JP2012033865A - Powder for magnetic member, powder compact, and magnetic member - Google Patents

Powder for magnetic member, powder compact, and magnetic member Download PDF

Info

Publication number
JP2012033865A
JP2012033865A JP2011055881A JP2011055881A JP2012033865A JP 2012033865 A JP2012033865 A JP 2012033865A JP 2011055881 A JP2011055881 A JP 2011055881A JP 2011055881 A JP2011055881 A JP 2011055881A JP 2012033865 A JP2012033865 A JP 2012033865A
Authority
JP
Japan
Prior art keywords
powder
rare earth
iron
magnetic member
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011055881A
Other languages
Japanese (ja)
Other versions
JP4930813B2 (en
JP2012033865A5 (en
Inventor
Toru Maeda
前田  徹
Asako Watanabe
麻子 渡▲辺▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2011055881A priority Critical patent/JP4930813B2/en
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to EP11783414.3A priority patent/EP2484464B1/en
Priority to CN201180004578.9A priority patent/CN102665970B/en
Priority to CN2013100873785A priority patent/CN103151130A/en
Priority to US13/511,061 priority patent/US9196403B2/en
Priority to PCT/JP2011/060744 priority patent/WO2011145477A1/en
Priority to KR1020127010195A priority patent/KR101362036B1/en
Priority to TW100117090A priority patent/TW201212059A/en
Publication of JP2012033865A publication Critical patent/JP2012033865A/en
Publication of JP2012033865A5 publication Critical patent/JP2012033865A5/ja
Application granted granted Critical
Publication of JP4930813B2 publication Critical patent/JP4930813B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a magnetic member capable of obtaining a rare earth magnet with high coercive force even in high temperature environment, a powder compact suitable for a raw material of the magnetic member, and a powder for the magnetic member with high moldability.SOLUTION: Each magnetic particle 1 constituting the powder for the magnetic member consists of a hydride (NdH) 3 of a rare earth element of less than 40 volume % and an iron-containing material 2 containing Fe and Fe-B alloy as the remainder. The hydride 3 is discretely in the phases of the iron-containing material 2. The surface of the magnetic particle 1 has a supply source particle 4a consisting of a rare earth supply source material (for example, hydride:DyH) containing a rare earth element and a heat-resistant precursive layer 4 including a resin layer 4b consisting of a resin with a small oxygen transmission coefficient. Uniform presence of the phases of the iron-containing material 2 in the magnetic particle 1 enhances moldability of the powder. Heat treatment of the powder compact formed by the powder with the heat-resistant precursive layer 4 can obtain the magnetic member with the heat-resistant coercive force layer 6 formed on the surface of an alloy particle 5. The magnetic member can obtain a rare earth magnet with high coercive force even in high temperature environment.

Description

本発明は、希土類-鉄-ホウ素系磁石といった希土類磁石の素材に適した磁性部材、この磁性部材の原料に利用される磁性部材用粉末、粉末成形体に関する。特に、高温環境でも高い保磁力を有する希土類磁石が得られると共に、成形性に優れる磁性部材用粉末に関するものである。   The present invention relates to a magnetic member suitable for a rare earth magnet material such as a rare earth-iron-boron magnet, a powder for a magnetic member used as a raw material for the magnetic member, and a powder compact. In particular, the present invention relates to a powder for a magnetic member that can obtain a rare earth magnet having a high coercive force even in a high temperature environment and is excellent in moldability.

モータや発電機などに利用される永久磁石には、希土類磁石が広く利用されている。希土類磁石は、Nd(ネオジム)-Fe-BといったR-Fe-B系合金(R:希土類元素、Fe:鉄、B:ホウ素)からなる焼結磁石やボンド磁石が代表的である。   Rare earth magnets are widely used as permanent magnets used in motors and generators. The rare earth magnet is typically a sintered magnet or a bond magnet made of an R—Fe—B alloy (R: rare earth element, Fe: iron, B: boron) such as Nd (neodymium) -Fe—B.

焼結磁石は、R-Fe-B系合金からなる粉末を圧縮成形した後、焼結することで製造され、ボンド磁石は、R-Fe-B系合金からなる合金粉末と結合樹脂とを混合した混合物を圧縮成形したり、射出成形することで製造される。特に、ボンド磁石に利用される粉末では、保磁力を高めるために、HDDR処理(Hydrogenation−Disproportionation−Desorption−Recombination、HD:水素化及び不均化、DR:脱水素及び再結合)を施すことが行われている。   Sintered magnets are manufactured by compressing and then sintering R-Fe-B alloy powder, and bonded magnets are a mixture of R-Fe-B alloy powder and binder resin. The mixture is produced by compression molding or injection molding. In particular, powders used for bonded magnets may be subjected to HDRR treatment (Hydrogenation-Disproportionation-Desorption-Recombination, HD: hydrogenation and disproportionation, DR: dehydrogenation and recombination) to increase the coercive force. Has been done.

焼結磁石は、磁性相の比率が高いことで磁石特性に優れるものの、形状の自由度が小さく、例えば、円筒状や円柱状、ポット形状(有底筒形状)といった複雑な形状を成形することが困難であり、複雑な形状や所望の大きさとなるように、焼結材を切削する必要がある。一方、ボンド磁石は、形状の自由度が高いものの、結合樹脂が存在することで磁性相の比率が低く、焼結磁石よりも磁石特性に劣る。   Sintered magnets have excellent magnetic properties due to their high magnetic phase ratio, but have a low degree of freedom in shape, for example, to form complex shapes such as cylindrical shapes, columnar shapes, and pot shapes (bottomed tubular shapes). Therefore, it is necessary to cut the sintered material so as to have a complicated shape and a desired size. On the other hand, although the bond magnet has a high degree of freedom in shape, the presence of the binder resin has a low magnetic phase ratio and is inferior to the magnet characteristics than the sintered magnet.

また、Nd-Fe-B系合金からなる希土類磁石は、保磁力が高いものの、高温になると減磁が大きいことが知られている。例えば、自動車のエンジンルームに配置される部品には、100℃〜200℃程度の高温域で十分に動作することが求められる。しかし、従来のNd-Fe-B系合金からなる希土類磁石では、80℃程度で大きく減磁する。高温環境でも高い保磁力を有することができるように、基本保磁力を向上するべく、Nd-Fe-B系合金(母合金)のNdの一部をNdよりも保磁力が高い希土類元素、具体的にはDyやTbで置換してDy-Fe-B合金などを生成させることが検討されている(特許文献1の0003)。その他、特許文献1では、保磁力を向上するためにHDDR粉末にDy2O3といった希土類酸化物を混合して熱処理を加えることを開示している。 Further, it is known that a rare earth magnet made of an Nd—Fe—B alloy has a high coercive force but a large demagnetization at a high temperature. For example, parts placed in an engine room of an automobile are required to operate sufficiently in a high temperature range of about 100 ° C to 200 ° C. However, a rare earth magnet made of a conventional Nd—Fe—B alloy is greatly demagnetized at about 80 ° C. In order to improve the basic coercive force so that it can have a high coercive force even in a high temperature environment, a part of Nd of the Nd-Fe-B alloy (mother alloy) is a rare earth element having a higher coercive force than Nd, specifically Specifically, substitution of Dy or Tb to produce a Dy-Fe-B alloy or the like has been investigated (0003 of Patent Document 1). In addition, Patent Document 1 discloses that a heat treatment is performed by mixing rare earth oxides such as Dy 2 O 3 with HDDR powder in order to improve the coercive force.

特開2004-134552号公報JP 2004-134552 JP

上述のように焼結磁石では、所望の形状とするために切削などの加工が必要であって形状の自由度が小さく生産性に劣り、ボンド磁石では、磁性相の比率が高々80体積%程度にしかならず、磁性相の比率の向上が難しい。   As described above, sintered magnets require processing such as cutting in order to obtain a desired shape, and the degree of freedom in shape is small, resulting in poor productivity. In bonded magnets, the magnetic phase ratio is about 80% by volume at most. However, it is difficult to improve the ratio of the magnetic phase.

焼結することなく磁性相の比率が高い希土類磁石を得るために、例えば、その素材となる粉末成形体として相対密度が高いものを作製することが考えられる。しかし、Nd-Fe-B系合金からなる合金粉末や当該合金粉末にHDDR処理を施したHDDR粉末は、当該粉末を構成する粒子自体の剛性が高く、変形し難い。そのため、相対密度が高い粉末成形体を作製するにあたり、圧縮成形時、比較的大きな圧力が必要となる。特に、上記合金粉末を構成する粒子を粗大なものとすると、更に大きな圧力が必要となり、生産性に劣る。   In order to obtain a rare earth magnet having a high magnetic phase ratio without sintering, for example, it is conceivable to produce a powder compact having a high relative density as the material. However, an alloy powder composed of an Nd—Fe—B alloy and an HDRD powder obtained by subjecting the alloy powder to HDRR have high rigidity of the particles constituting the powder and are difficult to deform. Therefore, in producing a powder compact having a high relative density, a relatively large pressure is required during compression molding. In particular, if the particles constituting the alloy powder are coarse, a larger pressure is required, resulting in poor productivity.

また、高温環境でも高い保磁力を維持できるように、DyやTbを母合金に10質量%〜30質量%程度含有させてDy-Fe-B合金に置換すると、飽和磁化といった基本的な磁気特性に劣る磁石になる。その上、DyやTbはNdよりも一般に高価であり、コストの向上を招く。一方、特許文献1に記載されるようにHDDR粉末に希土類酸化物を混合する場合、HDDR粉末を利用することで上述のように形状の自由度が小さい。   In order to maintain a high coercive force even in a high-temperature environment, basic magnetic properties such as saturation magnetization can be obtained by replacing Dy and Tb with Dy-Fe-B alloy by adding 10% to 30% by mass in the master alloy. It becomes a magnet inferior to. In addition, Dy and Tb are generally more expensive than Nd, leading to increased costs. On the other hand, as described in Patent Document 1, when a rare earth oxide is mixed with HDDR powder, the degree of freedom in shape is small as described above by using HDDR powder.

上述のように複雑な形状であっても容易に製造可能であり、磁性相の比率が高く、耐熱性にも優れる希土類磁石などの磁性体に適した原料の開発が望まれる。また、相対密度が高い粉末成形体を成形し易い原料の開発が望まれる。   As described above, it is desired to develop a raw material suitable for a magnetic material such as a rare earth magnet which can be easily manufactured even with a complicated shape, has a high magnetic phase ratio, and is excellent in heat resistance. In addition, it is desired to develop a raw material that can easily form a powder compact having a high relative density.

そこで、本発明の目的の一つは、成形性に優れる上に、高温環境でも高い保磁力を有する希土類磁石が得られる磁性部材用粉末を提供することにある。   Accordingly, one of the objects of the present invention is to provide a powder for a magnetic member that is excellent in moldability and that can provide a rare earth magnet having a high coercive force even in a high temperature environment.

また、本発明の他の目的は、希土類-鉄-ホウ素系合金からなり、高温環境でも高い保磁力を有する希土類磁石の素材に適した磁性部材、及びこの磁性部材の素材に適した粉末成形体を提供することにある。   Another object of the present invention is a magnetic member made of a rare earth-iron-boron alloy and having a high coercive force even in a high temperature environment, and a powder molded body suitable for the material of the magnetic member. Is to provide.

本発明者らは、焼結することなく、磁性相の比率を高めて、希土類磁石といった磁性体の素材に適した磁性部材を得るために、ボンド磁石のように結合樹脂を利用した成形ではなく、粉末成形体を利用することを検討した。上述のように、従来の原料粉末、即ち、Nd-Fe-B系合金からなる合金粉末やHDDR粉末は、硬くて変形能が小さく、圧縮成形時の成形性に劣り、粉末成形体の密度を向上させることが難しい。そこで、本発明者らは、成形性を高めるために種々検討した結果、希土類-鉄-ホウ素合金のように化合物となった状態、即ち、希土類元素と鉄とが結合した状態ではなく、希土類元素と鉄とが結合せず、言わば鉄成分や鉄-ホウ素合金成分が希土類元素成分と独立的に存在する組織の粉末とすると、変形能が高く成形性に優れて、相対密度が高い粉末成形体が得られる、との知見を得た。また、上記特定の組織を有する粉末は、希土類-鉄-ホウ素系合金からなる合金粉末に特定の熱処理、具体的には水素を含む雰囲気下での熱処理を施すことで製造できる、との知見を得た。そして、得られた粉末を圧縮成形した粉末成形体に特定の熱処理を施すことで、圧粉体にHDDR処理を施した場合や、HDDR粉末を用いて成形体を作製した場合と同様な磁性部材が得られる、との知見を得た。特に、相対密度が高い粉末成形体から得られた磁性部材を用いることで、磁性相の比率が高い希土類磁石、具体的には希土類-鉄-ホウ素合金系磁石が得られる、との知見を得た。   In order to obtain a magnetic member suitable for a magnetic material such as a rare earth magnet without increasing the ratio of the magnetic phase without sintering, the present inventors do not use a bonding resin as in a bonded magnet. The use of powder compacts was studied. As described above, conventional raw material powders, that is, alloy powders and HDDR powders made of Nd-Fe-B alloys are hard and have low deformability, inferior formability during compression molding, and the density of the powder compact is low. It is difficult to improve. Therefore, as a result of various investigations to improve the formability, the present inventors have found that a rare earth element is not a state in which the compound is formed like a rare earth-iron-boron alloy, that is, a state in which the rare earth element and iron are combined. If the powder has a structure in which the iron component and iron-boron alloy component are present independently of the rare earth element component, the powder molded body has high deformability, excellent formability, and high relative density. I got the knowledge that Further, the knowledge that the powder having the above specific structure can be produced by subjecting the alloy powder made of a rare earth-iron-boron alloy to a specific heat treatment, specifically, a heat treatment in an atmosphere containing hydrogen. Obtained. Then, by applying a specific heat treatment to the powder compact obtained by compression molding the obtained powder, the magnetic member is the same as when the green compact is subjected to the HDDR treatment or when the compact is produced using the HDDR powder. I got the knowledge that In particular, the knowledge that a rare earth magnet having a high magnetic phase ratio, specifically, a rare earth-iron-boron alloy magnet can be obtained by using a magnetic member obtained from a powder compact having a high relative density. It was.

上記粉末成形体に熱処理を施して得られた磁性部材やこの磁性部材を着磁して得られる希土類磁石は、焼結体と異なり、原料に用いた粉末の粒界が確認できる。そして、この粒界、即ち、磁性部材を構成する合金粒子の表面に、DyやTbといった基本保磁力がNd系などよりも高い希土類元素を含む被覆層(耐熱保磁力層)が存在すると、使用温度が上昇しても、高い保磁力を維持できる、との知見を得た。この耐熱保磁力層は、例えば、以下のようにして形成できる、との知見を得た。上記特定の組織を有する磁性部材用粉末を用意し、当該粉末を構成する各磁性粒子の表面に、相対的に保磁力が高い希土類元素(上記のDyやTb)を含有するものを耐熱保磁力層を形成するための希土類元素の供給源として存在させる。具体的には、非金属元素との化合物(但し、酸化物以外)、希土類元素以外の金属元素との金属間化合物、希土類元素以外の金属元素との合金が挙げられる。この希土類元素を含む希土類供給源材が存在する粉末により粉末成形体を形成し、この粉末成形体に特定の熱処理を施す。この熱処理により、磁性粒子の表面に存在させた上記希土類供給源材から希土類元素(高保磁力の希土類-鉄-ホウ素複合物を形成する予定の元素)を分解すると共に、この分解した希土類元素と、磁性部材の主成分の元素(Ndなどの希土類元素、Fe、B)とを含む別の化合物(希土類-鉄-ホウ素複合物)を生成する。このように磁性部材用粉末に存在させた希土類供給源材から分解した希土類元素と、磁性粒子の成分とにより、耐熱保磁力層を構成する上記複合物を形成できる。   Unlike the sintered body, the magnetic member obtained by subjecting the powder compact to heat treatment and the rare earth magnet obtained by magnetizing the magnetic member can confirm the grain boundaries of the powder used as the raw material. And, if there is a coating layer (heat-resistant coercive force layer) containing rare earth elements whose basic coercive force such as Dy or Tb is higher than that of Nd, etc. on the surface of this grain boundary, that is, the alloy particle constituting the magnetic member, It was found that a high coercive force can be maintained even when the temperature rises. The heat-resistant coercive force layer was found to be formed as follows, for example. Prepare a powder for a magnetic member having the above specific structure, and the surface of each magnetic particle constituting the powder contains a rare earth element having a relatively high coercive force (the above-mentioned Dy or Tb). It is present as a source of rare earth elements for forming the layer. Specifically, a compound with a nonmetallic element (however, other than an oxide), an intermetallic compound with a metal element other than a rare earth element, and an alloy with a metal element other than a rare earth element can be given. A powder compact is formed from the powder containing the rare earth element containing rare earth element, and the powder compact is subjected to a specific heat treatment. By this heat treatment, the rare earth element (the element to form a high coercive rare earth-iron-boron composite) is decomposed from the rare earth source material present on the surface of the magnetic particles, and the decomposed rare earth element, Another compound (rare earth-iron-boron composite) containing the main component of the magnetic member (rare earth element such as Nd, Fe, B) is generated. Thus, the above-mentioned composite constituting the heat-resistant coercive force layer can be formed by the rare earth element decomposed from the rare earth supply source present in the magnetic member powder and the components of the magnetic particles.

上記知見により、本発明は、磁性部材用粉末を構成する各磁性粒子を上述のように特定の組織を有する形態とすること、かつこの特定の形態の磁性粒子の表面に上記耐熱保磁力層を形成するための耐熱前駆層を設けることを提案する。   Based on the above knowledge, in the present invention, each magnetic particle constituting the powder for a magnetic member has a form having a specific structure as described above, and the heat-resistant coercive force layer is formed on the surface of the magnetic particle having the specific form. It is proposed to provide a heat-resistant precursor layer for forming.

本発明の磁性部材用粉末は、希土類磁石の素材といった磁性部材の原料に用いられる粉末であり、当該磁性部材用粉末を構成する各磁性粒子は、40体積%未満の希土類元素の水素化合物と、残部が鉄含有物とから構成されている。上記希土類元素は、Nd,Pr,Ce及びYから選択される少なくとも1種である。上記鉄含有物は、鉄と、鉄及びホウ素を含む鉄-ホウ素合金とを含む。上記鉄含有物の相中に上記希土類元素の水素化合物が離散して存在している。そして、上記磁性粒子の表面に、耐熱前駆層を具える。この耐熱前駆層は、上記磁性粒子中の希土類元素とは異なる希土類元素、具体的にはDy及びTbの少なくとも1種の元素を含み、かつ酸素を含まない化合物及び合金の少なくとも一方からなる希土類供給源材を含有する。   The magnetic member powder of the present invention is a powder used as a raw material for a magnetic member such as a rare earth magnet material, and each magnetic particle constituting the magnetic member powder includes less than 40% by volume of a rare earth element hydrogen compound, The balance is composed of iron-containing material. The rare earth element is at least one selected from Nd, Pr, Ce and Y. The iron-containing material includes iron and an iron-boron alloy containing iron and boron. The rare earth element hydrogen compounds are discretely present in the phase of the iron-containing material. And the surface of the said magnetic particle is provided with a heat-resistant precursor layer. This heat-resistant precursor layer is a rare earth element comprising at least one of a rare earth element different from the rare earth element in the magnetic particles, specifically, at least one element of Dy and Tb and not containing oxygen and an alloy. Contains source material.

本発明の粉末成形体は、磁性部材の原料に用いられるものであり、上記本発明磁性部材用粉末を圧縮成形して製造される。また、本発明の磁性部材は、希土類磁石の素材に用いられるものであり、上記本発明粉末成形体を不活性雰囲気中、又は減圧雰囲気中で熱処理して製造される。そして、当該磁性部材を構成する合金粒子の表面に、上記本発明磁性部材用粉末を構成する磁性粒子の表面に具える耐熱前駆層に含まれていた希土類元素と、上記磁性粒子の構成元素とを含む希土類-鉄-ホウ素複合物からなる耐熱保磁力層を具える。   The powder compact of the present invention is used as a raw material for a magnetic member, and is produced by compression molding the powder for a magnetic member of the present invention. The magnetic member of the present invention is used as a material for rare earth magnets, and is manufactured by heat-treating the above-mentioned powder molded body of the present invention in an inert atmosphere or a reduced pressure atmosphere. And on the surface of the alloy particles constituting the magnetic member, the rare earth element contained in the heat-resistant precursor layer provided on the surface of the magnetic particles constituting the magnetic member powder of the present invention, and the constituent elements of the magnetic particles, And a heat-resistant coercive force layer made of a rare earth-iron-boron composite.

本発明磁性部材用粉末を構成する各磁性粒子は、R-Fe-B系合金やR-Fe-N系合金のように単一相の希土類合金から構成されるのではなく、鉄含有物の相と希土類元素の水素化合物からなる相との複数相から構成される。上記鉄含有物の相は、上記R-Fe-B系合金やR-Fe-N系合金(HDDR処理を施したものを含む)、上記希土類元素の水素化合物に比較して、柔らかく成形性に富む。また、上記各磁性粒子は、鉄含有物を主成分(60体積%以上)とすることで、本発明粉末を圧縮成形するとき、当該磁性粒子中の鉄含有物の相が十分に変形できる。更に、上記鉄含有物の相中に希土類元素の水素化合物が離散しているため、圧縮成形時、各磁性粒子の変形が均一的に行われる。これらのことから、本発明粉末を用いることで、相対密度が高い粉末成形体を容易に成形することができる。また、このような相対密度が高い粉末成形体を利用することで、焼結することなく、磁性相が高割合な希土類磁石といった磁性体を得ることができる。更に、鉄含有物が十分に変形することで、磁性粒子同士が互いに噛み合って結合されるため、接合性に優れる。従って、本発明粉末を利用することで、ボンド磁石のように結合樹脂を介在させることなく、磁性相の比率が80体積%以上、好ましくは90体積%以上といった希土類磁石などの磁性体を得ることができる。   Each magnetic particle constituting the powder for a magnetic member of the present invention is not composed of a single-phase rare earth alloy like an R-Fe-B alloy or an R-Fe-N alloy, but an iron-containing material. It is composed of a plurality of phases of a phase and a phase composed of a rare earth element hydrogen compound. The iron-containing phase is softer and more formable than the R-Fe-B alloys, R-Fe-N alloys (including those subjected to HDDR treatment), and the rare earth element hydrogen compounds. Rich. Further, each of the magnetic particles has an iron-containing material as a main component (60% by volume or more), so that when the powder of the present invention is compression-molded, the phase of the iron-containing material in the magnetic particle can be sufficiently deformed. Furthermore, since the rare earth element hydrogen compound is dispersed in the phase of the iron-containing material, the magnetic particles are uniformly deformed during compression molding. From these facts, a powder compact having a high relative density can be easily molded by using the powder of the present invention. Moreover, by using such a powder compact having a high relative density, a magnetic material such as a rare earth magnet having a high magnetic phase can be obtained without sintering. Furthermore, since the iron-containing material is sufficiently deformed, the magnetic particles are meshed with each other and bonded to each other. Therefore, by using the powder of the present invention, a magnetic material such as a rare earth magnet having a magnetic phase ratio of 80% by volume or more, preferably 90% by volume or more can be obtained without using a binder resin like a bonded magnet. Can do.

かつ、本発明磁性部材用粉末を圧縮成形して得られた本発明粉末成形体は、焼結磁石のように焼結を行わないことから、焼結時に生じる収縮の異方性に起因する形状の制約がなく、形状の自由度が大きい。従って、本発明粉末を用いることで、例えば、円筒状や円柱状、ポット形状といった複雑な形状であっても、切削加工などの後加工を実質的に行うことなく、容易に成形することができる。また、切削加工を不要とすることで、原料の歩留まりを飛躍的に向上したり、希土類磁石といった磁性体の生産性を向上したり、切削加工に伴う磁気特性の劣化を抑制したりすることができる。   In addition, since the powder compact of the present invention obtained by compression molding the magnetic member powder of the present invention does not sinter like a sintered magnet, it has a shape due to the shrinkage anisotropy that occurs during sintering. There are no restrictions, and the degree of freedom of shape is large. Therefore, by using the powder of the present invention, for example, even a complicated shape such as a cylindrical shape, a columnar shape, or a pot shape can be easily formed without substantially performing post-processing such as cutting. . In addition, by eliminating the need for cutting, the yield of raw materials can be dramatically improved, the productivity of magnetic materials such as rare earth magnets can be improved, and deterioration of magnetic properties associated with cutting can be suppressed. it can.

更に、上記耐熱前駆層を具える本発明磁性部材用粉末を圧縮成形した本発明粉末成形体に上記特定の熱処理を施して得られた磁性部材は、当該磁性部材を構成する合金粒子の表面(粒界)に、保磁力が高い希土類元素を含む耐熱保磁力層を具えることで、高温環境でも高い保磁力を有することができる。従って、本発明磁性部材を素材とした希土類磁石は、高温下での使用であっても、優れた磁石特性を有する。   Furthermore, the magnetic member obtained by subjecting the powder compact of the present invention obtained by compression-molding the powder for a magnetic member of the present invention having the above heat-resistant precursor layer to the specific heat treatment is the surface of the alloy particles constituting the magnetic member ( By providing a heat-resistant coercive force layer containing a rare earth element having a high coercive force at the grain boundary), it can have a high coercive force even in a high temperature environment. Therefore, the rare earth magnet made of the magnetic member of the present invention has excellent magnet characteristics even when used at high temperatures.

本発明磁性部材用粉末は、成形性に優れ、相対密度が高い本発明粉末成形体や耐熱性に優れる希土類磁石といった磁性体が得られる。本発明粉末成形体や本発明磁性部材を用いることで、焼結することなく、磁性相の比率が高く、耐熱性に優れる希土類磁石、具体的には高温保磁力に優れる希土類磁石が得られる。   The powder for a magnetic member of the present invention provides a magnetic body such as the powder compact of the present invention having a high moldability and a high relative density, and a rare earth magnet excellent in heat resistance. By using the powder molded body of the present invention or the magnetic member of the present invention, a rare earth magnet having a high magnetic phase ratio and excellent heat resistance, specifically, a rare earth magnet excellent in high temperature coercive force can be obtained without sintering.

図1は、実施形態の磁性部材用粉末を用いて磁性部材を製造する工程の一例を説明する工程説明図である。FIG. 1 is a process explanatory diagram illustrating an example of a process for manufacturing a magnetic member using the magnetic member powder of the embodiment.

以下、本発明をより詳細に説明する。
[磁性部材用粉末]
≪磁性粒子≫
本発明粉末を構成する各磁性粒子は、鉄含有物を主成分とし、その含有量を60体積%以上とする。鉄含有物の含有量が60体積%未満であると、硬質である希土類元素の水素化合物が相対的に多くなり、圧縮成形時、鉄含有物成分を十分に変形することが難しく、多過ぎると磁石特性の低下を招くことから90体積%以下が好ましい。一方、希土類元素の水素化合物を含有しないと、希土類磁石といった希土類磁性体が得られないことから、その含有量は、0体積%超とし、10体積%以上が好ましく、40体積%未満とする。鉄含有物或いは希土類元素の水素化合物の含有量は、本発明粉末の原料となる希土類-鉄-ホウ素系合金の組成や本発明粉末を製造する際の熱処理条件(主に温度)を適宜変化させることで調整できる。なお、上記各磁性粒子は、不可避不純物の含有を許容する。
Hereinafter, the present invention will be described in more detail.
[Powder for magnetic members]
≪Magnetic particles≫
Each magnetic particle constituting the powder of the present invention contains an iron-containing material as a main component, and the content thereof is 60% by volume or more. When the content of iron-containing material is less than 60% by volume, the amount of hard rare earth element hydrogen compound is relatively large, and it is difficult to sufficiently deform the iron-containing component during compression molding. 90 volume% or less is preferable because it causes a decrease in magnet characteristics. On the other hand, if a rare earth element hydrogen compound is not contained, a rare earth magnetic material such as a rare earth magnet cannot be obtained. Therefore, its content is more than 0% by volume, preferably 10% by volume or more, and less than 40% by volume. The content of the iron-containing material or the rare earth element hydrogen compound appropriately changes the composition of the rare earth-iron-boron alloy used as the raw material of the powder of the present invention and the heat treatment conditions (mainly the temperature) when producing the powder of the present invention. Can be adjusted. In addition, each said magnetic particle accept | permits inclusion of an unavoidable impurity.

上記鉄含有物は、鉄と、鉄-ホウ素合金との双方を含むものとする。鉄-ホウ素合金は、例えば、Fe3Bが挙げられる。その他、Fe2BやFeBが挙げられる。上記磁性粒子は、鉄-ホウ素合金に加えて、純鉄(Fe)を含有することで、成形性に優れる。鉄-ホウ素合金の含有量は、鉄含有物を100%とするとき、5質量%〜50質量%が好ましい。鉄-ホウ素合金の含有量が5質量%以上であることで、ホウ素を十分に含むことができ、最終的に得られる磁性部材中の希土類-鉄-ホウ素合金(代表的にはNd2Fe14B)の割合を50体積%以上とすることができる。鉄-ホウ素合金の含有量が50質量%以下であることで、成形性に優れる。鉄含有物中の鉄と、鉄-ホウ素合金との割合は、例えば、X線回折のピーク強度(ピーク面積)を測定し、測定したピーク強度を比較することで求められる。その他、鉄含有物は、鉄の一部がCo,Ga,Cu,Al,Si,及びNbから選択される少なくとも一種の元素に置換された形態とすることができる。鉄含有物が上記元素を含む形態では、磁気特性や耐食性を向上することができる。鉄及び鉄-ホウ素合金の存在比率は、本発明磁性部材用粉末の製造原料になる希土類-鉄-ホウ素系合金の組成を適宜変更させることで調整できる。 The iron-containing material includes both iron and an iron-boron alloy. Examples of the iron-boron alloy include Fe 3 B. Other examples include Fe 2 B and FeB. The magnetic particles are excellent in formability by containing pure iron (Fe) in addition to the iron-boron alloy. The content of the iron-boron alloy is preferably 5% by mass to 50% by mass when the content of iron is 100%. When the content of the iron-boron alloy is 5% by mass or more, boron can be sufficiently contained, and the rare earth-iron-boron alloy (typically Nd 2 Fe 14 in the magnetic member finally obtained) The proportion of B) can be 50% by volume or more. Formability is excellent when the content of the iron-boron alloy is 50% by mass or less. The ratio of iron to the iron-boron alloy in the iron-containing material is obtained, for example, by measuring the peak intensity (peak area) of X-ray diffraction and comparing the measured peak intensity. In addition, the iron-containing material can be in a form in which a part of iron is substituted with at least one element selected from Co, Ga, Cu, Al, Si, and Nb. In the form in which the iron-containing material contains the above element, magnetic properties and corrosion resistance can be improved. The abundance ratio of iron and iron-boron alloy can be adjusted by appropriately changing the composition of the rare earth-iron-boron alloy used as the raw material for producing the magnetic member powder of the present invention.

上記各磁性粒子に含有される希土類元素は、Y(イットリウム),Nd,Ce(セリウム)及びPr(プラセオジウム)から選択される1種以上の元素とする。特に、Ndは、磁石特性に優れるR-Fe-B系合金磁石を比較的安価に得られて好ましい。希土類元素の水素化合物は、例えば、NdH2が挙げられる。 The rare earth element contained in each of the magnetic particles is one or more elements selected from Y (yttrium), Nd, Ce (cerium) and Pr (praseodymium). In particular, Nd is preferable because an R—Fe—B alloy magnet having excellent magnet characteristics can be obtained at a relatively low cost. An example of the rare earth element hydrogen compound is NdH 2 .

上記各磁性粒子は、上記鉄含有物の相と上記希土類元素の水素化合物の相とが均一的に離散して存在した組織を有する。この離散した状態とは、上記各磁性粒子中において、上記希土類元素の水素化合物の相と上記鉄含有物の相とが隣接して存在し、上記鉄含有物の相を介して隣り合う上記希土類元素の水素化合物の相間の間隔が3μm以下であることを言う。代表的には、上記両相が多層構造となっている層状形態、上記希土類元素の水素化合物の相が粒状であり、上記鉄含有物の相を母相として、この母相中に上記粒状の希土類元素の水素化合物が存在する粒状形態が挙げられる。   Each of the magnetic particles has a structure in which the phase of the iron-containing material and the phase of the hydrogen compound of the rare earth element are uniformly dispersed. This discrete state means that in each of the magnetic particles, the rare earth element hydrogen compound phase and the iron-containing material phase are adjacent to each other, and the rare earth element is adjacent to each other via the iron-containing material phase. The distance between the phases of the elemental hydrogen compound is 3 μm or less. Typically, a layered form in which both phases have a multilayer structure, a phase of the hydrogen compound of the rare earth element is granular, and the phase of the iron-containing material is a parent phase. A granular form in which a rare earth element hydrogen compound is present may be mentioned.

上記両相の存在形態は、本発明磁性部材用粉末を製造する際の熱処理条件(主に温度)に依存し、上記温度を高めると粒状形態になり、上記温度を後述する不均化温度近傍にすると、層状形態となる傾向にある。   The existence form of both phases depends on the heat treatment conditions (mainly temperature) when producing the magnetic member powder of the present invention, and when the temperature is raised, it becomes a granular form, and the temperature is near the disproportionation temperature described later. Then, it tends to be a layered form.

上記層状形態の粉末を用いることで、結合樹脂を用いることなく、例えば、磁性相の比率がボンド磁石と同程度(80体積%程度)である希土類磁石を得ることができる。なお、上記層状形態の場合、希土類元素の水素化合物の相と鉄含有物の相とが隣接するとは、上記磁性粒子の断面をとったとき、各相が実質的に交互に積層された状態を言う。また、上記層状形態の場合、隣り合う希土類元素の水素化合物の相間の間隔とは、上記断面において鉄含有物の相を介して隣り合う二つの上記希土類元素の水素化合物の相の中心間の距離を言う。   By using the layered powder, for example, a rare earth magnet having a magnetic phase ratio of about the same as that of a bonded magnet (about 80% by volume) can be obtained without using a binder resin. In the case of the layered form, the phase of the rare earth element hydrogen compound and the phase of the iron-containing material are adjacent to each other when the cross-section of the magnetic particle is taken. To tell. In the case of the layered form, the interval between the phases of the adjacent rare earth element hydrogen compounds is the distance between the centers of the two rare earth element hydrogen compound phases adjacent to each other through the iron-containing material phase in the cross section. Say.

上記粒状形態は、上記希土類元素の水素化合物の粒子の周囲に鉄含有物成分が均一的に存在することで、上記層状形態よりも鉄含有物成分を変形させ易く、例えば、円筒状や円柱状、ポット形状といった複雑な形状の粉末成形体や、相対密度が85%以上、特に90%以上といった高密度の粉末成形体を得易い。上記粒状形態の場合、希土類元素の水素化合物の相と鉄含有物の相とが隣接するとは、代表的には、上記磁性粒子の断面をとったとき、上記希土類元素の水素化合物の粒子の周囲を覆うように鉄含有物が存在し、隣り合う上記各希土類元素の水素化合物の粒子間に鉄含有物が存在する状態を言う。また、上記粒状形態の場合、隣り合う希土類元素の水素化合物の相間の間隔とは、上記断面において隣り合う二つの上記希土類元素の水素化合物の粒子の中心間の距離を言う。   In the granular form, the iron-containing component is uniformly present around the rare-earth element hydrogen compound particles, so that the iron-containing component is more easily deformed than the layered form. It is easy to obtain a powder molded body having a complicated shape such as a pot shape and a high density powder molded body having a relative density of 85% or more, particularly 90% or more. In the case of the granular form, the phase of the rare earth element hydride and the phase of the iron-containing material are typically adjacent to the rare earth element hydride particle when the cross section of the magnetic particle is taken. The iron-containing material is present so as to cover the surface, and the iron-containing material is present between the adjacent hydrogen compound particles of each rare earth element. In the case of the granular form, the interval between phases of adjacent rare earth element hydrogen compounds refers to the distance between the centers of the two adjacent rare earth element hydrogen compound particles in the cross section.

上記間隔の測定は、例えば、上記断面をエッチングして鉄含有物の相を除去して上記希土類元素の水素化合物を抽出したり、或いは溶液の種類によっては希土類元素の水素化合物を除去して上記鉄含有物を抽出したり、上記断面をEDX(エネルギー分散型X線分光法)装置により組成分析したりすることで測定することができる。上記間隔が3μm以下であることで、上記粉末成形体に適宜熱処理を施して磁性部材を形成する場合に、過度なエネルギーを投入しなくて済む上に、希土類-鉄-ホウ素系合金の結晶の粗大化による特性の低下を抑制できる。上記希土類元素の水素化合物の相間に鉄含有物が十分に存在するためには、上記間隔は、0.5μm以上、特に1μm以上が好ましい。上記間隔は、原料に用いる希土類-鉄-ホウ素系合金粉末の組成を調整したり、本発明磁性部材用粉末を製造する際の熱処理条件、特に温度を特定の範囲にしたりすることで調整できる。例えば、上記希土類-鉄-ホウ素系合金粉末において、鉄又はホウ素の比率(原子比)を多くしたり、上記特定の範囲において上記熱処理(水素化)時の温度を高くすると、上記間隔が大きくなる傾向にある。   The interval may be measured by, for example, etching the cross section to remove the iron-containing phase and extracting the rare earth element hydrogen compound, or removing the rare earth element hydrogen compound depending on the type of the solution. It can be measured by extracting an iron-containing material or by analyzing the composition of the cross section with an EDX (energy dispersive X-ray spectroscopy) apparatus. When the interval is 3 μm or less, when the magnetic material is formed by appropriately heat-treating the powder compact, it is not necessary to input excessive energy, and the rare earth-iron-boron alloy crystal The deterioration of characteristics due to coarsening can be suppressed. In order for the iron-containing material to be sufficiently present between the phases of the rare earth element hydrogen compound, the interval is preferably 0.5 μm or more, and more preferably 1 μm or more. The interval can be adjusted by adjusting the composition of the rare earth-iron-boron alloy powder used as a raw material, or by adjusting the heat treatment conditions, particularly the temperature, in producing the magnetic member powder of the present invention. For example, in the rare earth-iron-boron-based alloy powder, when the ratio of iron or boron (atomic ratio) is increased or the temperature during the heat treatment (hydrogenation) is increased within the specific range, the interval increases. There is a tendency.

上記磁性粒子の平均粒径が10μm以上500μm以下であると、各磁性粒子の表面において希土類元素の水素化合物が占める割合を相対的に小さくでき、当該磁性粒子の酸化の抑制にある程度効果があると期待される。また、上記磁性粒子は上述のように鉄含有物の相を有して成形性に優れることで、例えば、平均粒径が100μm以上といった粗大な粉末であっても、気孔が少なく、相対密度が高い粉末成形体を形成できる。平均粒径が大き過ぎると、粉末成形体の相対密度の低下を招くことから500μm以下が好ましい。上記平均粒径は、50μm以上200μm以下がより好ましい。   When the average particle size of the magnetic particles is 10 μm or more and 500 μm or less, the proportion of rare earth element hydrogen compounds on the surface of each magnetic particle can be relatively small, and there is some effect in suppressing oxidation of the magnetic particles. Be expected. In addition, the magnetic particles have an iron-containing material phase as described above and have excellent moldability.For example, even a coarse powder having an average particle size of 100 μm or more has few pores and a relative density. A high powder compact can be formed. If the average particle size is too large, the relative density of the powder compact is reduced, and therefore it is preferably 500 μm or less. The average particle size is more preferably 50 μm or more and 200 μm or less.

上記磁性粒子は、その断面における円形度が0.5以上1.0以下である形態が挙げられる。円形度が上記範囲を満たすことで、耐熱前駆層や後述する絶縁被覆などを均一的な厚さで形成し易い、圧縮成形時に耐熱前駆層などの破損を抑制できる、といった効果が得られて好ましい。上記磁性粒子が真球に近い、即ち、円形度が1に近いほど、上記効果が得られる。   The magnetic particles may have a form in which the circularity in the cross section is 0.5 or more and 1.0 or less. The circularity satisfying the above range is preferable because it is easy to form a heat-resistant precursor layer and an insulating coating described later with a uniform thickness, and the damage of the heat-resistant precursor layer can be suppressed during compression molding. . As the magnetic particle is closer to a true sphere, that is, the circularity is closer to 1, the above effect can be obtained.

上記磁性粒子は、単結晶体でも多結晶体でもよい。単結晶体からなる磁性粒子は、例えば、多結晶体からなる粒子を作製し、適宜熱処理を加えることで得られる。   The magnetic particles may be single crystalline or polycrystalline. The magnetic particles made of a single crystal can be obtained, for example, by preparing particles made of a polycrystal and appropriately performing a heat treatment.

その他、ホウ素の少なくとも一部を炭素に置換した形態とすることができる。例えば、希土類-鉄-炭素系合金磁石の素材となる磁性部材用の粉末として、上述した鉄含有物が鉄と、鉄及び炭素を含む鉄-炭素合金とを含む形態とすることができる。この鉄-炭素合金を含む粉末も、上述した鉄-ホウ素合金を含む粉末と同様に鉄含有物の相を含有することで、成形性に優れる。なお、上述及び後述の各項目における鉄-ホウ素合金や希土類-鉄-ホウ素合金との記載は、鉄-炭素合金や希土類-鉄-炭素合金に置き換えることができる。希土類-鉄-炭素合金は、代表的には、Nd2Fe14Cが挙げられる。 In addition, at least a part of boron can be substituted with carbon. For example, as a powder for a magnetic member that is a material for a rare earth-iron-carbon alloy magnet, the above-described iron-containing material may include iron and an iron-carbon alloy containing iron and carbon. The powder containing this iron-carbon alloy also has excellent formability by containing the phase of the iron-containing material in the same manner as the powder containing the iron-boron alloy described above. In addition, the description of the iron-boron alloy or the rare earth-iron-boron alloy in each item described above and below can be replaced with an iron-carbon alloy or a rare earth-iron-carbon alloy. A typical rare earth-iron-carbon alloy is Nd 2 Fe 14 C.

≪耐熱前駆層≫
そして、上記各磁性粒子は、その表面に耐熱前駆層を具えることを特徴の一つとする。耐熱前駆層は、上記本発明磁性部材用粉末により形成した上記本発明磁性部材に具える耐熱保磁力層を形成するための原料になる。
≪Heat-resistant precursor layer≫
Each of the magnetic particles has a heat-resistant precursor layer on the surface thereof. The heat-resistant precursor layer is a raw material for forming a heat-resistant coercive force layer provided in the magnetic member of the present invention formed from the powder for a magnetic member of the present invention.

上記耐熱前駆層は、上記磁性粒子中のNd,Pr,Y,Ceといった希土類元素よりも基本保磁力が相対的に高い希土類元素:DyやTbを含む化合物及び合金の少なくとも一方からなる希土類供給源材を含有する。特に、Dyは、Tbよりも元素存在量が多く、原料を安定して確保することができる。また、この希土類供給源材は、酸素を含まないものとする。即ち、希土類供給源材が化合物である場合、酸化物以外とする。ここで、希土類元素の酸化物は、非常に安定しており、当該酸化物から酸素を除去することが非常に困難である。そこで、上述のように粉末成形体に施す熱処理により、Dyなどの希土類元素を含む化合物や合金からDyなどの希土類元素を分解して耐熱保磁力層を容易に形成できるように、耐熱前駆層に含有される希土類供給源材は、酸化物以外とする。   The heat resistant precursor layer is a rare earth source comprising at least one of a rare earth element having a basic coercive force relatively higher than that of the rare earth elements such as Nd, Pr, Y, and Ce in the magnetic particles: a compound and an alloy containing Dy and Tb. Contains material. In particular, Dy has a larger element abundance than Tb, and can secure a stable raw material. Further, the rare earth source material does not contain oxygen. That is, when the rare earth source material is a compound, it is not an oxide. Here, the rare earth element oxide is very stable, and it is very difficult to remove oxygen from the oxide. Therefore, the heat resistant precursor layer is formed so that the heat resistant coercive force layer can be easily formed by decomposing the rare earth element such as Dy from the compound or alloy containing the rare earth element such as Dy by the heat treatment applied to the powder compact as described above. The rare earth source material contained is not an oxide.

上記粉末成形体に施す熱処理(脱水素処理)により耐熱保磁力層を容易に形成可能な希土類元素の化合物として、例えば、水素化物、ヨウ化物、フッ化物、塩化物及び臭化物から選択される少なくとも1種が挙げられる。これらの化合物は、上記熱処理により、水素、ヨウ素、フッ素、塩素、臭素と希土類元素とを簡単に分解して、DyやTbを抽出できる。耐熱前駆層は、上記化合物や後述する金属間化合物、合金を1種のみ含有する形態でも、複数種の化合物、金属間化合物、合金を含有する形態でもよい。   As a rare earth element compound that can easily form a heat-resistant coercive force layer by heat treatment (dehydrogenation treatment) applied to the powder compact, for example, at least one selected from hydride, iodide, fluoride, chloride, and bromide Species are mentioned. These compounds can easily extract Dy and Tb by decomposing hydrogen, iodine, fluorine, chlorine, bromine and rare earth elements by the heat treatment. The heat-resistant precursor layer may be in the form containing only one kind of the above-mentioned compounds, intermetallic compounds and alloys described later, or may be in the form containing plural kinds of compounds, intermetallic compounds and alloys.

上記耐熱前駆層中の化合物を上記水素化物とすると、上記磁性粒子中の希土類元素の化合物と当該磁性粒子の表面に存在する耐熱前駆層中の希土類元素の化合物との双方を水素化合物とすることができるため、上記熱処理の条件を調整し易く好ましい。上記化合物を上記ヨウ化物とすると、融点が比較的低いため、例えば、当該ヨウ化物を溶融して、上記磁性粒子の表面に塗布することで耐熱前駆層を容易に形成できる。上記化合物をフッ化物、塩化物、臭化物とすると、これらの化合物は水素化物よりも不活性なので酸化し難く、耐酸化性に優れる。   When the compound in the heat-resistant precursor layer is the hydride, both the rare-earth element compound in the magnetic particles and the rare-earth element compound in the heat-resistant precursor layer present on the surface of the magnetic particles are hydrogen compounds. Therefore, it is preferable to easily adjust the heat treatment conditions. When the compound is the iodide, the melting point is relatively low. For example, the heat-resistant precursor layer can be easily formed by melting the iodide and applying it to the surface of the magnetic particles. When the above compounds are fluorides, chlorides, and bromides, these compounds are more inert than hydrides, so that they are difficult to oxidize and have excellent oxidation resistance.

耐熱保磁力層を形成可能な別の希土類供給源材として、例えば、希土類元素と希土類元素以外の金属元素との金属間化合物や合金が挙げられる。具体的には、Dyと、Mn,Fe,Co,Ni,Cu,Zn,及びGaから選択される少なくとも1種の金属元素との金属間化合物や合金が挙げられる。例えば、Dy-Ni系合金は多くの種類の金属間化合物が存在し、その共晶融点が950℃以下のものがある。例えば、Dy-30原子%Ni付近に共晶融点が存在し、Dy3Niは融点(初晶温度)が693℃である。このように共晶融点が低いことで、上記粉末成形体に施す熱処理(脱水素処理)時の温度を調整して十分に液相を生成でき、この液相からDyといった希土類元素を効率よく磁性粒子に供給できる。従って、上記金属間化合物や合金を含む耐熱前駆層も、熱処理(脱水素処理)により耐熱保磁力層を形成可能である。共晶融点が低いものとして、具体的には、Dy3Ni,Dy3Ni2が挙げられる。 As another rare earth source material capable of forming the heat-resistant coercive force layer, for example, an intermetallic compound or alloy of a rare earth element and a metal element other than the rare earth element can be given. Specifically, an intermetallic compound or alloy of Dy and at least one metal element selected from Mn, Fe, Co, Ni, Cu, Zn, and Ga can be given. For example, many types of intermetallic compounds exist in Dy-Ni alloys and their eutectic melting points are 950 ° C or lower. For example, a eutectic melting point exists in the vicinity of Dy-30 atomic% Ni, and Dy 3 Ni has a melting point (primary crystal temperature) of 693 ° C. Because of this low eutectic melting point, the temperature during the heat treatment (dehydrogenation treatment) applied to the powder compact can be adjusted and a sufficient liquid phase can be generated. From this liquid phase, rare earth elements such as Dy are efficiently magnetized. Can be supplied to particles. Therefore, a heat resistant coercive force layer can also be formed by heat treatment (dehydrogenation treatment) for the heat resistant precursor layer containing the intermetallic compound or alloy. Specific examples of those having a low eutectic melting point include Dy 3 Ni and Dy 3 Ni 2 .

上記耐熱前駆層の具体的な形態として、例えば、(1)上記Dyなどの希土類元素を含む化合物(金属間化合物を含む)や合金からなる被膜である形態、(2)上記希土類元素の化合物や合金と、当該希土類元素の化合物や合金の表面の少なくとも一部を覆い、上記磁性粒子の表面にこの化合物や合金を固定するための固定層を具える形態が挙げられる。(2)の形態では、上記希土類元素の化合物や合金が粒状であると、耐熱前駆層を形成し易い上に、複数種の化合物や合金を含有する形態を簡単に形成できる。   Specific examples of the heat-resistant precursor layer include, for example, (1) a form made of a film containing a rare earth element such as Dy (including an intermetallic compound) or an alloy, and (2) a compound of the rare earth element or Examples include an alloy and a fixed layer for covering at least a part of the surface of the rare earth element compound or alloy and fixing the compound or alloy on the surface of the magnetic particles. In the form (2), if the rare earth element compound or alloy is granular, it is easy to form a heat-resistant precursor layer, and a form containing a plurality of types of compounds and alloys can be easily formed.

ここで、上述のように粉末成形体に熱処理を施すと、上記希土類供給源材から分解されたDyなどの希土類元素が当該粉末成形体を構成する磁性粒子の表面から内部に向かって拡散・浸透し、当該希土類元素と、上記磁性粒子の構成成分とを含む複合物からなる耐熱保磁力層を形成することができる。即ち、上記磁性粒子の表層領域においてNdといった希土類元素の少なくとも一部がDyなどの希土類元素に置換されて耐熱保磁力層を形成する。そこで、上記置換量がNdといった希土類元素の30%〜100%となり、耐熱保磁力層の厚さが100nm〜2000nm程度となるように、上記(1)の被膜の厚さや上記(2)の化合物(金属間化合物を含む)や合金からなる粒子(以下、供給源粒子と呼ぶ)の平均粒径や添加量、上記粉末成形体に施す熱処理条件などを調整することが好ましい。上記被膜は、その厚さが50nm以上1000nm以下が好ましい。上記供給源粒子の平均粒径は、0.1μm(100nm)以上であると化合物や合金が安定して存在でき、5μm(5000nm)以下であると、磁性粒子からなる粉末の充填密度の低下を抑制できる。また、上記供給源粒子の添加量は、磁性粒子の表面積に対して15%〜50%を覆う量となることが好ましい。   Here, when the powder compact is heat-treated as described above, rare earth elements such as Dy decomposed from the rare earth source material diffuse and penetrate from the surface of the magnetic particles constituting the powder compact to the inside. And the heat-resistant coercive force layer which consists of a composite containing the said rare earth element and the component of the said magnetic particle can be formed. That is, at least a part of the rare earth element such as Nd is replaced with a rare earth element such as Dy in the surface layer region of the magnetic particle to form the heat-resistant coercive force layer. Therefore, the thickness of the coating (1) and the compound (2) are adjusted so that the substitution amount is 30% to 100% of the rare earth element such as Nd and the thickness of the heat-resistant coercive force layer is about 100 nm to 2000 nm. It is preferable to adjust the average particle diameter and addition amount of particles (including intermetallic compounds) and alloys (hereinafter referred to as supply source particles), the heat treatment conditions applied to the powder compact, and the like. The thickness of the coating is preferably 50 nm or more and 1000 nm or less. If the average particle size of the source particles is 0.1 μm (100 nm) or more, compounds and alloys can exist stably, and if the average particle size is 5 μm (5000 nm) or less, a decrease in the packing density of the powder composed of magnetic particles is suppressed. it can. Moreover, it is preferable that the addition amount of the said source particle becomes an amount which covers 15%-50% with respect to the surface area of a magnetic particle.

上記供給源粒子は、小片であればその形状は特に問わない。例えば、外形が球状のものの他、箔片などでも構わない。希土類供給源材が化合物の場合、供給源粒子は、化合物の塊や箔を適宜粉砕することで製造できる。希土類供給源材が金属間化合物や合金の場合、供給源粒子は、溶解鋳造したインゴットを粉砕したり、ガスアトマイズ法を利用したりすることで製造することができる。或いは、供給源粒子は、市販品(粉末など)を利用することができる。   The source particles are not particularly limited in shape as long as they are small pieces. For example, a foil piece other than a spherical outer shape may be used. When the rare earth source material is a compound, the source particles can be produced by appropriately pulverizing a lump or foil of the compound. When the rare earth source material is an intermetallic compound or alloy, the source particles can be produced by pulverizing a melt-cast ingot or using a gas atomizing method. Alternatively, commercially available products (powder etc.) can be used as the source particles.

上記固定層は、樹脂からなることが好ましい。即ち、本発明の一形態として、上記希土類供給源材が粒状であり、この供給源粒子は、上記樹脂層により、上記磁性粒子の表面に固定されている形態が挙げられる。   The fixing layer is preferably made of a resin. That is, as an embodiment of the present invention, the rare earth source material is granular, and the source particles are fixed to the surface of the magnetic particles by the resin layer.

上記固定層が樹脂から構成される場合、(1)圧縮成形時、上記各磁性粒子の変形に十分に追従することができる、(2)粉末成形体を熱処理する際などに焼失させられ、当該樹脂の残滓による磁性相の低下を抑制できる、といった効果を有する。   When the fixed layer is made of a resin, (1) at the time of compression molding, can sufficiently follow the deformation of the magnetic particles, (2) when the powder compact is heat-treated, etc. It has the effect that the fall of the magnetic phase by the residue of resin can be suppressed.

上記樹脂は、酸素の透過係数(30℃)が1.0×10-11m3・m/(s・m2・Pa)未満であることが好ましい。ここで、本発明磁性部材用粉末を圧縮成形すると、当該成形時の圧力により上記各磁性粒子に新生面が形成される。上記各磁性粒子内には希土類元素の水素化合物が存在しており、上記新生面に露出した希土類元素の水素化合物が酸化されることで、新生面が酸化される恐れがある。この酸化を防止するための手段として、例えば、非酸化性雰囲気下で成形を行うことが挙げられるが、この場合、大掛かりな設備が必要となる。 The resin preferably has an oxygen permeability coefficient (30 ° C.) of less than 1.0 × 10 −11 m 3 · m / (s · m 2 · Pa). Here, when the powder for a magnetic member of the present invention is compression molded, a new surface is formed on each magnetic particle by the pressure during the molding. There is a rare earth element hydrogen compound in each of the magnetic particles, and the rare earth element hydrogen compound exposed on the new surface is oxidized, so that the new surface may be oxidized. As a means for preventing this oxidation, for example, molding may be performed in a non-oxidizing atmosphere, but in this case, a large facility is required.

これに対して、上述のように酸素の透過係数が低く、酸化防止効果が高い樹脂により、上記磁性粒子の表面の少なくとも一部が覆われる形態、好ましくは当該磁性粒子の全周が覆われて、外気と遮断される形態とすると、大気雰囲気といった酸素を含む雰囲気下で圧縮成形を行っても、圧縮成形時に当該磁性粒子の新生面が酸化されることを効果的に防止できる。従って、希土類の酸化物が存在することによる磁性相の低下を抑制することができ、磁性相の比率が高い希土類磁石といった磁性体を生産性よく製造できる。このように上記樹脂として酸化防止機能を有するものを利用することで、当該樹脂からなる層は、上記供給源粒子の固定に加えて、酸化防止層としても機能する。   On the other hand, as described above, at least a part of the surface of the magnetic particle is covered with a resin having a low oxygen permeability coefficient and a high antioxidant effect, preferably the entire circumference of the magnetic particle is covered. If the form is cut off from the outside air, the new surface of the magnetic particles can be effectively prevented from being oxidized at the time of compression molding, even if compression molding is performed in an atmosphere containing oxygen such as an atmospheric atmosphere. Accordingly, it is possible to suppress a decrease in the magnetic phase due to the presence of the rare earth oxide, and it is possible to produce a magnetic body such as a rare earth magnet having a high magnetic phase ratio with high productivity. Thus, by using what has an antioxidant function as said resin, the layer which consists of the said resin functions also as an antioxidant layer in addition to fixation of the said source particle.

上記酸素の透過係数(30℃)が1.0×10-11m3・m/(s・m2・Pa)以上では、圧縮成形時の雰囲気を例えば、大気雰囲気などの酸素を含む雰囲気とした場合に、上記新生面が酸化されて酸化物が生成され、この酸化物の存在により、磁性部材中の磁性相の低下を招く。従って、酸素の透過係数(30℃)は、小さいほど好ましく、0.01×10-11m3・m/(s・m2・Pa)以下がより好ましく、下限は設けない。 When the oxygen permeability coefficient (30 ° C) is 1.0 × 10 -11 m 3・ m / (s ・ m 2・ Pa) or higher, the atmosphere during compression molding is, for example, an atmosphere containing oxygen such as an air atmosphere. In addition, the new surface is oxidized to produce an oxide, and the presence of this oxide causes a decrease in the magnetic phase in the magnetic member. Therefore, the oxygen permeability coefficient (30 ° C.) is preferably as small as possible, more preferably 0.01 × 10 −11 m 3 · m / (s · m 2 · Pa) or less, and no lower limit is provided.

上記酸化防止機能を有する樹脂層は、耐熱前駆層が上述した被膜からなる形態の場合にも当該被膜の表面を覆うように設けられていることが好ましい。即ち、上記耐熱前駆層の一形態として、上記希土類供給源材(代表的には上記被膜、或いは上記供給源粒子)と、上記希土類供給源材の表面の少なくとも一部、好ましくは全部を覆う樹脂からなる層とを含み、上記樹脂は、酸素の透過係数が上記特定の範囲を満たす形態が挙げられる。   The resin layer having the antioxidant function is preferably provided so as to cover the surface of the coating even when the heat-resistant precursor layer is formed of the coating described above. That is, as one form of the heat-resistant precursor layer, a resin that covers the rare earth source material (typically the coating film or the source particles) and at least a part, preferably all of the surface of the rare earth source material. And the resin has a form in which the permeability coefficient of oxygen satisfies the specific range.

更に、上記樹脂は、透湿率(30℃)が1000×10-13kg/(m・s・MPa)未満を満たすことが好ましい。大気雰囲気中に水分(代表的には水蒸気)が比較的多く存在する多湿状態(例えば、気温30℃程度/湿度80%程度など)では、水分と接触して上記磁性粒子の新生面が酸化する恐れがある。従って、透湿率が低い樹脂であれば、湿気による酸化を効果的に防止できる。透湿率も小さいほど好ましく、10×10-13kg/(m・s・MPa)以下がより好ましく、下限は設けない。 Further, the resin preferably satisfies a moisture permeability (30 ° C.) of less than 1000 × 10 −13 kg / (m · s · MPa). In a humid state (for example, temperature of about 30 ° C./humidity of about 80%, etc.) in which a relatively large amount of moisture (typically water vapor) is present in the atmosphere, there is a risk that the new surface of the magnetic particles may be oxidized by contact with moisture. There is. Therefore, if the resin has a low moisture permeability, oxidation due to moisture can be effectively prevented. The moisture permeability is preferably as small as possible, more preferably 10 × 10 −13 kg / (m · s · MPa) or less, and no lower limit is set.

上記樹脂層は、単層でも多層でもよい。例えば、酸素の透過係数(30℃)が1.0×10-11m3・m/(s・m2・Pa)未満である樹脂から構成された酸素低透過層のみを具える単層形態、酸素の透過係数(30℃)が1.0×10-11m3・m/(s・m2・Pa)未満であり、かつ透湿率(30℃)が1000×10-13kg/(m・s・MPa)未満である樹脂から構成された酸素・湿気低透過層を具える単層形態、上記酸素低透過層と、透湿率(30℃)が1000×10-13kg/(m・s・MPa)未満である樹脂から構成された湿気低透過層とを積層して具える多層形態が挙げられる。 The resin layer may be a single layer or a multilayer. For example, a single layer form comprising only a low oxygen permeability layer composed of a resin having an oxygen permeability coefficient (30 ° C.) of less than 1.0 × 10 −11 m 3 · m / (s · m 2 · Pa), oxygen permeability coefficient was (30 ° C.) is 1.0 × 10 -11 m 3 · m / less than (s · m 2 · Pa) , and moisture permeability (30 ° C.) is 1000 × 10 of -13 kg / (m · s・ Single layer form with oxygen / moisture low permeability layer composed of resin less than (MPa), the above oxygen low permeability layer, and moisture permeability (30 ° C.) of 1000 × 10 −13 kg / (m ・ s -The multilayer form which laminates | stacks the moisture low-permeability layer comprised from resin which is less than (MPa) is mentioned.

上記酸素低透過層の構成樹脂は、ポリアミド系樹脂、ポリエステル、及びポリ塩化ビニルから選択される一種が挙げられる。ポリアミド系樹脂は、代表的にはナイロン6が挙げられる。ナイロン6は、酸素の透過係数(30℃)が0.0011×10-11m3・m/(s・m2・Pa)と非常に小さく好ましい。上記湿気低透過層の構成樹脂は、ポリエチレン、フッ素樹脂、ポリプロピレンなどが挙げられる。ポリエチレンは、透湿率(30℃)が7×10-13kg/(m・s・MPa)〜60×10-13kg/(m・s・MPa)と非常に小さく好ましい。 Examples of the constituent resin for the low oxygen permeability layer include one selected from polyamide resins, polyesters, and polyvinyl chloride. A typical example of the polyamide-based resin is nylon 6. Nylon 6 has an oxygen permeability coefficient (30 ° C.) of 0.0011 × 10 −11 m 3 · m / (s · m 2 · Pa) and is very small. Examples of the constituent resin of the low moisture permeable layer include polyethylene, fluororesin, and polypropylene. Polyethylene is preferable because it has a very low moisture permeability (30 ° C.) of 7 × 10 −13 kg / (m · s · MPa) to 60 × 10 −13 kg / (m · s · MPa).

上記酸素低透過層と上記湿気低透過層とを積層して具える形態とする場合、いずれの層が内側(上記磁性粒子側)、外側(最表面側)に配置されていてもよいが、酸素低透過層を内側、湿気低透過層を外側に配置させると、酸化をより効果的に防止できると期待される。また、酸素低透過層と湿気低透過層との両層が上述のように樹脂で構成されることで、両層の密着性に優れて好ましい。更に、上記酸素低透過層と上記湿気低透過層とを積層して具える形態とする場合、磁性粒子側に配置される層を固定層とすると、高温環境での保磁力の維持に寄与するDyなどの希土類元素を磁性部材の粒界に存在させ易く好ましい。   In the case where the oxygen low-permeability layer and the moisture low-permeability layer are laminated, any layer may be disposed on the inner side (the magnetic particle side) and the outer side (outermost surface side), It is expected that oxidation can be more effectively prevented by disposing the low oxygen permeable layer on the inside and the low moisture permeable layer on the outside. Moreover, it is excellent in the adhesiveness of both layers because both layers of a low oxygen permeable layer and a low moisture permeable layer are comprised with resin as mentioned above. Further, in the case where the oxygen low-permeability layer and the moisture low-permeability layer are laminated, the layer disposed on the magnetic particle side is a fixed layer, which contributes to maintenance of coercive force in a high temperature environment. Rare earth elements such as Dy are preferably present at the grain boundaries of the magnetic member.

上記樹脂層の厚さは適宜選択することができるが、薄過ぎると、上記供給源粒子を十分に固定できなかったり、酸化防止効果を十分に得られなかったりする。一方、厚過ぎると、粉末成形体の密度の低下を招き、例えば、相対密度が85%以上の粉末成形体を形成したり、焼失により除去したりすることが困難になる。上記樹脂層が二層構造といった多層構造である場合、或いは上記酸素低透過層のみ、又は上記湿気低透過層のみを具える単層構造である場合、各層の厚さは10nm以上500nm以下が好ましく、合計厚さは20nm以上1000nm以下が好ましい。特に、固定層として機能する層の厚さは、例えば、上記供給源粒子の平均粒径と同程度以下、特に200nm以上1000nm以下であると、上記供給源粒子の脱落や酸化、密度の低下を抑えられる上に、成形性に優れる。   The thickness of the resin layer can be selected as appropriate, but if it is too thin, the supply source particles cannot be sufficiently fixed, or the antioxidant effect cannot be sufficiently obtained. On the other hand, if it is too thick, the density of the powder compact is reduced, and for example, it becomes difficult to form a powder compact with a relative density of 85% or more or to remove it by burning. When the resin layer has a multilayer structure such as a two-layer structure, or a single-layer structure including only the oxygen low-permeability layer or the moisture low-permeability layer, the thickness of each layer is preferably 10 nm or more and 500 nm or less. The total thickness is preferably 20 nm or more and 1000 nm or less. In particular, the thickness of the layer functioning as the fixed layer is, for example, about the same or less than the average particle diameter of the source particles, particularly 200 nm to 1000 nm. In addition to being suppressed, it has excellent moldability.

≪絶縁被覆≫
更に、上記本発明磁性部材用粉末は、その外周に絶縁材料からなる絶縁被覆を具える形態とすることができる。絶縁被覆を具える粉末を用いることで、電気抵抗が高い磁性部材を得られ、この磁性部材を例えば、モータの磁石の素材に利用した場合、渦電流損を低減できる。絶縁被覆は、例えば、Si,Al,Tiなどの酸化物の結晶性被膜や非晶質のガラス被膜、Me-Fe-O(Me=Ba,Sr,Ni,Mnなどの金属元素)といったフェライトやマグネタイト(Fe3O4)、Dy2O3といった金属酸化物、シリコーン樹脂といった樹脂、シルセスキオキサン化合物などの有機無機ハイブリッド化合物からなる被膜が挙げられる。また、熱伝導性を向上する目的で、Si-N、Si-C系のセラミックス被覆を施してもよい。これらの絶縁被膜やセラミックス被覆は、酸化防止機能を有する場合があり、この場合、酸化防止層としても機能することができる。これら絶縁被覆やセラミックス被覆を具える形態では、上記磁性粒子の表面に接するように上記耐熱前駆層を具え、その上に絶縁被覆やセラミックス被覆を具えることが好ましい。また、これら絶縁被膜は、上記耐熱前駆層を構成する供給源粒子を固定するための固定層である形態とすることもできる。
≪Insulation coating≫
Further, the magnetic member powder of the present invention can be provided with an insulating coating made of an insulating material on its outer periphery. By using a powder having an insulating coating, a magnetic member having high electrical resistance can be obtained. When this magnetic member is used as a material for a magnet of a motor, for example, eddy current loss can be reduced. Insulating coatings include, for example, crystalline films of oxides such as Si, Al, Ti, amorphous glass films, ferrites such as Me-Fe-O (Me = Ba, Sr, Ni, Mn, etc.) Examples thereof include films made of metal oxides such as magnetite (Fe 3 O 4 ) and Dy 2 O 3 , resins such as silicone resins, and organic-inorganic hybrid compounds such as silsesquioxane compounds. In order to improve thermal conductivity, Si-N or Si-C ceramic coating may be applied. These insulating coatings and ceramic coatings may have an antioxidant function, and in this case, they can also function as an antioxidant layer. In the form including these insulating coatings and ceramic coatings, it is preferable to provide the heat-resistant precursor layer so as to be in contact with the surface of the magnetic particles, and to provide the insulating coating and ceramic coating thereon. Moreover, these insulating coatings can also be made into the form which is a fixed layer for fixing the supply source particle which comprises the said heat-resistant precursor layer.

[磁性部材用粉末の製造方法]
上記磁性部材用粉末は、例えば、以下の準備工程と、水素化工程と、被覆工程とを具える製造方法により製造することができる。
準備工程:希土類-鉄-ホウ素系合金(例えば、Nd2Fe14B)からなる合金粉末を準備する工程。
水素化工程:上記合金粉末を、水素元素を含む雰囲気中、上記希土類-鉄-ホウ素系合金の不均化温度以上の温度で熱処理して、希土類元素の水素化合物の相、鉄と鉄及びホウ素を含む鉄-ホウ素合金とを含む鉄含有物の相を生成し、上記鉄含有物の相中に上記希土類元素の水素化合物の相が離散して存在するベース粉末を形成する工程。
被覆工程:上記ベース粉末を構成する各磁性粒子の表面に、Dy及びTbの少なくとも1種を含み、かつ酸素を含まない化合物及び合金の少なくとも一方からなる希土類供給源材を含有する耐熱前駆層を形成する工程。
[Method for producing powder for magnetic member]
The said powder for magnetic members can be manufactured with the manufacturing method which comprises the following preparatory processes, a hydrogenation process, and a coating | coated process, for example.
Preparation step: a step of preparing an alloy powder made of a rare earth-iron-boron alloy (for example, Nd 2 Fe 14 B).
Hydrogenation step: The alloy powder is heat-treated in an atmosphere containing a hydrogen element at a temperature equal to or higher than the disproportionation temperature of the rare earth-iron-boron alloy, and a rare earth element hydrogen compound phase, iron, iron, and boron. Forming a phase of an iron-containing material containing an iron-boron alloy containing iron, and forming a base powder in which the phases of the rare earth element hydrogen compounds are discretely present in the phase of the iron-containing material.
Coating step: A heat-resistant precursor layer containing a rare earth source material comprising at least one of a compound and an alloy containing at least one of Dy and Tb and not containing oxygen on the surface of each magnetic particle constituting the base powder. Forming step.

≪準備工程≫
上記合金粉末は、例えば、希土類-鉄-ホウ素系合金からなる溶解鋳造インゴットや急冷凝固法で得られる箔状体をジョークラッシャー、ジェットミルやボールミルなどの粉砕装置により粉砕したり、ガスアトマイズ法といったアトマイズ法を利用して製造することができる。特に、ガスアトマイズ法を利用する場合、非酸化性雰囲気で粉末を形成することで、実質的に酸素が含有されない粉末(酸素濃度:500質量ppm以下)とすることができる。即ち、合金粉末を構成する粒子中の酸素濃度が500質量ppm以下であることは、非酸化性雰囲気のガスアトマイズ法により製造された粉末であることを示す指標の一つとなる。その他、上記希土類-鉄-ホウ素系合金からなる合金粉末には、公知の粉末の製造方法により得られたものや、アトマイズ法により製造した粉末を更に粉砕したものを利用してもよい。粉砕条件や製造条件を適宜変更することで、粉末の粒度分布や磁性粒子の形状を調整することができる。例えば、アトマイズ法を利用すると、真球度が高く、成形時の充填性に優れた粉末が得られ易く、例えば、円形度が0.5〜1.0である球形に近い粉末を得ることができる。換言すれば、円形度が上記範囲を満たすことは、アトマイズ法により製造された粉末であることを示す指標の一つとなる。
≪Preparation process≫
The alloy powder may be obtained by, for example, melting a cast ingot made of a rare earth-iron-boron alloy or a foil obtained by a rapid solidification method using a crushing device such as a jaw crusher, a jet mill or a ball mill, or an atomizing method such as a gas atomizing method. It can be manufactured using the law. In particular, when the gas atomization method is used, a powder containing substantially no oxygen (oxygen concentration: 500 mass ppm or less) can be obtained by forming the powder in a non-oxidizing atmosphere. That is, the oxygen concentration in the particles constituting the alloy powder being 500 mass ppm or less is one index indicating that the powder is produced by the gas atomization method in a non-oxidizing atmosphere. In addition, as the alloy powder made of the rare earth-iron-boron alloy, a powder obtained by a known powder production method or a powder obtained by further pulverizing a powder produced by an atomization method may be used. By appropriately changing the pulverization conditions and the production conditions, the particle size distribution of the powder and the shape of the magnetic particles can be adjusted. For example, when the atomizing method is used, it is easy to obtain a powder having a high sphericity and an excellent filling property at the time of molding. For example, a nearly spherical powder having a circularity of 0.5 to 1.0 can be obtained. In other words, the circularity satisfying the above range is one index indicating that the powder is manufactured by the atomizing method.

この準備工程で用意する合金粉末の大きさは、後工程の水素化処理時に実質的に大きさを変えないように当該熱処理を施した場合、実質的に本発明磁性部材用粉末の大きさになる。本発明粉末は上述の特定の形態であって成形性に優れることから、平均粒径が100μm程度の比較的粗大なものとすることができる。従って、上記合金粉末も平均粒径が100μm程度にすることができる。このような粗大な合金粉末は、例えば、溶解鋳造インゴットに粗粉砕のみを行ったり、溶湯噴霧法といったアトマイズ法によって製造できる。このような粗大な合金粉末を利用できることから、例えば、焼結磁石の製造に利用されている原料粉末(焼結前の成形体を構成する粉末)のように10μm以下といった微粒にするための微粉砕を不要にでき、製造工程の短縮などにより、製造コストの低減を図ることができる。   The size of the alloy powder prepared in this preparation step is substantially the size of the magnetic member powder of the present invention when the heat treatment is performed so that the size is not substantially changed during the subsequent hydrogenation treatment. Become. Since the powder of the present invention has the above-mentioned specific form and is excellent in moldability, it can be made relatively coarse with an average particle diameter of about 100 μm. Therefore, the alloy powder can also have an average particle size of about 100 μm. Such a coarse alloy powder can be produced by, for example, performing only coarse pulverization on a molten cast ingot or an atomizing method such as a molten metal spraying method. Since such a coarse alloy powder can be used, for example, a raw material powder (powder constituting a green body before sintering) used for manufacturing a sintered magnet has a fine particle size of 10 μm or less. The pulverization can be eliminated, and the manufacturing cost can be reduced by shortening the manufacturing process.

≪水素化工程≫
この工程は、用意した上記合金粉末を、水素元素を含む雰囲気中で熱処理して、当該合金中の希土類元素と鉄と鉄-ホウ素合金とを分離すると共に、当該希土類元素と水素とを化合してベース粉末を作製する工程である。
≪Hydrogenation process≫
In this step, the prepared alloy powder is heat-treated in an atmosphere containing hydrogen element to separate the rare earth element, iron, and iron-boron alloy in the alloy and to combine the rare earth element and hydrogen. This is a step of producing a base powder.

上記水素元素を含む雰囲気は、水素(H2)のみの単一雰囲気、或いは水素(H2)とArやN2といった不活性ガスとの混合雰囲気が挙げられる。上記水素化工程の熱処理時の温度は、上記希土類-鉄-ホウ素系合金の不均化反応が進行する温度、即ち不均化温度以上とする。不均化反応とは、希土類元素の優先水素化により、希土類元素の水素化合物と、鉄と、鉄-ホウ素合金とに分離する反応であり、この反応が生じる下限温度を不均化温度と呼ぶ。上記不均化温度は、上記合金の組成や希土類元素の種類により異なる。例えば、希土類-鉄-ホウ素系合金がNd2Fe14Bの場合、650℃以上が挙げられる。熱処理時の温度を不均化温度近傍とすると、上述した層状形態が得られ、温度を不均化温度+100℃以上に高めると、上述した粒状形態が得られる。上記水素化工程の熱処理時の温度を高めるほど、鉄の相や鉄-ホウ素合金の相を出現させ易く、同時に析出する硬質の希土類元素の水素化合物が変形の阻害因子になり難くなり粉末の成形性を高められるが、高過ぎると粉末の溶融固着などの不具合が発生するため、上記熱処理時の温度は1100℃以下が好ましい。特に、上記希土類-鉄-ホウ素系合金がNd2Fe14Bの場合、上記水素化工程の熱処理時の温度を750℃以上900℃以下の比較的低めにすると、上記間隔が小さい微細な組織となり、このような粉末を利用することで、例えば保磁力が高い希土類磁石が得られ易い。保持時間は、0.5時間以上5時間以下が挙げられる。この熱処理は、上述したHDDR処理の不均化工程までの処理に相当し、公知の不均化条件を適用することができる。 Examples of the atmosphere containing hydrogen element include a single atmosphere containing only hydrogen (H 2 ) or a mixed atmosphere of hydrogen (H 2 ) and an inert gas such as Ar or N 2 . The temperature during the heat treatment in the hydrogenation step is set to a temperature at which the disproportionation reaction of the rare earth-iron-boron alloy proceeds, that is, the disproportionation temperature or higher. The disproportionation reaction is a reaction that separates rare earth element hydrogen compounds, iron, and iron-boron alloys by preferential hydrogenation of rare earth elements, and the lower limit temperature at which this reaction occurs is called the disproportionation temperature. . The disproportionation temperature varies depending on the composition of the alloy and the type of rare earth element. For example, when the rare earth-iron-boron alloy is Nd 2 Fe 14 B, the temperature may be 650 ° C. or higher. When the temperature at the time of heat treatment is in the vicinity of the disproportionation temperature, the above-described layered form is obtained, and when the temperature is increased to the disproportionation temperature + 100 ° C. or higher, the above-described granular form is obtained. The higher the temperature during the heat treatment in the hydrogenation step, the easier it is for the iron phase and iron-boron alloy phase to appear, and the hard rare earth element hydrogen compounds that precipitate at the same time are less likely to be a hindrance to deformation. However, if the temperature is too high, problems such as melting and fixing of the powder occur. Therefore, the temperature during the heat treatment is preferably 1100 ° C. or lower. In particular, when the rare earth-iron-boron alloy is Nd 2 Fe 14 B, if the temperature during the heat treatment in the hydrogenation process is relatively low, such as 750 ° C. or more and 900 ° C. or less, the microstructure becomes small with a small interval. By using such a powder, for example, a rare earth magnet having a high coercive force can be easily obtained. Examples of the holding time include 0.5 hours or more and 5 hours or less. This heat treatment corresponds to the processing up to the disproportionation step of the above-described HDDR processing, and known disproportionation conditions can be applied.

≪被覆工程≫
この工程は、得られた上記ベース粉末を構成する上記各磁性粒子の表面に、耐熱前駆層を形成する工程である。
≪Coating process≫
This step is a step of forming a heat resistant precursor layer on the surface of each magnetic particle constituting the obtained base powder.

耐熱前駆層を上述した被膜とする場合、例えば、以下の形成方法が挙げられる。
(I) 上記磁性粒子の表面に、物理蒸着法(PVD法)やめっき法などの成膜法により、Dyなどの希土類元素の金属被膜を形成した後、上述した水素化合物などの所望の化合物が生成できるように適宜な雰囲気(例えば、水素含有雰囲気など)で熱処理する。
(II) 上記磁性粒子の表面に、物理蒸着法(PVD法)などの成膜法により、上述したDy-Ni系合金などの所望の合金が生成できるように蒸着源を用意して成膜する。例えば、蒸着源として、Dyなどの希土類元素とNiなどの金属元素とを用意し、これら両元素を同時に供給して成膜したり、蒸着源としてDy-Ni系合金などの希土類元素を含む合金を用意して成膜したりすることが挙げられる。
(III) 上述したようにヨウ化物などの所望の化合物や合金を溶融して、上記磁性粒子の表面に塗布する。
(IV) メカニカルアロイングにより、上述したDy-Ni系合金などの所望の合金と、上記磁性粒子とを混合して、当該磁性粒子の表面に、上記合金被膜を形成する。
耐熱前駆層を形成した後、更に、上述した酸化防止機能を有する樹脂層を形成してもよい。樹脂層の形成は、例えば、湿式法では、湿式乾燥塗膜法やゾルゲル法を利用することができる。より具体的には、適宜な溶媒に樹脂を溶解・混合などして作製した溶液と上記耐熱前駆層を具える磁性粒子とを混合して、上記樹脂の硬化・上記溶媒の乾燥を行うことで樹脂層を形成することができる。乾式法では、粉体塗装を利用することができる。
In the case where the heat-resistant precursor layer is the above-described film, for example, the following forming method may be mentioned.
(I) After forming a metal film of a rare earth element such as Dy on the surface of the magnetic particles by a film deposition method such as physical vapor deposition (PVD method) or plating, a desired compound such as the hydrogen compound described above is formed. Heat treatment is performed in an appropriate atmosphere (for example, a hydrogen-containing atmosphere) so that it can be generated.
(II) Prepare a deposition source on the surface of the magnetic particles by a deposition method such as physical vapor deposition (PVD method) so that a desired alloy such as the above-mentioned Dy-Ni alloy can be generated. . For example, a rare earth element such as Dy and a metal element such as Ni are prepared as a deposition source, and a film is formed by supplying both of these elements simultaneously, or an alloy containing a rare earth element such as a Dy-Ni alloy as a deposition source. And preparing a film.
(III) As described above, a desired compound such as iodide or an alloy is melted and applied to the surface of the magnetic particles.
(IV) A desired alloy such as the above-described Dy-Ni alloy is mixed with the magnetic particles by mechanical alloying to form the alloy coating on the surface of the magnetic particles.
After forming the heat-resistant precursor layer, a resin layer having the above-described antioxidant function may be further formed. For the formation of the resin layer, for example, in a wet method, a wet dry coating method or a sol-gel method can be used. More specifically, by mixing a solution prepared by dissolving and mixing a resin in an appropriate solvent and magnetic particles having the heat-resistant precursor layer, the resin is cured and the solvent is dried. A resin layer can be formed. In the dry method, powder coating can be used.

耐熱前駆層を上述した供給源粒子と固定層とを具える形態とする場合、例えば、以下の形成方法が挙げられる。
(I) 上記固定層の構成材料に上記供給源粒子を混合し、この混合物を上記磁性粒子の表面に塗布する。
(II) 上記固定層の構成材料を上記磁性粒子の表面に塗布した後、上記供給源粒子を付着する。
上記固定層の構成材料には、上述のように樹脂、特に酸化防止機能を有する樹脂を好適に利用することができる。この場合、適宜な溶媒に樹脂を溶解・混合などして作製した溶液と上記ベース粉末と別途用意した上記供給源粒子とを混合して、上記樹脂の硬化・上記溶媒の乾燥を行ったり、上記溶液と上記ベース粉末とを混合して樹脂が未硬化な状態で上記供給源粒子を付着させた後、上記樹脂を完全に硬化したりすることで耐熱前駆層を形成することができる。
In the case where the heat-resistant precursor layer is provided with the above-described supply source particles and the fixed layer, for example, the following forming method may be mentioned.
(I) The source particles are mixed with the constituent material of the fixed layer, and the mixture is applied to the surfaces of the magnetic particles.
(II) After the constituent material of the fixed layer is applied to the surface of the magnetic particles, the source particles are adhered.
As the constituent material of the fixed layer, as described above, a resin, particularly a resin having an antioxidant function can be suitably used. In this case, a solution prepared by dissolving and mixing the resin in an appropriate solvent, the base powder and the separately supplied source particles are mixed, and the resin is cured and the solvent is dried. After the solution and the base powder are mixed and the source particles are adhered in a state where the resin is uncured, the heat-resistant precursor layer can be formed by completely curing the resin.

耐熱前駆層の形成には、上述のように乾式法及び湿式法のいずれもが利用できる。乾式法(例えば、PVD法)では、上記磁性粒子が雰囲気中の酸素に接触して表面が酸化することを防止するために、非酸化性雰囲気、例えば、ArやN2などの不活性雰囲気、減圧雰囲気などとすることが好ましい。湿式法では、上記磁性粒子の表面が雰囲気中の酸素に実質的に接触しないため、上述の不活性雰囲気などとする必要が無く、例えば、大気雰囲気で耐熱前駆層を形成できる。従って、湿式法は、耐熱前駆層の形成の作業性に優れる上に、上記磁性粒子の表面に上記被膜や樹脂層を均一的な厚さに形成し易い。 For the formation of the heat-resistant precursor layer, both the dry method and the wet method can be used as described above. In the dry method (for example, PVD method), in order to prevent the magnetic particles from contacting the oxygen in the atmosphere and oxidizing the surface, a non-oxidizing atmosphere, for example, an inert atmosphere such as Ar or N 2 , A reduced pressure atmosphere or the like is preferable. In the wet method, since the surface of the magnetic particles does not substantially contact oxygen in the atmosphere, it is not necessary to use the above-described inert atmosphere, and for example, the heat-resistant precursor layer can be formed in an air atmosphere. Therefore, the wet method is excellent in the workability of forming the heat-resistant precursor layer, and it is easy to form the coating film and the resin layer on the surface of the magnetic particles with a uniform thickness.

なお、上述した絶縁被覆やセラミックス被覆を別途具える形態とする場合、上記耐熱前駆層を形成してから上記ベース粉末の表面に絶縁被覆などを適宜形成するとよい。   In the case where the above-described insulating coating or ceramic coating is separately provided, the insulating coating or the like may be appropriately formed on the surface of the base powder after forming the heat-resistant precursor layer.

[粉末成形体]
上記本発明磁性部材用粉末を圧縮成形することで、本発明粉末成形体が得られる。上述のように本発明粉末は、成形性に優れることから相対密度(粉末成形体の真密度に対する実際の密度)が高い粉末成形体を形成できる。例えば、本発明粉末成形体の一形態として、相対密度が85%以上のものが挙げられる。このような高密度の粉末成形体を利用することで、磁性相の比率が高い希土類磁石といった磁性体が得られる。相対密度が高いほど、磁性相の比率が高められる。しかし、後述する磁性部材を形成するための熱処理工程で上記固定層の構成成分(代表的には樹脂)を焼失させたり、上記固定層の構成成分を除去するための熱処理で焼失させる場合、相対密度が高過ぎると、上記固定層の構成成分を十分に焼失させることが難しくなる。従って、粉末成形体の相対密度は、90%〜95%程度が好ましいと考えられる。また、粉末成形体の相対密度を高める場合は、固定層の厚さを薄めにしたり、後述するように別途熱処理(被覆除去)を十分に行うと、固定層の構成成分を除去し易く好ましい。
[Powder compact]
The powder molded body of the present invention can be obtained by compression molding the above magnetic member powder of the present invention. As described above, since the powder of the present invention is excellent in moldability, it is possible to form a powder compact having a high relative density (actual density relative to the true density of the powder compact). For example, one form of the powder compact of the present invention is one having a relative density of 85% or more. By using such a high-density powder compact, a magnetic material such as a rare earth magnet having a high magnetic phase ratio can be obtained. The higher the relative density, the higher the magnetic phase ratio. However, when the component (typically resin) of the fixed layer is burned off in the heat treatment step for forming the magnetic member described later, or the heat treatment for removing the component of the fixed layer is burned away, When the density is too high, it becomes difficult to sufficiently burn out the constituent components of the fixed layer. Therefore, it is considered that the relative density of the powder compact is preferably about 90% to 95%. In order to increase the relative density of the powder molded body, it is preferable to reduce the thickness of the fixed layer or to sufficiently perform a separate heat treatment (coating removal) as will be described later in order to easily remove the constituent components of the fixed layer.

本発明磁性部材用粉末は、成形性に優れることから、圧縮成形時の圧力を比較的小さくすることができ、例えば、8ton/cm2以上15ton/cm2以下とすることができる。更に、本発明粉末は、成形性に優れることから、複雑な形状の粉末成形体であっても、容易に形成できる。加えて、本発明粉末は、当該粉末を構成する上記各磁性粒子が十分に変形できることで、磁性粒子同士の接合性に優れ(磁性粒子表面の凹凸の噛み合いによって生じる強度(所謂ネッキング強度)の発現)、強度が高く、製造中に崩壊し難い粉末成形体が得られる。 Since the magnetic member powder of the present invention is excellent in moldability, the pressure at the time of compression molding can be made relatively small, for example, from 8 ton / cm 2 to 15 ton / cm 2 . Furthermore, since the powder of the present invention is excellent in moldability, it can be easily formed even if it is a powder molded body having a complicated shape. In addition, the present invention powder is excellent in bondability between magnetic particles because the above-mentioned magnetic particles constituting the powder can be sufficiently deformed (expression of strength (so-called necking strength) generated by engagement of irregularities on the surface of the magnetic particles) ), It is possible to obtain a powder molded body which has high strength and hardly disintegrates during production.

更に、本発明磁性部材用粉末が上述した酸素の透過係数が小さい樹脂からなる層を具える場合、圧縮成形時に当該粉末を構成する磁性粒子に形成された新生面の酸化を十分に防止できるため、当該成形は、大気雰囲気といった酸素含有雰囲気で行え、作業性に優れる。非酸化性雰囲気で粉末成形体を成形することもできる。   Furthermore, when the powder for a magnetic member of the present invention includes a layer made of a resin having a small oxygen permeability coefficient as described above, it is possible to sufficiently prevent oxidation of a new surface formed on the magnetic particles constituting the powder during compression molding. The molding can be performed in an oxygen-containing atmosphere such as an air atmosphere and is excellent in workability. The powder compact can also be molded in a non-oxidizing atmosphere.

その他、圧縮成形時、成形用金型を適宜加熱することで、変形を促進することができ、高密度の粉末成形体が得られ易くなる。   In addition, by appropriately heating the molding die during compression molding, deformation can be promoted, and a high-density powder molded body can be easily obtained.

[磁性部材及びその製造方法]
上記粉末成形体を不活性雰囲気中、又は減圧雰囲気中で熱処理して、上記希土類元素の水素化合物から水素を除去すると共に、鉄と、鉄-ホウ素合金と、水素が除去された希土類元素とを化合する。この化合により、磁性部材の主成分、代表的には、希土類-鉄-ホウ素系合金を生成することができる。同時に、耐熱前駆層を構成する希土類供給源材から当該希土類元素を分離し、粉末成形体を構成する磁性粒子の表層部分に上記分離した希土類元素を拡散させて、希土類-鉄-ホウ素複合物を生成する。この拡散により、希土類-鉄-ホウ素複合物からなる耐熱保磁力層を形成することができる。この工程により、本発明磁性部材が得られる。
[Magnetic member and manufacturing method thereof]
The powder compact is heat-treated in an inert atmosphere or a reduced-pressure atmosphere to remove hydrogen from the rare earth element hydrogen compound, iron, an iron-boron alloy, and a rare earth element from which hydrogen has been removed. Combine. By this combination, a main component of the magnetic member, typically a rare earth-iron-boron alloy can be generated. At the same time, the rare earth element is separated from the rare earth source material constituting the heat-resistant precursor layer, and the separated rare earth element is diffused into the surface layer portion of the magnetic particles constituting the powder compact, whereby the rare earth-iron-boron composite is formed. Generate. By this diffusion, a heat-resistant coercive force layer made of a rare earth-iron-boron composite can be formed. Through this step, the magnetic member of the present invention is obtained.

上記熱処理(脱水素)は、上記希土類元素の水素化合物から水素を除去するため、非水素雰囲気で行う。非水素雰囲気は、上述のように不活性雰囲気や減圧雰囲気が挙げられる。不活性雰囲気は、例えば、ArやN2が挙げられる。減圧雰囲気は、標準の大気雰囲気よりも圧力を低下させた真空状態を言い、最終真空度が10Pa以下が好ましい。減圧雰囲気とすることで、上記希土類元素の水素化合物の残存を抑制して、希土類-鉄-ホウ素合金化を完全に起こさせて、磁気特性に優れる磁性体(代表的には希土類磁石)が得られる素材(磁性部材)を製造できる。 The heat treatment (dehydrogenation) is performed in a non-hydrogen atmosphere in order to remove hydrogen from the rare earth element hydrogen compound. Examples of the non-hydrogen atmosphere include an inert atmosphere and a reduced-pressure atmosphere as described above. Examples of the inert atmosphere include Ar and N 2 . The reduced pressure atmosphere refers to a vacuum state in which the pressure is lower than that of a standard air atmosphere, and the final vacuum is preferably 10 Pa or less. By using a reduced-pressure atmosphere, the remaining rare earth element hydrogen compound is suppressed, and the rare earth-iron-boron alloying is completely caused to obtain a magnetic material (typically, a rare earth magnet) having excellent magnetic properties. Material (magnetic member) can be manufactured.

上記脱水素処理時の温度は、上記粉末成形体の再結合温度(分離していた鉄含有物と希土類元素とが化合する温度)以上とする。再結合温度は、粉末成形体(磁性粒子)の組成により異なるものの、代表的には、700℃以上が挙げられる。この温度が高いほど水素を十分に除去できる。但し、上記脱水素処理時の温度は、高過ぎると蒸気圧の高い希土類元素が揮発して減少したり、希土類-鉄-ホウ素系合金の結晶の粗大化により希土類磁石の保磁力が低下する恐れがあるため、1000℃以下が好ましい。保持時間は、10分以上600分(10時間)以下が挙げられる。この脱水素処理は、上述したHDDR処理のDR処理に相当し、公知のDR処理の条件を適用できる。   The temperature during the dehydrogenation treatment is equal to or higher than the recombination temperature of the powder compact (the temperature at which the separated iron-containing material and rare earth element combine). Although the recombination temperature varies depending on the composition of the powder compact (magnetic particles), a typical example is 700 ° C. or higher. The higher this temperature, the more hydrogen can be removed. However, if the temperature during the dehydrogenation process is too high, the rare earth element having a high vapor pressure may volatilize and decrease, or the coercivity of the rare earth magnet may decrease due to the coarsening of the rare earth-iron-boron alloy crystal. Therefore, 1000 ° C. or less is preferable. The holding time is 10 minutes or more and 600 minutes (10 hours) or less. This dehydrogenation process corresponds to the above-described DR process of the HDR process, and can be applied with known DR process conditions.

そして、上記熱処理(脱水素)は、上述のように耐熱保磁力層の形成も兼ねる。更に、上記耐熱前駆層が樹脂といった高熱により焼失可能な相を含む場合、上記熱処理(脱水素)は、当該樹脂成分の除去も兼ねる。上記樹脂成分を除去するための熱処理(被覆除去)を別途施してもよい。この熱処理(被覆除去)は、上記樹脂成分にもよるが、加熱温度:200℃以上400℃以下、保持時間:30分以上300分以下が利用し易い。この熱処理(被覆除去)は、特に、粉末成形体の密度が高い場合に行うと、上記樹脂成分が脱水素処理のための加熱温度に急激に昇温されて不完全燃焼を起こし、残滓が発生することを効果的に防止できて好ましい。   The heat treatment (dehydrogenation) also serves to form a heat-resistant coercive force layer as described above. Furthermore, when the heat-resistant precursor layer includes a phase such as a resin that can be burned out by high heat, the heat treatment (dehydrogenation) also serves to remove the resin component. A heat treatment (coating removal) for removing the resin component may be separately performed. Although this heat treatment (coating removal) depends on the resin component, a heating temperature of 200 ° C. to 400 ° C. and a holding time of 30 minutes to 300 minutes are easy to use. This heat treatment (coating removal) is performed particularly when the density of the powder compact is high, and the resin component is rapidly heated to the heating temperature for dehydrogenation, causing incomplete combustion and generating residue. This is preferable because it can be effectively prevented.

本発明磁性部材を構成する合金粒子(内部組成)は、実質的に、希土類-鉄-ホウ素系合金の相から構成される単一形態、実質的に、鉄相、鉄-ホウ素合金相、及び希土類-鉄合金相から選択される少なくとも一種の相と、希土類-鉄-ホウ素系合金の相との組み合わせで構成される混合形態、例えば、鉄相と希土類-鉄-ホウ素系合金の相との形態、鉄-ホウ素合金相と希土類-鉄-ホウ素系合金の相との形態、希土類-鉄合金相と希土類-鉄-ホウ素系合金の相との形態が挙げられる。上記単一形態は、例えば、上記本発明磁性部材用粉末の原料に用いた希土類-鉄-ホウ素系合金と実質的に同じ組成からなるものが挙げられる。上記混合形態は、代表的には、原料に用いる希土類-鉄-ホウ素系合金の組成により変化する。例えば、鉄の比率(原子比)が高いものを用いると、鉄相と希土類-鉄-ホウ素系合金の相との形態を形成することができる。   The alloy particles (internal composition) constituting the magnetic member of the present invention are substantially in a single form composed of a rare earth-iron-boron alloy phase, substantially an iron phase, an iron-boron alloy phase, and A mixed form composed of a combination of at least one phase selected from a rare earth-iron alloy phase and a rare earth-iron-boron alloy phase, for example, an iron phase and a rare earth-iron-boron alloy phase. Examples thereof include a morphology, a morphology of an iron-boron alloy phase and a rare earth-iron-boron alloy phase, and a morphology of a rare earth-iron alloy phase and a rare earth-iron-boron alloy phase. Examples of the single form include those having substantially the same composition as the rare earth-iron-boron alloy used as the raw material for the magnetic member powder of the present invention. The mixed form typically varies depending on the composition of the rare earth-iron-boron alloy used as the raw material. For example, when a material having a high iron ratio (atomic ratio) is used, a form of an iron phase and a phase of a rare earth-iron-boron alloy can be formed.

一方、本発明磁性部材を構成する合金粒子の表層部分の組成は、上述のように耐熱前駆層に含まれていたDyやTbといった希土類元素と、粉末成形体を構成する磁性粒子の構成元素(Y,Nd,Pr,Ceといった希土類元素、Fe、B)とを含む複合物、例えば、(Dy,Nd)2Fe14Bが挙げられる。この複合物が存在する領域が耐熱保磁力層として機能する。 On the other hand, the composition of the surface layer portion of the alloy particles constituting the magnetic member of the present invention is composed of the rare earth elements such as Dy and Tb contained in the heat-resistant precursor layer as described above and the constituent elements of the magnetic particles constituting the powder compact ( Examples include composites containing rare earth elements such as Y, Nd, Pr, and Ce, Fe, and B), for example, (Dy, Nd) 2 Fe 14 B. A region where the composite exists functions as a heat-resistant coercive force layer.

上記耐熱保磁力層の厚さは、上述のように耐熱前駆層を構成する希土類供給源材の被膜の厚さや供給源粒子の大きさ、当該供給源粒子の添加量や熱処理条件を調整することにより変化させられる。上記厚さが100nm〜2000nmであれば、高温環境であっても、高い保磁力を十分に具えることができて好ましい。   The thickness of the heat-resistant coercive force layer is adjusted by adjusting the thickness of the coating of the rare earth source material constituting the heat-resistant precursor layer, the size of the source particles, the amount of the source particles added, and the heat treatment conditions as described above. Can be changed. A thickness of 100 nm to 2000 nm is preferable because a high coercive force can be sufficiently provided even in a high temperature environment.

上述した本発明粉末成形体を利用することで、上記熱処理(脱水素)前後で体積の変化度合い(熱処理後の収縮量)が少なく、従来の焼結磁石を製造する場合と比較して大きな体積変化が無い。例えば、上記熱処理(脱水素)の前の粉末成形体と、上記熱処理(脱水素)の後の磁性部材との体積変化率が5%以下である。このように本発明磁性部材は、熱処理(脱水素)前後の体積変化が小さい、即ち、ネットシェイプであることで、最終形状にするための加工(例えば、切断、切削加工)が不要であり、磁性部材の生産性に優れる。なお、熱処理後に得られた磁性部材は、上述のように焼結体と異なり、粉末の粒界が確認できる。従って、粉末の粒界が存在することが粉末成形体に熱処理を施したものであって、焼結体ではないことを示す指標の一つとなり、切削加工などの加工痕が無いことが熱処理前後における体積変化率が小さいことを示す指標の一つになり得る。   By utilizing the above-described powder molded body of the present invention, the volume change degree (shrinkage amount after heat treatment) before and after the heat treatment (dehydrogenation) is small, and a large volume compared with the case of manufacturing a conventional sintered magnet. There is no change. For example, the volume change rate between the powder compact before the heat treatment (dehydrogenation) and the magnetic member after the heat treatment (dehydrogenation) is 5% or less. Thus, the magnetic member of the present invention has a small volume change before and after heat treatment (dehydrogenation), i.e., it is a net shape, and processing (for example, cutting, cutting) for obtaining a final shape is unnecessary. Excellent magnetic member productivity. In addition, the magnetic member obtained after heat processing can confirm the grain boundary of a powder unlike the sintered compact as mentioned above. Therefore, the presence of the grain boundaries of the powder is one that indicates that the powder compact has been heat-treated and is not a sintered body. It can be one of the indexes indicating that the volume change rate at is small.

[希土類磁石]
上記本発明磁性部材を適宜着磁することで、希土類磁石を製造できる。特に、上述した相対密度が高い粉末成形体を利用することで、磁性相の比率が80体積%以上、更に90体積%以上といった希土類磁石が得られる上に、この希土類磁石は、高温環境であっても高い保磁力を維持することができる。
[Rare earth magnet]
A rare earth magnet can be produced by appropriately magnetizing the magnetic member of the present invention. In particular, by using the above-described powder compact having a high relative density, a rare earth magnet having a magnetic phase ratio of 80% by volume or more and further 90% by volume or more can be obtained, and the rare earth magnet can be used in a high temperature environment. However, a high coercive force can be maintained.

以下、図面を参照して、本発明の具体的な実施形態を説明する。図中の同一符号は同一名称物を示す。なお、図1では、分かり易いように希土類元素の水素化合物や耐熱前駆層などを誇張して示す。   Hereinafter, specific embodiments of the present invention will be described with reference to the drawings. The same reference numerals in the figure indicate the same names. In FIG. 1, the hydrogen compound of rare earth elements and the heat-resistant precursor layer are exaggerated for easy understanding.

[実施形態1,2]
希土類元素と鉄とホウ素とを含む粉末を作製し、得られた粉末を圧縮成形して、粉末の成形性を調べた。
[Embodiments 1 and 2]
A powder containing a rare earth element, iron and boron was prepared, and the obtained powder was compression molded to examine the moldability of the powder.

上記粉末は、準備工程:合金粉末の準備→水素化工程:水素雰囲気中での熱処理→被覆工程:耐熱前駆層の形成という手順で作製した。   The powder was prepared in the order of preparation step: preparation of alloy powder → hydrogenation step: heat treatment in a hydrogen atmosphere → coating step: formation of a heat-resistant precursor layer.

まず、希土類-鉄-ホウ素合金(Nd2Fe14B)からなり、平均粒径100μmの粉末(図1(I))をガスアトマイズ法(Ar雰囲気)により作製した。上記平均粒径は、レーザ回折式粒度分布装置により、積算重量が50%となる粒径(50%粒径)を測定した。また、ここでは、ガスアトマイズ法により、上記合金粉末を構成する各粒子が多結晶体からなるものを作製し、この粉末に熱処理(粉末焼鈍:1050℃×120分、高濃度アルゴン中)を施して単結晶体(図1(II))からなる合金粉末を用意した。 First, a powder made of a rare earth-iron-boron alloy (Nd 2 Fe 14 B) and having an average particle size of 100 μm (FIG. 1 (I)) was produced by a gas atomization method (Ar atmosphere). The average particle size was measured with a laser diffraction particle size distribution device so that the cumulative weight was 50% (50% particle size). In addition, here, a gas atomization method is used to produce a material in which each particle constituting the alloy powder is made of a polycrystalline body, and this powder is subjected to heat treatment (powder annealing: 1050 ° C. × 120 minutes, in high concentration argon). An alloy powder made of a single crystal (FIG. 1 (II)) was prepared.

上記合金粉末を水素(H2)雰囲気中、800℃×1時間で熱処理した。この熱処理(水素化)後に得られたベース粉末に、Dyの水素化合物(DyH2)又はDyとNiとの2元系合金(Dy-30原子%Ni)と、ポリアミド系樹脂(ここではナイロン6、酸素の透過係数(30℃):0.0011×10-11m3・m/(s・m2・Pa)からなる樹脂層とを含む耐熱前駆層を形成した。具体的には、平均粒径1μmの市販のDyH2粉末、又は平均粒径1μmの市販のDyNi粉末をそれぞれ用意し、有機溶媒に溶かした上記ポリアミド系樹脂にDyH2粉末又はDyNi粉末を混合した混合物をそれぞれ用意した。各混合物に上記ベース粉末を更に混合した後、上記溶媒を乾燥させると共に、当該樹脂を硬化して、DyH2を含有する耐熱前駆層を具える粉末(実施形態1)、又はDyNiを含有する耐熱前駆層を具える粉末(実施形態2)を形成した。なお、実施形態1,2のいずれも、耐熱前駆層の樹脂成分の平均厚さが200nmとなるように上記樹脂量を調整した。この厚さは、上記ベース粉末を構成する各磁性粒子の表面に上記樹脂層が均一的に形成されたと想定した平均厚さ(上記樹脂の体積/上記各磁性粒子の表面積の総和)とする。また、DyH2粉末やDyNi粉末は、当該粉末を構成する供給源粒子の一部が樹脂成分によって固定された状態であり、樹脂層の厚さに当該粒子の大きさを考慮しない。磁性粒子の表面積は、例えば、BET法で測定することができる。この工程により、磁性部材用粉末を構成する磁性粒子の表面に、酸素の透過係数(30℃)が1.0×10-11m3・m/(s・m2・Pa)未満である樹脂層により、粒状のDyH2又はDyNiが固定された磁性部材用粉末が得られる。 The alloy powder was heat-treated at 800 ° C. for 1 hour in a hydrogen (H 2 ) atmosphere. To the base powder obtained after this heat treatment (hydrogenation), a Dy hydrogen compound (DyH 2 ) or a binary alloy of Dy and Ni (Dy-30 atomic% Ni) and a polyamide resin (here, nylon 6 And a heat-resistant precursor layer including an oxygen permeability coefficient (30 ° C.): 0.0011 × 10 −11 m 3 · m / (s · m 2 · Pa). A 1 μm commercial DyH 2 powder or a commercial DyNi powder having an average particle diameter of 1 μm was prepared, and a mixture prepared by mixing DyH 2 powder or DyNi powder in the polyamide-based resin dissolved in an organic solvent was prepared. The base powder is further mixed, and then the solvent is dried and the resin is cured to provide a powder comprising a heat-resistant precursor layer containing DyH 2 (Embodiment 1), or a heat-resistant precursor layer containing DyNi (Embodiment 2) In each of Embodiments 1 and 2, the average thickness of the resin component of the heat-resistant precursor layer is 200 nm. The amount of the resin was adjusted so that the average thickness (the volume of the resin / the above each of the resin layers) was assumed to be uniformly formed on the surface of each magnetic particle constituting the base powder. In addition, the DyH 2 powder and the DyNi powder are in a state where a part of the source particles constituting the powder are fixed by the resin component, and the thickness of the resin layer The surface area of the magnetic particles can be measured by, for example, the BET method, and the oxygen permeability coefficient (30 ° C.) is formed on the surface of the magnetic particles constituting the magnetic member powder. With the resin layer having a density of less than 1.0 × 10 −11 m 3 · m / (s · m 2 · Pa), a powder for magnetic member in which granular DyH 2 or DyNi is fixed is obtained.

この試験では、得られた上記粉末とポリエチレン(透湿率(30℃):50×10-13kg/(m・s・MPa))の粉末とをポリエチレンの融点以上ナイロン6の融点以下である150℃に、混合しながら昇温した後、そのまま冷却することでポリエチレンを更にコーティングしたものを作製した。この工程により、希土類供給源材(供給源粒子)を固着する樹脂層(酸素低透過層)と、湿気低透過層とを具える磁性部材用粉末が得られる。 In this test, the obtained powder and polyethylene (moisture permeability (30 ° C.): 50 × 10 −13 kg / (m · s · MPa)) were above the melting point of polyethylene and below the melting point of nylon 6. The mixture was heated to 150 ° C. while mixing and then cooled as it was to prepare a further coated polyethylene. By this step, a powder for a magnetic member having a resin layer (oxygen low-permeability layer) for fixing the rare earth source material (supply source particles) and a moisture low-permeability layer is obtained.

得られた磁性部材用粉末をエポキシ樹脂で固めて、組織観察用のサンプルを作製した。上記サンプルの内部の粉末が酸化しないようにして、当該サンプルを任意の位置で切断又は研磨し、この切断面(又は研磨面)に存在する上記磁性部材用粉末を構成する各磁性粒子の組成をEDX装置により調べた。また、上記切断面(又は研磨面)を光学顕微鏡又は走査電子顕微鏡:SEM(100倍〜10,000倍)で観察し、上記各磁性粒子の形態を調べた。すると、図1(III),図1(IV)に示すように、上記各磁性粒子1は、鉄含有物2の相、具体的には鉄(Fe)及び鉄-ホウ素合金(Fe3B)の相を母相とし、この母相中に複数の粒状の希土類元素の水素化合物(NdH2)3が分散して存在しており、隣り合う希土類元素の水素化合物3の粒子間に鉄含有物2の相が介在していることを確認した。また、図1(IV)に示すように磁性粒子1の表面に、粒状の希土類供給源材(ここではDyH2又はDyNi)4aが樹脂層4bにより固定されてなる耐熱前駆層4を具えることを確認した。更に、磁性粒子1の表面の実質的に全周が樹脂層4bにより覆われており、外気と遮断されていることを確認した。また、磁性粒子1からは希土類元素の酸化物(ここでは、Nd2O3)が検出されなかった。 The obtained powder for a magnetic member was hardened with an epoxy resin to prepare a sample for observing the structure. The composition of each magnetic particle constituting the powder for a magnetic member present on the cut surface (or polished surface) is cut or polished at an arbitrary position so that the powder inside the sample is not oxidized. Investigated with EDX equipment. Further, the cut surface (or polished surface) was observed with an optical microscope or a scanning electron microscope: SEM (100 to 10,000 times), and the form of each magnetic particle was examined. Then, as shown in FIGS. 1 (III) and 1 (IV), each of the magnetic particles 1 is a phase of the iron-containing material 2, specifically iron (Fe) and iron-boron alloy (Fe 3 B). And a plurality of granular rare earth element hydrogen compounds (NdH 2 ) 3 are dispersed in the mother phase, and iron-containing substances are present between adjacent rare earth element hydrogen compound 3 particles. It was confirmed that two phases were present. Further, as shown in FIG. 1 (IV), the surface of the magnetic particle 1 is provided with a heat resistant precursor layer 4 in which a granular rare earth source material (here DyH 2 or DyNi) 4a is fixed by a resin layer 4b. It was confirmed. Furthermore, it was confirmed that substantially the entire circumference of the surface of the magnetic particle 1 was covered with the resin layer 4b and was blocked from the outside air. In addition, rare earth oxides (here, Nd 2 O 3 ) were not detected from the magnetic particles 1.

上記EDX装置により、得られた磁性部材用粉末の組成の面分析(マッピングデータ)を利用して、隣り合う希土類元素の水素化合物の粒子間の間隔を測定したところ、0.6μmであった。ここでは、上記切断面(或いは研磨面)に面分析を行って、NdH2のピーク位置を抽出し、隣り合うNdH2のピーク位置間の間隔を測定し、全ての間隔の平均値を求めた。 The distance between adjacent rare earth element hydrogen compound particles was measured by the above EDX apparatus using the surface analysis (mapping data) of the composition of the obtained magnetic member powder, and found to be 0.6 μm. Here, surface analysis was performed on the cut surface (or polished surface), the peak position of NdH 2 was extracted, the interval between the peak positions of adjacent NdH 2 was measured, and the average value of all the intervals was obtained. .

上記エポキシ樹脂を混錬して作製したサンプルを用いて、各磁性粒子のNdH2,鉄含有物(Fe,Fe-B)の含有量(体積%)を求めたところ、NdH2:33体積%、鉄含有物:67体積%であった。上記含有量は、ここでは、原料に用いた合金粉末の組成、及びNdH2,Fe,Fe3Bの原子量を用いて、体積比を演算により求めた。その他、上記含有量は、例えば、上記ベース粉末を用いて作製した成形体の切断面(或いは研磨面)の面積におけるNdH2,Fe,Fe3Bの面積割合をそれぞれ求め、得られた面積割合を体積割合に換算したり、X線分析を行ってピーク強度比を利用したりすることで求められる。 Using the sample prepared by kneading the epoxy resin, the content (volume%) of NdH 2 and iron-containing material (Fe, Fe-B) of each magnetic particle was determined. NdH 2 : 33 volume% Iron content: 67% by volume. Here, the content was obtained by calculating the volume ratio using the composition of the alloy powder used as a raw material and the atomic weight of NdH 2 , Fe, and Fe 3 B. In addition, for example, the content is obtained by determining the area ratio of NdH 2 , Fe, Fe 3 B in the area of the cut surface (or polished surface) of the molded body produced using the base powder, respectively, and the obtained area ratio Is converted into a volume ratio, or X-ray analysis is performed to use the peak intensity ratio.

上記エポキシ樹脂を混錬して作製したサンプルを用いて、磁性粒子の円形度を求めたところ、0.86であった。ここでは、円形度は、以下のようにして求める。光学顕微鏡やSEMなどで粉末の断面の投影像を得て、各粒子についてそれぞれ、実際の断面積Sr及び実際の周囲長を求め、上記実際の断面積Srと、上記実際の周囲長と同じ周長を有する真円の面積Scとの比率:Sr/Scを当該粒子の円形度とする。n=50のサンプリングを行い、n=50の粒子の円形度の平均値を磁性粒子の円形度とする。   Using a sample prepared by kneading the epoxy resin, the circularity of the magnetic particles was determined to be 0.86. Here, the circularity is obtained as follows. Obtain a projected image of the powder cross-section with an optical microscope or SEM, and determine the actual cross-sectional area Sr and the actual perimeter for each particle. The actual cross-sectional area Sr and the same perimeter as the actual perimeter are obtained. Ratio with the area Sc of a perfect circle having a length: Sr / Sc is the circularity of the particle. Sampling with n = 50 is performed, and the average value of the circularity of the particles with n = 50 is defined as the circularity of the magnetic particles.

上述のようにして作製した耐熱前駆層を具える磁性部材用粉末を面圧10ton/cm2で油圧プレス装置により圧縮成形した(図1(V))。ここでは、成形は、大気雰囲気(気温:25℃、湿度:75%)で行った。その結果、面圧10ton/cm2で十分に圧縮することができ、外径10mmφ×高さ10mmの円柱状の粉末成形体(図1(VI))を形成できた。 The magnetic member powder including the heat-resistant precursor layer produced as described above was compression-molded by a hydraulic press device at a surface pressure of 10 ton / cm 2 (FIG. 1 (V)). Here, the molding was performed in an air atmosphere (temperature: 25 ° C., humidity: 75%). As a result, it was possible to sufficiently compress at a surface pressure of 10 ton / cm 2 and to form a cylindrical powder compact (FIG. 1 (VI)) having an outer diameter of 10 mmφ × height of 10 mm.

得られた粉末成形体の相対密度(真密度に対する実際の密度)を求めたところ、90%であった。実際の密度は、市販の密度測定装置を利用して測定した。真密度は、NdH2の密度:5.96g/cm3,Feの密度:7.874g/cm3,Fe3Bの密度:7.474g/cm3とし、上述したNdH2や鉄含有物の体積比を利用して演算により求めた。得られた粉末成形体をX線分析したところ、希土類元素の酸化物(ここでは、Nd2O3)の明瞭な回折ピークは検出されなかった。 The relative density (actual density with respect to the true density) of the obtained powder compact was determined to be 90%. The actual density was measured using a commercially available density measuring device. The true density is NdH 2 density: 5.96 g / cm 3 , Fe density: 7.874 g / cm 3 , Fe 3 B density: 7.474 g / cm 3, and the volume ratio of NdH 2 and iron-containing materials described above is used. It was calculated by calculation. When the obtained powder compact was subjected to X-ray analysis, a clear diffraction peak of a rare earth element oxide (here, Nd 2 O 3 ) was not detected.

上述のように希土類元素の水素化合物が40体積%未満で、残部が実質的にFeやFe3Bといった鉄含有物であり、鉄含有物相中に上記希土類元素の水素化合物が離散して存在する粉末を利用することで、円柱状といった複雑な形状の粉末成形体や、相対密度が85%以上といった高密度な粉末成形体が得られることが分かる。また、上記耐熱前駆層の構成成分に樹脂を利用することで、圧縮成形時、上記磁性部材用粉末を構成する磁性粒子の変形に十分に追従でき、当該粉末は成形性に優れることが分かる。更に、酸化防止効果を有する樹脂により磁性粒子の表面を覆った粉末を利用することで、希土類元素の酸化物の生成を抑制し、当該酸化物が実質的に存在しない粉末成形体が得られることが分かる。 As described above, the rare earth element hydrogen compound is less than 40% by volume, the balance is substantially iron-containing material such as Fe or Fe 3 B, and the rare earth element hydrogen compound is discretely present in the iron-containing material phase. It can be seen that a powder molded body having a complicated shape such as a columnar shape or a high-density powder molded body having a relative density of 85% or more can be obtained by using the powder. Moreover, it can be seen that by using a resin as a constituent component of the heat-resistant precursor layer, it is possible to sufficiently follow the deformation of the magnetic particles constituting the magnetic member powder during compression molding, and the powder is excellent in moldability. Furthermore, by using a powder having the surface of the magnetic particles covered with a resin having an antioxidant effect, the formation of a rare earth element oxide can be suppressed, and a powder molded body substantially free of the oxide can be obtained. I understand.

得られた粉末成形体を窒素雰囲気で300℃×120分保持した後に、水素雰囲気中で750℃まで昇温し、その後、真空(VAC)に切り替えて、真空(VAC)中(最終真空度:1.0Pa)、750℃×60minで熱処理した。昇温を水素雰囲気とすることで、十分に高い温度になってから脱水素反応を開始することができ、反応斑を抑制できる。この熱処理後に得られた円柱状部材(磁性部材(図1(VII)))の組成をEDX装置により調べたところ、Nd2Fe14Bが主相(87体積%以上)であり、上記熱処理により水素が除去されたことが分かる。また、上記円柱状部材は、上記Nd2Fe14Bからなる合金粒子5により構成されており、当該合金粒子5の表層部分に(Dy,Nd)2Fe14B成分が存在していることを確認した。(Dy,Nd)2Fe14Bの成分は、XRDによって結晶構造を確認したり、EDX装置を用いて面分析を行ったり、ライン分析を行たりすることで確認することができる。合金粒子5の表層部分に(Dy,Nd)2Fe14B成分が存在していることから、上記耐熱前駆層を構成するDyH2やDyNiが上記熱処理により分解され、Dy成分が上記粉末成形体を構成していた磁性粒子に拡散して、耐熱前駆層の希土類元素(Dy)と、上記磁性粒子1の構成元素(Nd,Fe,B)とを含む複合物からなる耐熱保磁力層6を形成したことが分かる。 After holding the obtained powder compact in a nitrogen atmosphere at 300 ° C. for 120 minutes, the temperature was raised to 750 ° C. in a hydrogen atmosphere, then switched to vacuum (VAC) and in vacuum (VAC) (final vacuum degree: 1.0 Pa) and heat treatment was performed at 750 ° C. × 60 min. By making the temperature rise into a hydrogen atmosphere, the dehydrogenation reaction can be started after the temperature is sufficiently high, and reaction spots can be suppressed. When the composition of the cylindrical member (magnetic member (FIG. 1 (VII))) obtained after this heat treatment was examined with an EDX apparatus, Nd 2 Fe 14 B was the main phase (87% by volume or more). It can be seen that the hydrogen has been removed. Further, the cylindrical member is composed of a alloy particles 5 made of the Nd 2 Fe 14 B, that the surface layer portion of the alloy particles 5 (Dy, Nd) 2 Fe 14 B ingredients are present confirmed. The component of (Dy, Nd) 2 Fe 14 B can be confirmed by confirming the crystal structure by XRD, performing surface analysis using an EDX apparatus, or performing line analysis. Since (Dy, Nd) 2 Fe 14 B component exists in the surface layer portion of alloy particle 5, DyH 2 and DyNi constituting the heat-resistant precursor layer are decomposed by the heat treatment, and the Dy component is the powder compact. The heat-resistant coercive force layer 6 made of a composite containing the rare-earth element (Dy) of the heat-resistant precursor layer and the elements (Nd, Fe, B) of the magnetic particle 1 is diffused into the magnetic particles constituting You can see that it was formed.

また、円柱状部材をX線分析したところ、希土類元素の酸化物(ここでは、Nd2O3)や耐熱前駆層の樹脂成分の残滓の明瞭な回折ピークは検出されなかった。 Further, when the columnar member was analyzed by X-ray, a clear diffraction peak of a rare earth element oxide (here, Nd 2 O 3 ) or a resin component residue of the heat-resistant precursor layer was not detected.

上述のように特定の希土類元素を含む耐熱前駆層を具える磁性部材用粉末を用いることで、希土類-鉄-ホウ素複合物からなる耐熱保磁力層を具えた磁性部材が得られることが分かる。そして、この耐熱保磁力層を優する磁性部材を素材とした希土類磁石は、高温環境であっても、高い保磁力を有することができると期待される。   It can be seen that a magnetic member having a heat-resistant coercive force layer made of a rare earth-iron-boron composite can be obtained by using a powder for a magnetic member having a heat-resistant precursor layer containing a specific rare earth element as described above. A rare earth magnet made of a magnetic member that excels this heat-resistant coercive force layer is expected to have a high coercive force even in a high temperature environment.

また、この磁性部材用粉末は、上記耐熱前駆層の構成成分に、酸化防止効果を有する樹脂を含むことで、保磁力の低下を招くNd2O3といった希土類元素の酸化物の生成を抑制できることが分かる。この実施形態では、酸素低透過層に加えて湿気低透過層をも具えることで、圧縮成形時の雰囲気が多湿であっても、圧縮成形時、磁性部材用粉末を構成する各磁性粒子に形成された新生面が雰囲気中の水分に接触して酸化されることを防止でき、希土類元素の酸化物の生成を抑制できたと考えられる。この点からも、保磁力が高い希土類磁石が得られると期待される。 In addition, this powder for magnetic members can suppress the generation of oxides of rare earth elements such as Nd 2 O 3 that causes a decrease in coercive force by including a resin having an anti-oxidation effect as a constituent component of the heat-resistant precursor layer. I understand. In this embodiment, by providing a moisture low permeability layer in addition to the oxygen low permeability layer, even when the atmosphere during compression molding is high humidity, each magnetic particle constituting the magnetic member powder is formed during compression molding. It is considered that the formed new surface could be prevented from being oxidized by contact with moisture in the atmosphere, and the generation of rare earth element oxides could be suppressed. From this point, it is expected that a rare earth magnet having a high coercive force will be obtained.

更に、上記熱処理前の粉末成形体の体積と、熱処理後に得られた円柱状部材(磁性部材)の体積とを比較すると、当該熱処理前後の体積変化率が5%以下であった。従って、このような磁性部材を希土類磁石の素材に利用する場合、所望の外形にするための切削加工などの加工が別途不要であり、希土類磁石の生産性の向上に寄与することができると期待される。   Furthermore, when the volume of the powder compact before the heat treatment was compared with the volume of the cylindrical member (magnetic member) obtained after the heat treatment, the volume change rate before and after the heat treatment was 5% or less. Therefore, when such a magnetic member is used as a material for a rare earth magnet, machining such as cutting for obtaining a desired external shape is unnecessary, and it is expected that it can contribute to the improvement of the productivity of the rare earth magnet. Is done.

[試験例]
上述の実施形態1,2の磁性部材用粉末を用いて作製した希土類-鉄-ホウ素合金からなる磁性部材を2.4MA/m(=30kOe)のパルス磁界で着磁した後、得られた試料(希土類-鉄-ホウ素合金磁石)の磁石特性を、BHトレーサ(理研電子株式会社製DCBHトレーサ)を用いて調べた。その結果を表1に示す。ここでは、磁石特性として、室温:RT(約20℃)における飽和磁束密度:Bs(T)、残留磁束密度:Br(T)、固有保磁力:iHc(kA/m)、磁束密度Bと減磁界の大きさHとの積の最大値:(BH)max(kJ/m3)、及び100℃におけるBs(T),Br(T),iHc(kA/m),(BH)max(kJ/m3)を求めた。また、比較として、DyH2粉末及びDyNi粉末を用いず、ナイロン6からなる樹脂層のみを具える磁性粒子を実施形態1,2と同様に形成して、この粉末を用いて、実施形態1,2と同様にして試料(希土類-鉄-ホウ素合金磁石)を作製して、上記磁石特性を測定した。その結果を表1に示す。
[Test example]
Samples obtained after magnetizing a magnetic member made of a rare earth-iron-boron alloy using the magnetic member powder of Embodiments 1 and 2 described above with a pulse magnetic field of 2.4 MA / m (= 30 kOe) ( The magnet characteristics of the rare earth-iron-boron alloy magnet) were examined using a BH tracer (DCBH tracer manufactured by Riken Denshi Co., Ltd.). The results are shown in Table 1. Here, as magnetic properties, saturation magnetic flux density at room temperature: RT (about 20 ° C): Bs (T), residual magnetic flux density: Br (T), intrinsic coercivity: iHc (kA / m), magnetic flux density B and decrease. Maximum value of product with magnetic field magnitude H: (BH) max (kJ / m 3 ), and Bs (T), Br (T), iHc (kA / m), (BH) max (kJ) at 100 ° C / m 3 ). In addition, as a comparison, magnetic particles having only a resin layer made of nylon 6 without using DyH 2 powder and DyNi powder were formed in the same manner as in Embodiments 1 and 2, and using this powder, Embodiments 1 and 2 were used. A sample (rare earth-iron-boron alloy magnet) was prepared in the same manner as in 2, and the above-mentioned magnet characteristics were measured. The results are shown in Table 1.

Figure 2012033865
Figure 2012033865

表1に示すように、40体積%未満の希土類元素の水素化合物と、残部が実質的に鉄含有物とからなり、鉄含有物相中に上記希土類元素の水素化合物が離散して存在する磁性粒子の表面に特定の耐熱前駆層を具える粒子からなる粉末を用いて作製した希土類磁石は、高温環境であっても保磁力が高く、磁石特性に優れることが分かる。   As shown in Table 1, a magnetism in which the rare earth element hydrogen compound is less than 40% by volume and the balance is substantially iron-containing, and the rare earth element hydrogen compound is discretely present in the iron-containing phase. It can be seen that a rare earth magnet produced using a powder comprising particles having a specific heat-resistant precursor layer on the surface of the particles has a high coercive force and excellent magnet characteristics even in a high temperature environment.

[変形例]
上記実施形態では、磁性部材の表面に、耐熱前駆層を構成する樹脂層として、酸素の透過係数が低い樹脂を利用し、この酸素低透過層の上に更に透湿率が小さい樹脂からなる湿気低透過層を具える形態を説明したが、耐熱前駆層を構成する樹脂層を酸素低透過層のみとすることができる。
[Modification]
In the above embodiment, a resin layer having a low oxygen permeability is used as the resin layer constituting the heat-resistant precursor layer on the surface of the magnetic member, and the moisture composed of a resin having a lower moisture permeability on the oxygen low-permeability layer. Although the embodiment including the low-permeability layer has been described, the resin layer constituting the heat-resistant precursor layer can be the oxygen low-permeability layer only.

なお、本発明は、上述した実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲で適宜変更することが可能である。例えば、磁性粒子の組成(構成元素、希土類元素の水素化合物や鉄含有物の割合など)・円形度、磁性部材用粉末の平均粒径、耐熱前駆層の形態(例えば、被膜)、耐熱前駆層の材質(化合物や合金の構成元素、樹脂の種類など)、耐熱前駆層を構成する希土類供給源材の平均粒径、耐熱前駆層を構成する樹脂層の厚さ・酸素の透過係数・透湿率、粉末成形体の相対密度、各種の熱処理条件(加熱温度、保持時間)、原料に用いる希土類-鉄-ホウ素系合金の組成などを適宜変更することができる。   Note that the present invention is not limited to the above-described embodiment, and can be modified as appropriate without departing from the gist of the present invention. For example, composition of magnetic particles (constituent elements, proportion of rare earth element hydrogen compounds and iron-containing materials), circularity, average particle size of powder for magnetic member, form of heat-resistant precursor layer (for example, coating), heat-resistant precursor layer Material (compound and alloy constituent elements, resin type, etc.), average particle size of the rare earth source material constituting the heat-resistant precursor layer, thickness of the resin layer constituting the heat-resistant precursor layer, oxygen permeability coefficient, moisture permeability The ratio, the relative density of the powder compact, various heat treatment conditions (heating temperature, holding time), the composition of the rare earth-iron-boron alloy used as a raw material, and the like can be appropriately changed.

本発明磁性部材用粉末、この粉末から得られた粉末成形体、磁性部材は、各種のモータ、特に、ハイブリッド車(HEV)やハードディスクドライブ(HDD)などに具備される高速モータに用いられる永久磁石の原料、素材に好適に利用することができる。   The magnetic member powder of the present invention, the powder compact obtained from the powder, and the magnetic member are permanent magnets used in various motors, in particular, high-speed motors included in hybrid vehicles (HEV) and hard disk drives (HDD). It can be suitably used for raw materials and materials.

1 磁性粒子 2 鉄含有物 3 希土類元素の水素化合物 4 耐熱前駆層
4a 粒状の希土類供給源材 4b 樹脂層 5 合金粒子 6 耐熱保磁力層
1 Magnetic particles 2 Iron-containing materials 3 Rare earth element hydrogen compounds 4 Heat-resistant precursor layer
4a Granular rare earth source 4b Resin layer 5 Alloy particles 6 Heat resistant coercive force layer

Claims (10)

磁性部材の原料に用いられる磁性部材用粉末であって、
前記磁性部材用粉末を構成する各磁性粒子は、
40体積%未満の希土類元素の水素化合物と、残部が鉄含有物とからなり、
前記希土類元素は、Nd,Pr,Ce及びYから選択される少なくとも1種であり、
前記鉄含有物は、鉄と、鉄及びホウ素を含む鉄-ホウ素合金とを含み、
前記鉄含有物の相中に前記希土類元素の水素化合物が離散して存在しており、
前記磁性粒子の表面に、耐熱前駆層を具え、
前記耐熱前駆層は、Dy及びTbの少なくとも1種の希土類元素を含み、かつ酸素を含まない化合物及び合金の少なくとも一方からなる希土類供給源材を含有することを特徴とする磁性部材用粉末。
A magnetic member powder used as a raw material for a magnetic member,
Each magnetic particle constituting the powder for a magnetic member,
A rare earth element hydrogen compound of less than 40% by volume, and the balance consists of iron-containing materials,
The rare earth element is at least one selected from Nd, Pr, Ce and Y,
The iron-containing material includes iron and an iron-boron alloy containing iron and boron,
The rare earth element hydride is present discretely in the phase of the iron-containing material,
Provided with a heat-resistant precursor layer on the surface of the magnetic particles,
The magnetic member powder according to claim 1, wherein the heat-resistant precursor layer contains a rare earth source material containing at least one of a compound and an alloy containing at least one rare earth element of Dy and Tb and not containing oxygen.
前記耐熱前駆層に含有される希土類供給源材は、水素化物、ヨウ化物、フッ化物、塩化物、臭化物、金属間化合物及び合金から選択される少なくとも1種であることを特徴とする請求項1に記載の磁性部材用粉末。   2. The rare earth source material contained in the heat-resistant precursor layer is at least one selected from hydrides, iodides, fluorides, chlorides, bromides, intermetallic compounds, and alloys. The powder for magnetic members as described in 2. 前記耐熱前駆層は、前記希土類供給源材と、前記希土類供給源材の表面の少なくとも一部を覆う樹脂からなる層とを含み、
前記樹脂は、酸素の透過係数(30℃)が1.0×10-11m3・m/(s・m2・Pa)未満であることを特徴とする請求項1又は2に記載の磁性部材用粉末。
The heat-resistant precursor layer includes the rare earth source material and a layer made of a resin covering at least a part of the surface of the rare earth source material,
3. The magnetic member according to claim 1, wherein the resin has an oxygen permeability coefficient (30 ° C.) of less than 1.0 × 10 −11 m 3 · m / (s · m 2 · Pa). Powder.
前記希土類供給源材は、粒状であり、この供給源粒子は、前記樹脂からなる層により、前記磁性粒子の表面に固定されていることを特徴とする請求項3に記載の磁性部材用粉末。   4. The powder for a magnetic member according to claim 3, wherein the rare earth source material is granular, and the source particles are fixed to the surface of the magnetic particles by the layer made of the resin. 前記樹脂は、ポリアミド系樹脂、ポリエステル、及びポリ塩化ビニルから選択される1種であることを特徴とする請求項3又は4に記載の磁性部材用粉末。   5. The magnetic member powder according to claim 3, wherein the resin is one selected from a polyamide-based resin, polyester, and polyvinyl chloride. 前記磁性粒子は、円形度が0.5以上1.0以下であることを特徴とする請求項1〜5のいずれか1項に記載の磁性部材用粉末。   6. The magnetic member powder according to claim 1, wherein the magnetic particles have a circularity of 0.5 or more and 1.0 or less. 磁性部材の原料に用いられる粉末成形体であって、
請求項1〜6のいずれか1項に記載の磁性部材用粉末を圧縮成形して製造されたことを特徴とする粉末成形体。
A powder molded body used as a raw material for a magnetic member,
A powder molded body produced by compression molding the powder for a magnetic member according to any one of claims 1 to 6.
前記粉末成形体の相対密度が85%以上であることを特徴とする請求項7に記載の粉末成形体。   8. The powder compact according to claim 7, wherein a relative density of the powder compact is 85% or more. 希土類磁石の素材に用いられる磁性部材であって、
請求項7又は8に記載の粉末成形体を不活性雰囲気中、又は減圧雰囲気中で熱処理して製造され、
当該磁性部材を構成する合金粒子の表面に、前記耐熱前駆層の希土類元素と、前記磁性粒子の構成元素とを含む希土類-鉄-ホウ素複合物からなる耐熱保磁力層を具えることを特徴とする磁性部材。
A magnetic member used for a rare earth magnet material,
The powder molded body according to claim 7 or 8 is produced by heat treatment in an inert atmosphere or a reduced pressure atmosphere,
Characterized in that a heat-resistant coercive force layer made of a rare earth-iron-boron composite containing the rare earth element of the heat resistant precursor layer and the constituent elements of the magnetic particle is provided on the surface of the alloy particles constituting the magnetic member. Magnetic member to be used.
前記熱処理の前の粉末成形体と、前記熱処理の後の磁性部材との体積変化率が5%以下であることを特徴とする請求項9に記載の磁性部材。   10. The magnetic member according to claim 9, wherein a volume change rate between the powder compact before the heat treatment and the magnetic member after the heat treatment is 5% or less.
JP2011055881A 2010-05-19 2011-03-14 Powder for magnetic member, powder molded body, and magnetic member Expired - Fee Related JP4930813B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2011055881A JP4930813B2 (en) 2010-07-01 2011-03-14 Powder for magnetic member, powder molded body, and magnetic member
CN201180004578.9A CN102665970B (en) 2010-05-19 2011-05-10 Powder for magnetic member, powder compact, and magnetic member
CN2013100873785A CN103151130A (en) 2010-05-19 2011-05-10 Powder for magnetic member, powder compact, and magnetic member
US13/511,061 US9196403B2 (en) 2010-05-19 2011-05-10 Powder for magnetic member, powder compact, and magnetic member
EP11783414.3A EP2484464B1 (en) 2010-05-19 2011-05-10 Powder for magnetic member, powder compact, and magnetic member
PCT/JP2011/060744 WO2011145477A1 (en) 2010-05-19 2011-05-10 Powder for magnetic member, powder compact, and magnetic member
KR1020127010195A KR101362036B1 (en) 2010-05-19 2011-05-10 Powder for magnetic member, powder compact, and magnetic member
TW100117090A TW201212059A (en) 2010-05-19 2011-05-16 Powder for magnetic material, powder compact, and magnetic material

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010151463 2010-07-01
JP2010151463 2010-07-01
JP2011055881A JP4930813B2 (en) 2010-07-01 2011-03-14 Powder for magnetic member, powder molded body, and magnetic member

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2012029130A Division JP2012124517A (en) 2010-07-01 2012-02-14 Powder for magnetic member, powder compact and magnetic member

Publications (3)

Publication Number Publication Date
JP2012033865A true JP2012033865A (en) 2012-02-16
JP2012033865A5 JP2012033865A5 (en) 2012-03-29
JP4930813B2 JP4930813B2 (en) 2012-05-16

Family

ID=45846868

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2011055881A Expired - Fee Related JP4930813B2 (en) 2010-05-19 2011-03-14 Powder for magnetic member, powder molded body, and magnetic member
JP2012029130A Withdrawn JP2012124517A (en) 2010-07-01 2012-02-14 Powder for magnetic member, powder compact and magnetic member

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2012029130A Withdrawn JP2012124517A (en) 2010-07-01 2012-02-14 Powder for magnetic member, powder compact and magnetic member

Country Status (1)

Country Link
JP (2) JP4930813B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6466362B2 (en) * 2016-04-01 2019-02-06 ミネベアミツミ株式会社 Rare earth permanent magnet and method for producing rare earth permanent magnet

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10106875A (en) * 1996-09-30 1998-04-24 Tokin Corp Manufacturing method of rare-earth magnet
JP2003031432A (en) * 2001-07-16 2003-01-31 Showa Denko Kk Rare-earth sintered magnet and method of manufacturing the same
JP2008172037A (en) * 2007-01-12 2008-07-24 Daido Steel Co Ltd Rare earth magnet and its manufacturing method
JP2011137218A (en) * 2009-12-04 2011-07-14 Sumitomo Electric Ind Ltd Powder for magnet

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10106875A (en) * 1996-09-30 1998-04-24 Tokin Corp Manufacturing method of rare-earth magnet
JP2003031432A (en) * 2001-07-16 2003-01-31 Showa Denko Kk Rare-earth sintered magnet and method of manufacturing the same
JP2008172037A (en) * 2007-01-12 2008-07-24 Daido Steel Co Ltd Rare earth magnet and its manufacturing method
JP2011137218A (en) * 2009-12-04 2011-07-14 Sumitomo Electric Ind Ltd Powder for magnet

Also Published As

Publication number Publication date
JP2012124517A (en) 2012-06-28
JP4930813B2 (en) 2012-05-16

Similar Documents

Publication Publication Date Title
JP5059929B2 (en) Magnet powder
WO2011145477A1 (en) Powder for magnetic member, powder compact, and magnetic member
JP5218869B2 (en) Rare earth-iron-nitrogen alloy material, method for producing rare earth-iron-nitrogen alloy material, rare earth-iron alloy material, and method for producing rare earth-iron alloy material
JP5059955B2 (en) Magnet powder
JP2021122061A (en) MAGNETIC POWDER CONTAINING Sm-Fe-N-BASED CRYSTAL PARTICLE, SINTERED MAGNET PRODUCED FROM THE SAME, METHOD FOR PRODUCING THE MAGNETIC POWDER, AND METHOD FOR PRODUCING THE SINTERED MAGNET
JP2011060975A (en) Magnet molding and method of manufacturing the same
JP2006303197A (en) Method for manufacturing r-t-b system sintered magnet
JP2018028123A (en) Method for producing r-t-b sintered magnet
JP6624455B2 (en) Method for producing RTB based sintered magnet
JP2015008233A (en) Method for manufacturing rare earth magnet
JP2023052675A (en) R-t-b system based sintered magnet
JP4930813B2 (en) Powder for magnetic member, powder molded body, and magnetic member
JP5051270B2 (en) Powder for magnetic member, powder molded body, and magnetic member
JP2010206046A (en) Magnet molding and method of making the same
JP2014192460A (en) Method of manufacturing r-t-x based powder-compacted magnet, and r-t-x based powder-compacted magnet
JP2012023223A (en) Powder for magnetic member, powder compact, magnetic member, and method of manufacturing magnetic member
JP2011176216A (en) Rare earth magnet

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111228

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111228

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20111228

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20120116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120119

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120201

R150 Certificate of patent or registration of utility model

Ref document number: 4930813

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150224

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees