutes. If the holding time is short, a three-phase decomposition structure remains partially, the transfer of the crystal orientation of the structure is not complete, and the anisotropic ratio of the obtained magnet powder decreases. When the holding time is long, the transfer of the orientation is sufficiently performed, but conversely, abnormal grain growth of crystal grains occurs partially, leading to a decrease in coercive force.

【0059】また、その後の第二排気工程において、水
素を除去していった雰囲気の水素ガス圧力が10-2to
rrより大きいときは、水素化合物中に水素が残留する
ため、水素除去後の希土類磁石粉末の保磁力が低下す
る。
In the subsequent second evacuation step, the hydrogen gas pressure of the atmosphere from which hydrogen was removed was 10 −2 to
When it is larger than rr, hydrogen remains in the hydrogen compound, so that the coercive force of the rare earth magnet powder after hydrogen removal is reduced.

【0060】逆組織変態反応は、吸熱反応であるため逆
組織変態の進行に伴って材料の温度が急激に低下する。
さらに、第一排気工程によって低水素圧力にコントロー
ルする必要がある。そのため逆変態組織の反応速度を制
御可能にするためには、特開平9−251912号で開
示されている炉を用いて厳密な温度管理および水素ガス
圧力管理を必要とする。
Since the reverse structure transformation reaction is an endothermic reaction, the temperature of the material rapidly decreases with the progress of the reverse structure transformation.
Furthermore, it is necessary to control to a low hydrogen pressure by the first exhaust process. Therefore, in order to be able to control the reaction rate of the reverse transformed structure, strict temperature control and hydrogen gas pressure control using a furnace disclosed in JP-A-9-251912 are required.

【0061】逆変態組織の反応速度は、組織変態温度及
び水素ガス圧に相互に依存している。そのため、高い異
方化率を得るためには、逆組織変態の相対反応速度が
0.1〜0.95となるように水素ガス圧及び温度を組
み合わせることが好ましい。逆変態組織反応の反応速度
は、順変態組織反応の反応速度と同様に定義することが
出来る。すなわち
The reaction rate of the inversely transformed structure is mutually dependent on the structure transformation temperature and the hydrogen gas pressure. Therefore, in order to obtain a high anisotropic ratio, it is preferable to combine the hydrogen gas pressure and the temperature so that the relative reaction rate of the reverse structural transformation is 0.1 to 0.95. The reaction rate of the reverse transformation tissue reaction can be defined similarly to the reaction rate of the forward transformation tissue reaction. Ie

【0062】[0062]

【数3】V=V0・(1−(PH2/P01/2)・exp
(−Ea/RT) ここで、水素圧力は逆変態反応の駆動力になる。ただ
し、組織の逆変態反応の反応速度は、反応温度が830
℃、水素ガス圧力が0.0001atm(10-1tor
r)の時の反応速度VbをVb=1とする基準反応速度
とした。したがって
V = V 0 · (1− (P H2 / P 0 ) 1/2 ) · exp
(−Ea / RT) Here, the hydrogen pressure becomes a driving force for the reverse transformation reaction. However, the reaction rate of the reverse transformation reaction of the structure is such that the reaction temperature is 830.
° C, hydrogen gas pressure is 0.0001 atm (10 -1 torr)
The reaction rate Vb at the time of r) was set as a reference reaction rate where Vb = 1. Therefore

【0063】[0063]

【数4】Vr=(1/0.576)・(0.39−(P
21/2/0.38)・exp(−Ea/RT)×10
-9 相対反応速度が0.1より小さい場合には、反応速度が
遅く水素がなかなか抜けない。一方相対反応速度が0.
95より大きい場合は、反応速度が速く結晶方位が揃わ
ず異方化率が大幅に低下する。
Vr = (1 / 0.576) · (0.39− (P
H 2) 1/2 /0.38) · exp (-Ea / RT) × 10
If the -9 relative reaction rate is less than 0.1, the reaction rate is low and hydrogen is not easily removed. On the other hand, the relative reaction rate is 0.
When it is larger than 95, the reaction rate is high and the crystal orientation is not uniform, and the anisotropic ratio is greatly reduced.

【0064】本発明の製造方法により製造された異方性
希土類磁石粉末は、異方性ボンド磁石に用いることがで
きるし、また、焼結、あるいはホットプレス等により異
方性バルク磁石に用いることができる。
The anisotropic rare earth magnet powder produced by the production method of the present invention can be used for an anisotropic bonded magnet, or used for an anisotropic bulk magnet by sintering or hot pressing. Can be.

【0065】[0065]

【実施例】以下、実施例を用いて本発明を説明する。The present invention will be described below with reference to examples.

【0066】実施例として、Rの主成分としてNdを用
いたNdFeB系合金よりなる異方性希土類磁石粉末を
作製した。
As an example, an anisotropic rare earth magnet powder made of an NdFeB-based alloy using Nd as the main component of R was produced.

【0067】(第一実施例) (異方性希土類磁石粉末の製造)異方性希土類磁石粉末
は、磁石粉末を形成する原料合金を調整し、高温水素処
理工程の出発原料となる水素化合物を形成させた後に、
この水素化合物に順組織変態および逆組織変態を生じさ
せることで製造される。
(First Example) (Production of Anisotropic Rare Earth Magnet Powder) An anisotropic rare earth magnet powder is prepared by preparing a raw material alloy for forming a magnet powder and preparing a hydrogen compound as a starting material in a high-temperature hydrogen treatment step. After forming
The hydrogen compound is produced by causing forward structure transformation and reverse structure transformation.

【0068】詳しくは、まず、表1に示されている合金
元素を所定量に秤量して、高周波溶解法を用いて表1の
組成を有する合金インゴットを100kg〜300kg
/バッチで溶製した。その後、合金インゴットはアルゴ
ンガス雰囲気下で1140〜1150℃で40時間保持
する熱処理を施して、合金インゴット組織の均質化処理
を行った。なお、表1では、各元素の含有量を原子百分
率で示しており、合金全体を100at%とし、Feは
その残りであることを示している。
More specifically, first, alloy elements shown in Table 1 were weighed to a predetermined amount, and 100 kg to 300 kg of an alloy ingot having the composition shown in Table 1 was obtained by using a high frequency melting method.
/ Molded in batch. Thereafter, the alloy ingot was subjected to a heat treatment of maintaining the alloy ingot at 1140 to 1150 ° C. for 40 hours in an argon gas atmosphere to perform a homogenization treatment of the alloy ingot structure. In Table 1, the contents of the respective elements are shown in atomic percentage, the total alloy is set to 100 at%, and Fe is the rest.

【0069】[0069]

【表1】 [Table 1]

【0070】均質化処理された合金インゴットはジョー
クラッシャにより平均粒径が10mm以下の粗粉砕物に
粉砕した。
The homogenized alloy ingot was pulverized by a jaw crusher into coarse pulverized products having an average particle diameter of 10 mm or less.

【0071】その後、粗粉砕物は、図2の反応速度を制
御可能にする水素処理炉の挿入室に投入された。なお、
粗粉砕物が投入された挿入室は密閉され、その内部の水
素ガス雰囲気を変化させることができるように形成され
ている。すなわち、水素ガス雰囲気を変化させる手段と
して、挿入室内に水素ガスを供給する水素ガス供給部
と、挿入室の排気を行う排気部とが設けられている。こ
こで、高温水素化工程の原料となる水素化合物は作製さ
れる。
Thereafter, the coarsely pulverized product was introduced into the insertion chamber of the hydrogen treatment furnace shown in FIG. In addition,
The insertion chamber into which the coarsely pulverized material is charged is sealed, and is formed so that the hydrogen gas atmosphere inside the chamber can be changed. That is, as means for changing the hydrogen gas atmosphere, a hydrogen gas supply unit for supplying hydrogen gas into the insertion chamber and an exhaust unit for exhausting the insertion chamber are provided. Here, a hydrogen compound serving as a raw material for the high-temperature hydrogenation step is produced.

【0072】挿入室内の粗粉砕物(約10kg)は、表
2の低温水素処理条件に示された水素ガス雰囲気下、室
温で0.5〜3時間保持した。粗粉砕物を水素ガス雰囲
気中に保持することで、雰囲気の水素ガスと粗粉砕物と
が反応し、水素化合物を形成する。具体的には、処理時
間は3時間とした。ここで、水素化合物の形成は、水素
吸収の有無を確認することによって行われた。なお、表
2に示された試料No.は、試料1が組成a、試料2が
組成bのように、組成a〜iが試料1〜9と対応してい
る。
The coarsely pulverized material (about 10 kg) in the insertion chamber was kept at room temperature for 0.5 to 3 hours under a hydrogen gas atmosphere shown in the low-temperature hydrogen treatment conditions in Table 2. By keeping the coarsely pulverized product in a hydrogen gas atmosphere, the hydrogen gas in the atmosphere reacts with the coarsely pulverized product to form a hydrogen compound. Specifically, the processing time was 3 hours. Here, the formation of the hydrogen compound was performed by confirming the presence or absence of hydrogen absorption. In addition, the sample No. shown in Table 2 was used. Indicates that compositions a to i correspond to samples 1 to 9, such that sample 1 has composition a and sample 2 has composition b.

【0073】つづいて、水素化合物は、大気に触れるこ
となく挿入室から反応室に移される。この反応室は、挿
入室と接続されて形成されている。さらに、反応室内の
水素ガス雰囲気および温度を調節することができるよう
に形成されている。すなわち、水素ガス雰囲気を変化さ
せる手段として、挿入室内に水素ガスを供給する水素ガ
ス供給部と、挿入室の排気を行う排気部(第一排気系と
第二排気系)とが設けられている。また、反応室内の温
度を調節する手段として、反応室を加熱する加熱ヒータ
ーと、反応室内に熱補償機能を発揮する熱バランス機能
がもうけられている。熱バランス機能は、例えば、発熱
反応である順組織変態反応により生じる反応熱を、それ
とは逆反応、すなわち吸熱反応を起こすことで、材料温
度を一定に制御し、反応速度が制御できるようにもうけ
られている。吸熱反応の時にはその逆を行うようになっ
ている。
Subsequently, the hydrogen compound is transferred from the insertion chamber to the reaction chamber without being exposed to the atmosphere. This reaction chamber is formed so as to be connected to the insertion chamber. Furthermore, it is formed so that the hydrogen gas atmosphere and temperature in the reaction chamber can be adjusted. That is, as means for changing the hydrogen gas atmosphere, a hydrogen gas supply unit for supplying hydrogen gas into the insertion chamber and an exhaust unit (first exhaust system and second exhaust system) for exhausting the insertion chamber are provided. . As means for adjusting the temperature in the reaction chamber, a heater for heating the reaction chamber and a heat balance function for exhibiting a heat compensation function in the reaction chamber are provided. The heat balance function is used, for example, to control the material temperature to a constant value and to control the reaction rate by causing the reaction heat generated by the forward heat transformation reaction, which is an exothermic reaction, to the reverse reaction, that is, by causing an endothermic reaction. Have been. In the case of an endothermic reaction, the reverse is performed.

【0074】反応室内は表2の高温水素処理条件にセッ
トされており、水素化合物は反応室内の水素ガスを吸蔵
して順組織変態(αFe、NdH2、Fe2Bの三相分解
組織)が進行すると同時に元の原料合金であるNd2
14Bの結晶方位をFe2Bに転写させることができ
る。ここで、この順組織変態の相対反応速度を表2にあ
わせて示した。順組織変態後は各温度で3時間以上保持
した。
The reaction chamber is set to the high-temperature hydrogen treatment conditions shown in Table 2. The hydrogen compound absorbs hydrogen gas in the reaction chamber and undergoes normal structure transformation (three-phase decomposition structure of αFe, NdH 2 , and Fe 2 B). Nd 2 F which is the original material alloy
The crystal orientation of e 14 B can be transferred to Fe 2 B. Here, the relative reaction rate of this forward structural transformation is also shown in Table 2. After the normal structure transformation, each temperature was maintained for 3 hours or more.

【0075】その後、脱水素工程は、第一排気系を用い
て逆組織変態を生じさせると同時にFe2B相の結晶方
位を再結合組織Nd2Fe14BHxの結晶方位に転写さ
せ、その後Nd2Fe14BHx内の残存する水素ガスを除
去するために強制排気系を用いて水素を取り除いた。具
体的には、第一排気工程は、流量調整バルブまたはマス
フロメーターを用いて、水素ガス圧が0.05〜0.0
01atmの間で40分間制御した。第一排気工程の方
法は上記の方法に限らず、例えば低圧力用のセンサと通
常のバルブを用いて制御しても可能である。制御圧力
は、表2にあわせて示した。第一排気工程終了後、反応
室内の最終真空度が10-4torr以下になるまで、図
1の第二排気工程を用いて排気した。
Then, in the dehydrogenation step, the crystallographic orientation of the Fe 2 B phase is transferred to the crystallographic orientation of the recombined structure Nd 2 Fe 14 BH x at the same time as the reverse structural transformation is caused using the first exhaust system. Hydrogen was removed using a forced evacuation system to remove residual hydrogen gas in Nd 2 Fe 14 BH x . Specifically, in the first exhaust step, the hydrogen gas pressure is adjusted to 0.05 to 0.0 using a flow control valve or a mass flow meter.
Control was performed between 01 atm for 40 minutes. The method of the first evacuation step is not limited to the above method, and can be controlled by using, for example, a low-pressure sensor and a normal valve. The control pressure is shown in Table 2. After completion of the first evacuation step, the final vacuum degree in the reaction chamber until the following 10 -4 torr, it is evacuated with the second evacuation process in FIG.

【0076】[0076]

【表2】 [Table 2]

【0077】第二排気工程処理後、再結合NdFeB系
合金を冷却室に移動させ、室温までAr雰囲気または真
空雰囲気で冷却した。冷却後、異方性希土類磁石粉末が
得られる。
After the second evacuation process, the recombined NdFeB-based alloy was moved to a cooling chamber and cooled to room temperature in an Ar atmosphere or a vacuum atmosphere. After cooling, an anisotropic rare earth magnet powder is obtained.

【0078】さらに、得られた異方性希土類磁石粉末に
は、磁石粉末の3wt%のエポキシ固形樹脂を混合し、
温間磁場中プレスにより型成形を施すことで異方性ボン
ド磁石を製造した。なお、温間磁場中プレスにおける磁
場は、20kOeであった。
Further, an epoxy solid resin of 3 wt% of the magnet powder was mixed with the obtained anisotropic rare earth magnet powder,
An anisotropic bonded magnet was manufactured by performing mold forming by pressing in a warm magnetic field. The magnetic field in the press in the warm magnetic field was 20 kOe.

【0079】(比較例)また、比較例として、表1に示
される組成bの合金よりなる磁石粉末試料50〜55を
作製した。ここで、試料50〜55の作製は、表2に示
された条件以外は、試料2と同様にして行われた。ま
た、試料50〜55の磁石粉末を用いた異方性ボンド磁
石も、あわせて作製した。この異方性ボンド磁石の作製
も試料2の異方性ボンド磁石と同様の方法により行われ
た。
(Comparative Example) As comparative examples, magnet powder samples 50 to 55 made of alloys having the composition b shown in Table 1 were prepared. Here, the samples 50 to 55 were manufactured in the same manner as the sample 2 except for the conditions shown in Table 2. In addition, anisotropic bonded magnets using the magnet powders of the samples 50 to 55 were also manufactured. This anisotropic bonded magnet was manufactured in the same manner as the anisotropic bonded magnet of Sample 2.

【0080】ここで、試料50は低温水素処理を行わな
かった磁石粉末であり、試料51は低温水素処理の水素
ガス圧が高温水素処理のそれより低い磁石粉末であり、
試料52は低温水素処理の水素ガス雰囲気を10-2to
rr以下の真空とした磁石粉末であり、試料53〜55
は高温水素処理の水素ガス圧が大きい磁石粉末でかつ相
対反応速度が大きくなっていた。
Here, the sample 50 is a magnet powder that has not been subjected to the low-temperature hydrogen treatment, and the sample 51 is a magnet powder whose hydrogen gas pressure in the low-temperature hydrogen treatment is lower than that in the high-temperature hydrogen treatment.
For the sample 52, the hydrogen gas atmosphere of the low-temperature hydrogen treatment was set to 10 −2 to
It is a magnet powder in a vacuum of rr or less, and samples 53 to 55
Was a magnet powder having a high hydrogen gas pressure in the high-temperature hydrogen treatment, and the relative reaction rate was high.

【0081】(評価)実施例の評価は、希土類磁石粉末
およびこの磁石粉末を用いた異方性ボンド磁石の磁気特
性を測定することで行われた。
(Evaluation) The evaluation of the examples was performed by measuring the magnetic properties of the rare earth magnet powder and the anisotropic bonded magnet using the magnet powder.

【0082】すなわち、異方性希土類磁石粉末の(B
H)max、Br、iHcならびに異方化率、および異
方性ボンド磁石の(BH)maxならびにBrをVS
M、あるいはBHトレーサを用いて測定し、評価を行っ
た。磁石粉末の測定粒度は、212μm以下で行った。
測定された磁石粉末および異方性ボンド磁石の磁気特性
を表2に合わせて示した。
That is, (B) of the anisotropic rare earth magnet powder
H) max, Br, iHc and anisotropic ratio, and (BH) max and Br of anisotropic bonded magnets are VS
The measurement was performed using an M or BH tracer and evaluated. The measured particle size of the magnet powder was 212 μm or less.
Table 2 shows the measured magnetic properties of the magnet powder and the anisotropic bonded magnet.

【0083】表2より、試料NO.1〜9の磁石粉末
は、その異方化率が0.8以上と高いとともにBrの値
がいずれも13.0kG以上と高く、その結果として
(BH)maxが高くなっている。また、試料NO.1
〜9の磁石粉末を用いた異方性ボンド磁石においても、
(BH)maxおよびBrがともに高くなっている。
As shown in Table 2, the sample No. The magnet powders Nos. 1 to 9 have a high anisotropic ratio of 0.8 or more and a high Br value of 13.0 kG or more, resulting in a high (BH) max. The sample No. 1
Also in the anisotropic bonded magnet using the magnet powders of Nos. 9 to 9,
(BH) max and Br are both high.

【0084】一方、比較例の試料50および51の磁石
粉末は、異方化率がそれぞれ0.82、0.83と高い
異方性を有しているがその組織が不均一であるため保磁
力が低下している。また、試料52、53の磁石粉末
は、異方化率がそれぞれ0.77、0.74と低下して
いる。さらに、試料54、55の磁石粉末は、等方性の
磁石粉末となっている。
On the other hand, the magnet powders of Samples 50 and 51 of Comparative Examples have high anisotropy of 0.82 and 0.83, respectively, although their anisotropic ratios are 0.82 and 0.83, respectively. Magnetic force is decreasing. The anisotropic ratios of the magnet powders of Samples 52 and 53 are reduced to 0.77 and 0.74, respectively. Further, the magnet powder of the samples 54 and 55 is an isotropic magnet powder.

【0085】つづいて、試料2の磁石粉末、試料7の磁
石粉末、試料53および54の磁石粉末を10kOeの
磁場中で配向させた後に、X線回折を行った。X線回折
の測定結果を図3に示した。X線回折を行った4種類の
磁石粉末試料は、試料2、7、53、54の順に異方性
が小さくなっている。図3より、磁石粉末の異方化率が
大きくなるにしたがって、2θ=44.4度の(00
6)面の強度と、2θ=42.3度の(410)面の強
度との比が大きくなっている。このことは、次のように
解釈できる。Nd2Fe14Bは、正方晶構造であり、c
軸が磁化容易軸である。このため、異方性磁石粉末のす
べての結晶粒の方位が一方向にそろっている場合は、高
い異方化率が得られる。この状態をX線回折で分析する
と、c軸に垂直な面である(006)面のピークが高く
なり、c軸に平行な面(410)面のピークが低下す
る。この結果、異方化率が高いほど(006)面と(4
10)面の強度比が大きくなる。逆に、異方化率が低い
場合、ランダムな方向になっているため(006)面は
低下し、逆に(410)面が大きくなり(006)面と
(410)面の強度比は小さくなる。強度比が大きいも
のほど、異方化が進行していることがわかる。また、図
4に、強度比と異方化率の関係を示した。図4より、本
発明の製造方法に従えば、異方化率が従来技術の領域
(不十分な異方性領域)よりも高い異方化率が得られる
ことがわかる。
Subsequently, the magnet powder of Sample 2, the magnet powder of Sample 7, and the magnet powder of Samples 53 and 54 were oriented in a magnetic field of 10 kOe, and then subjected to X-ray diffraction. FIG. 3 shows the measurement results of X-ray diffraction. The four types of magnet powder samples subjected to X-ray diffraction have smaller anisotropy in the order of samples 2, 7, 53, and 54. From FIG. 3, as the anisotropy ratio of the magnet powder increases, (00) of 2θ = 44.4 degrees is obtained.
6) The ratio of the intensity of the plane to the intensity of the (410) plane at 2θ = 42.3 degrees is large. This can be interpreted as follows. Nd 2 Fe 14 B has a tetragonal structure,
The axis is the axis of easy magnetization. Therefore, when the orientation of all the crystal grains of the anisotropic magnet powder is aligned in one direction, a high anisotropic ratio can be obtained. When this state is analyzed by X-ray diffraction, the peak of the (006) plane, which is a plane perpendicular to the c-axis, increases, and the peak of the (410) plane, which is parallel to the c-axis, decreases. As a result, the (006) plane and (4)
10) The strength ratio of the surface increases. Conversely, when the anisotropy ratio is low, the (006) plane decreases because the orientation is random, and conversely, the (410) plane increases and the intensity ratio between the (006) plane and the (410) plane decreases. Become. It can be seen that the larger the intensity ratio, the more anisotropic. FIG. 4 shows the relationship between the strength ratio and the anisotropic ratio. FIG. 4 shows that the anisotropic ratio higher than that of the prior art region (insufficient anisotropic region) can be obtained according to the manufacturing method of the present invention.

【0086】(第二実施例)表1に示される組成bの合
金を原料合金として用い、異方性希土類磁石粉末を作製
した。第二実施例の異方性希土類磁石粉末の製造は、逆
組織変態反応の反応条件を変更した以外は、第一実施例
の試料2の製造方法と同様に行われた。逆組織変態反応
の反応条件は、表3に示される制御圧力、制御時間およ
び最終真空度となる脱水素化処理条件で行われた。ここ
で、この逆組織変態の相対反応速度を表3にあわせて示
した。表3に示される第一排気行程圧力調整の○×は、
第一排気工程の有無を示している。また、製造された異
方性希土類磁石粉末を用いて、第一実施例と同様に異方
性ボンド磁石を作製した。
(Second Example) An anisotropic rare earth magnet powder was produced using an alloy having a composition b shown in Table 1 as a raw material alloy. The production of the anisotropic rare earth magnet powder of the second example was carried out in the same manner as the production method of sample 2 of the first example, except that the reaction conditions for the reverse structure transformation reaction were changed. The reaction conditions for the reverse structure transformation reaction were as shown in Table 3 under the control pressure, control time, and dehydrogenation conditions under which the final degree of vacuum was obtained. Here, the relative reaction rates of the reverse structural transformation are shown in Table 3. ○ × of the first exhaust stroke pressure adjustment shown in Table 3 is:
The presence or absence of the first exhaust step is shown. Further, an anisotropic bonded magnet was produced in the same manner as in the first example, using the produced anisotropic rare earth magnet powder.

【0087】[0087]

【表3】 [Table 3]

【0088】(比較例)また、比較例として、試料9〜
15と同様に、表1の組成bの合金よりなる磁石粉末試
料56〜59を作製した。ここで、試料56〜59の作
製は、表3に示された条件以外は、第二実施例と同様に
して行われた。また、試料56〜59の磁石粉末を用い
た異方性ボンド磁石もあわせて作製した。この異方性ボ
ンド磁石の作製も第二実施例において作製した異方性ボ
ンド磁石と同様の方法により行われた。ここで、試料5
6は脱水素時の第一排気工程を行わなかった磁石粉末で
あり、試料57は第一排気工程の制御圧力が高圧であっ
た磁石粉末であり、試料58は制御圧力の制御時間を長
時間として製造された磁石粉末であり、試料59は制御
圧力が低圧であった磁石粉末である。
(Comparative Examples) As comparative examples, samples 9 to
Similarly to No. 15, magnet powder samples 56 to 59 made of the alloys of the composition b in Table 1 were produced. Here, samples 56 to 59 were produced in the same manner as in the second example except for the conditions shown in Table 3. In addition, anisotropic bonded magnets using the magnet powders of Samples 56 to 59 were also manufactured. This anisotropic bonded magnet was manufactured in the same manner as the anisotropic bonded magnet manufactured in the second embodiment. Here, sample 5
Reference numeral 6 denotes a magnet powder that was not subjected to the first evacuation step at the time of dehydrogenation, Sample 57 was a magnet powder having a high control pressure in the first evacuation step, and Sample 58 was a control time of the control pressure for a long time. The sample 59 is a magnet powder having a low control pressure.

【0089】(評価)第二実施例の評価として、第一実
施例の場合と同様に磁石粉末およびこの磁石粉末を用い
て作製された異方性ボンド磁石の磁気特性を測定した。
測定結果を表3にあわせて示した。
(Evaluation) In the evaluation of the second embodiment, the magnetic properties of the magnet powder and the anisotropic bonded magnet produced using this magnet powder were measured as in the first embodiment.
The measurement results are shown in Table 3.

【0090】表3より、試料10〜16の磁石粉末は、
異方化率が0.80以上と高いとともにBrの値がいず
れも13.0kG以上と高く、その結果として(BH)
maxが高くなっている。また、試料10〜16の磁石
粉末を用いた異方性ボンド磁石においても、(BH)m
axおよびBrがともに高くなっている。
According to Table 3, the magnet powders of Samples 10 to 16 are as follows:
The anisotropy ratio is as high as 0.80 or more and the value of Br is as high as 13.0 kG or more. As a result, (BH)
max is high. Also, in the anisotropic bonded magnet using the magnet powder of Samples 10 to 16, (BH) m
Both ax and Br are high.

【0091】一方、比較例の試料56は第一排気工程を
行わなかった場合で保磁力は得られるが、異方化率は大
きく低下する。一方57および59の磁石粉末は第一排
気工程の逆組織変態の相対反応速度が最適範囲外の場合
でこの場合も異方化率が低下することがわかる。試料5
8の磁石粉末は逆組織変態の相対反応速度は3.16と
最適範囲内であるが、第一排気工程時間を通常の場合よ
り長く行ったため、0.82と高い異方化率が得られる
が、粒成長のため保磁力の急激な低下がおこる。
On the other hand, in the sample 56 of the comparative example, the coercive force is obtained when the first exhaust step is not performed, but the anisotropic ratio is greatly reduced. On the other hand, in the case of the magnet powders 57 and 59, when the relative reaction rate of the reverse structure transformation in the first evacuation step is out of the optimum range, the anisotropic ratio is also reduced in this case. Sample 5
The magnet powder of No. 8 has a relative reaction rate of reverse structural transformation of 3.16 which is within the optimum range, but a high anisotropic ratio of 0.82 can be obtained because the first evacuation step time is longer than usual. However, a sharp decrease in coercive force occurs due to grain growth.

【0092】(第三実施例)次に、表1に示されている
合金組成:j〜eeの合金を原料合金として用い、異方
性希土類磁石粉末を作製した。第三実施例の異方性希土
類磁石粉末の製造方法は、まず、表1に示された合金元
素の所定量を秤量して、高周波溶解炉を用いて表1の組
成を有する合金インゴットを10kg溶製した。その
後、第一実施例と同様に合金インゴット組織の均質化処
理を行った。均質化処理された合金インゴットをジョー
クラッシャにより平均粒径が10mm以下の粗粉砕物に
粉砕し、第一実施例と同様に低温水素化工程、高温水素
化工程、および脱水素工程を行った。また、製造された
異方性希土類磁石粉末を用いて、第一実施例と同様にボ
ンド磁石を作製した。本実施例において得られた異方性
希土類磁石粉末およびボンド磁石の磁気特性を測定し、
測定結果を表4に示した。
(Third Example) Next, anisotropic rare earth magnet powders were prepared by using alloys having the alloy compositions: j to ee shown in Table 1 as raw material alloys. In the method of manufacturing the anisotropic rare earth magnet powder of the third embodiment, first, a predetermined amount of the alloy elements shown in Table 1 is weighed, and 10 kg of an alloy ingot having the composition of Table 1 is weighed using a high frequency melting furnace. It was melted. Thereafter, a homogenization treatment of the alloy ingot structure was performed in the same manner as in the first embodiment. The homogenized alloy ingot was pulverized by a jaw crusher into coarse pulverized products having an average particle diameter of 10 mm or less, and a low-temperature hydrogenation step, a high-temperature hydrogenation step, and a dehydrogenation step were performed as in the first embodiment. Further, a bonded magnet was produced in the same manner as in the first example using the produced anisotropic rare earth magnet powder. Measure the magnetic properties of the anisotropic rare earth magnet powder and the bonded magnet obtained in this example,
Table 4 shows the measurement results.

【0093】[0093]

【表4】 [Table 4]

【0094】表4より、RFeB系合金にAl,Si,
Ti,V,Cr,Mn,Co,Ni,Cu,Ge,Z
r,Mo,In,Sn,Hf,Ta,W,Pbのうち1
種または2種以上を添加することで、保磁力、角形比
(Hk/iHc)が改善されることがわかる。ここで、
Hkは、磁化が10%減磁するときの磁場を示す。
From Table 4, it can be seen that Al, Si, and
Ti, V, Cr, Mn, Co, Ni, Cu, Ge, Z
one of r, Mo, In, Sn, Hf, Ta, W, and Pb
It is understood that the coercive force and the squareness ratio (Hk / iHc) are improved by adding one or more species. here,
Hk indicates a magnetic field when the magnetization is demagnetized by 10%.

【0095】[0095]

【発明の効果】本発明の異方性希土類磁石粉末の製造方
法は、高い異方化率および保磁力を有する異方性希土類
磁石粉末を提供する。この製造方法は、原料合金を水素
化合物として水素をあらかじめ内蔵させておく低温水素
化工程を有する。この水素化合物を高温水素処理工程の
出発原料とし、高温水素処理工程の順組織変態の反応速
度を穏やかに進行させることによって三相分解と同時に
母合金のR2Fe14Bの結晶方位をFe2Bの結晶方位に
転写させることができる。さらに、脱水素化工程は第一
排気工程と第二排気工程からなり、第一排気は逆組織変
態の反応速度を穏やかに進行させることによってFe2
Bの結晶方位を再結晶R2Fe14BHxの結晶方位に転写
させることができる。さらに、第二排気工程によって再
結合R2Fe14BHxから残存水素を除去する。その結
果、再結晶粒を微細化・均一化することが可能になり高
い異方化率、及び保磁力が得られる。
The method for producing anisotropic rare earth magnet powder of the present invention provides an anisotropic rare earth magnet powder having a high anisotropic ratio and a coercive force. This production method has a low-temperature hydrogenation step of preliminarily incorporating hydrogen as a raw material alloy as a hydrogen compound. The hydrogen compound as a starting material of the high temperature hydrogen treatment step, a high temperature hydrogen treatment of the crystal orientation of the R 2 Fe 14 B of the three-phase decomposition at the same time as master alloy by proceeding gently reaction rate of the forward structural transformation steps Fe 2 B can be transferred to the crystal orientation. Furthermore, the dehydrogenation process consists first evacuation step and the second evacuation step, the first exhaust Fe 2 by proceeding gently reaction rate of the reverse structural transformation
The crystal orientation of B can be transferred to the crystal orientation of recrystallized R 2 Fe 14 BH x . Further, residual hydrogen is removed from the recombined R 2 Fe 14 BH x by the second exhaustion step. As a result, the recrystallized grains can be made finer and uniform, and a high anisotropic ratio and a high coercive force can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 水素吸蔵反応時の結晶方位の転写の様子を示
した図である。
FIG. 1 is a diagram showing a state of transfer of crystal orientation during a hydrogen storage reaction.

【図2】 反応速度を制御できる水素処理炉を模式的に
示した図である。
FIG. 2 is a diagram schematically showing a hydrogen processing furnace capable of controlling a reaction rate.

【図3】 さまざまな磁石粉末のX線回折を示した図で
ある。
FIG. 3 shows X-ray diffraction of various magnet powders.

【図4】 磁石粉末のBrと(006)および(41
0)面の強度の比との関係を示した図である。
FIG. 4 shows Br and (006) and (41) of magnet powder.
FIG. 4 is a diagram showing a relationship with a ratio of the intensity of the 0) plane.

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 希土類元素(以下、Rと略記する)とホ
ウ素(B)と鉄(Fe)とを主成分とし、不可避の不純
物元素を含むRFeB系合金を水素ガス雰囲気下で保持
し、該原料合金と水素を600℃以下の温度で反応させ
て水素化合物(R2Fe14BHx;xは水素量を表す)と
する低温水素化工程と、 得られた該水素化合物を水素ガス雰囲気下で組織変態温
度に加熱し、該水素化合物を順組織変態を進行させるこ
とによって、αFe相、RH2相、Fe2B相の三相分解
組織を得ると同時に、元の原料合金であるR2Fe14
相の結晶方位をFe2B相の結晶方位に転写させて揃え
ることを特徴とする高温水素化工程と、 水素を該三相分解組織の一部であるRH2相から除去し
てFe2B相の結晶方位を多結晶再結合R2Fe14BHx
(水素化合物)の結晶方位に転写させて揃えることを特
徴とする逆組織変態を生じさせる脱水素化工程と、を有
することを特徴とする異方性希土類磁石粉末の製造方
法。
An RFeB-based alloy containing a rare earth element (hereinafter abbreviated as R), boron (B) and iron (Fe) as main components and an unavoidable impurity element is held in a hydrogen gas atmosphere. A low-temperature hydrogenation step of reacting the raw material alloy with hydrogen at a temperature of 600 ° C. or less to produce a hydrogen compound (R 2 Fe 14 BH x ; x represents the amount of hydrogen); and subjecting the obtained hydrogen compound to a hydrogen gas atmosphere. in heating the microstructure transformation temperature, by causing the hydrogen compound to proceed forward structural transformation, alpha iron phase, RH 2 phase, obtains a three-phase decomposition tissue Fe 2 B phase simultaneously, R 2 is the original material alloy Fe 14 B
A high-temperature hydrogenation step characterized by transferring the crystal orientation of the phase to the crystal orientation of the Fe 2 B phase, and removing hydrogen from the RH 2 phase, which is a part of the three-phase decomposition structure, to remove Fe 2 B The crystal orientation of the phase is changed to polycrystalline recombination R 2 Fe 14 BH x
A method for producing an anisotropic rare earth magnet powder, comprising: a dehydrogenation step for causing reverse structural transformation characterized by transferring the crystal orientation of (hydrogen compound) to a uniform orientation.
【請求項2】 前記高温水素化工程は、予め前記組織変
態温度に加熱された反応装置中に前記水素化合物を投入
することにより実施する請求項1記載の異方性希土類磁
石粉末の製造方法。
2. The method for producing anisotropic rare-earth magnet powder according to claim 1, wherein the high-temperature hydrogenation step is performed by charging the hydrogen compound into a reactor heated to the structure transformation temperature in advance.
【請求項3】 前記高温水素化工程の水素ガス圧は、
0.2〜0.6atmの範囲内であり、前記組織変態温
度は760〜860℃である請求項1記載の異方性希土
類磁石粉末の製造方法。
3. The hydrogen gas pressure in the high-temperature hydrogenation step is as follows:
The method for producing anisotropic rare earth magnet powder according to claim 1, wherein the microstructure transformation temperature is in the range of 0.2 to 0.6 atm and the structure transformation temperature is 760 to 860C.
【請求項4】 前記脱水素化工程は、0.1〜0.00
1atmの水素雰囲気下で相対反応速度を制御しながら
脱水素を行い、結晶方位が元のR2Fe14B合金の結晶
方位に揃った多結晶再結合R2Fe14BHx組織を得る第
一排気工程と、 その後10-1torr以下になるまで水素化合物中の水
素を強制的に除去する第二排気工程と、からなる請求項
1記載の異方性希土類磁石粉末の製造方法。
4. The method according to claim 1, wherein the dehydrogenation step is carried out at 0.1 to 0.00.
Dehydrogenation is performed in a hydrogen atmosphere of 1 atm while controlling the relative reaction rate to obtain a polycrystalline recombination R 2 Fe 14 BH x structure in which the crystal orientation is aligned with that of the original R 2 Fe 14 B alloy. 2. The method for producing anisotropic rare-earth magnet powder according to claim 1, comprising: an evacuation step; and a second evacuation step for forcibly removing hydrogen in the hydrogen compound until the pressure becomes 10 -1 torr or less.
【請求項5】 前記高温水素化工程の前記水素ガス圧及
び前記組織変態温度は、前記順組織変態の相対反応速度
が0.05〜0.80となる水素ガス圧及び温度である
請求項1記載の異方性希土類磁石粉末の製造方法。ここ
で、反応速度Vは一般に、 V=V0((√PH2/√P0)−1)exp(−Ea/R
T)で定義される。V0は頻度因子、PH2は水素ガス圧
力、P0は平衡圧力、Eaは活性化ポテンシャル、Rは
気体常数、Tは絶対温度そこで、830℃、水素圧力1
atmの時の反応速度を1として、相対反応速度を定義
した。
5. The hydrogen gas pressure and the structure transformation temperature in the high-temperature hydrogenation step are a hydrogen gas pressure and a temperature at which a relative reaction rate of the forward structure transformation becomes 0.05 to 0.80. A method for producing the anisotropic rare earth magnet powder according to the above. Here, the reaction rate V is generally expressed as follows: V = V 0 ((HP H2 / √P 0 ) −1) exp (−Ea / R
T). V 0 is a frequency factor, P H2 is hydrogen gas pressure, P 0 is equilibrium pressure, Ea is activation potential, R is gas constant, T is absolute temperature, 830 ° C., hydrogen pressure 1
The relative reaction rate was defined assuming that the reaction rate at the time of atm was 1.
【請求項6】 前記脱水素化工程の前記水素ガス圧及び
前記組織変態温度は、前記逆組織変態の相対反応速度が
0.10〜0.95となる水素ガス圧及び温度である請
求項1記載の異方性希土類磁石粉末の製造方法。ここ
で、相対反応速度は830℃、0.0001atmを1
として相対反応速度を定義した。
6. The hydrogen gas pressure and the structure transformation temperature in the dehydrogenation step are a hydrogen gas pressure and a temperature at which a relative reaction rate of the reverse structure transformation is 0.10 to 0.95. A method for producing the anisotropic rare earth magnet powder according to the above. Here, the relative reaction rate is 830 ° C. and 0.0001 atm is 1
Is defined as the relative reaction rate.
【請求項7】 前記RFeB系合金は、11〜15at
%のRと、5.5〜8.0at%のBと、不可避な不純
物とを含み、残りがFeからなる請求項1記載の異方性
希土類磁石粉末の製造方法。
7. The RFeB-based alloy is 11 to 15 at.
The method for producing anisotropic rare-earth magnet powder according to claim 1, wherein the powder contains R of 5.5% to 8.0 at%, and unavoidable impurities, and the balance is Fe.
【請求項8】 請求項7記載のRFeB系合金に、0.
01〜1.0at%のGa、0.01〜0.6at%の
Nbのうち、1種または2種含有する合金からなる、請
求項1記載の異方性希土類磁石粉末の製造方法。
8. An RFeB-based alloy according to claim 7,
The method for producing anisotropic rare-earth magnet powder according to claim 1, comprising an alloy containing one or two of Ga of 01 to 1.0 at% and Nb of 0.01 to 0.6 at%.
【請求項9】 請求項7記載または請求項8記載のRF
eB系合金に、Al,Si,Ti,V,Cr,Mn,N
i,Cu,Ge,Zr,Mo,In,Sn,Hf,T
a,W,Pbのうち1種または2種以上の合計が0.0
01〜5.0at%を含有するからなる請求項1記載の
異方性希土類磁石粉末の製造方法。
9. The RF according to claim 7 or claim 8.
Al, Si, Ti, V, Cr, Mn, N
i, Cu, Ge, Zr, Mo, In, Sn, Hf, T
a, W, or Pb, the sum of one or more of them is 0.0
The method for producing anisotropic rare earth magnet powder according to claim 1, comprising from 0.01 to 5.0 at%.
【請求項10】 請求項7記載または請求項8記載のR
FeB系合金に、Coを0.001〜20at%を含有
する請求項1記載の異方性希土類磁石粉末の製造方法。
10. R according to claim 7 or claim 8.
The method for producing anisotropic rare earth magnet powder according to claim 1, wherein the FeB-based alloy contains 0.001 to 20 at% of Co.
【請求項11】 希土類元素(以下、Rと略記する)と
ホウ素(B)と鉄(Fe)とを主成分とし、不可避の不
純物元素を含むRFeB系合金を水素ガス雰囲気下で保
持し、該原料合金と水素を600℃以下の温度で反応さ
せて水素化合物(R2Fe14BHx;xは水素量を表す)
とする低温水素化工程と、 得られた該水素化合物を水素ガス雰囲気下で組織変態温
度に加熱し、該水素化合物を相対反応速度が0.05〜
0.80の条件下で制御しながら順組織変態を進行させ
ることによって、αFe相、RH2相、Fe2B相の三相
分解組織を得ると同時に、元の原料合金であるR2Fe
14B相の結晶方位をFe2B相の結晶方位に転写させて
揃えることを特徴とする高温水素化工程と、 相対反応速度が0.10〜0.95の条件下で制御しな
がら水素を該三相分解組織の一部であるRH2相から除
去してFe2B相の結晶方位を多結晶再結合R2Fe14
x(水素化合物)の結晶方位に転写させて揃えること
を特徴とする逆組織変態を生じさせる脱水素化工程と、
を有することを特徴とする異方性希土類磁石粉末の製造
方法。
11. An RFeB-based alloy containing a rare earth element (hereinafter abbreviated as R), boron (B) and iron (Fe) as main components and containing unavoidable impurity elements is held in a hydrogen gas atmosphere. A hydrogen compound (R 2 Fe 14 BH x ; x represents the amount of hydrogen) by reacting the raw material alloy with hydrogen at a temperature of 600 ° C. or less.
Low-temperature hydrogenation step, and heating the obtained hydrogen compound to a structural transformation temperature in a hydrogen gas atmosphere, the relative reaction rate of the hydrogen compound is 0.05 to
By progressing the forward structure transformation while controlling under the condition of 0.80, a three-phase decomposition structure of the αFe phase, the RH 2 phase, and the Fe 2 B phase is obtained, and at the same time, the original raw material alloy R 2 Fe
A high-temperature hydrogenation step characterized by transferring and aligning the crystal orientation of the 14 B phase to the crystal orientation of the Fe 2 B phase, and converting hydrogen while controlling the relative reaction rate under conditions of 0.10 to 0.95. The crystal orientation of the Fe 2 B phase is removed from the RH 2 phase which is a part of the three-phase decomposition structure and the polycrystalline recombination R 2 Fe 14 B
A dehydrogenation step for causing reverse structural transformation characterized by transferring and aligning the crystal orientation of H x (hydrogen compound);
A method for producing anisotropic rare earth magnet powder, comprising:
JP25282999A 1999-06-28 1999-09-07 Method for producing anisotropic rare earth magnet powder Expired - Lifetime JP3250551B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP25282999A JP3250551B2 (en) 1999-06-28 1999-09-07 Method for producing anisotropic rare earth magnet powder
GBGB9924247.1A GB9924247D0 (en) 1999-06-28 1999-10-13 Production method of anisotropic rare earth magnet powder

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP11-181423 1999-06-28
JP18142399 1999-06-28
JP25282999A JP3250551B2 (en) 1999-06-28 1999-09-07 Method for producing anisotropic rare earth magnet powder

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2001157604A Division JP2002025813A (en) 1999-06-28 2001-05-25 Anisotropic rare earth magnet powder

Publications (2)

Publication Number Publication Date
JP2001076917A true JP2001076917A (en) 2001-03-23
JP3250551B2 JP3250551B2 (en) 2002-01-28

Family

ID=26500614

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25282999A Expired - Lifetime JP3250551B2 (en) 1999-06-28 1999-09-07 Method for producing anisotropic rare earth magnet powder

Country Status (2)

Country Link
JP (1) JP3250551B2 (en)
GB (1) GB9924247D0 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003085147A1 (en) * 2002-04-09 2003-10-16 Aichi Steel Corporation Alloy for use in bonded magnet, isotropic magnet powder and anisotropic magnet powder and method for production thereof, and bonded magnet
WO2004003245A1 (en) * 2002-06-28 2004-01-08 Aichi Steel Corporation Alloy for use in bonded magnet, isotropic magnet powder and anisotropic magnet powder and method for production thereof, and bonded magnet
US6709533B2 (en) 2000-09-20 2004-03-23 Aichi Steel Corporation Manufacturing method of an anisotropic magnet powder, precursory anisotropic magnet powder and bonded magnet
EP1523017A2 (en) 2003-10-10 2005-04-13 Aichi Steel Corporation A composite rare-earth anisotropic bonded magnet, composite rare-earth anisotropic bonded magnet compound, and methods for their production
US6917132B2 (en) 2001-12-10 2005-07-12 Aichi Steel Corporation DC brush motor and permanent magnet used therein
US6955729B2 (en) 2002-04-09 2005-10-18 Aichi Steel Corporation Alloy for bonded magnets, isotropic magnet powder and anisotropic magnet powder and their production method, and bonded magnet
US7138018B2 (en) 2003-01-16 2006-11-21 Aichi Steel Corporation Process for producing anisotropic magnet powder
US7812484B2 (en) 2004-11-30 2010-10-12 Aichi Steel Corporation Permanent magnet for motor, motor housing, and motor device
WO2011070847A1 (en) 2009-12-09 2011-06-16 愛知製鋼株式会社 Rare-earth anisotropic magnet powder, method for producing same, and bonded magnet
WO2011070827A1 (en) 2009-12-09 2011-06-16 愛知製鋼株式会社 Rare earth anisotropic magnet and process for production thereof
US20140225696A1 (en) * 2011-07-20 2014-08-14 Robert Bosch Gmbh Magnetic material and method for producing same
EP2608224A4 (en) * 2011-05-24 2015-07-01 Sumitomo Electric Industries Rare earth-iron-nitrogen system alloy material, method for producing rare earth-iron-nitrogen system alloy material, rare earth-iron system alloy material, and method for producing rare earth-iron system alloy material
EP2484464A4 (en) * 2010-05-19 2016-12-14 Sumitomo Electric Industries Powder for magnetic member, powder compact, and magnetic member
EP2508279A4 (en) * 2009-12-04 2016-12-14 Sumitomo Electric Industries Powder for magnet
JP2017041624A (en) * 2015-01-29 2017-02-23 戸田工業株式会社 Method of producing r-t-b-based rare earth magnet powder, r-t-b-based rare earth magnet powder, and bonded magnet

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5267800B2 (en) 2009-02-27 2013-08-21 ミネベア株式会社 Self-repairing rare earth-iron magnet
JP5344171B2 (en) 2009-09-29 2013-11-20 ミネベア株式会社 Anisotropic rare earth-iron resin magnet
KR101219515B1 (en) * 2010-07-02 2013-01-11 한국기계연구원 The method for preparation of R-Fe-B type rare earth magnet powder for bonded magnet, R-Fe-B type rare earth magnet powder thereby and method for preparation of bonded magnet using the magnet powder, bonded magnet thereby

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6709533B2 (en) 2000-09-20 2004-03-23 Aichi Steel Corporation Manufacturing method of an anisotropic magnet powder, precursory anisotropic magnet powder and bonded magnet
US6917132B2 (en) 2001-12-10 2005-07-12 Aichi Steel Corporation DC brush motor and permanent magnet used therein
WO2003085147A1 (en) * 2002-04-09 2003-10-16 Aichi Steel Corporation Alloy for use in bonded magnet, isotropic magnet powder and anisotropic magnet powder and method for production thereof, and bonded magnet
US6955729B2 (en) 2002-04-09 2005-10-18 Aichi Steel Corporation Alloy for bonded magnets, isotropic magnet powder and anisotropic magnet powder and their production method, and bonded magnet
WO2004003245A1 (en) * 2002-06-28 2004-01-08 Aichi Steel Corporation Alloy for use in bonded magnet, isotropic magnet powder and anisotropic magnet powder and method for production thereof, and bonded magnet
US7138018B2 (en) 2003-01-16 2006-11-21 Aichi Steel Corporation Process for producing anisotropic magnet powder
EP1523017A2 (en) 2003-10-10 2005-04-13 Aichi Steel Corporation A composite rare-earth anisotropic bonded magnet, composite rare-earth anisotropic bonded magnet compound, and methods for their production
US7357880B2 (en) 2003-10-10 2008-04-15 Aichi Steel Corporation Composite rare-earth anisotropic bonded magnet, composite rare-earth anisotropic bonded magnet compound, and methods for their production
US7812484B2 (en) 2004-11-30 2010-10-12 Aichi Steel Corporation Permanent magnet for motor, motor housing, and motor device
EP2508279A4 (en) * 2009-12-04 2016-12-14 Sumitomo Electric Industries Powder for magnet
WO2011070827A1 (en) 2009-12-09 2011-06-16 愛知製鋼株式会社 Rare earth anisotropic magnet and process for production thereof
CN102640238A (en) * 2009-12-09 2012-08-15 爱知制钢株式会社 Rare earth anisotropic magnet and process for production thereof
WO2011070847A1 (en) 2009-12-09 2011-06-16 愛知製鋼株式会社 Rare-earth anisotropic magnet powder, method for producing same, and bonded magnet
US9640319B2 (en) 2009-12-09 2017-05-02 Aichi Steel Corporation Anisotropic rare earth magnet powder, method for producing the same, and bonded magnet
US10607755B2 (en) 2009-12-09 2020-03-31 Aichi Steel Corporation Anisotropic rare earth magnet powder, method for producing the same, and bonded magnet
EP2484464A4 (en) * 2010-05-19 2016-12-14 Sumitomo Electric Industries Powder for magnetic member, powder compact, and magnetic member
EP2608224A4 (en) * 2011-05-24 2015-07-01 Sumitomo Electric Industries Rare earth-iron-nitrogen system alloy material, method for producing rare earth-iron-nitrogen system alloy material, rare earth-iron system alloy material, and method for producing rare earth-iron system alloy material
US20140225696A1 (en) * 2011-07-20 2014-08-14 Robert Bosch Gmbh Magnetic material and method for producing same
JP2017041624A (en) * 2015-01-29 2017-02-23 戸田工業株式会社 Method of producing r-t-b-based rare earth magnet powder, r-t-b-based rare earth magnet powder, and bonded magnet
JP2021057599A (en) * 2015-01-29 2021-04-08 戸田工業株式会社 Manufacturing method of r-t-b series rare earth magnet powder, r-t-b series rare earth magnet powder, and bond magnet
US11688534B2 (en) 2015-01-29 2023-06-27 Toda Kogyo Corp. Process for producing R-T-B-based rare earth magnet particles, R-T-B-based rare earth magnet particles, and bonded magnet

Also Published As

Publication number Publication date
JP3250551B2 (en) 2002-01-28
GB9924247D0 (en) 1999-12-15

Similar Documents

Publication Publication Date Title
JP3452254B2 (en) Method for producing anisotropic magnet powder, raw material powder for anisotropic magnet powder, and bonded magnet
JP5892139B2 (en) Rare earth anisotropic magnet and manufacturing method thereof
JP3250551B2 (en) Method for producing anisotropic rare earth magnet powder
JP5906874B2 (en) Manufacturing method of RTB-based permanent magnet
JP2881409B2 (en) Method for producing anisotropic magnet powder
JP2011049440A (en) Method for manufacturing r-t-b based permanent magnet
JPWO2004003245A1 (en) Alloy for bond magnet, isotropic magnet powder, anisotropic magnet powder, production method thereof, and bond magnet
JP2002025813A (en) Anisotropic rare earth magnet powder
JPH0768561B2 (en) Method for producing rare earth-Fe-B alloy magnet powder
EP2645381B1 (en) Process for producing R-T-B-based rare earth magnet particles
JP3368294B2 (en) Method for producing anisotropic rare earth alloy powder for permanent magnet
JP3597615B2 (en) Method for producing RTB based anisotropic bonded magnet
JPH06128610A (en) Production of anisotropic rare-earth alloy powder for permanent magnet
JP2010255098A (en) Rare earth alloy powder, method for producing the same, compound for anisotropic bond magnet, and anisotropic bond magnet
JPH10172850A (en) Production of anisotropic permanent magnet
WO2012105346A1 (en) Process for production of rare earth alloy powder, anisotropic bonded magnet, and sintered magnet
JPH10326705A (en) Rare-earth magnet powder and manufacture thereof
JP3423965B2 (en) Method for producing anisotropic rare earth alloy powder for permanent magnet
JPH0617535B2 (en) Method of manufacturing permanent magnet material
JP3481653B2 (en) Method for producing anisotropic rare earth alloy powder for permanent magnet
JP3086334B2 (en) Anisotropic rare earth alloy powder for permanent magnet
JP3053344B2 (en) Rare earth magnet manufacturing method
JP3587158B2 (en) Magnetic anisotropic bonded magnet
JPWO2003085147A1 (en) Alloy for bond magnet, isotropic magnet powder, anisotropic magnet powder, production method thereof, and bond magnet
JP2978004B2 (en) Method for producing rare earth composite magnet having magnetic anisotropy

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
R150 Certificate of patent or registration of utility model

Ref document number: 3250551

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071116

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081116

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081116

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091116

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091116

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101116

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101116

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111116

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111116

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121116

Year of fee payment: 11

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121116

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131116

Year of fee payment: 12

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term