JP3587158B2 - Magnetic anisotropic bonded magnet - Google Patents

Magnetic anisotropic bonded magnet Download PDF

Info

Publication number
JP3587158B2
JP3587158B2 JP2000319447A JP2000319447A JP3587158B2 JP 3587158 B2 JP3587158 B2 JP 3587158B2 JP 2000319447 A JP2000319447 A JP 2000319447A JP 2000319447 A JP2000319447 A JP 2000319447A JP 3587158 B2 JP3587158 B2 JP 3587158B2
Authority
JP
Japan
Prior art keywords
hydrogen
temperature
reaction
transformation
magnet powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000319447A
Other languages
Japanese (ja)
Other versions
JP2001167916A (en
Inventor
義信 本蔵
千里 三嶋
浩成 御手洗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aichi Steel Corp
Original Assignee
Aichi Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aichi Steel Corp filed Critical Aichi Steel Corp
Priority to JP2000319447A priority Critical patent/JP3587158B2/en
Publication of JP2001167916A publication Critical patent/JP2001167916A/en
Application granted granted Critical
Publication of JP3587158B2 publication Critical patent/JP3587158B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0573Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes obtained by reduction or by hydrogen decrepitation or embrittlement

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、希土類元素−鉄−ホウ素系合金よりなり高い異方性をもつ磁気異方性ボンド磁石に関する。
【0002】
【従来の技術】
従来、イットリウム(Y)を含む希土類元素(以下、Rと称す)と、鉄(Fe)と、ホウ素(B)とを主成分とするRFeB系合金よりなる希土類磁石は残留磁束密度、保磁力などの磁気特性に優れるため工業的に広く利用されている。この希土類磁石は、例えば、特開昭60−257107号公報、特開昭62−23903号公報、特公平7−68561号公報等に報告されている。
【0003】
特開昭62−23903号公報には、RFeB系合金に水素の吸蔵および脱着による組織の順変態および逆変態を行う高温水素熱処理の脱水素処理を改善することにより保磁力(iHc)が5kOe(398kA/m)と高い永久磁石を製造する方法が開示されている。ここで高温水素熱処理は組織の変態を伴う熱処理を意味し、組織の変態を伴わない水素の吸蔵、脱水素のみが生ずる低温水素熱処理と区別する。
【0004】
そして、特公平7−68561号公報には、この高温水素熱処理を改良し、RFeB系合金を10Torr(1.3kPa)以上の水素ガスもしくは10Torr(13kPa)以上の分圧の水素ガスと不活性ガスからなる混合ガスの雰囲気の下で500℃〜1000℃の温度で熱処理して原料中に水素を吸収させて順変態を起こさせ、再び脱水素を行うといった一連の高温水素熱処理を行うことにより、iHcが10kOe(795kA/m)と高い磁気特性を持つ希土類永久ボンド磁石を得る方法が開示されている。
【0005】
さらに、特公平7−68561号公報は、Nd12.0Pr1.4Fe80.85.8の原子数組成の希土類合金を1atmHガス中で830℃まで昇温し、その後830℃で5時間保持しこの間にHガス圧力を10〜760Torr(1.3kPa〜0.1MPa)の範囲の所定圧力に保持し、その後830℃の温度で1.0×10−5Torr(1.31×10−3Pa)の真空度に減圧して40分保持し、その後急冷することにより、異方性ボンド磁石を得ている。その実施例中で最も顕著な異方性をもつボンド磁石として、圧縮成形時に磁場を作用させてBrを6.1kG(0.61T)から7.2kG(0.72T)へと約18.2%向上したものを挙げている。
【0006】
また、特公平4−20242号公報には、一度メルトスピンニングにより希土類磁石とした後、この希土類磁石を熱間圧延処理して結晶方向を揃えた組織とし、高い異方性をもつ希土類磁石とする方法が開示されている。
【0007】
【発明が解決しようとする課題】
本発明は、高温水素熱処理された希土類磁石粉末であって、かつ高い異方性、即ち、Br/Bsの高い希土類磁石粉末と熱硬化性樹脂とを圧縮成形により最大エネルギー積の大きい磁気異方性ボンド磁石を提供することを課題とする。
希土類磁石を熱間圧延処理して結晶方向を揃えた組織とし、高い異方性をもつ希土類磁石粉末とする方法は、操作が複雑なために製造コストが高くなる。また、得られる希土類磁石粉末の結晶粒は偏平となる特色をもつ。
【0008】
他方、希土類磁石の水素吸蔵合金としての特色でもある水素の吸蔵による組織の順変態、脱水素による組織の逆変態を行う高温水素熱処理により結晶粒を微細化し、結晶粒を小さくすることにより残留磁束密度、保磁力などの磁気特性を高める高温水素熱処理による希土類磁石粉末を得る方法がある。この高温水素熱処理による希土類磁石粉末は、操作が比較的単純で製造コストが安いという利点があるが、磁気特性に優れた希土類磁石粉末が得られないという問題がある。特に異方性を付与することが極めて困難である。
【0009】
希土類磁石の高温水素熱処理の過程で、前記した特公平7−68561号公報に開示されているように、Nd12.0Pr1.4Fe80.85.8組成の希土類合金を高温水素熱処理した場合、圧縮成形時に磁場を作用させることによりBrが6.1kG(0.61T)から7.2kG(0.72T)へと約18.2%向上する異方性が報告されている。この特公平7−68561号公報の発明者の一人は、J.Alloys and Compounds 231(1995)51で、NdFeBの三元系希土類合金を水素処理しても等方性磁石粉末が得られるだけであるが、このFeをCoで置換し、Zr、Ga、Nb、Hf等の元素を添加したNdFeCoBに水素処理を行うと異方性が発現すると説明している。
【0010】
本発明者は希土類磁石の水素処理を詳細に検討し、実験を重ねた結果、従来高温水素熱処理により等方性磁石粉末しか得られないと考えられていたNdFeBの三元系磁石粉末が、高温水素熱処理により極めて高い異方性をもつ磁石粉末となることを発見した。異方性を他の磁気特性で説明すると、従来高温水素熱処理によるNdFeBの三元系磁石粉末のBrが0.8T(8.0kG)程度と考えられていたものが、NdFeBの三元系磁石粉末の組成を変えることなくそのBrを1.2〜1.5T(12〜15kG)と高めることができることを発見し、確認したものである。更には、NdFeBの三元系にGa,Nbを添加することによりそのBrを1.32〜1.39T(13.2〜1.39kG)と高めることができることを発見し、確認したものである。
【0011】
本発明者等は、発見された高温水素熱処理によるNdFeBの三元系合金の高い異方性は、NdFeBの希土類合金を水素吸蔵させて水素と反応させ、この希土類合金の組織を順変態するときに、NdFe14の結晶方位が順変態により生ずると考えられる多数の微細なFeBに転写されて保存され、これが脱水素による合金組織の逆変態で転写保存されたFeBの結晶方位が再生される微細なNdFe14の結晶に転写され、極めて高い異方性をもつ磁石粉末となるものと考えている。なお、本発明ではその組成中にコバルト(Co)を必要としない。
【0012】
本発明はかかる見解の元で完成されたものである。
【0013】
【課題を解決するための手段】
本発明の異方性磁石粉末は、高温水素熱処理され12〜15at%のイットリウム(Y)を含む希土類元素(以下、Rという。)と、5.5〜8at%のホウ素(以下、Bという。)と、0.01〜1.0at%のガリウム(以下、Gaという。)と、0.01〜0.6at%のニオブ(以下、Nbという。)と、不可避的な不純物とを含み残りが鉄(Fe)とから構成されたRFe(Ga+Nb)B系合金で、該RFe(Ga+Nb)B系合金の異方性(Br/Bs、ただしBsは1.6T(16kG)とした)が0.82〜0.86であり、かつ結晶粒のアスペクト比が2.0以下であることを特徴とする。
また、本発明は、高温水素処理され、12〜15at%のイットリウム(Y)を含む希土類元素(以下、Rという。)と、5.5〜8at%のホウ素(以下、Bという。)と、0.01〜1.0at%のガリウム(以下、Gaという。)と、0.01〜0.6at%のニオブ(以下、Nbという。)と、不可避的な不純物とを含み残りが鉄(Fe)とから構成されたRFe(Ga+Nb)B系合金からなり、該RFe(Ga+Nb)B系合金の異方性(Br/Bs、ただしBsは1.6T(16kG)とした)が0.82〜0.86であり、かつ結晶粒のアスペクト比が2.0以下である磁気異方性磁石粉末と熱硬化性樹脂とを圧縮成形した磁気異方性ボンド磁石である。
更に、前記磁気異方性磁石粉末が、残留磁束密度(Br)が1.32〜1.39T(13.2〜1.39kG)、固有保磁力(iHc)が796〜1193kA/m(10.0〜15kOe)、(BH)maxが300〜350kJ/m3(37.8〜44.0MGOe)である磁気異方性ボンド磁石でもある。
また、前記磁気異方性ボンド磁石が、(BH)maxが167.9〜200.5kJ/m (21.1〜25.0MGOe)である磁気異方性ボンド磁石でもある。
【0014】
本発明の異方性磁石粉末を構成するRFeB系合金は、RFe14 の正方晶結晶構造を持つ再結晶粒からなるために高い異方性をもつものと考えられる。また、本発明の異方性磁石粉末は高温水素熱処理されて得られるもので、その結晶粒が球形に近い、すなわち、結晶粒のアスペクト比が小さいという特色がある。具体的には、結晶粒の大きさは、粒径が0.1〜1.0μm程度で、ほぼ全ての結晶粒のアスペクト比は2.0以下である。
【0015】
ここで結晶粒とは合金粉末を意味するものではなく、1個の合金粉末を構成する多数の結晶粒の個々の結晶粒を意味する。また、アスペクト比とは、結晶粒の最小粒径に対する最長粒径の比(最長粒径/最小粒径)で定義される値である。 さらに、熱間圧延による希土類磁石はその結晶粒が偏平であり、結晶粒の形状が高温水素熱処理した希土類磁石粉末のものと全く異なる。
【0016】
なお、磁石粉末のBrには、通常のBHトレーサが使用できないため、本発明ではBrの測定方法として次の方法を採用した。まず磁石粉末を74から105μmの粒径のものに分級して用いた。そして反磁場が0.2になるように成形し、磁場中で配向後4578kA/m(45KOe)で着磁し、VSMで測定してBrを求めた。
【0017】
【発明の実施の形態】
本発明の異方性磁石粉末を構成するRFeB系合金は、12〜15at%のRと、5.5〜8at%のBと、不可避な不純物とを含み、残りがFeからなる。Rが15at%を越えるとBrが低くなり、逆に12at%に達しないと初晶のα−Feが残る。また、Bが8at%を越えるとBrが低くなり、逆に5.5at%に達しないとNdFe17相等が析出する。Rとしては、Y、La、Ce、Pr、Nd、Sm、Gd、Td、Dy、Ho、Er、Tm、Luから選ばれる1種または2種以上が利用できる。中でもコスト及び磁気特性の理由からNdを用いることが好ましい。
【0018】
RFeBにGaを0.01〜1.0at%配合することによって得られる磁石粉末の保磁力を向上させる。このGaは結晶粒界のスムージング化を容易にしiHcを上げるものと考えられる。また、Nbを0.01〜0.6at%配合することにより異方性を高める事ができる。このNbはFe Bの転写を確実にしてBrを向上させるものと考えられる。
【0019】
本発明の異方性磁石粉末は、その異方性(Br/Bs、ここでBsは1.6T(16kG))が0.70以上である。その他の磁気特性として、Brは1.2〜1.5T(12〜15kG)、iHcは636〜1272kA/m(8.0〜16kOe)、(BH)maxは238〜358kJ/m3(30〜45MGOe)の特性を持つ。
一方、本発明の異方性磁石粉末は、より好ましくは、RFeB系合金に0.01〜1.0at%のGaと、0.01〜0.6at%のNbを複合添加したRFe(Ga+Nb)B系合金において、その異方性(Br/Bs、ここでBsは1.6T(16kG))が0.82〜0.86である。その他の磁気特性として、残留磁束密度Brが1.32〜1.39T(13.2〜13.9kG)、iHcは、796〜1193kA/m(10.0〜15.0kOe)、(BH)maxは300〜350kJ/m3(37.8〜44.0MGOe)の特性を持つ。
本発明の異方性磁石粉末は、RFeB系合金に水素を吸蔵させて水素と合金との反応を0.25〜0.50の相対反応速度範囲内で進行させ、組織の順変態を起こさせ、その後脱水素反応を進めて組織の逆変態を起こさせることにより製造できる。この製造に用いる原料の調製の方法は特に限定されないが、高純度の希土類、鉄、ホウ素を用い、これらを所定量混合して溶解炉等で溶解し、これを鋳造して合金のインゴットを作製し、これを原料とすることができる。さらに、このインゴットを粉砕して粉末状とし、これを原料とすることもできる。
【0020】
このとき、原料の調製の方法によっては原料中の組成分布の偏りが生じることもある。このような組成分布の偏りが生じると、好ましくない。そこで、これらの原料を均質化処理しておくことが望ましい。この均質化処理により組成分布の偏りが生じるのを減少させることができる。
本発明のRFeB系合金に水素を吸蔵させ、合金と水素の反応速度Vは
V=V・(PH/P)・exp(−Ea/RT)
(ここで、V:頻度因子、PH:水素ガス圧力(Pa)、P:解離圧(Pa)、Ea:活性化エネルギー(kJ/mol)、R:ガス定数(J/molK)、T:温度(K)である。)で表される。この反応速度と組織の変態速度とは比例していると考えられるので、組織の変態速度をこの反応速度で評価することとした。
【0021】
即ち、組織の順変態反応の反応速度は、反応温度が830℃、水素ガス圧力が0.1MPaの時の反応速度VをV=1とする基準反応速度とし、この基準反応速度に基づく相対反応速度Vで定義した。Vは次の式で示すことができる。V=(1/0.576)・PH・exp(−Ea/RT)
また、組織の逆変態は830℃、水素ガス圧力が0.001MPa(0.01atm)を基準反応速度とした。逆変態反応の相対反応速度も同様に求めることができる。
【0022】
なお、活性化エネルギーEaは図1に示すように組成に依存し195〜200kJ/molとなる。なお、この活性化エネルギーEaはNdとHとが反応してNdHとなる生成熱を参考にして求めたものである。
具体的に順変態反応の相対反応速度を反応温度と水素ガス圧力で規定すると、相対反応速度の温度依存性を示す図2、相対反応速度の圧力依存性を示す図3で示される。
【0023】
順変態反応の相対反応速度を0.25〜0.50の反応速度範囲内とするためには、反応温度は780〜840℃の範囲が、水素圧力は0.01〜0.06MPa(0.1〜0.6atm)の範囲が良い。なお、ここで言う反応温度はRFeB系合金が水素を吸蔵して順変態を起こす温度であり、反応炉の管理温度ではないことに注意する必要がある。
【0024】
RFeB系合金が水素を吸蔵して順変態を起こす反応は発熱反応であり、順変態の開始により反応温度が加速度的に高くなる。従って、実際の反応温度は反応炉の管理温度と大きく異なる。また、水素吸蔵により水素ガス圧が大きく変動することも考えられる。例えば、不活性ガスと水素ガスとの混合ガスを採用した場合、水素が吸蔵され、順変態を起こすRFeB系合金の周囲の水素ガス濃度が大きく低下することもあり得る。異方性の高い磁石粉末とするためには、厳密な反応温度管理および水素ガス圧力の管理を必要とする。
【0025】
順変態の相対反応速度が0.25〜0.50の反応速度範囲外となる場合には、異方性が小さくなる。なお、RFeB系合金よりなる磁石粉末は本来異方性をもつものであり、完全な等方性とすることもまた極めて困難である。ここでは異方性の定義として、異方性Br/Bs(Bs=1.6T(Bs=16kG))としたとき、この値が0.5以下のものを完全等方性、0.5を越え0.70未満のものを等方性、0.70以上のものを異方性と定義する。
【0026】
順変態の相対反応速度が0.25〜0.50の反応速度範囲内でBr/Bs(Bs=1.6T(Bs=16kG))が0.70以上の異方性磁石粉末が得られる。
順変態の反応により、前に説明したように、NdFeBの希土類合金を水素吸蔵させて順変態するときに、NdFe14の結晶方位が順変態により生ずると考えられる多数の微細なFeBにより正確に転写されるためであろうと考えている。順変態の相対反応速度が0.25〜0.50の反応速度範囲外では、FeBへの転写が充分でなく、異方性が低くなる。発明者は現状ではFeBへの転写が充分でない場合には、後の工程で異方性を高めることは不可能であると考えている。
【0027】
反応に伴って加速度的に早くなる順変態の相対反応速度を0.25〜0.50の相対反応速度範囲内に管理することは通常の炉では不可能である。そのため新しい熱処理炉として、本発明者等は特願平8−206231号明細書に記載した反応時の発熱を相殺する吸熱手段をもった炉を開発して使用した。この吸熱手段は、水素吸蔵合金を管内に配置し、この管を炉内に入れ、反応による発熱と逆に管内の水素ガス圧力を減圧し、脱水素反応を進めて吸熱させ、反応による発熱を吸収して相殺するものである。これにより炉の管理温度と反応温度とをほぼ等しくできる。
【0028】
この順変態の反応は理想的には30分程度で終わるが、工業的には反応時間は処理量に依存する。順変態の終了後、順変態を起こした温度で少なくとも1時間加熱処理を継続することにより得られる磁石粉末の保磁力が向上する。これは順変態により生じた内部歪みが緩和除去されることと関連していると考えている。内部歪みが残存していると逆変態後に組織が不均一化して保磁力が低下するものと考えている。
【0029】
この後、吸蔵した水素を脱水素して逆変態を起こさせる。この逆変態はFeBの結晶方位を生成するNdFe14の結晶方位に転写するものである。
この逆変態時にFeBの方位を転写するためには、0.1〜0.4の相対反応速度範囲内で起こさせるのが好ましい。具体的にはこの逆変態は、前記順変態の水素ガス圧力の1/10〜1/100の水素ガス圧力に維持して行うことにより達成される。なお、逆変態は順変態とは反対の吸熱反応であり、逆変態の開始により反応温度が加速度的に低下する。従って、実際の反応温度を780〜840℃の範囲に保つためには、順変態と同様の能力を持った炉が必要である。
【0030】
この逆変態は理論的には10分以内で終わる。工業的には処理量に依存する。この逆変態終了後には逆変態の温度で少なくとも25分以上保持し、生成したNdFe14結晶を持つ希土類磁石粉末に含まれる水素を除去するのが好ましい。これにより保磁力が向上する。解離した水素が合金内に残存していると保磁力を著しく損なうためである。この後冷却し、本発明の異方性磁石が得られる。冷却は少なくとも5℃/min.の冷却速度で行うことが望ましい。
【0031】
インゴット状の原料を用いたとき、得られるインゴット状の希土類永久磁石は乳鉢等で容易に粉砕することができる。また、粉末状の原料を用いた場合、凝集等により固化することもあるが、乳鉢等で容易に粉砕することができる。
希土類永久ボンド磁石は、得られた希土類永久磁石粉末と、この磁石粉末のバインダーとなる樹脂と、を用いて製造される。このとき樹脂としてはエポキシ樹脂等の熱硬化性樹脂を用いることができ、所定の着磁用の磁場のもとで、この樹脂と磁石粉末とを混合して得られた混合物を加圧成形等により成形した後、熱処理して樹脂を熱硬化し、異方性の希土類永久ボンド磁石を形成することができる。
【0032】
【発明の作用】
本発明の異方性磁石粉末は、RFe(Ga+Nb)B系合金を高温水素処理して得られ、その異方性(Br/Bs、ここでBsは1.6T(16kG))が0.82〜0.86と極めて大きい異方性をもつ。その他の磁気特性も、残留磁束密度Brが1.32〜1.39T(13.2〜13.9kG)と極めて大きい異方性をもつ。また、保磁力は、796〜1193kA/m(10.0〜15.0kOe)で磁気特性に優れる。(BH)maxは300〜350kJ/m3(37.8〜44.0MGOe)の特性を持つ。そして、これらの磁石粉末を用いた異方性ボンド磁石は167.9〜200.5kJ/m3(21.1〜25.0MGOe)の高い(BH)maxをもつ。
【0033】
また、本発明の異方性磁石粉末の製造方法は高温水素熱処理の順変態反応の相対反応速度を所定速度としたものである。これにより簡単に異方性の大きい希土類磁石粉末を容易に得ることができる。
【0034】
【実施例】
以下、実施例により具体的に説明する。
(実施例1)
Nd:12.5at%、B:6.2at%、残部Feよりなる合金をボタンアーク溶解で溶製し、1140℃で均質化終了を行い、その後表1に示す条件で水素処理を行った。
【0035】
具体的には、試料として約15gと極めて少なくし石英管中に入れ、この石英管内の水素ガス圧を管理できるように導管でガス圧制御装置に結んだ。加熱炉としては赤外線加熱炉を使用した。温度測定には熱電対を使用し、試料の温度と雰囲気の温度を測定し、これらの温度に基づいて炉を制御した。
石英管の中に表1に示す水素ガス圧を導入し、その状態で加熱し約60分間で反応温度までした。そして反応の開始を試料の温度が雰囲気の温度を越えると直ちに加熱を中止し、放熱による冷却で雰囲気温度を下げ、反応による発熱を吸収し、目的の反応温度+5℃以内に試料温度が保たれるようにした。試料量が15gと少なく、かつ、赤外線炉を使用しているため石英管内の雰囲気温度は比較的容易に制御できた。
【0036】
この後820℃、水素ガス圧0.02MPa(0.2atm)で3時間加熱処理を行った。
その後逆変態相対速度0.26となるように石英管内の水素ガス圧を放出して脱水素を図り、逆変態反応を進めた。この脱水素による逆変態反応では、水素ガス圧を微妙に制御し、温度が吸熱反応により下がり始めると、水素ガス圧の減圧を止め、温度が所定温度に戻ると再び減圧を再開するといった制御方法により行い、目的とする温度−5℃の範囲で制御し、水素ガス吸蔵時の水素ガス圧の1/100以下の0.0001MPa(0.001atm)とした。
【0037】
この脱水素による逆変態反応の開始から30分間後まで、所定温度の熱処理を続けた。このあと冷却し、水素処理を終えた。これにより希土類磁石粉末を製造した。
得られた希土類磁石粉末の残留磁束密度を測定し、異方化率を求めた。
残留磁束密度、異方化率とともに順変態相対反応速度、処理温度および水素吸蔵時の水素ガス圧を合わせて表1に示す。なお、アスペクト比は、各結晶粒の最大直径および最小直径を電子顕微鏡で測定し、25サンプルの平均値として求めた。
表1

Figure 0003587158
反応速度が0.25〜0.5の範囲では、いずれもNdFe14Bの方位がFeBに転写され高い異方性が得られるが、この範囲外の相対反応速度が早い場合、転写がうまくいかず等方性の粉末しかえられない。一方、反応速度が遅い場合は反応が不均一になり高いBsが得られるもののNdFeBが残留してしまい高い保磁力(iHc)が得られない。
実施例2.
主として実施例1のNo.1の水素吸蔵条件で水素吸蔵させて合金組織の順変態を行ったものを表2に示す保持温度、保持水素ガス圧力および保持時間で順変態後の加熱処理を行った(なお、No.54については実施例1のNo.52の水素吸蔵条件で水素吸蔵させて合金組織の順変態を行った。)。その後逆変態相対速度0.26となるように保持温度で水素ガス圧力を下げ、実施例1と同様に脱水素による逆変態反応を起こさせ、その後実施例1と同様に逆変態反応後の熱処理を820℃、真空下で30分間保持し、その後冷却した。これにより表2に示す希土類磁石粉末を製造した。
【0038】
得られた希土類磁石粉末の残留磁束密度、固有保磁力および(BH)maxを測定し、異方化率を求めた。
保磁力、異方化率とともに順変態相対反応速度、保持時間、保持温度、保持圧力、残留磁束密度、異方化率、固有保磁力および磁石粉末の(BH)maxを合わせて表2に示す。
表2
Figure 0003587158
実施例1と同様にして順反応を終えたのち続けて保持温度で及び圧力で熱処理し順変態に伴う歪みを緩和した後、続けて脱水素(水素圧力0.0001MPa(0.001atm))した結果は、実施例1同様高い異方性が維持された。そして、60分以上保持することで、実施例1と比較して保磁力が高くなる。一方短時間の保持では異方性は失われないが、保磁力は低い。また、反応速度が早いと、異方性は失われ、続けて保持、脱水素を行っても異方性は回復しない。
実施例3.
主として実施例2のNo.7の水素吸蔵条件で水素吸蔵させて合金組織の順変態を行いその後180分保持したものを、表3に示す試料温度、逆変態相対速度、逆変態水素ガス圧力0.0001MPa(0.001atm)で逆変態を行い、その後、820℃、真空下で30分加熱処理を行い、その後急冷した(なお、No.56については実施例1のNo.52の水素吸蔵条件で水素吸蔵させて合金組織の順変態を行った。)。これにより表3に示す希土類磁石粉末を製造した。
【0039】
得られた希土類磁石粉末の残留磁束密度、固有保磁力および(BH)maxを測定し、異方化率を求めた。
保磁力、異方化率とともに順変態相対反応速度、保持時間、逆変態相対速度、試料温度、残留磁束密度、異方化率、固有保磁力および磁石粉末の(BH)maxを合わせて表3に示す。
表3
Figure 0003587158
逆変態反応速度が0.1〜0.4の範囲では、転写された方位が、乱れることなくNdFe14Bに転写され異方性が得られるが、No.55に見られるように、逆変態反応速度がそれより早い場合には異方性が低くなり高い特性が得られない。
【0040】
一方、No.56に見られるように、変態の反応速度が早い場合には、その後の処理が良くても異方性は得られない。
実施例4.
主に実施例3のNo.11と同様に順変態、熱処理および逆変態を行ったものを表4に示す保持温度および保持時間で加熱処理を行った。(なお、No.56については実施例3のNo.54の順変態、熱処理および逆変態を行った。)これにより表4に示す希土類磁石粉末を製造した。
【0041】
また、得られた粉末磁石粉末を用い、熱硬化性樹脂としてフェノール樹脂を粉末磁石100gに対して3g使用し、型内で圧縮成形してボンド磁石を得た。また、成形時に2.0T(20kOe)の磁場を作用させたものと、無磁場のものとの2種類のものを得た。
得られた希土類磁石粉末の残留磁束密度、固有保磁力および(BH)maxを測定し、異方化率を求めた。また、この磁石に含まれる残留水素を求めた。残留水素の値は全体を100重量%としたときの重量%で示した。さらにボンド磁石の最大エネルギー積(BH)maxを測定した。
この結果、135kJ/m3以上の最大エネルギー積を有する磁気異方性ボンド磁石を得ることができた。
【0042】
保磁力、異方化率とともに順変態相対反応速度、保持時間、逆変態相対速度、逆変態後の保持温度および保持時間の処理条件を表4に、測定された磁気特性を表5に示す。
表4
Figure 0003587158
表5
Figure 0003587158
脱水素時間が25分以上保持することで、十分に水素が抜け異方性が失われることなく、高い保磁力が得られることがわかる。一方保持時間が早い場合は少し水素が残り、高い保磁力は得られない。
【0043】
また、異方化の反応速度が早い場合には、高い保磁力は得られるものの、異方性は完全に消去され、等方性の粉末しか得られない。
実施例5.
Nd:12.5at%、B:6.2at%、残部Feよりなる合金に表6に示す微量のGa,Nbを添加し、実施例1で説明したのと同様にボタンアーク溶解で溶製し、1140℃で均質化終了を行い、その後表6に示す条件で高温水素熱処理を行った。その後実施例4と同様に磁気特性を測定した。測定結果を表7に示す。
表6
Figure 0003587158
表7
Figure 0003587158
Ga添加は逆磁区の発生を抑えるための粒界のクリーニング効果をもち高い保磁力が得られる。また、Nb添加は、転写の効果を上げる働きをもつ。その結果Ga,Nbの量元素の微量添加で従来得られていない、350kJ/m3(44.0MGOe)の高い特性が得られる。
そして、最大エネルギー積が167.9〜200.5kJ/m3(21.1〜25.0MGOe)の磁気異方性ボンド磁石を得ることができた。
【発明の効果】
本発明の異方性磁石粉末は、RFe(Ga+Nb)B系合金を高温水素熱処理して得られ、異方性(Br/Bs=1.6T(16KG))が0 . 82〜0.86である希土類磁石である。また、本発明の異方性磁石粉末は、結晶粒のアスペクト比が2.0以下である。この異方性磁石粉末を用いることにより167.9〜200.5kJ/m3(21.1〜25.0MGOe)の優れた(BH)maxをもつ異方性ボンド磁石とすることができる。
このRFe(Ga+Nb)B系合金の前記磁気異方性磁石粉末が、残留磁束密度(Br)が1.32〜1.39T(13.2〜1.39kG)、固有保磁力(iHc)が796〜1193kA/m(10.0〜15kOe)、(BH)maxが300〜350kJ/m3(37.8〜44.0MGOe)であることが好ましい。
【図面の簡単な説明】
【図1】希土類合金の順変態反応の合金組成と反応速度との関係を示す線図である。
【図2】希土類合金の順変態反応の反応温度と反応速度との関係を示す線図である。
【図3】希土類合金の順変態反応の水素ガス圧力と反応速度との関係を示す線図である。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a magnetic anisotropic bonded magnet made of a rare earth element-iron-boron alloy and having high anisotropy.
[0002]
[Prior art]
Conventionally, rare earth magnets made of an RFeB-based alloy containing yttrium (Y) containing a rare earth element (hereinafter referred to as R), iron (Fe), and boron (B) as main components have a residual magnetic flux density, a coercive force, and the like. Because of its excellent magnetic properties, it is widely used industrially. This rare earth magnet is reported, for example, in JP-A-60-257107, JP-A-62-23903, and JP-B-7-68561.
[0003]
Japanese Patent Application Laid-Open No. Sho 62-23903 discloses that a coercive force (iHc) of 5 kOe (iHc) is improved by improving a dehydrogenation treatment of a high-temperature hydrogen heat treatment for performing a forward transformation and a reverse transformation of a structure by absorbing and desorbing hydrogen in an RFeB-based alloy. A method of manufacturing a permanent magnet as high as 398 kA / m is disclosed. Here, the high-temperature hydrogen heat treatment means a heat treatment accompanied by a transformation of the structure, and is distinguished from a low-temperature hydrogen heat treatment in which only the occlusion and dehydrogenation of the hydrogen without the transformation of the structure occur.
[0004]
In Japanese Patent Publication No. 7-68561, this high-temperature hydrogen heat treatment is improved, and an RFeB-based alloy is mixed with a hydrogen gas of 10 Torr (1.3 kPa) or more or a hydrogen gas of a partial pressure of 10 Torr (13 kPa) or more and an inert gas. By performing a series of high-temperature hydrogen heat treatments such as performing heat treatment at a temperature of 500 ° C. to 1000 ° C. in a mixed gas atmosphere to absorb hydrogen in the raw material to cause forward transformation, and performing dehydrogenation again, A method for obtaining a rare-earth permanent bonded magnet having iHc of 10 kOe (795 kA / m) and high magnetic properties is disclosed.
[0005]
Further, Japanese Patent Publication No. Hei 7-68561 discloses Nd12.0Pr1.4Fe80.8B5.81atmH2The temperature was raised to 830 ° C. in a gas, and then maintained at 830 ° C. for 5 hours.2The gas pressure is maintained at a predetermined pressure in the range of 10 to 760 Torr (1.3 kPa to 0.1 MPa), and then at 830 ° C., 1.0 × 10 3-5Torr (1.31 × 10-3The pressure is reduced to a degree of vacuum of Pa) and maintained for 40 minutes, followed by rapid cooling to obtain an anisotropic bonded magnet. As a bonded magnet having the most remarkable anisotropy in the embodiment, Br is applied to a magnetic field during compression molding to bring Br from 6.1 kG (0.61 T) to 7.2 kG (0.72 T) to about 18.2. % Improved.
[0006]
Further, Japanese Patent Publication No. Hei 4-20242 discloses that a rare-earth magnet is once formed by melt spinning, and then the rare-earth magnet is hot-rolled to form a structure in which the crystal directions are aligned. A method for doing so is disclosed.
[0007]
[Problems to be solved by the invention]
The present invention is high temperature hydrogen heat treatedA rare earth magnet powder, andIt is an object of the present invention to provide a magnetic anisotropic bonded magnet having a large maximum energy product by compression molding a rare-earth magnet powder having a high anisotropy, that is, a high Br / Bs and a thermosetting resin.
The method of producing a rare-earth magnet having a structure in which the crystal directions are aligned by hot-rolling the rare-earth magnet to obtain a rare-earth magnet powder having high anisotropy requires a high production cost due to the complicated operation. Further, the crystal grains of the obtained rare earth magnet powder have a flat characteristic.
[0008]
On the other hand, high-temperature hydrogen heat treatment, which is a feature of rare earth magnets as a hydrogen storage alloy, is a forward transformation of the structure by absorbing hydrogen, and a reverse transformation of the structure by dehydrogenation, makes the crystal grains finer and reduces the crystal grains, thereby reducing the residual magnetic flux. There is a method of obtaining a rare-earth magnet powder by a high-temperature hydrogen heat treatment for improving magnetic properties such as density and coercive force. The rare-earth magnet powder obtained by the high-temperature hydrogen heat treatment has an advantage that the operation is relatively simple and the production cost is low, but there is a problem that a rare-earth magnet powder having excellent magnetic properties cannot be obtained. In particular, it is extremely difficult to provide anisotropy.
[0009]
During the high-temperature hydrogen heat treatment of the rare-earth magnet, as disclosed in the above-mentioned Japanese Patent Publication No. 7-68561, Nd12.0Pr1.4Fe80.8B5.8When a rare earth alloy having a composition is subjected to high-temperature hydrogen heat treatment, Br is improved by about 18.2% from 6.1 kG (0.61 T) to 7.2 kG (0.72 T) by applying a magnetic field during compression molding. Sex has been reported. One of the inventors of Japanese Patent Publication No. Hei 7-68561 is disclosed in J. Pat. In Alloys and Compounds 231 (1995) 51, even if a ternary rare earth alloy of NdFeB is subjected to hydrogen treatment, only an isotropic magnet powder can be obtained, but this Fe is replaced by Co, and Zr, Ga, Nb, It is described that when hydrogen treatment is performed on NdFeCoB to which elements such as Hf are added, anisotropy appears.
[0010]
The present inventor has studied the hydrogen treatment of rare earth magnets in detail, and as a result of repeated experiments, it has been found that the ternary magnet powder of NdFeB, which was conventionally considered to be able to obtain only isotropic magnet powder by high-temperature hydrogen heat treatment, It has been discovered that hydrogen heat treatment results in a magnet powder with extremely high anisotropy.AnisotropyIn terms of other magnetic characteristics, the composition of the NdFeB ternary magnet powder, which had conventionally been considered to be about 0.8 T (8.0 kG) in NdFeB ternary magnet powder by high-temperature hydrogen heat treatment, It has been found and confirmed that Br can be increased to 1.2 to 1.5 T (12 to 15 kG) without change. Further, they have found and confirmed that Br can be increased to 1.32 to 1.39 T (13.2 to 1.39 kG) by adding Ga and Nb to the ternary system of NdFeB. .
[0011]
The present inventors have found that the high anisotropy of the ternary alloy of NdFeB due to the high-temperature hydrogen heat treatment was found to cause the rare-earth alloy of NdFeB to absorb hydrogen and react with hydrogen, thereby transforming the structure of the rare-earth alloy. And Nd2Fe14B1Is considered to be caused by the forward transformation2B is transferred and stored, and this is transferred and stored by the reverse transformation of the alloy structure by dehydrogenation.2Fine Nd that reproduces the crystal orientation of B2Fe14B1Are considered to be transferred to the crystal of the above, and become a magnet powder having extremely high anisotropy. In the present invention, cobalt (Co) is not required in the composition.
[0012]
The present invention has been completed based on such a view.
[0013]
[Means for Solving the Problems]
The anisotropic magnet powder of the present invention is subjected to high-temperature hydrogen heat treatment.,A rare earth element containing 12 to 15 at% of yttrium (Y) (hereinafter referred to as R), 5.5 to 8 at% of boron (hereinafter referred to as B), and 0.01 to 1.0 at% of gallium ( Hereinafter, Ga is included), 0.01 to 0.6 at% of niobium (hereinafter, referred to as Nb), and unavoidable impurities, and the remainder is composed of iron (Fe).RFe (Ga + Nb) B-based alloy, the RFe (Ga + Nb) B-based alloy has an anisotropy (Br / Bs, where Bs is 1.6T (16 kG)) of 0.82 to 0.86, and The aspect ratio of crystal grains is 2.0 or lessIt is characterized by the following.
The present invention also provides a rare earth element (hereinafter, referred to as R) containing 12 to 15 at% of yttrium (Y) which has been subjected to high-temperature hydrogen treatment, and 5.5 to 8 at% of boron (hereinafter, referred to as B). It contains 0.01 to 1.0 at% of gallium (hereinafter, referred to as Ga), 0.01 to 0.6 at% of niobium (hereinafter, referred to as Nb), and unavoidable impurities. ) And an RFe (Ga + Nb) B-based alloy composed ofAnisotropy (Br / Bs, where Bs is 1.6 T (16 kG)) is 0.82 to 0.86, and the aspect ratio of crystal grains is 2.0 or less.Magnetic anisotropic bonded magnet made by compression molding of magnetic anisotropic magnet powder and thermosetting resinIt is.
Further, the magnetic anisotropic magnet powder isThe residual magnetic flux density (Br) is 1.32 to 1.39 T (13.2 to 1.39 kG),Specific coercive force (iHc) is 796 to 1193 kA / m (10.0 to 15 kOe), and (BH) max is 300 to 350 kJ / mThree(37.8 to 44.0 MGOe).
The magnetic anisotropic bonded magnet has a (BH) max of 167.9 to 200.5 kJ / m. 3 (21.1 to 25.0 MGOe).
[0014]
The RFeB-based alloy constituting the anisotropic magnet powder of the present invention has R2Fe14B1  Is considered to have high anisotropy because it is composed of recrystallized grains having a tetragonal crystal structure. The anisotropic magnet powder of the present invention is obtained by high-temperature hydrogen heat treatment, and has a feature that its crystal grains are close to spherical, that is, the aspect ratio of the crystal grains is small. More specifically, the size of the crystal grains is about 0.1 to 1.0 μm, and the aspect ratio of almost all the crystal grains is 2.0 or less.
[0015]
Here, the crystal grain does not mean an alloy powder, but means individual crystal grains of many crystal grains constituting one alloy powder. The aspect ratio is a value defined by a ratio of the longest grain size to the minimum grain size of the crystal grains (longest grain size / minimum grain size). Further, the crystal grains of the hot-rolled rare earth magnet are flat, and the shape of the crystal grains is completely different from that of the rare earth magnet powder subjected to the high-temperature hydrogen heat treatment.
[0016]
In addition, since a normal BH tracer cannot be used for Br of the magnet powder, the following method was adopted as a method for measuring Br in the present invention. First, the magnet powder was classified into particles having a particle size of 74 to 105 μm and used. Then, it was shaped so that the demagnetizing field became 0.2, magnetized at 4578 kA / m (45 KOe) after orientation in the magnetic field, and measured by VSM to obtain Br.
[0017]
BEST MODE FOR CARRYING OUT THE INVENTION
The RFeB-based alloy constituting the anisotropic magnet powder of the present invention contains 12 to 15 at% of R, 5.5 to 8 at% of B, and unavoidable impurities, and the remainder is Fe. If R exceeds 15 at%, Br decreases, and if it does not reach 12 at%, primary crystal α-Fe remains. When B exceeds 8 at%, Br decreases, and when B does not reach 5.5 at%, Nd decreases.2Fe17A phase or the like precipitates. As R, one or more selected from Y, La, Ce, Pr, Nd, Sm, Gd, Td, Dy, Ho, Er, Tm, and Lu can be used. Among them, Nd is preferably used for reasons of cost and magnetic properties.
[0018]
The coercive force of the magnet powder obtained by mixing 0.01 to 1.0 at% of Ga with RFeB is improved. It is considered that this Ga facilitates smoothing of the crystal grain boundaries and increases iHc. The anisotropy can be increased by adding 0.01 to 0.6 at% of Nb. This Nb is Fe2  It is considered that the transfer of B is ensured to improve Br.
[0019]
The anisotropic magnet powder of the present invention,The anisotropy (Br / Bs, where Bs is 1.6T (16 kG)) is 0.70 or more. As other magnetic characteristics, Br is 1.2 to 1.5 T (12 to 15 kG),iHc has characteristics of 636 to 1272 kA / m (8.0 to 16 kOe), and (BH) max has characteristics of 238 to 358 kJ / m3 (30 to 45 MGOe).
On the other hand, the anisotropic magnet powder of the present invention is more preferably RFe (Ga + Nb) obtained by adding 0.01 to 1.0 at% of Ga and 0.01 to 0.6 at% of Nb to an RFeB-based alloy. In B type alloy,Its anisotropy (Br / Bs, where Bs is 1.6T (16 kG)) is 0.82 to 0.86. As other magnetic properties,The residual magnetic flux density Br is 1.32 to 1.39 T (13.2 to 13.9 kG), iHc is 796 to 1193 kA / m (10.0 to 15.0 kOe), and (BH) max is 300 to 350 kJ / m3. (37.8-44.0 MGOe).
The anisotropic magnet powder of the present invention causes the RFeB-based alloy to absorb hydrogen and cause the reaction between hydrogen and the alloy to proceed within a relative reaction rate range of 0.25 to 0.50, thereby causing a forward transformation of the structure. Then, it can be produced by advancing a dehydrogenation reaction to cause reverse transformation of the structure. The method of preparing the raw materials used in this production is not particularly limited, but a high-purity rare earth, iron, and boron are used, mixed in a predetermined amount, melted in a melting furnace or the like, and cast to produce an alloy ingot. This can be used as a raw material. Further, the ingot may be pulverized into a powder form, which may be used as a raw material.
[0020]
At this time, depending on the method of preparing the raw material, there may be a bias in the composition distribution in the raw material. Such a deviation in the composition distribution is not preferable. Therefore, it is desirable to homogenize these raw materials. This homogenization treatment can reduce the occurrence of bias in the composition distribution.
Hydrogen is absorbed in the RFeB alloy of the present invention, and the reaction rate V between the alloy and hydrogen is
V = V0・ (PH2/P).exp(-Ea/RT)
(Where VO: Frequency factor, PH2: Hydrogen gas pressure (Pa), PO: Dissociation pressure (Pa), Ea: activation energy (kJ / mol), R: gas constant (J / molK), T: temperature (K). ). Since this reaction rate is considered to be proportional to the transformation rate of the structure, the transformation rate of the structure was evaluated based on this reaction rate.
[0021]
That is, the reaction rate of the forward transformation reaction of the microstructure is the reaction rate V when the reaction temperature is 830 ° C. and the hydrogen gas pressure is 0.1 MPa.bTo Vb= 1 and a relative reaction rate V based on this reference reaction raterDefined. VrCan be expressed by the following equation. Vr= (1 / 0.576) · PH2・ Exp (-Ea / RT)
The reverse transformation of the structure was 830 ° C. and the hydrogen gas pressure was 0.001 MPa (0.01 atm) as the standard reaction rate. The relative reaction rate of the reverse transformation reaction can be similarly determined.
[0022]
The activation energy Ea is 195 to 200 kJ / mol depending on the composition as shown in FIG. The activation energy Ea is Nd and H2Reacts with NdH2Is determined with reference to the heat of formation.
Specifically, when the relative reaction rate of the forward transformation reaction is defined by the reaction temperature and the hydrogen gas pressure, it is shown in FIG. 2 showing the temperature dependence of the relative reaction rate and FIG. 3 showing the pressure dependence of the relative reaction rate.
[0023]
In order to keep the relative reaction rate of the normal transformation reaction within the reaction rate range of 0.25 to 0.50, the reaction temperature is in the range of 780 to 840 ° C., and the hydrogen pressure is 0.01 to 0.06 MPa (0. The range of 1 to 0.6 atm) is good. It should be noted that the reaction temperature mentioned here is a temperature at which the RFeB-based alloy absorbs hydrogen and causes a forward transformation, and is not a control temperature of the reaction furnace.
[0024]
The reaction in which the RFeB-based alloy absorbs hydrogen to cause a forward transformation is an exothermic reaction, and the start of the forward transformation causes the reaction temperature to rapidly increase. Therefore, the actual reaction temperature is significantly different from the control temperature of the reactor. It is also conceivable that the hydrogen gas pressure fluctuates significantly due to hydrogen occlusion. For example, when a mixed gas of an inert gas and a hydrogen gas is employed, hydrogen is occluded, and the hydrogen gas concentration around the RFeB-based alloy that undergoes a forward transformation may be greatly reduced. Strict control of the reaction temperature and control of the hydrogen gas pressure are required to obtain highly anisotropic magnet powder.
[0025]
When the relative reaction rate of the forward transformation is out of the reaction rate range of 0.25 to 0.50, the anisotropy decreases. It should be noted that magnet powder composed of an RFeB-based alloy is inherently anisotropic, and it is also extremely difficult to make it completely isotropic.Here, as a definition of anisotropy, when anisotropic Br / Bs (Bs = 1.6T (Bs = 16 kG)) is used, those having a value of 0.5 or less are fully isotropic, and 0.5 is Those exceeding 0.70 and below are defined as isotropic, and those exceeding 0.70 are defined as anisotropic.
[0026]
The relative reaction rate of the forward transformation is within the reaction rate range of 0.25 to 0.50.An anisotropic magnet powder having a Br / Bs (Bs = 1.6T (Bs = 16 kG)) of 0.70 or more is obtained.
As described above, the NdFeB rare-earth alloy undergoes a forward transformation to cause the NdFeB rare-earth alloy to undergo hydrogen transformation to perform forward transformation.2Fe14B1Is considered to be caused by the forward transformation2It is thought that it will be transferred more accurately by B. When the relative reaction rate of the forward transformation is out of the reaction rate range of 0.25 to 0.50, Fe2Transfer to B is not sufficient and the anisotropy is low. The inventor currently states that Fe2If the transfer to B is not sufficient, it is thought that it is impossible to increase the anisotropy in a later step.
[0027]
It is impossible with a normal furnace to control the relative reaction rate of the forward transformation, which accelerates with the reaction, within the relative reaction rate range of 0.25 to 0.50. Therefore, as a new heat treatment furnace, the present inventors have developed and used a furnace having an endothermic means for canceling the heat generated during the reaction described in Japanese Patent Application No. 8-206231. This heat absorbing means arranges a hydrogen storage alloy in a tube, puts this tube in a furnace, reduces the hydrogen gas pressure in the tube in reverse to the heat generated by the reaction, advances the dehydrogenation reaction, absorbs heat, and generates heat by the reaction. Absorb and offset. Thereby, the control temperature of the furnace and the reaction temperature can be made substantially equal.
[0028]
This forward transformation reaction ideally ends in about 30 minutes, but the reaction time industrially depends on the throughput. After the completion of the forward transformation, the coercive force of the magnet powder obtained by continuing the heat treatment at a temperature at which the forward transformation has occurred for at least one hour is improved. This is thought to be related to the relaxation of the internal strain caused by the forward transformation. It is considered that if the internal strain remains, the structure becomes uneven after the reverse transformation, and the coercive force decreases.
[0029]
Thereafter, the stored hydrogen is dehydrogenated to cause reverse transformation. This reverse transformation is Fe2Nd that generates the crystal orientation of B2Fe14B1Is transferred to the crystal orientation.
During this reverse transformation, Fe2In order to transfer the direction of B, it is preferable that the transfer be made within a relative reaction speed range of 0.1 to 0.4. Specifically, the reverse transformation is achieved by maintaining the hydrogen gas pressure at 1/10 to 1/100 of the hydrogen gas pressure of the forward transformation. The reverse transformation is an endothermic reaction opposite to the normal transformation, and the reaction temperature decreases at an accelerated rate due to the start of the reverse transformation. Therefore, in order to keep the actual reaction temperature in the range of 780 to 840 ° C., a furnace having the same capability as in the forward transformation is required.
[0030]
This reverse transformation theoretically ends within 10 minutes. Industrially, it depends on the throughput. After completion of the reverse transformation, the temperature of the reverse transformation is maintained for at least 25 minutes or more, and the Nd2Fe14B1It is preferable to remove hydrogen contained in the rare earth magnet powder having crystals. This improves the coercive force. If the dissociated hydrogen remains in the alloy, the coercive force will be significantly impaired. After cooling, the anisotropic magnet of the present invention is obtained. Cooling is at least 5 ° C / min. It is desirable to carry out at a cooling rate of
[0031]
When the ingot-shaped raw material is used, the obtained ingot-shaped rare earth permanent magnet can be easily ground in a mortar or the like. When a powdery raw material is used, it may be solidified by aggregation or the like, but can be easily ground in a mortar or the like.
The rare-earth permanent bonded magnet is manufactured using the obtained rare-earth permanent magnet powder and a resin serving as a binder for the magnet powder. At this time, a thermosetting resin such as an epoxy resin can be used as the resin, and a mixture obtained by mixing the resin and the magnet powder under a predetermined magnetic field for magnetization is subjected to pressure molding or the like. Then, the resin is thermally cured by heat treatment to form an anisotropic rare earth permanent bonded magnet.
[0032]
Effect of the Invention
The anisotropic magnet powder of the present invention,RFe (Ga + Nb) B-based alloy is obtained by high-temperature hydrogen treatment, and its anisotropy (Br / Bs, where Bs is 1.6T (16 kG)) is 0.82-0.86.It has extremely large anisotropy.Other magnetic properties,The residual magnetic flux density Br is 1.32 to 1.39 T (13.2 to 13.9 kG), which is a very large anisotropy. Further, the coercive force is 796 to 1193 kA / m (10.0 to 15.0 kOe), which is excellent in magnetic properties. (BH) max has a characteristic of 300 to 350 kJ / m3 (37.8 to 44.0 MGOe). And an anisotropic bonded magnet using these magnet powders is 167.9 to 200.5 kJ / m.ThreeIt has a high (BH) max of (21.1 to 25.0 MGOe).
[0033]
In the method for producing anisotropic magnet powder of the present invention, the relative reaction rate of the normal transformation reaction in the high-temperature hydrogen heat treatment is set to a predetermined rate. As a result, rare-earth magnet powder having large anisotropy can be easily obtained.
[0034]
【Example】
Hereinafter, specific examples will be described.
(Example 1)
An alloy consisting of Nd: 12.5 at%, B: 6.2 at%, and the balance Fe was melted by button arc melting, homogenization was completed at 1140 ° C., and then hydrogen treatment was performed under the conditions shown in Table 1.
[0035]
Specifically, the sample was placed in a quartz tube as small as about 15 g, and connected to a gas pressure control device via a conduit so that the hydrogen gas pressure in the quartz tube could be controlled. An infrared heating furnace was used as the heating furnace. The temperature was measured using a thermocouple, the temperature of the sample and the temperature of the atmosphere were measured, and the furnace was controlled based on these temperatures.
The hydrogen gas pressure shown in Table 1 was introduced into the quartz tube, and heated in that state to reach the reaction temperature in about 60 minutes. When the temperature of the sample exceeds the temperature of the atmosphere at the start of the reaction, the heating is stopped immediately, the temperature of the atmosphere is lowered by cooling by radiation, the heat generated by the reaction is absorbed, and the sample temperature is maintained within the target reaction temperature + 5 ° C. It was made to be. Since the sample amount was as small as 15 g and the infrared furnace was used, the ambient temperature in the quartz tube could be controlled relatively easily.
[0036]
Thereafter, heat treatment was performed at 820 ° C. and a hydrogen gas pressure of 0.02 MPa (0.2 atm) for 3 hours.
Thereafter, the hydrogen gas pressure in the quartz tube was released so that the reverse transformation relative velocity became 0.26, dehydrogenation was attempted, and the reverse transformation reaction was advanced. In this reverse transformation reaction by dehydrogenation, a control method in which the hydrogen gas pressure is delicately controlled, and when the temperature begins to decrease due to the endothermic reaction, the pressure reduction of the hydrogen gas pressure is stopped, and when the temperature returns to the predetermined temperature, the pressure is restarted again. The temperature was controlled within the target temperature range of −5 ° C., and was set to 0.0001 MPa (0.001 atm) which was 1/100 or less of the hydrogen gas pressure at the time of storing the hydrogen gas.
[0037]
The heat treatment at a predetermined temperature was continued until 30 minutes after the start of the reverse transformation reaction by dehydrogenation. Thereafter, the system was cooled and the hydrogen treatment was completed. This produced a rare earth magnet powder.
The residual magnetic flux density of the obtained rare earth magnet powder isIt measured and calculated the anisotropic ratio.
Residual magnetic flux density,Anisotropic rateTable 1 also shows the relative rate of normal transformation, the processing temperature, and the hydrogen gas pressure during hydrogen storage. The aspect ratio was determined as an average value of 25 samples by measuring the maximum diameter and the minimum diameter of each crystal grain with an electron microscope.
Table 1
Figure 0003587158
When the reaction rate is in the range of 0.25 to 0.5, Nd2Fe14The direction of B is Fe2B is transferred to B and high anisotropy is obtained, but when the relative reaction rate is out of this range, the transfer is not successful and only an isotropic powder is obtained. On the other hand, when the reaction rate is low, the reaction becomes nonuniform and high Bs is obtained, but NdFeB remains and high coercive force (iHc) cannot be obtained.
Embodiment 2. FIG.
No. 1 of Example 1 was mainly used. 1 was subjected to a forward transformation of the alloy structure by storing hydrogen under the hydrogen storage conditions, and was subjected to a heat treatment after the forward transformation at a holding temperature, a holding hydrogen gas pressure and a holding time shown in Table 2 (No. 54). Was subjected to hydrogen storage under the hydrogen storage conditions of No. 52 in Example 1 to perform a normal transformation of the alloy structure.) After that, the hydrogen gas pressure was lowered at the holding temperature so that the reverse transformation relative velocity became 0.26, and the reverse transformation reaction by dehydrogenation was caused as in Example 1, and then the heat treatment after the reverse transformation reaction was performed as in Example Was kept at 820 ° C. under vacuum for 30 minutes and then cooled. Thus, the rare earth magnet powder shown in Table 2 was produced.
[0038]
The residual magnetic flux density, intrinsic coercive force and (BH) max of the obtained rare earth magnet powder were measured.Find the anisotropic rateWas.
With coercive force and anisotropic ratioForward transformation relative reaction rate, holding time, holding temperature, holding pressure, residual magnetic flux density,Anisotropic rate,Table 2 shows the specific coercive force and the (BH) max of the magnet powder.
Table 2
Figure 0003587158
After completion of the forward reaction in the same manner as in Example 1, heat treatment was continuously performed at the holding temperature and pressure to alleviate the strain associated with the forward transformation, followed by dehydrogenation (hydrogen pressure 0.0001 MPa (0.001 atm)). As a result, high anisotropy was maintained as in Example 1. Then, by holding for 60 minutes or more, the coercive force becomes higher as compared with the first embodiment. On the other hand, the anisotropy is not lost by holding for a short time, but the coercive force is low. When the reaction rate is high, the anisotropy is lost, and the anisotropy does not recover even if the retention and dehydrogenation are performed continuously.
Embodiment 3 FIG.
No. 2 of Example 2 was mainly used. The alloy structure was subjected to normal transformation by hydrogen absorption under the hydrogen storage conditions of 7, and then maintained for 180 minutes. The specimen temperature, reverse transformation relative speed, and reverse transformation hydrogen gas pressure shown in Table 3 were 0.0001 MPa (0.001 atm). , And then heat-treated at 820 ° C. under vacuum for 30 minutes, and then quenched (for No. 56, hydrogen absorption was performed under the hydrogen storage conditions of No. 52 of Example 1 to form an alloy structure. Was performed.) Thus, the rare earth magnet powder shown in Table 3 was produced.
[0039]
The residual magnetic flux density, intrinsic coercive force and (BH) max of the obtained rare earth magnet powder were measured.Find the anisotropic rateWas.
With coercive force and anisotropic ratioForward transformation relative reaction rate, retention time, reverse transformation relative velocity, sample temperature, residual magnetic flux density,Anisotropic rate,Table 3 shows the specific coercive force and (BH) max of the magnet powder together.
Table 3
Figure 0003587158
When the reverse transformation reaction rate is in the range of 0.1 to 0.4, the transferred orientation is Nd without being disturbed.2Fe14No. B is transferred to B to obtain anisotropy. As can be seen from FIG. 55, when the reverse transformation reaction rate is higher than that, the anisotropy becomes low and high characteristics cannot be obtained.
[0040]
On the other hand, No. As shown in 56, when the reaction rate of transformation is high, anisotropy cannot be obtained even if the subsequent treatment is good.
Embodiment 4. FIG.
No. 3 of Example 3 was mainly used. In the same manner as in No. 11, those subjected to the forward transformation, the heat treatment, and the reverse transformation were subjected to heat treatment at the holding temperature and holding time shown in Table 4. (For No. 56, forward transformation, heat treatment and reverse transformation of No. 54 of Example 3 were performed.) In this way, rare earth magnet powders shown in Table 4 were produced.
[0041]
Further, using the obtained powder magnet powder, 3 g of a phenol resin was used as a thermosetting resin per 100 g of the powder magnet, and compression-molded in a mold to obtain a bonded magnet. In addition, two types, one in which a magnetic field of 2.0 T (20 kOe) was applied at the time of molding and one without a magnetic field, were obtained.
The residual magnetic flux density, intrinsic coercive force and (BH) max of the obtained rare earth magnet powder were measured.Find the anisotropic rateWas. Further, residual hydrogen contained in the magnet was determined. The value of the residual hydrogen was shown in terms of% by weight when the whole was taken as 100% by weight. Further, the maximum energy product (BH) max of the bonded magnet was measured.
As a result, 135 kJ / mThreeA magnetic anisotropic bonded magnet having the above maximum energy product was obtained.
[0042]
With coercive force and anisotropic ratioTable 4 shows the processing conditions of the forward transformation relative reaction rate, the holding time, the reverse transformation relative rate, the holding temperature and the holding time after the reverse transformation, and Table 5 shows the measured magnetic properties.
Table 4
Figure 0003587158
Table 5
Figure 0003587158
It can be seen that by holding the dehydrogenation time for 25 minutes or more, a high coercive force can be obtained without sufficient loss of hydrogen and loss of anisotropy. On the other hand, when the retention time is short, a little hydrogen remains, and a high coercive force cannot be obtained.
[0043]
When the reaction rate of the anisotropic reaction is high, a high coercive force can be obtained, but the anisotropy is completely eliminated and only an isotropic powder can be obtained.
Embodiment 5 FIG.
Trace amounts of Ga and Nb shown in Table 6 were added to an alloy consisting of Nd: 12.5 at%, B: 6.2 at%, and the balance Fe, and melted by button arc melting as described in Example 1. After completion of homogenization at 1140 ° C., high-temperature hydrogen heat treatment was performed under the conditions shown in Table 6. Thereafter, the magnetic characteristics were measured in the same manner as in Example 4. Table 7 shows the measurement results.
Table 6
Figure 0003587158
Table 7
Figure 0003587158
The addition of Ga has a cleaning effect on grain boundaries for suppressing the generation of reverse magnetic domains, and provides a high coercive force. Further, the addition of Nb has a function of improving the transfer effect. As a result, a high characteristic of 350 kJ / m3 (44.0 MGOe), which has not been obtained conventionally by adding a small amount of Ga and Nb, is obtained.
And the maximum energy product is 167.9 to 200.5 kJ / m.Three(21.1 to 25.0 MGOe) magnetically anisotropic bonded magnet could be obtained.
【The invention's effect】
The anisotropic magnet powder of the present invention is an RFe (Ga + Nb) B-based alloyIs subjected to high-temperature hydrogen heat treatment, and has anisotropy (Br / Bs = 1.6T (16KG)) of 0 . 82-0.86Is a rare earth magnet.The anisotropic magnet powder of the present invention has an aspect ratio of crystal grains of 2.0 or less.By using this anisotropic magnet powder, 167.9 to 200.5 kJ / mThreeAn anisotropic bonded magnet having an excellent (BH) max of (21.1 to 25.0 MGOe) can be obtained.
The magnetic anisotropic magnet powder of this RFe (Ga + Nb) B-based alloy isThe residual magnetic flux density (Br) is 1.32 to 1.39 T (13.2 to 1.39 kG);Specific coercive force (iHc) is 796 to 1193 kA / m (10.0 to 15 kOe), and (BH) max is 300 to 350 kJ / mThree(37.8-44.0 MGOe).
[Brief description of the drawings]
FIG. 1 is a diagram showing a relationship between an alloy composition and a reaction rate of a forward transformation reaction of a rare earth alloy.
FIG. 2 is a diagram showing a relationship between a reaction temperature and a reaction rate of a normal transformation reaction of a rare earth alloy.
FIG. 3 is a diagram showing a relationship between a hydrogen gas pressure and a reaction rate in a forward transformation reaction of a rare earth alloy.

Claims (3)

高温水素処理され、12〜15at%のイットリウム(Y)を含む希土類元素(以下、Rという。)と、5.5〜8at%のホウ素(以下、Bという。)と、0.01〜1.0at%のガリウム(以下、Gaという。)と、0.01〜0.6at%のニオブ(以下、Nbという。)と、不可避的な不純物とを含み残りが鉄(Fe)とから構成されたRFe(Ga+Nb)B系合金からなり、該RFe(Ga+Nb)B系合金の異方性(Br/Bs、ただしBsは1.6T(16kG)とした。)が0.82〜0.86であり、かつ結晶粒のアスペクト比が2.0以下である磁気異方性磁石粉末と熱硬化性樹脂とを圧縮成形した磁気異方性ボンド磁石。A rare earth element (hereinafter, referred to as R) containing high-temperature hydrogen and containing 12 to 15 at% of yttrium (Y), 5.5 to 8 at% of boron (hereinafter, referred to as B), and 0.01 to 1. It contains 0 at% gallium (hereinafter referred to as Ga), 0.01 to 0.6 at% niobium (hereinafter referred to as Nb), and unavoidable impurities, and the remainder is composed of iron (Fe). The RFe (Ga + Nb) B-based alloy has an anisotropy (Br / Bs, where Bs is 1.6T (16 kG)) of 0.82-0.86. A magnetic anisotropic bonded magnet obtained by compression molding magnetic anisotropic magnet powder having a crystal grain aspect ratio of 2.0 or less and a thermosetting resin. 前記磁気異方性磁石粉末が、残留磁束密度(Br)が1.32〜1.39T(13.2〜1.39kG)、固有保磁力(iHc)が796〜1193kA/m(10.0〜15kOe)、(BH)maxが300〜350kJ/m3(37.8〜44.0MGOe)である請求項1に記載の磁気異方性ボンド磁石。 The magnetic anisotropic magnet powder has a residual magnetic flux density (Br) of 1.32 to 1.39 T (13.2 to 1.39 kG), and an intrinsic coercive force (iHc) of 796 to 1193 kA / m (10.0 to 13.0 kG). 15 kOe), the magnetic anisotropy bonded magnet according to claim 1 which is (BH) max is 300~350kJ / m 3 (37.8~44.0MGOe). 前記磁気異方性ボンド磁石が、(BH)maxが167.9〜200.5kJ/mThe magnetic anisotropic bonded magnet has a (BH) max of 167.9 to 200.5 kJ / m. 3 (21.1〜25.0MGOe)である請求項1に記載の磁気異方性ボンド磁石。(21.1 to 25.0 MGOe).
JP2000319447A 2000-10-19 2000-10-19 Magnetic anisotropic bonded magnet Expired - Lifetime JP3587158B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000319447A JP3587158B2 (en) 2000-10-19 2000-10-19 Magnetic anisotropic bonded magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000319447A JP3587158B2 (en) 2000-10-19 2000-10-19 Magnetic anisotropic bonded magnet

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP16619297A Division JP3463911B2 (en) 1997-06-23 1997-06-23 Anisotropic magnet powder

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2003087790A Division JP2003309006A (en) 2003-03-27 2003-03-27 Magnetic anisotropic bond magnet

Publications (2)

Publication Number Publication Date
JP2001167916A JP2001167916A (en) 2001-06-22
JP3587158B2 true JP3587158B2 (en) 2004-11-10

Family

ID=18797901

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000319447A Expired - Lifetime JP3587158B2 (en) 2000-10-19 2000-10-19 Magnetic anisotropic bonded magnet

Country Status (1)

Country Link
JP (1) JP3587158B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6255977B2 (en) * 2013-03-28 2018-01-10 Tdk株式会社 Rare earth magnets

Also Published As

Publication number Publication date
JP2001167916A (en) 2001-06-22

Similar Documents

Publication Publication Date Title
JP3452254B2 (en) Method for producing anisotropic magnet powder, raw material powder for anisotropic magnet powder, and bonded magnet
JP3250551B2 (en) Method for producing anisotropic rare earth magnet powder
JP2881409B2 (en) Method for producing anisotropic magnet powder
JP2703281B2 (en) Magnetic anisotropic material and method of manufacturing the same
JP2008248369A (en) Nd-Fe-B-BASED META-STABLE SOLIDIFICATION ALLOY AND NANO-COMPOSITE MAGNET MANUFACTURED BY USING THE SAME, AND METHOD FOR MANUFACTURING THE SAME
JP3560387B2 (en) Magnetic material and its manufacturing method
JP3463911B2 (en) Anisotropic magnet powder
WO2004030000A1 (en) Method for producing r-t-b based rare earth element permanent magnet
JPH024901A (en) Manufacture of rare earth element-fe-b series alloy magnet powder
JP2006203216A (en) Anisotropic rare-earth magnet powder and magnetically anisotropic bonded magnet
JP3587158B2 (en) Magnetic anisotropic bonded magnet
JP3597615B2 (en) Method for producing RTB based anisotropic bonded magnet
JPH10326705A (en) Rare-earth magnet powder and manufacture thereof
JP3645312B2 (en) Magnetic materials and manufacturing methods
JP2002025813A (en) Anisotropic rare earth magnet powder
JP2003282311A (en) Anisotropic magnet powder
JP2001148306A (en) Anisotropy magnet powder
JP3565513B2 (en) Alloy for bonded magnet, isotropic magnet powder and anisotropic magnet powder, their production method, and bonded magnet
JP2001313206A (en) R-t-n anisotropic magnetic powder, its manufacturing method, and r-t-n anisotropic bonded magnet
JP2003309006A (en) Magnetic anisotropic bond magnet
JP3209291B2 (en) Magnetic material and its manufacturing method
Zajkov et al. Effect of high-temperature hydrogen treatment on magnetic properties and structure of TbFe2-based compounds
JPH05152115A (en) Manufacture of magnetic recording powder
JP2007005786A (en) Rare-earth magnet powder and method for manufacturing same
JP3209292B2 (en) Magnetic material and its manufacturing method

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040413

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040527

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040720

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040802

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080820

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090820

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100820

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100820

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110820

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120820

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130820

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140820

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term