JP2007005786A - Rare-earth magnet powder and method for manufacturing same - Google Patents

Rare-earth magnet powder and method for manufacturing same Download PDF

Info

Publication number
JP2007005786A
JP2007005786A JP2006151629A JP2006151629A JP2007005786A JP 2007005786 A JP2007005786 A JP 2007005786A JP 2006151629 A JP2006151629 A JP 2006151629A JP 2006151629 A JP2006151629 A JP 2006151629A JP 2007005786 A JP2007005786 A JP 2007005786A
Authority
JP
Japan
Prior art keywords
rare earth
magnet powder
earth magnet
transformation
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006151629A
Other languages
Japanese (ja)
Inventor
Chisato Mishima
千里 三嶋
Yoshinobu Motokura
義信 本蔵
Hiroshige Mitarai
浩成 御手洗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aichi Steel Corp
Original Assignee
Aichi Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aichi Steel Corp filed Critical Aichi Steel Corp
Priority to JP2006151629A priority Critical patent/JP2007005786A/en
Publication of JP2007005786A publication Critical patent/JP2007005786A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide rare-earth magnet power having been subjected to high-temperature hydrogen heat treatment and having high anisotropy, and a method for manufacturing the same. <P>SOLUTION: The rare-earth magnet power having been subjected to high-temperature hydrogen heat treatment has a composition of a rare-earth element (R) including yttrium (Y) of 11 to 15 at%, B of 5 to 8 at%, one or two kinds of Ga and Nb of 0.01 to 1.0 at%, respectively, and Fe and unavoidable impurities as the rest. The rare-earth magnet power having been subjected to high-temperature hydrogen heat treatment has a composition of R of 11 to 15 at%, B of 5 to 8 at%, Co of 25 at% or less, one or two kinds of Ga and Nb of 0.01 to 1.0 at%, respectively, and Fe and unavoidable impurities as the rest. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、優れた磁気特性を持つ希土類磁石粉末及びその製造方法に関する。   The present invention relates to a rare earth magnet powder having excellent magnetic properties and a method for producing the same.

近年、永久磁石はますます高性能化が求められている。この要求に応える永久磁石として希土類磁石の開発が活発になされてきている。   In recent years, permanent magnets are required to have higher performance. Rare earth magnets have been actively developed as permanent magnets that meet this demand.

特開昭62−23903号公報には、RFeB系合金に水素の吸蔵による組織の順変態をし、粉砕した後、水素の脱離する逆変態を行う高温水素熱処理により保磁力(iHc)が398kA/m(5kOe)と高い永久磁石を製造する方法が開示されている。ここで、高温水素熱処理とは組織の変態を伴う熱処理をいい、組織の変態を伴わない水素の吸蔵、脱水素のみの低温水素熱処理とは区別される。   Japanese Patent Laid-Open No. 62-23903 discloses a coercive force (iHc) of 398 kA by high-temperature hydrogen heat treatment in which an RFeB alloy is subjected to forward transformation of the structure by occlusion of hydrogen, pulverized, and then reverse transformed to desorb hydrogen. A method for producing a permanent magnet as high as / m (5 kOe) is disclosed. Here, high-temperature hydrogen heat treatment refers to heat treatment that involves structural transformation, and is distinguished from low-temperature hydrogen thermal treatment that involves only occlusion and dehydrogenation of hydrogen that does not involve structural transformation.

また、特開平7−68561号公報には、Yを含む希土類元素(R)と、鉄(Fe)と、ホウ素(B)を主成分とする合金のインゴットまたは粉末を、水素ガス圧が10Torr(0.013atm)以上の水素ガス雰囲気または水素ガス分圧が10Torr以上の水素ガスと不活性ガスの混合雰囲気中で500〜1000℃以上に保持して該合金に水素を吸蔵させる順変態の後、連続的に水素ガス圧が1×10-1Torr以下の真空雰囲気になるまで500〜1000℃で脱水素処理する逆変態を行った後、冷却するRFeB系合金磁石粉末の高温水素熱処理による製造方法が開示されている。 Japanese Patent Laid-Open No. 7-68561 discloses an ingot or powder of an alloy mainly composed of a rare earth element (R) containing Y, iron (Fe), and boron (B), with a hydrogen gas pressure of 10 Torr ( 0.013 atm) or higher or a forward transformation in which hydrogen is occluded in the alloy by holding the alloy at 500 to 1000 ° C. or higher in a mixed atmosphere of hydrogen gas and inert gas having a hydrogen gas partial pressure of 10 Torr or higher, Method for producing RFeB alloy magnet powder to be cooled by high-temperature hydrogen heat treatment after reverse transformation in which dehydrogenation treatment is performed at 500 to 1000 ° C. until a vacuum atmosphere with a hydrogen gas pressure of 1 × 10 −1 Torr or less is continuously obtained Is disclosed.

また、このRFeB系合金磁石のFeの一部をCo、Ni、V、Nb、Ta、Cu、Cr、Mn、Mo、W、Ti、Al、Ga、In、Zr、Hf等の金属の1種あるいは2種以上の少量と置換してもよいとしてい、この置換の実施例として、Co、Pr、Dyの1種を少量置換したものをあげている。しかし、前記公報では、これら金属元素の置換による磁気特性の向上を示してはいない。   Further, a part of Fe of this RFeB-based alloy magnet is one kind of metal such as Co, Ni, V, Nb, Ta, Cu, Cr, Mn, Mo, W, Ti, Al, Ga, In, Zr, and Hf. Alternatively, two or more small amounts may be substituted, and examples of this substitution include those obtained by substituting a small amount of one of Co, Pr, and Dy. However, the above publication does not show improvement in magnetic properties by substitution of these metal elements.

また、特開平3−129702号公報には、RとFeとBを主成分としTi、V、Nb、Ta、Al、SiやGa、Zr、Hfを添加し、高温水素処理によって磁石特性を改善する異方性永久磁石粉末が開示されている。   Japanese Patent Application Laid-Open No. 3-129702 discloses that R, Fe, and B are the main components, Ti, V, Nb, Ta, Al, Si, Ga, Zr, and Hf are added, and the magnet characteristics are improved by high-temperature hydrogen treatment. An anisotropic permanent magnet powder is disclosed.

さらに、特開平3−129703号公報には、上記と同様にRとFeとCoとBを主成分とし、Ti、V、Nb、Ta、Al、SiやGa、Zr、Hfを添加し、高温水素処理によって磁石特性を改善する異方性永久磁石粉末が開示されている。   Further, in JP-A-3-129703, as described above, R, Fe, Co, and B are the main components, and Ti, V, Nb, Ta, Al, Si, Ga, Zr, and Hf are added. Anisotropic permanent magnet powders that improve magnet properties by hydrogen treatment have been disclosed.

しかしながら、前記公報では十分な高さまで異方性が向上してはいない。   However, the above publication does not improve the anisotropy to a sufficient height.

従来は専ら異方性を強める合金元素を多量に使用し、異方性を高めてきており、本来、磁石粉末の主相の持つ磁気特性は損なわれていた。その結果高い磁気特性を得ることができなかった。   Conventionally, anisotropy has been increased by using a large amount of alloying elements exclusively increasing the anisotropy, and the magnetic properties of the main phase of the magnet powder were originally impaired. As a result, high magnetic properties could not be obtained.

また、希土類磁石の水素吸蔵合金としての特色でもある水素の吸蔵による組織の順変態、脱水素による組織の逆変態を行う高温水素熱処理により結晶粒を微細化することによって残留磁束密度、保磁力などの磁気特性を高める高温水素熱処理による希土類磁石粉末を得る方法は、操作が比較的単純で製造コストが安いという利点があるが、磁気特性に優れた希土類磁石粉末が得られないという問題がある。特に異方性を付与することが極めて困難である。   In addition, the residual magnetic flux density, coercive force, etc. are achieved by refining the crystal grains by high-temperature hydrogen heat treatment that performs forward transformation of the structure by hydrogen storage and reverse transformation of the structure by dehydrogenation, which is also a feature of rare earth magnets as a hydrogen storage alloy. The method of obtaining a rare earth magnet powder by high-temperature hydrogen heat treatment that enhances the magnetic properties of the magnet has the advantage that the operation is relatively simple and the production cost is low, but there is a problem that a rare earth magnet powder having excellent magnetic properties cannot be obtained. In particular, it is very difficult to impart anisotropy.

本発明は、高温水素熱処理された希土類磁石粉末であって、かつ高い異方性、すなわち、Br/Bsが0.65以上の高い異方性を持つ希土類磁石粉末およびその製造方法を提供することを課題とする。   The present invention provides a rare earth magnet powder that has been subjected to high-temperature hydrogen heat treatment and has a high anisotropy, that is, a high anisotropy with Br / Bs of 0.65 or more, and a method for producing the same. Is an issue.

第1発明は、高温水素熱処理された異方性が0.65以上である異方性希土類磁石粉末であり、11〜15at%のRと、5〜8at%のBと、それぞれ0.01〜1.0at%のGa、Nbの1種あるいは2種と、残りがFeと不可避な不純物とからなる組成の希土類磁石粉末である。   The first invention is an anisotropic rare earth magnet powder having an anisotropy of 0.65 or more that has been subjected to a high-temperature hydrogen heat treatment, 11 to 15 at% R, 5 to 8 at% B, 0.01 to It is a rare earth magnet powder having a composition composed of one or two of 1.0 at% of Ga and Nb, and the balance of Fe and inevitable impurities.

該希土類磁石粉末は、水素を吸蔵させる順変態反応の反応速度を0.25〜0.50に制御し、反応後に、水素を離脱させる逆変態反応の反応速度を0.1〜0.4に制御し、反応を起こさせる高温水素熱処理により異方性が付与されることを特徴とする。   The rare earth magnet powder controls the reaction rate of the forward transformation reaction for occluding hydrogen to 0.25 to 0.50, and the reaction rate of the reverse transformation reaction for releasing hydrogen after the reaction to 0.1 to 0.4. Anisotropy is imparted by high-temperature hydrogen heat treatment to control and cause reaction.

第2発明は、高温水素熱処理された異方性が0.65以上である異方性希土類磁石粉末であり、11〜15at%のRと、5〜8at%のBと、25at%以下のCoと、それぞれ0.01〜1.0at%のGa、Nbの1種あるいは2種と、残りがFeと不可避な不純物とからなる組成の希土類磁石粉末である。   The second invention is an anisotropic rare earth magnet powder having an anisotropy of 0.65 or more which has been subjected to a high-temperature hydrogen heat treatment, 11 to 15 at% R, 5 to 8 at% B, and 25 at% or less Co. And a rare earth magnet powder having a composition composed of one or two of 0.01 to 1.0 at% of Ga and Nb, and the balance of Fe and inevitable impurities.

該希土類磁石粉末は、水素を吸蔵させる順変態反応の反応速度を0.25〜0.50に制御し、反応後に、水素を離脱させる逆変態反応の反応速度を0.1〜0.4に制御し、反応を起こさせる高温水素熱処理により異方性が付与されることを特徴とする。   The rare earth magnet powder controls the reaction rate of the forward transformation reaction for occluding hydrogen to 0.25 to 0.50, and the reaction rate of the reverse transformation reaction for releasing hydrogen after the reaction to 0.1 to 0.4. Anisotropy is imparted by high-temperature hydrogen heat treatment to control and cause reaction.

第3発明は、高温水素熱処理された異方性が0.65以上である異方性希土類磁石粉末であり、11〜15at%のRと、5〜8at%のBと、25at%以下のCoと、それぞれ0.01〜1.0at%のGa、Nbの1種あるいは2種と、Zr、V、Mn、Ni、Cr、Cu、Al、Si、Moの1種あるいは2種の合計が0.01〜3.0at%と、残りがFeと不可避な不純物とからなる組成の希土類磁石粉末である。   The third invention is an anisotropic rare earth magnet powder having an anisotropy of 0.65 or more which has been subjected to a high-temperature hydrogen heat treatment, 11 to 15 at% R, 5 to 8 at% B and 25 at% or less Co. The total of one or two of 0.01 to 1.0 at% of Ga and Nb and one or two of Zr, V, Mn, Ni, Cr, Cu, Al, Si, and Mo is 0. It is a rare earth magnet powder having a composition composed of 0.01 to 3.0 at%, and the balance of Fe and inevitable impurities.

該希土類磁石粉末は、水素を吸蔵させる順変態反応の反応速度を0.25〜0.50に制御し、反応後に、水素を離脱させる逆変態反応の反応速度を0.1〜0.4に制御し、反応をを起こさせる高温水素熱処理により異方性が付与されることを特徴とする。   The rare earth magnet powder controls the reaction rate of the forward transformation reaction for occluding hydrogen to 0.25 to 0.50, and the reaction rate of the reverse transformation reaction for releasing hydrogen after the reaction to 0.1 to 0.4. Anisotropy is imparted by a high-temperature hydrogen heat treatment that controls and causes the reaction.

本発明の異方性希土類磁石粉末は異方性(Br/Bs、ただしBsは1.6T(16kG)とした)が0.65以上である希土類磁石粉末である。この異方性希土類磁石粉末を用いることにより高い(BH)maxを持つ異方性ボンド磁石とすることができる。   The anisotropic rare earth magnet powder of the present invention is a rare earth magnet powder having an anisotropy (Br / Bs, where Bs is 1.6T (16 kG)) of 0.65 or more. By using this anisotropic rare earth magnet powder, an anisotropic bonded magnet having a high (BH) max can be obtained.

本発明はRFeB系組成に、極力合金を添加しないで、異方性を付与することを検討した。その結果合金元素の添加を最小限におさえた磁石組成で、その添加元素の組成に適合した高温水素熱処理により、磁気特性に優れた異方性希土類磁石粉末が得られた。   In the present invention, it was studied to impart anisotropy to the RFeB-based composition without adding an alloy as much as possible. As a result, an anisotropic rare earth magnet powder having excellent magnetic properties was obtained by high-temperature hydrogen heat treatment that was adapted to the composition of the additive element with a magnet composition with minimal addition of alloying elements.

なお、本発明における異方性の定義としては、異方性Br/Bs(Bsは1.6T(Bsは16kG))としたとき、このBr/Bsが0.5以下のものを完全等方性、0.5から0.65未満のものを等方性、0.65以上のものを異方性と定義する。   The definition of anisotropy in the present invention is that anisotropy Br / Bs (Bs is 1.6 T (Bs is 16 kG)), and the one whose Br / Bs is 0.5 or less is completely isotropic. Property, 0.5 to less than 0.65 is defined as isotropic, and 0.65 or more is defined as anisotropy.

本発明のYを含む希土類元素(R)は、Y、La、Ce、Pr、Nd、Sm、Gd、Tb、Dy、Ho、Er、Tm、Luから選ばれる1種あるいは2種以上が利用できる。なかでもNdを用いるのが特に好ましい。また、Bは正方晶Nd2Fe14B型結晶構造を安定して析出させるためには必須である。 The rare earth element (R) containing Y of the present invention may be one or more selected from Y, La, Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm, and Lu. . Among these, it is particularly preferable to use Nd. B is essential for stably depositing a tetragonal Nd 2 Fe 14 B type crystal structure.

第1発明の異方性磁石粉末は、高温水素処理され原子百分率でRが11以上15以下、Bが5以上8以下、Ga、Nbの1種あるいは2種がそれぞれ0.01以上1.0以下、残りがFeと不可避な不純物とからなる。   The anisotropic magnet powder of the first invention is subjected to high-temperature hydrogen treatment and R is 11 or more and 15 or less, B is 5 or more and 8 or less, and one or two of Ga and Nb are 0.01 or more and 1.0, respectively. Hereinafter, the remainder consists of Fe and inevitable impurities.

Rが11at%以下ではα−Fe相が析出し、熱処理を行ってもα−Fe相が消失せず磁気特性を劣化させる。また一方でRが15at%以上であるとNdrich相が多くなり主相であるNd2Fe14B相が減少し、磁気特性を低下させる。 When R is 11 at% or less, an α-Fe phase is precipitated, and even if heat treatment is performed, the α-Fe phase does not disappear and the magnetic properties are deteriorated. On the other hand, when R is 15 at% or more, the Nd rich phase increases, the Nd 2 Fe 14 B phase as the main phase decreases, and the magnetic properties deteriorate.

Bが5at%以下ではNd2Fe17相が析出し、このNd2Fe17相は軟磁性のため磁気特性が劣化する。またBが8at%以上ではBrich相、Nd1.1Fe44相が多くなり主相であるNd2Fe14B相が減少し磁気特性を低下させている。 When B is 5 at% or less, an Nd 2 Fe 17 phase is precipitated, and this Nd 2 Fe 17 phase is soft magnetism, so that the magnetic properties deteriorate. On the other hand, when B is 8 at% or more, the B rich phase and the Nd 1.1 Fe 4 B 4 phase increase and the Nd 2 Fe 14 B phase as the main phase decreases to deteriorate the magnetic properties.

添加されるNbはNd2Fe14BからFe2Bへの方位の転写の反応速度をコントロールしやすくする元素であり、0.01at%以下では転写をコントロールするのが難しく、1.0at%以上では保磁力を減少させる。Gaは保磁力をエンハンスする元素であり、0.01at%以下では保磁力をエンハンスする効果がない。また、1.0at%以上では保磁力を逆に減少させる。 Nb added is an element that makes it easy to control the reaction rate of transfer in the direction from Nd 2 Fe 14 B to Fe 2 B. If it is 0.01 at% or less, it is difficult to control the transfer, and 1.0 at% or more. Then, reduce the coercive force. Ga is an element that enhances the coercive force, and if it is 0.01 at% or less, there is no effect of enhancing the coercive force. On the other hand, if it is 1.0 at% or more, the coercive force is decreased.

第2発明の異方性磁石粉末は、高温水素処理され原子百分率でRが11以上15以下、Bが5以上8以下、Coが25以下、Ga、Nbの1種あるいは2種がそれぞれ0.01以上1.0以下、残りがFeと不可避な不純物とからなる。   The anisotropic magnet powder of the second invention is subjected to high-temperature hydrogen treatment, and in terms of atomic percentage, R is 11 or more, 15 or less, B is 5 or more and 8 or less, Co is 25 or less, and one or two of Ga and Nb are each 0.00. 01 or more and 1.0 or less, and the remainder consists of Fe and inevitable impurities.

Coは特に必須の元素ではないが、添加することで方位の転写の反応速度をコントロールしやすくする元素であり、従来から知られているようにキュリ温度を上昇させるものであるが、磁気特性的には飽和磁化を減少させてしまっている。このため、25at%以上の添加は残留磁束密度が1.2T以下になり、磁気特性の低下を招く。   Co is not a particularly essential element, but it is an element that makes it easy to control the reaction rate of orientation transfer by adding it, and raises the Curie temperature as conventionally known. Has reduced the saturation magnetization. For this reason, the addition of 25 at% or more results in a residual magnetic flux density of 1.2 T or less, leading to a decrease in magnetic properties.

第3発明の異方性磁石粉末は、高温水素処理され原子百分率でRが11以上15以下、Bが5以上8以下、Coが25以下、Ga、Nbの1種あるいは2種がそれぞれ0.01以上1.0以下、Zr、V、Mn、Ni、Cr、Cu、Al、Si、Moの1種または2種の合計が0.01以上3以下、残りがFeと不可避な不純物とからなる。   The anisotropic magnet powder of the third invention is subjected to high-temperature hydrogen treatment and R is 11 or more and 15 or less, B is 5 or more and 8 or less, Co is 25 or less, and one or two of Ga and Nb are each 0.00. 01 or more and 1.0 or less, the total of one or two of Zr, V, Mn, Ni, Cr, Cu, Al, Si, and Mo is 0.01 or more and 3 or less, and the remainder consists of Fe and inevitable impurities .

第3発明に添加されるZr、V、Mn、Ni、Cr、Cu、Al、Si、Moは、いずれも反応速度を制御する元素であるが、0.01at%以下ではその効果がみられない。また、3at%以上では逆に析出相などが存在し保磁力を低下させる。   Zr, V, Mn, Ni, Cr, Cu, Al, Si, and Mo added to the third invention are all elements that control the reaction rate, but the effect is not seen at 0.01 at% or less. . On the other hand, if it is 3 at% or more, a precipitated phase or the like is present and the coercive force is lowered.

第1〜3発明の希土類磁石粉末は、その異方性(Br/Bs、ただしBsは1.6T(16kG)とした)が0.65以上である。また、その他の磁気特性としては、Brは1.2〜1.5T(12〜15kG)、iHcは636〜1272kA/m(8.0〜16.0kOe)、(BH)maxは238〜358kJ/M3(30〜45MGOe)の特性を持つ。 The rare earth magnet powders of the first to third inventions have an anisotropy (Br / Bs, where Bs is 1.6T (16 kG)) of 0.65 or more. As other magnetic characteristics, Br is 1.2 to 1.5 T (12 to 15 kG), iHc is 636 to 1272 kA / m (8.0 to 16.0 kOe), and (BH) max is 238 to 358 kJ / It has a characteristic of M 3 (30 to 45 MGOe).

また、本発明の希土類磁石の製造方法は、原料調製工程において原料の調製方法は特に限定されないが、高純度の材料を用い、それぞれ所定の組成となるようにそれぞれを用意し、これらを混合して溶解炉等で溶解し、これを鋳造して合金のインゴットを作成し、これを原料とする。この原料インゴットを均質化処理して組成分布の偏りを減少させる。さらに、この均質化処理したインゴットを粉砕して粉末状とし、これを原料とすることもできる。   In addition, the method for producing the rare earth magnet of the present invention is not particularly limited in the raw material preparation step, but a high-purity material is used, and each is prepared so as to have a predetermined composition, and these are mixed. Then, it is melted in a melting furnace or the like and casted to make an alloy ingot, which is used as a raw material. The raw material ingot is homogenized to reduce the composition distribution bias. Further, the homogenized ingot can be pulverized into a powder and used as a raw material.

この均質化処理は、温度範囲が1000〜1150℃であり、1000℃より低いと均質化処理に長時間を要するため、生産性が低下する。また、1150℃を超えると、インゴットが溶融するので好ましくない。   This homogenization treatment has a temperature range of 1000 to 1150 ° C., and if it is lower than 1000 ° C., it takes a long time for the homogenization treatment, resulting in a decrease in productivity. On the other hand, if it exceeds 1150 ° C., the ingot melts, which is not preferable.

本発明の合金に水素を吸蔵させる時の合金と水素の反応速度Vは
V=V0・(PH2/P)1/2・exp(−Ea/RT)
で表される。ここで、V0:頻度因子、PH2:水素ガス圧力(Pa)、P0:解離圧力、Ea:活性化エネルギー(J/molK)、T:温度(K)である。この反応速度と組織の変態速度とは比例していると考えられるので、組織の変態速度をこの反応速度で評価する。
The reaction rate V between the alloy and hydrogen when the alloy of the present invention occludes hydrogen is V = V 0 · (PH 2 / P) 1/2 · exp (-Ea / RT)
It is represented by Here, V 0 : frequency factor, PH 2 : hydrogen gas pressure (Pa), P 0 : dissociation pressure, Ea: activation energy (J / molK), T: temperature (K). Since this reaction rate is considered to be proportional to the tissue transformation rate, the tissue transformation rate is evaluated by this reaction rate.

すなわち、組織の順変態反応の反応速度は、反応温度が830℃、水素ガス圧力が0.1MPa(1atm)の時の反応速度VbをVb=1とする基準反応速度とし、この基準反応速度に基づく相対反応速度Vrで定義した。Vrは次の式で表すことができる。
r=(1/0.576)・(PH21/2・exp(−Ea/RT)
That is, the reaction rate of the forward transformation reaction of the structure is set to a reference reaction rate where the reaction rate V b when the reaction temperature is 830 ° C. and the hydrogen gas pressure is 0.1 MPa (1 atm) is V b = 1. The relative reaction rate V r based on the rate was defined. V r can be expressed by the following equation.
V r = (1 / 0.576) · (PH 2 ) 1/2 · exp (−Ea / RT)

また、組織の逆変態については、反応温度が830℃、水素ガス圧力が0.001MPa(0.01atm)を基準反応速度とした。逆変態反応の相対反応速度も同様に求めることができる。   For the reverse transformation of the structure, the reaction temperature was 830 ° C. and the hydrogen gas pressure was 0.001 MPa (0.01 atm) as the standard reaction rate. The relative reaction rate of the reverse transformation reaction can be determined in the same manner.

合金が水素を吸蔵する順変態反応は発熱反応であり、順変態の開始により反応温度が加速度的に高くなる。また、ここでいう反応温度は合金が水素を吸蔵して順変態を起こす温度であり、反応炉の管理温度ではない。従って、実際の反応温度は反応炉の管理温度と大きく異なる。また、水素吸蔵により水素ガス圧が大きく変動することも考えられる。例えば、水素ガスと不活性ガスとの混合ガス雰囲気では、水素が吸蔵され順変態を起こす合金の周囲の水素ガス濃度が大きく低下することもあり得る。異方性の高い磁石粉末とするためには、厳密な反応温度管理および水素ガス圧力管理を必要とする。   The forward transformation reaction in which the alloy occludes hydrogen is an exothermic reaction, and the reaction temperature is accelerated at the beginning of the forward transformation. The reaction temperature here is a temperature at which the alloy occludes hydrogen and undergoes a normal transformation, and is not a control temperature of the reactor. Therefore, the actual reaction temperature is greatly different from the control temperature of the reactor. It is also conceivable that the hydrogen gas pressure varies greatly due to hydrogen storage. For example, in a mixed gas atmosphere of hydrogen gas and inert gas, the hydrogen gas concentration around the alloy that absorbs hydrogen and causes forward transformation may be greatly reduced. Strict reaction temperature control and hydrogen gas pressure control are required to obtain highly anisotropic magnetic powder.

順変態の相対反応速度が0.25〜0.50の相対反応速度外となる場合には異方性が小さくなる。その理由とは、順変態の反応により、NdFeBの希土類合金を水素吸蔵させて順変態するときに、Nd2Fe14Bの結晶方位が順変態により生ずると考えられる多数の微細なFe2Bにより正確に転写されるためであろうと考えている。順変態の相対反応速度が0.25〜0.50の反応速度範囲外ではFe2Bへの転写が充分でなく、異方性が低くなる。このような場合、現状では、後の工程で異方性を高めることは不可能であると考えられる。 When the relative reaction rate of the forward transformation is outside the relative reaction rate of 0.25 to 0.50, the anisotropy decreases. And because, by reaction order transformation, when the forward transformation by hydrogen storage rare earth alloy of NdFeB, the large number of fine Fe 2 B crystal orientation of Nd 2 Fe 14 B is considered to be caused by normal transformation I think that it is because it is transcribed correctly. When the relative reaction rate of the forward transformation is outside the reaction rate range of 0.25 to 0.50, the transfer to Fe 2 B is not sufficient and the anisotropy becomes low. In such a case, at present, it is considered impossible to increase the anisotropy in a later process.

反応に伴って加速度的に早くなる順変態の相対反応速度を0.25〜0.50の相対反応速度範囲内に管理することは通常の炉では不可能である。そのため新しい熱処理炉として、反応時の発熱を相殺する吸熱手段を持った炉を開発して使用した。この吸熱手段は、水素吸蔵合金を管内に配置し、この管を炉内に入れ、反応による発熱とは逆に管内の水素ガス圧力を減圧し、脱水素反応を進めて、吸熱させ、反応による発熱を吸収して相殺するものである。これにより炉の管理温度と反応温度とをほぼ等しくできる。   It is impossible in a normal furnace to manage the relative reaction rate of the forward transformation that accelerates with the reaction within the relative reaction rate range of 0.25 to 0.50. For this reason, a new heat treatment furnace with an endothermic means that offsets the heat generated during the reaction was developed and used. In this heat absorption means, a hydrogen storage alloy is placed in a tube, this tube is placed in a furnace, and the hydrogen gas pressure in the tube is reduced in reverse to the heat generated by the reaction, the dehydrogenation reaction proceeds, the heat is absorbed, and the reaction The heat generation is absorbed and offset. Thereby, the control temperature of the furnace and the reaction temperature can be made substantially equal.

この順変態の反応は理想的には30分程度で終わるが、工業的には反応時間は処理量に依存する。順変態の終了後、順変態を起こした温度で少なくとも1時間加熱処理を継続することにより得られる磁石粉末の保磁力が向上する。これは順変態により生じた内部ゆがみが緩和除去されることと関連していると考えている。内部ゆがみが残存していると逆変態後に組織が不均一化して保磁力が低下するものと考えている。   The forward transformation reaction ideally ends in about 30 minutes, but industrially the reaction time depends on the throughput. After completion of the forward transformation, the coercive force of the magnet powder obtained by continuing the heat treatment at the temperature at which the forward transformation has occurred for at least 1 hour is improved. This is thought to be related to the relaxation and removal of internal distortion caused by forward transformation. If internal distortion remains, it is considered that the structure becomes non-uniform after reverse transformation and the coercive force decreases.

この後、吸蔵した水素を脱水素して逆変態を起こさせる。この逆変態はFe2Bの結晶方位を生成するNd2Fe14Bの結晶方位に転写するものである。 Thereafter, the stored hydrogen is dehydrogenated to cause reverse transformation. This reverse transformation is transferred to the crystal orientation of Nd 2 Fe 14 B which produces the crystal orientation of Fe 2 B.

この逆変態時にFe2Bの方位を転写するためには、0.1〜0.4の相対反応速度範囲内で起こさせるのが好ましい。具体的にはこの逆変態は、前記順変態の水素ガス圧力の1/100以下の水素ガス圧力に維持して行うことにより達成される。なお、逆変態は順変態とは反対の吸熱反応であり、逆変態の開始により反応温度が加速度的に低下する。従って、実際の反応温度を780〜840℃に保つためには、順変態時と同様に反応を制御できる炉が必要となる。 In order to transfer the orientation of Fe 2 B at the time of this reverse transformation, it is preferably caused to occur within a relative reaction rate range of 0.1 to 0.4. Specifically, this reverse transformation is achieved by maintaining the hydrogen gas pressure at 1/100 or less of the forward transformation hydrogen gas pressure. The reverse transformation is an endothermic reaction opposite to the forward transformation, and the reaction temperature is accelerated at the start of the reverse transformation. Therefore, in order to maintain the actual reaction temperature at 780 to 840 ° C., a furnace capable of controlling the reaction in the same manner as in the normal transformation is required.

この逆変態は理論的には10分以内で終わり、工業的には処理量に依存する。この逆変態終了後には逆変態の温度で少なくとも25分以上保持し、生成したNd2Fe14B結晶を持つ希土類磁石粉末に含まれる水素を除去するのが好ましい。これにより保磁力が向上する。解離した水素が合金内に残存していると保磁力を著しく損なうためである。この後冷却し、本発明の異方性磁石が得られる。冷却は少なくとも5℃/min.の冷却速度で行うことが望ましい。 This reverse transformation theoretically ends within 10 minutes and industrially depends on the throughput. After completion of the reverse transformation, it is preferable to hold at the reverse transformation temperature for at least 25 minutes or more to remove hydrogen contained in the rare earth magnet powder having the produced Nd 2 Fe 14 B crystal. Thereby, the coercive force is improved. This is because if the dissociated hydrogen remains in the alloy, the coercive force is significantly impaired. Thereafter, it is cooled to obtain the anisotropic magnet of the present invention. Cooling is at least 5 ° C./min. It is desirable to carry out at the cooling rate.

インゴット上の原料を用いたとき、得られるインゴット上の希土類磁石は乳鉢等で容易に粉砕することができる。また、粉末状の原料を用いた場合、凝集等により固化することもあるが、乳鉢等で容易に粉砕することができる。   When the raw material on the ingot is used, the rare earth magnet on the obtained ingot can be easily pulverized with a mortar or the like. Further, when a powdery raw material is used, it may be solidified by aggregation or the like, but can be easily pulverized with a mortar or the like.

本発明の希土類磁石粉末を用いた希土類ボンド永久磁石は、得られた希土類磁石粉末と、この磁石粉末のバインダーとなる樹脂と、を用いて製造される。この時、バインダー樹脂としてはエポキシ樹脂等の熱硬化性樹脂を用いることができ、所定の着磁用の磁場のもとで、この樹脂と磁石粉末とを混合して得られた混合物を加圧成形等により成形した後、熱処理して樹脂を硬化し、異方性の希土類永久ボンド磁石を形成することができる。   The rare earth bonded permanent magnet using the rare earth magnet powder of the present invention is manufactured using the obtained rare earth magnet powder and a resin that serves as a binder for the magnet powder. At this time, a thermosetting resin such as an epoxy resin can be used as the binder resin, and a mixture obtained by mixing the resin and magnet powder is pressurized under a predetermined magnetic field for magnetization. After molding by molding or the like, heat treatment is performed to cure the resin, and an anisotropic rare earth permanent bonded magnet can be formed.

[発明の作用]
本発明の異方性磁石粉末は、Br/Bs(ここでBsは1.6T(16kG))が0.65以上と大きな異方性を持つ。また、残留磁束密度および保磁力はそれぞれ1.2T(12kG)、636kA/m(8kOe)以上で磁気特性に優れる。また、これらの磁石粉末を用いた異方性ボンド磁石は135kJ/m3(17MGOe)以上の高い(BH)maxを持つ。
[Operation of the invention]
The anisotropic magnet powder of the present invention has a large anisotropy such that Br / Bs (where Bs is 1.6T (16 kG)) is 0.65 or more. Further, the residual magnetic flux density and the coercive force are 1.2T (12 kG) and 636 kA / m (8 kOe) or more, respectively, and the magnetic characteristics are excellent. An anisotropic bonded magnet using these magnet powders has a high (BH) max of 135 kJ / m 3 (17 MGOe) or more.

また、本発明の異方性希土類磁石の製造方法は高温水素熱処理の順変態反応及び逆変態反応の相対反応速度を制御することで、異方性の大きい希土類磁石を容易に得ることができる。   In addition, the method for producing an anisotropic rare earth magnet of the present invention can easily obtain a rare earth magnet having large anisotropy by controlling the relative reaction rates of the forward transformation reaction and the reverse transformation reaction of the high-temperature hydrogen heat treatment.

以下、実施例により具体的に説明する。   Hereinafter, specific examples will be described.

(実施例1)
Rの主成分としてNdを用い、R、Pr、B、Ga、Nb、Feを表1に示される組成で混合物とし、その混合物をボタンアーク溶解炉にて溶解、鋳造して組成の異なる合金インゴット試料1〜12および32〜36を作成した。なお、表1では、各元素の含量を原子百分率で示しており、合金全体で100at%とし、Feはその残りであることを示している。
Example 1
Nd is used as the main component of R, and R, Pr, B, Ga, Nb, and Fe are mixed in the composition shown in Table 1, and the mixture is melted and cast in a button arc melting furnace to have different compositions. Samples 1-12 and 32-36 were made. In Table 1, the content of each element is shown as an atomic percentage, and the entire alloy is set to 100 at%, and Fe is the remainder.

均質化処理が施された試料を15gと極めて少なくし石英管中に入れ、この石英管のなかの水素ガス圧を管理できるように導管でガス圧制御装置に結んだ。加熱炉は赤外線炉を、温度測定には熱伝対を使用し、試料と雰囲気の温度を測定し、これらの温度に基づいて炉を制御した。   The sample subjected to the homogenization treatment was reduced to a very small amount of 15 g and placed in a quartz tube, and was connected to a gas pressure control device by a conduit so that the hydrogen gas pressure in the quartz tube could be controlled. An infrared furnace was used as the heating furnace, a thermocouple was used for temperature measurement, the temperature of the sample and the atmosphere was measured, and the furnace was controlled based on these temperatures.

石英管のなかに表2に示す順変態相対反応速度の水素ガス圧となるように水素ガスを導入し、この状態で加熱しおよそ60分で反応温度まで昇温させた。そして反応の開始で試料の温度が雰囲気の温度を超えると直ちに加熱を中止し、放熱による冷却で雰囲気温度を下げ、反応による発熱を吸収し、目的の反応温度の+5℃以内に試料温度が保たれるようにした。試料が15gと少なく、かつ赤外線炉を使用しているため石英管内の雰囲気温度は比較的容易に制御できる。   Hydrogen gas was introduced into the quartz tube so that the hydrogen gas pressure at the forward transformation relative reaction rate shown in Table 2 was obtained, and the mixture was heated in this state and heated to the reaction temperature in about 60 minutes. When the temperature of the sample exceeds the temperature of the atmosphere at the start of the reaction, heating is stopped immediately, the temperature of the atmosphere is lowered by cooling with heat dissipation, the heat generated by the reaction is absorbed, and the sample temperature is kept within + 5 ° C of the target reaction temperature. I tried to sag. Since the sample is as small as 15 g and an infrared furnace is used, the atmospheric temperature in the quartz tube can be controlled relatively easily.

この後820℃、水素ガス圧0.03MPa(0.3atm)で3時間加熱処理を行った。   Thereafter, heat treatment was performed at 820 ° C. and a hydrogen gas pressure of 0.03 MPa (0.3 atm) for 3 hours.

その後、逆変態相対速度が0.26となるように石英管内の水素ガスを放出して脱水素をはかり、逆変態反応を進めた。この脱水素による逆変態反応では、水素ガス圧を微妙に制御し、温度が吸熱反応により下がり始めると水素ガス圧の減圧を停止し、温度が所定の温度に戻ると再び減圧を再開するといった制御方法により制御をし、目的とする温度の−5℃の範囲で制御し、水素ガス吸蔵時の水素ガス圧力の1/100以下の0.0001MPa(0.001atm)とした。   Thereafter, dehydrogenation was performed by releasing hydrogen gas in the quartz tube so that the reverse transformation relative speed was 0.26, and the reverse transformation reaction was advanced. In this reverse transformation reaction by dehydrogenation, the hydrogen gas pressure is controlled delicately. When the temperature starts to decrease due to the endothermic reaction, the depressurization of the hydrogen gas pressure is stopped, and when the temperature returns to the predetermined temperature, the depressurization is resumed. It was controlled by the method, and was controlled within a range of −5 ° C. of the target temperature, and was 0.0001 MPa (0.001 atm) which is 1/100 or less of the hydrogen gas pressure when storing the hydrogen gas.

この脱水素による逆変態反応の開始から30分後まで、所定温度の熱処理を続けた。この後冷却し、水素処理を終えた。これにより希土類磁石粉末を製造した。   Heat treatment at a predetermined temperature was continued for 30 minutes after the start of the reverse transformation reaction by dehydrogenation. Thereafter, the system was cooled to finish the hydrogen treatment. This produced a rare earth magnet powder.

得られた希土類磁石粉末の残留磁束密度、固有保磁力、(BH)maxを測定し、異方化率を求めた。水素処理条件と合わせて表2に示す。   The obtained rare earth magnet powder was measured for residual magnetic flux density, intrinsic coercive force, and (BH) max to determine the anisotropic ratio. Table 2 shows the hydrogen treatment conditions.

また、得られた磁石粉末を用い、熱硬化性樹脂としてフェノール樹脂を磁石粉末粉末100gに対して3g使用し、型内で圧縮成形してボンド磁石を得た。このボンド磁石の(BH)maxも測定し、表2に示した。   Moreover, using the obtained magnet powder, 3g of phenol resin was used with respect to 100g of magnet powder powder as a thermosetting resin, and it compression-molded in the type | mold, and obtained the bonded magnet. The (BH) max of this bonded magnet was also measured and shown in Table 2.

Figure 2007005786
Figure 2007005786

Figure 2007005786
Figure 2007005786

(実施例2)
Rの主成分としてNdを用い、R、Pr、B、Co、Ga、Nb、Feを表3に示される組成で混合物とし、その混合物をボタンアーク溶解炉にて溶解、鋳造して組成の異なる合金インゴット試料13〜20、37を作成した。なお、表3では、各元素の含量を原子百分率で示しており、合金全体で100at%とし、Feはその残りであることを示している。
(Example 2)
Nd is used as the main component of R, and R, Pr, B, Co, Ga, Nb, and Fe are mixed in the composition shown in Table 3, and the mixture is melted and cast in a button arc melting furnace to have different compositions. Alloy ingot samples 13 to 20 and 37 were prepared. In Table 3, the content of each element is shown as an atomic percentage, and the whole alloy is set to 100 at%, and Fe is the remainder.

表4に示す水素処理条件で実施例1と同様の方法で希土類磁石粉末を製造した。   Rare earth magnet powders were produced in the same manner as in Example 1 under the hydrogen treatment conditions shown in Table 4.

得られた希土類磁石粉末の残留磁束密度、固有保磁力、(BH)maxを測定し、異方化率を求めた。水素処理条件と合わせて表4に示す。   The obtained rare earth magnet powder was measured for residual magnetic flux density, intrinsic coercive force, and (BH) max to determine the anisotropic ratio. It shows in Table 4 together with hydrogen treatment conditions.

また、得られた磁石粉末を用いたボンド磁石を得た。このボンド磁石の(BH)maxも測定し、表4に示す。   Moreover, the bonded magnet using the obtained magnet powder was obtained. The (BH) max of this bonded magnet was also measured and shown in Table 4.

Figure 2007005786
Figure 2007005786

Figure 2007005786
Figure 2007005786

(実施例3)
Rの主成分としてNdを用い、R、Pr、B、Co、Ga、Nb、Fe、Zr、V、Mn、Ni、Cr、Cu、Al、Si、Moを表5に示される組成で混合物とし、その混合物をボタンアーク溶解炉にて溶解、鋳造して組成の異なる合金インゴット試料21〜31、38を作成した。なお、表5では、各元素の含量を原子百分率で示しており、合金全体で100at%とし、Feはその残りであることを示している。
(Example 3)
Nd is used as the main component of R, and R, Pr, B, Co, Ga, Nb, Fe, Zr, V, Mn, Ni, Cr, Cu, Al, Si, and Mo are mixed in the composition shown in Table 5. The mixture was melted and cast in a button arc melting furnace to prepare alloy ingot samples 21 to 31 and 38 having different compositions. In Table 5, the content of each element is shown in atomic percentage, and the whole alloy is set to 100 at%, and Fe is the remainder.

表6に示す水素処理条件で実施例1と同様の方法で希土類磁石粉末を製造した。   Rare earth magnet powders were produced in the same manner as in Example 1 under the hydrogen treatment conditions shown in Table 6.

得られた希土類磁石粉末の残留磁束密度、固有保磁力、(BH)maxを測定し、異方化率を求めた。水素処理条件と合わせて表6に示す。   The obtained rare earth magnet powder was measured for residual magnetic flux density, intrinsic coercive force, and (BH) max to determine the anisotropic ratio. Table 6 shows the hydrogen treatment conditions.

また、得られた磁石粉末を用いたボンド磁石を得た。このボンド磁石の(BH)maxも測定し、その値も表6に示す。   Moreover, the bonded magnet using the obtained magnet powder was obtained. The (BH) max of this bonded magnet was also measured, and the value is also shown in Table 6.

Figure 2007005786
Figure 2007005786

Figure 2007005786
Figure 2007005786

表からわかるように本発明の水素処理時の相対反応速度を制御した磁石粉末は、異方化率が0.79以上と高い異方性を示し、Brが1.2〜1.5T(12〜15kG)、iHcが636〜1272kA/m(8.0〜16kOe)、(BH)maxが238〜358kJ/m3(30〜45MGOe)とすぐれた磁気特性を有する磁石粉末であることがわかる。 As can be seen from the table, the magnet powder having a controlled relative reaction rate during the hydrogen treatment of the present invention has a high anisotropy ratio of 0.79 or more and Br of 1.2 to 1.5 T (12 -15 kG), iHc is 636 to 1272 kA / m (8.0 to 16 kOe), and (BH) max is 238 to 358 kJ / m 3 (30 to 45 MGOe).

また、試料32〜38の磁石粉末からわかるように、相対反応速度を制御しても、原料合金の組成が本発明の組成範囲をはずれると磁気特性が低下する。すなわち、Rの量が少なくなると異方性が0.37と低下し、異方性が失われることで磁気特性が大きく低下し、逆にRが多くなると(BH)maxが低くなる。Ga量が2.0at%と多くなるとiHcが低下し、Bが多いことで磁気特性が低下している。Nbが多いことでもiHcが減少し、Coが多くなるとiHcが減少し、磁気特性が低下する。また、Niを5.0at%と大量に添加することでiHcが減少し、磁気特性を低下させる。   Further, as can be seen from the magnet powders of Samples 32-38, even when the relative reaction rate is controlled, the magnetic properties are deteriorated when the composition of the raw material alloy is out of the composition range of the present invention. That is, when the amount of R decreases, the anisotropy decreases to 0.37, the anisotropy is lost, the magnetic characteristics are greatly decreased, and conversely, when R increases, (BH) max decreases. When the amount of Ga increases to 2.0 at%, iHc decreases, and since B increases, the magnetic characteristics decrease. Even if Nb is large, iHc is reduced, and if Co is increased, iHc is reduced and magnetic characteristics are deteriorated. Further, by adding Ni in a large amount of 5.0 at%, iHc is reduced and magnetic characteristics are deteriorated.

Claims (24)

異方性(Br/Bs、ただしBsは1.6T(16kG)とした)が0.65以上であり、イットリウム(Y)を含む希土類元素(以下、Rと称す)を原子百分率で11〜15at%と、ホウ素(B)を5〜8at%と、それぞれ0.01〜1.0at%のガリウム(Ga)、ニオブ(Nb)の1種あるいは2種と、残部が鉄(Fe)と不可避な不純物と、からなることを特徴とする異方性希土類磁石粉末。   Anisotropy (Br / Bs, where Bs is 1.6T (16 kG)) is 0.65 or more, and a rare earth element containing yttrium (Y) (hereinafter referred to as R) is 11 to 15 atm in atomic percentage. %, Boron (B) of 5 to 8 at%, 0.01 to 1.0 at% of gallium (Ga) and niobium (Nb), respectively, and the balance of iron (Fe). An anisotropic rare earth magnet powder comprising impurities. 残留磁束密度(Br)が1.2〜1.5T(12〜15kG)、固有保磁力(iHc)が636〜1272kA/m(8.0〜16kOe)、(BH)maxが238〜358kJ/m3(30〜45MGOe)である請求項1記載の希土類磁石粉末。 Residual magnetic flux density (Br) is 1.2 to 1.5 T (12 to 15 kG), intrinsic coercive force (iHc) is 636 to 1272 kA / m (8.0 to 16 kOe), and (BH) max is 238 to 358 kJ / m. 3. The rare earth magnet powder according to claim 1, wherein the rare earth magnet powder is (30 to 45 MGOe). イットリウム(Y)を含む希土類元素(R)と、鉄(Fe)と、ホウ素(B)と、ガリウム(Ga)、ニオブ(Nb)の1種あるいは2種と、からなるRFeB系合金に水素を吸蔵させる順変態を0.25〜0.50の相対反応速度範囲内で進行させた後、水素が離脱する逆変態を0.1〜0.4の相対反応速度範囲内で起こさせ、異方性が付与されたRFeB系合金とすることを特徴とする異方性希土類磁石粉末の製造方法。   Hydrogen is added to an RFeB alloy composed of rare earth elements (R) including yttrium (Y), iron (Fe), boron (B), and one or two of gallium (Ga) and niobium (Nb). After the forward transformation to be occluded proceeds within the relative reaction rate range of 0.25 to 0.50, the reverse transformation in which hydrogen is released is caused to occur within the relative reaction rate range of 0.1 to 0.4, and anisotropic A method for producing anisotropic rare earth magnet powder, characterized in that an RFeB-based alloy imparted with properties is provided. 前記順変態は、水素ガス圧力を0.01〜0.06MPa(0.1〜0.6atm)とし、前記RFeB系合金の温度を780〜840℃の範囲に温度を保持して該合金に水素を吸蔵させることを特徴とする請求項3記載の異方性希土類磁石粉末の製造方法。   In the forward transformation, the hydrogen gas pressure is set to 0.01 to 0.06 MPa (0.1 to 0.6 atm), and the temperature of the RFeB-based alloy is maintained within a range of 780 to 840 ° C., and hydrogen is added to the alloy. The method for producing anisotropic rare earth magnet powder according to claim 3, wherein 前記順変態は、該順変態反応開始に伴う発熱を冷却して奪うことにより反応温度の上昇を抑えつつ進める請求項4記載の異方性磁石粉末の製造方法。   The method for producing anisotropic magnet powder according to claim 4, wherein the forward transformation proceeds while suppressing an increase in the reaction temperature by cooling and removing heat generated at the start of the forward transformation reaction. 前記順変態の終了後、該順変態を起こした温度で加熱処理を継続する請求項3記載の異方性希土類磁石粉末の製造方法。   The method for producing an anisotropic rare earth magnet powder according to claim 3, wherein after the forward transformation is completed, the heat treatment is continued at the temperature at which the forward transformation has occurred. 前記逆変態は、前記順変態の1/100以下の水素ガス圧力に維持し、かつ780〜840℃の範囲に温度を保持して脱水素反応を行うことを特徴とする請求項3記載の異方性希土類磁石粉末の製造方法。   The said reverse transformation maintains hydrogen gas pressure 1/100 or less of the said forward transformation, and maintains temperature in the range of 780-840 degreeC, and performs a dehydrogenation reaction, The difference of Claim 3 characterized by the above-mentioned. A method for producing an anisotropic rare earth magnet powder. 前記逆変態は、該逆変態に伴う吸熱を加熱して補うことにより前記相対反応速度の低下をおさえつつ進める請求項7記載の異方性希土類磁石粉末の製造方法。   The method for producing an anisotropic rare earth magnet powder according to claim 7, wherein the reverse transformation proceeds while suppressing a decrease in the relative reaction rate by heating and supplementing the endotherm accompanying the reverse transformation. 高温水素熱処理され、異方性(Br/Bs、ただしBsは1.6T(16kG)とした)が0.65以上であり、イットリウム(Y)を含む希土類元素(R)を原子百分率で11〜15at%と、ホウ素(B)を5〜8at%と、0〜25at%のコバルト(Co)と、それぞれ0.01〜1.0at%のガリウム(Ga)、ニオブ(Nb)の1種あるいは2種と、残部が鉄(Fe)と不可避な不純物と、からなることを特徴とする異方性希土類磁石粉末。   High-temperature hydrogen heat treatment, anisotropy (Br / Bs, where Bs is 1.6T (16 kG)) is 0.65 or more, and rare earth elements (R) containing yttrium (Y) are 11 to 11 in atomic percent. 15at%, boron (B) 5-8at%, 0-25at% cobalt (Co), 0.01-1.0at% gallium (Ga), niobium (Nb) one or two An anisotropic rare earth magnet powder comprising a seed and the balance of iron (Fe) and inevitable impurities. 残留磁束密度Brが1.2〜1.5T(12〜15kG)、固有保磁力(iHc)が636〜1272kA/m(8.0〜16kOe)、(BH)maxが238〜358kJ/m3(30〜45MGOe)である請求項9記載の希土類磁石粉末。 The residual magnetic flux density Br is 1.2 to 1.5 T (12 to 15 kG), the intrinsic coercive force (iHc) is 636 to 1272 kA / m (8.0 to 16 kOe), and (BH) max is 238 to 358 kJ / m 3 ( The rare earth magnet powder according to claim 9, which is 30 to 45 MGOe). イットリウム(Y)を含む希土類元素(R)と、鉄(Fe)と、ホウ素(B)と、コバルト(Co)と、ガリウム(Ga)、ニオブ(Nb)の1種あるいは2種と、からなるRFeCoB系合金に水素を吸蔵させる順変態を0.25〜0.50の相対反応速度範囲内で進行させた後、水素が離脱する逆変態を0.1〜0.4の相対反応速度範囲内で起こさせ、異方性が付与されたRFeCoB系合金とすることを特徴とする異方性希土類磁石粉末の製造方法。   It consists of one or two of rare earth elements (R) containing yttrium (Y), iron (Fe), boron (B), cobalt (Co), gallium (Ga), and niobium (Nb). After the forward transformation for occluding hydrogen in the RFeCoB-based alloy is allowed to proceed within the relative reaction rate range of 0.25 to 0.50, the reverse transformation where hydrogen is released is within the relative reaction rate range of 0.1 to 0.4. A method for producing anisotropic rare earth magnet powder, characterized in that an RFeCoB-based alloy imparted with anisotropy is generated. 前記順変態は、水素ガス圧力を0.01〜0.2MPa(0.1〜2.0atm)とし、前記RFeB系合金の温度を780〜850℃の範囲に温度を保持して該合金に水素を吸蔵させることを特徴とする請求項11記載の異方性希土類磁石粉末の製造方法。   In the forward transformation, the hydrogen gas pressure is set to 0.01 to 0.2 MPa (0.1 to 2.0 atm), and the temperature of the RFeB alloy is maintained within a range of 780 to 850 ° C., and hydrogen is added to the alloy. The method for producing anisotropic rare earth magnet powder according to claim 11, wherein occlusion is performed. 前記順変態は、該順変態反応開始に伴う発熱を冷却して奪うことにより反応温度の上昇を抑えつつ進める請求項12記載の異方性磁石粉末の製造方法。   The method for producing anisotropic magnet powder according to claim 12, wherein the forward transformation is advanced while suppressing an increase in reaction temperature by cooling and removing heat generated at the start of the forward transformation reaction. 前記順変態の終了後、該順変態を起こした温度で加熱処理を継続する請求項11記載の異方性希土類磁石粉末の製造方法。   The method for producing an anisotropic rare earth magnet powder according to claim 11, wherein after the forward transformation is completed, the heat treatment is continued at a temperature at which the forward transformation is caused. 前記逆変態は、前記順変態の1/100以下の水素ガス圧力に維持し、かつ780〜850℃の範囲に温度を保持して脱水素反応を行うことを特徴とする請求項11記載の異方性希土類磁石粉末の製造方法。   12. The reverse transformation according to claim 11, wherein the reverse transformation is carried out by maintaining the hydrogen gas pressure at 1/100 or less of the forward transformation and maintaining the temperature in a range of 780 to 850 ° C. A method for producing an anisotropic rare earth magnet powder. 前記逆変態は、該逆変態に伴う吸熱を加熱して補うことにより前記相対反応速度の低下をおさえつつ進める請求項15記載の異方性希土類磁石粉末の製造方法。   The method for producing an anisotropic rare earth magnet powder according to claim 15, wherein the reverse transformation proceeds while suppressing a decrease in the relative reaction rate by heating and supplementing the endotherm accompanying the reverse transformation. 高温水素熱処理され、異方性(Br/Bs、ただしBsは1.6T(16kG)とした)が0.65以上であり、イットリウム(Y)を含む希土類元素(以下、Rと称す)を原子百分率で11〜15at%と、ホウ素(B)を5〜8at%と、0〜25at%のコバルト(Co)と、それぞれ0.01〜1.0at%のガリウム(Ga)、ニオブ(Nb)の1種あるいは2種と、合計が0.01〜3.0at%のジルコニウム(Zr)、バナジウム(V)、マンガン(Mn)、ニッケル(Ni)、クロム(Cr)、銅(Cu)、アルミニウム(Al)、ケイ素(Si)、モリブデン(Mo)の1種または2種と、残部が鉄(Fe)と不可避な不純物と、からなることを特徴とする異方性希土類磁石粉末。   High-temperature hydrogen heat treatment, anisotropy (Br / Bs, where Bs is 1.6T (16 kG)) is 0.65 or more, and rare earth elements (hereinafter referred to as R) containing yttrium (Y) are atoms. Percentage of 11-15 at%, boron (B) 5-8 at%, 0-25 at% cobalt (Co), 0.01-1.0 at% gallium (Ga), niobium (Nb) respectively. Zirconium (Zr), Vanadium (V), Manganese (Mn), Nickel (Ni), Chromium (Cr), Copper (Cu), Aluminum (1 type or 2 types in total and 0.01 to 3.0 at%) An anisotropic rare earth magnet powder comprising one or two of Al), silicon (Si), and molybdenum (Mo), the balance being iron (Fe) and inevitable impurities. 残留磁束密度(Br)が1.2〜1.5T(12〜15kG)、固有保磁力(iHc)が636〜1272kA/m(8.0〜16kOe)、(BH)maxが238〜358kJ/m3(30〜45MGOe)である請求項17記載の希土類磁石粉末。 Residual magnetic flux density (Br) is 1.2 to 1.5 T (12 to 15 kG), intrinsic coercive force (iHc) is 636 to 1272 kA / m (8.0 to 16 kOe), and (BH) max is 238 to 358 kJ / m. The rare earth magnet powder according to claim 17, which is 3 (30 to 45 MGOe). イットリウム(Y)を含む希土類元素(R)と、鉄(Fe)と、ホウ素(B)と、コバルト(Co)と、ガリウム(Ga)、ニオブ(Nb)の1種あるいは2種と、ジルコニウム(Zr)、バナジウム(V)、マンガン(Mn)、ニッケル(Ni)、クロム(Cr)、銅(Cu)、アルミニウム(Al)、ケイ素(Si)、モリブデン(Mo)の1種または2種と、からなるRFeCoB系合金に水素を吸蔵させる順変態を0.25〜0.50の相対反応速度範囲内で進行させた後、水素が離脱する逆変態を0.1〜0.4の相対反応速度範囲内で起こさせ、異方性が付与されたRFeCoB系合金とすることを特徴とする異方性希土類磁石粉末の製造方法。   One or two of rare earth elements (R) containing yttrium (Y), iron (Fe), boron (B), cobalt (Co), gallium (Ga) and niobium (Nb), zirconium ( One or two of Zr), vanadium (V), manganese (Mn), nickel (Ni), chromium (Cr), copper (Cu), aluminum (Al), silicon (Si), and molybdenum (Mo); The forward transformation for absorbing hydrogen in the RFeCoB-based alloy consisting of the above is allowed to proceed within the relative reaction rate range of 0.25 to 0.50, and then the reverse transformation in which hydrogen is released is the relative reaction rate of 0.1 to 0.4. A method for producing anisotropic rare earth magnet powder, characterized in that an RFeCoB-based alloy imparted with anisotropy is generated within a range. 前記順変態は、水素ガス圧力を0.01〜0.3MPa(0.1〜3.0atm)とし、前記RFeB系合金の温度を780〜850℃の範囲に温度を保持して該合金に水素を吸蔵させることを特徴とする請求項3記載の異方性希土類磁石粉末の製造方法。   In the forward transformation, the hydrogen gas pressure is set to 0.01 to 0.3 MPa (0.1 to 3.0 atm), the temperature of the RFeB alloy is maintained within a range of 780 to 850 ° C., and hydrogen is added to the alloy. The method for producing anisotropic rare earth magnet powder according to claim 3, wherein 前記順変態は、該順変態反応開始に伴う発熱を冷却して奪うことにより反応温度の上昇を抑えつつ進める請求項20記載の異方性磁石粉末の製造方法。   21. The method for producing anisotropic magnet powder according to claim 20, wherein the forward transformation proceeds while suppressing an increase in the reaction temperature by cooling and removing heat generated at the start of the forward transformation reaction. 前記順変態の終了後、該順変態を起こした温度で加熱処理を継続する請求項19記載の異方性希土類磁石粉末の製造方法。   20. The method for producing anisotropic rare earth magnet powder according to claim 19, wherein after the forward transformation is completed, the heat treatment is continued at the temperature at which the forward transformation has occurred. 前記逆変態は、前記順変態の1/100以下の水素ガス圧力に維持し、かつ780〜850℃の範囲に温度を保持して脱水素反応を行うことを特徴とする請求項19記載の異方性希土類磁石粉末の製造方法。   The reverse transformation is carried out by maintaining the hydrogen gas pressure at 1/100 or less of the forward transformation and maintaining the temperature in the range of 780 to 850 ° C to perform the dehydrogenation reaction. A method for producing an anisotropic rare earth magnet powder. 前記逆変態は、該逆変態に伴う吸熱を加熱して補うことにより前記相対反応速度の低下をおさえつつ進める請求項23記載の異方性希土類磁石粉末の製造方法。   24. The method for producing an anisotropic rare earth magnet powder according to claim 23, wherein the reverse transformation proceeds while suppressing a decrease in the relative reaction rate by heating to compensate for the endotherm accompanying the reverse transformation.
JP2006151629A 2006-05-31 2006-05-31 Rare-earth magnet powder and method for manufacturing same Pending JP2007005786A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006151629A JP2007005786A (en) 2006-05-31 2006-05-31 Rare-earth magnet powder and method for manufacturing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006151629A JP2007005786A (en) 2006-05-31 2006-05-31 Rare-earth magnet powder and method for manufacturing same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP9135192A Division JPH10326705A (en) 1997-05-26 1997-05-26 Rare-earth magnet powder and manufacture thereof

Publications (1)

Publication Number Publication Date
JP2007005786A true JP2007005786A (en) 2007-01-11

Family

ID=37691037

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006151629A Pending JP2007005786A (en) 2006-05-31 2006-05-31 Rare-earth magnet powder and method for manufacturing same

Country Status (1)

Country Link
JP (1) JP2007005786A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100465323C (en) * 2007-07-13 2009-03-04 上海大学 Nano crystal composite permanent-magnet alloy and its preparation method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100465323C (en) * 2007-07-13 2009-03-04 上海大学 Nano crystal composite permanent-magnet alloy and its preparation method

Similar Documents

Publication Publication Date Title
JP5892139B2 (en) Rare earth anisotropic magnet and manufacturing method thereof
JP5856953B2 (en) Rare earth permanent magnet manufacturing method and rare earth permanent magnet
JP3871219B2 (en) Method for producing anisotropic magnet powder
JP5472320B2 (en) Rare earth anisotropic magnet powder, method for producing the same, and bonded magnet
JP2010121167A (en) Permanent magnet, permanent magnet motor with the use of the same, and generator
JP3250551B2 (en) Method for producing anisotropic rare earth magnet powder
JP2011049441A (en) Method for manufacturing r-t-b based permanent magnet
US10026531B2 (en) R-T-B based alloy powder, compound for anisotropic bonded magnet and anisotropic bonded magnet
JP2008127648A (en) Method for producing rare earth anisotropic magnet powder
JP5288276B2 (en) Manufacturing method of RTB-based permanent magnet
JP2703281B2 (en) Magnetic anisotropic material and method of manufacturing the same
US6056830A (en) Anisotropic magnet powders and their production method
JP2006203216A (en) Anisotropic rare-earth magnet powder and magnetically anisotropic bonded magnet
WO2004030000A1 (en) Method for producing r-t-b based rare earth element permanent magnet
JPWO2004003245A1 (en) Alloy for bond magnet, isotropic magnet powder, anisotropic magnet powder, production method thereof, and bond magnet
JPH10326705A (en) Rare-earth magnet powder and manufacture thereof
JP4702522B2 (en) R-T-B system sintered magnet and manufacturing method thereof
JP6623998B2 (en) Method for producing RTB based sintered magnet
US20220076867A1 (en) Reduced critical rare earth high temperature magnet
JP2007005786A (en) Rare-earth magnet powder and method for manufacturing same
JP3597615B2 (en) Method for producing RTB based anisotropic bonded magnet
JP2002025813A (en) Anisotropic rare earth magnet powder
JP3463911B2 (en) Anisotropic magnet powder
JP3587158B2 (en) Magnetic anisotropic bonded magnet
JP3086334B2 (en) Anisotropic rare earth alloy powder for permanent magnet

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080715

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080722

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081118