JP5051270B2 - Powder for magnetic member, powder molded body, and magnetic member - Google Patents

Powder for magnetic member, powder molded body, and magnetic member Download PDF

Info

Publication number
JP5051270B2
JP5051270B2 JP2010115229A JP2010115229A JP5051270B2 JP 5051270 B2 JP5051270 B2 JP 5051270B2 JP 2010115229 A JP2010115229 A JP 2010115229A JP 2010115229 A JP2010115229 A JP 2010115229A JP 5051270 B2 JP5051270 B2 JP 5051270B2
Authority
JP
Japan
Prior art keywords
powder
iron
magnetic member
rare earth
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010115229A
Other languages
Japanese (ja)
Other versions
JP2011241453A5 (en
JP2011241453A (en
Inventor
前田  徹
麻子 渡▲辺▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2010115229A priority Critical patent/JP5051270B2/en
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to US13/511,061 priority patent/US9196403B2/en
Priority to KR1020127010195A priority patent/KR101362036B1/en
Priority to CN2013100873785A priority patent/CN103151130A/en
Priority to CN201180004578.9A priority patent/CN102665970B/en
Priority to EP11783414.3A priority patent/EP2484464B1/en
Priority to PCT/JP2011/060744 priority patent/WO2011145477A1/en
Priority to TW100117090A priority patent/TW201212059A/en
Publication of JP2011241453A publication Critical patent/JP2011241453A/en
Publication of JP2011241453A5 publication Critical patent/JP2011241453A5/ja
Application granted granted Critical
Publication of JP5051270B2 publication Critical patent/JP5051270B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)

Description

本発明は、希土類-鉄-ホウ素系磁石といった希土類磁石の素材に適した磁性部材、この磁性部材の原料に利用される磁性部材用粉末、粉末成形体に関する。特に、成形性に優れる上に、酸化し難い磁性部材用粉末に関するものである。   The present invention relates to a magnetic member suitable for a rare earth magnet material such as a rare earth-iron-boron magnet, a powder for a magnetic member used as a raw material for the magnetic member, and a powder compact. In particular, the present invention relates to a powder for a magnetic member that is excellent in moldability and hardly oxidizes.

モータや発電機などに利用される永久磁石には、希土類磁石が広く利用されている。希土類磁石は、Nd(ネオジム)-Fe-BといったR-Fe-B系合金(R:希土類元素、Fe:鉄、B:ホウ素)からなる焼結磁石やボンド磁石が代表的である。   Rare earth magnets are widely used as permanent magnets used in motors and generators. The rare earth magnet is typically a sintered magnet or a bond magnet made of an R—Fe—B alloy (R: rare earth element, Fe: iron, B: boron) such as Nd (neodymium) -Fe—B.

焼結磁石は、R-Fe-B系合金からなる粉末を圧縮成形した後、焼結することで製造され、ボンド磁石は、R-Fe-B系合金からなる合金粉末と結合樹脂とを混合した混合物を圧縮成形したり、射出成形することで製造される。特に、ボンド磁石に利用される粉末では、保磁力を高めるために、HDDR処理(Hydrogenation−Disproportionation−Desorption−Recombination、HD:水素化及び不均化、DR:脱水素及び再結合)を施すことが行われている。   Sintered magnets are manufactured by compressing and then sintering R-Fe-B alloy powder, and bonded magnets are a mixture of R-Fe-B alloy powder and binder resin. The mixture is produced by compression molding or injection molding. In particular, powders used for bonded magnets may be subjected to HDRR treatment (Hydrogenation-Disproportionation-Desorption-Recombination, HD: hydrogenation and disproportionation, DR: dehydrogenation and recombination) to increase the coercive force. Has been done.

焼結磁石は、磁性相の密度が高いことで磁石特性に優れるものの、形状の自由度が小さく、例えば、円筒状や円柱状、ポット形状(有底筒形状)といった複雑な形状を成形することが困難であり、複雑な形状の場合、焼結材を切削する必要がある。一方、ボンド磁石は、形状の自由度が高いものの、焼結磁石よりも磁石特性に劣る。これに対して、特許文献1では、Nd-Fe-B系合金からなる合金粉末を微細なものとし、この合金粉末を圧縮成形した圧粉体(粉末成形体)にHDDR処理を施すことで、形状の自由度を高められる上に、磁石特性に優れる磁石が得られることを開示している。   Sintered magnets have excellent magnetic properties due to the high density of the magnetic phase, but have a low degree of freedom in shape, for example, to form complex shapes such as cylindrical shapes, columnar shapes, and pot shapes (bottomed tubular shapes). In the case of a complicated shape, it is necessary to cut the sintered material. On the other hand, although a bonded magnet has a high degree of freedom in shape, it is inferior in magnet characteristics to a sintered magnet. On the other hand, in Patent Document 1, the alloy powder made of the Nd-Fe-B alloy is made fine, and the green compact (powder compact) obtained by compression molding the alloy powder is subjected to the HDDR treatment. It is disclosed that a magnet having excellent magnet characteristics can be obtained in addition to increasing the degree of freedom of shape.

特開2009-123968号公報JP 2009-123968

上述のように焼結磁石では、磁石特性に優れるものの、形状の自由度が小さく、ボンド磁石では、形状の自由度が高いものの、結合樹脂が存在することで磁性相の密度が高々80体積%程度であり、磁性相の密度の向上が難しい。従って、磁性相の密度が高く、かつ複雑な形状であっても容易に製造可能な希土類磁石などの磁性体用原料の開発が望まれる。   As described above, the sintered magnet has excellent magnet characteristics, but the degree of freedom in shape is small, and the bond magnet has high degree of freedom in shape, but the presence of the binder resin makes the magnetic phase density at most 80% by volume. It is difficult to improve the density of the magnetic phase. Therefore, it is desired to develop a magnetic material such as a rare earth magnet that has a high magnetic phase density and can be easily manufactured even in a complicated shape.

焼結することなく磁性相の密度が高い希土類磁石を得るために、例えば、その素材となる粉末成形体として相対密度が高いものを作製することが考えられる。しかし、特許文献1に開示されるようなNd-Fe-B系合金からなる合金粉末や、この合金粉末にHDDR処理を施した粉末は、粉末を構成する粒子自体の剛性が高く、変形し難い。そのため、相対密度が高い粉末成形体を作製するにあたり、圧縮成形時、比較的大きな圧力が必要となる。特に、上記合金粉末を構成する粒子を粗大なものとすると、更に大きな圧力が必要となる。従って、相対密度が高い粉末成形体を成形し易い原料の開発が望まれる。   In order to obtain a rare earth magnet having a high magnetic phase density without sintering, for example, it is conceivable to produce a powder compact having a high relative density as a raw material. However, the alloy powder made of an Nd-Fe-B alloy as disclosed in Patent Document 1 and the powder obtained by subjecting this alloy powder to HDDR treatment have high rigidity of the particles constituting the powder and are difficult to deform. . Therefore, in producing a powder compact having a high relative density, a relatively large pressure is required during compression molding. In particular, if the particles constituting the alloy powder are coarse, a larger pressure is required. Therefore, it is desired to develop a raw material that can easily form a powder compact having a high relative density.

また、特許文献1に記載されるように圧粉体にHDDR処理を施すと、当該処理時に圧粉体が膨張収縮することで、得られた磁石用多孔質体が崩壊する恐れがある。従って、製造途中に崩壊し難く、十分な強度を具えると共に、磁石特性に優れる希土類磁石といった磁性体が得られる原料や素材の開発が望まれる。   Further, as described in Patent Document 1, when the green compact is subjected to the HDDR treatment, the green compact may be collapsed due to expansion and contraction of the green compact during the treatment. Accordingly, it is desired to develop a raw material and a material that are difficult to disintegrate during production, have sufficient strength, and can obtain a magnetic material such as a rare earth magnet having excellent magnet characteristics.

更に、希土類元素は、酸化され易く、その酸化物から酸素を除去することが非常に困難である。そして、希土類磁石といった磁性体中に、製造時に生成された希土類元素の酸化物が存在すると、磁性相の低下を招く。従って、上記磁性体の製造時に、酸化し難い原料の開発が望まれる。   Furthermore, rare earth elements are easily oxidized and it is very difficult to remove oxygen from the oxide. If a rare earth element oxide produced during production is present in a magnetic material such as a rare earth magnet, the magnetic phase is lowered. Therefore, it is desired to develop a raw material that is difficult to oxidize when the magnetic material is manufactured.

そこで、本発明の目的の一つは、成形性に優れて、相対密度が高い粉末成形体が得られる上に、酸化し難い磁性部材用粉末を提供することにある。   Accordingly, one of the objects of the present invention is to provide a powder for a magnetic member that is excellent in moldability and has a high relative density, and that is difficult to oxidize.

また、本発明の他の目的は、磁石特性に優れる希土類-鉄-ホウ素系合金からなる希土類磁石の素材に適した磁性部材、及びこの磁性部材の素材に適した粉末成形体を提供することにある。   Another object of the present invention is to provide a magnetic member suitable for a rare earth magnet material made of a rare earth-iron-boron alloy having excellent magnet characteristics, and a powder compact suitable for the material of this magnetic member. is there.

本発明者らは、焼結することなく、磁性相の密度を高めて、希土類磁石といった磁性体の素材に適した磁性部材を得るために、ボンド磁石のように結合樹脂を利用した成形ではなく、粉末成形体を利用することを検討した。上述のように、従来の原料粉末、即ち、Nd-Fe-B系合金からなる合金粉末や、この合金粉末にHDDR処理を施した処理粉末は、硬くて変形能が小さく、圧縮成形時の成形性に劣り、粉末成形体の密度を向上させることが難しい。そこで、本発明者らは、成形性を高めるために種々検討した結果、希土類-鉄-ホウ素合金のように化合物となった状態、即ち、希土類元素と鉄とが結合した状態ではなく、希土類元素と鉄とが結合せず、言わば鉄成分や鉄-ホウ素合金成分が希土類元素成分と独立的に存在する組織の粉末とすると、変形能が高く成形性に優れて、相対密度が高い粉末成形体が得られる、との知見を得た。また、上記特定の組織を有する粉末は、希土類-鉄-ホウ素系合金からなる合金粉末に特定の熱処理、具体的には水素を含む雰囲気下での熱処理を施すことで製造できる、との知見を得た。そして、得られた粉末を圧縮成形した粉末成形体に特定の熱処理を施すことで、圧粉体にHDDR処理を施した場合や、HDDR処理が施された処理粉末を用いて成形体を作製した場合と同様な磁性部材が得られる、との知見を得た。特に、相対密度が高い粉末成形体から得られた磁性部材を用いることで、磁性相の密度が高く、磁石特性に優れる希土類磁石、具体的には希土類-鉄-ホウ素系合金磁石が得られる、との知見を得た。   In order to increase the density of the magnetic phase without sintering and to obtain a magnetic member suitable for a magnetic material such as a rare-earth magnet, the present inventors do not use a bonding resin as in a bonded magnet. The use of powder compacts was studied. As described above, conventional raw material powders, that is, alloy powders made of Nd-Fe-B alloys, and processed powders obtained by applying HDDR treatment to these alloy powders are hard, have low deformability, and are molded during compression molding. It is difficult to improve the density of the powder compact. Therefore, as a result of various investigations to improve the formability, the present inventors have found that a rare earth element is not a state in which the compound is formed like a rare earth-iron-boron alloy, that is, a state in which the rare earth element and iron are combined. If the powder has a structure in which the iron component and iron-boron alloy component are present independently of the rare earth element component, the powder molded body has high deformability, excellent formability, and high relative density. I got the knowledge that Further, the knowledge that the powder having the above specific structure can be produced by subjecting the alloy powder made of a rare earth-iron-boron alloy to a specific heat treatment, specifically, a heat treatment in an atmosphere containing hydrogen. Obtained. Then, by applying a specific heat treatment to the powder compact obtained by compression molding the obtained powder, a compact was produced using the processed powder subjected to the HDDR treatment or when the green compact was subjected to the HDRD treatment. The knowledge that a magnetic member similar to the case can be obtained was obtained. In particular, by using a magnetic member obtained from a powder molded body having a high relative density, a rare earth magnet having a high magnetic phase density and excellent magnet characteristics, specifically, a rare earth-iron-boron alloy magnet can be obtained. And gained knowledge.

ここで、上述の鉄成分や鉄-ホウ素合金成分が存在する粉末を圧縮成形すると、当該成形時の圧力により、当該粉末を構成する各磁性粒子に新生面が形成される。上記各磁性粒子内には希土類元素の水素化合物が存在しており、上記新生面に露出した希土類元素の水素化合物が酸化されることで、新生面が酸化される恐れがある。上記酸化を防止するために、例えば、非酸化性雰囲気下で成形を行うことが考えられるが、当該雰囲気中に成形装置を配置する必要があることから、設備が大掛かりになる。従って、大気雰囲気といった酸素が存在する雰囲気下でも酸化し難く、成形可能な粉末が望まれる。   Here, when a powder containing the above-described iron component or iron-boron alloy component is compression-molded, a new surface is formed on each magnetic particle constituting the powder by the pressure during the molding. There is a rare earth element hydrogen compound in each of the magnetic particles, and the rare earth element hydrogen compound exposed on the new surface is oxidized, so that the new surface may be oxidized. In order to prevent the oxidation, for example, it is conceivable to perform molding in a non-oxidizing atmosphere. However, since it is necessary to arrange a molding apparatus in the atmosphere, the equipment becomes large. Therefore, it is difficult to oxidize even in an atmosphere containing oxygen such as an air atmosphere, and a moldable powder is desired.

そこで、本発明は、上記知見により、磁性部材用粉末を構成する各磁性粒子を上述のように特定の組織を有する形態とすること、かつこの特定の形態の磁性粒子の表面に酸化防止層を設けることを提案する。   Therefore, according to the above knowledge, the present invention makes each magnetic particle constituting the powder for a magnetic member into a form having a specific structure as described above, and an antioxidant layer is formed on the surface of the magnetic particle of the specific form. Propose to provide.

本発明の磁性部材用粉末は、希土類磁石の素材といった磁性部材の原料に用いられる粉末であり、当該磁性部材用粉末を構成する各磁性粒子は、40体積%未満の希土類元素の水素化合物と、残部が鉄含有物とから構成されている。上記鉄含有物は、鉄と、鉄及びホウ素を含む鉄-ホウ素合金とを含む。上記鉄含有物の相中に上記希土類元素の水素化合物が離散して存在している。そして、上記磁性粒子の表面に、酸素の透過係数(30℃)が1.0×10-11m3・m/(s・m2・Pa)未満である酸化防止層を具える。 The magnetic member powder of the present invention is a powder used as a raw material for a magnetic member such as a rare earth magnet material, and each magnetic particle constituting the magnetic member powder includes less than 40% by volume of a rare earth element hydrogen compound, The balance is composed of iron-containing material. The iron-containing material includes iron and an iron-boron alloy containing iron and boron. The rare earth element hydrogen compounds are discretely present in the phase of the iron-containing material. The surface of the magnetic particle is provided with an antioxidant layer having an oxygen permeability coefficient (30 ° C.) of less than 1.0 × 10 −11 m 3 · m / (s · m 2 · Pa).

本発明磁性部材用粉末を構成する各磁性粒子は、R-Fe-B系合金やR-Fe-N系合金のように単一相の希土類合金から構成されるのではなく、鉄含有物の相と希土類元素の水素化合物からなる相との複数相から構成される。上記鉄含有物の相は、上記R-Fe-B系合金やR-Fe-N系合金、上記希土類元素の水素化合物に比較して、柔らかく成形性に富む。また、上記各磁性粒子は、鉄含有物を主成分(60体積%以上)とすることで、本発明粉末を圧縮成形するとき、当該磁性粒子中の鉄含有物の相が十分に変形できる。更に、上記鉄含有物の相中に希土類元素の水素化合物が離散しているため、圧縮成形時、各磁性粒子の変形が均一的に行われる。これらのことから、本発明粉末を用いることで、相対密度が高い粉末成形体を容易に成形することができる。また、このような相対密度が高い粉末成形体を利用することで、焼結することなく、磁性相が高密度な希土類磁石といった磁性体を得ることができる。更に、鉄含有物が十分に変形することで、磁性粒子同士が互いに噛み合って結合されるため、接合性に優れる。従って、本発明粉末を利用することで、ボンド磁石のように結合樹脂を介在させることなく、磁性相の密度が80体積%以上、好ましくは90体積%以上といった希土類磁石などの磁性体を得ることができる。   Each magnetic particle constituting the powder for a magnetic member of the present invention is not composed of a single-phase rare earth alloy like an R-Fe-B alloy or an R-Fe-N alloy, but an iron-containing material. It is composed of a plurality of phases of a phase and a phase composed of a rare earth element hydrogen compound. The phase of the iron-containing material is softer and more formable than the R-Fe-B alloy, the R-Fe-N alloy, and the rare earth element hydrogen compound. Further, each of the magnetic particles has an iron-containing material as a main component (60% by volume or more), so that when the powder of the present invention is compression-molded, the phase of the iron-containing material in the magnetic particle can be sufficiently deformed. Furthermore, since the rare earth element hydrogen compound is dispersed in the phase of the iron-containing material, the magnetic particles are uniformly deformed during compression molding. From these facts, a powder compact having a high relative density can be easily molded by using the powder of the present invention. Moreover, by using such a powder compact having a high relative density, a magnetic material such as a rare earth magnet having a high magnetic phase can be obtained without sintering. Furthermore, since the iron-containing material is sufficiently deformed, the magnetic particles are meshed with each other and bonded to each other. Therefore, by using the powder of the present invention, it is possible to obtain a magnetic material such as a rare earth magnet having a magnetic phase density of 80% by volume or more, preferably 90% by volume or more, without using a binder resin like a bonded magnet. Can do.

かつ、本発明磁性部材用粉末を圧縮成形して得られた本発明粉末成形体は、焼結磁石のように焼結を行わないことから、焼結時に生じる収縮の異方性に起因する形状の制約がなく、形状の自由度が大きい。従って、本発明粉末を用いることで、例えば、円筒状や円柱状、ポット形状といった複雑な形状であっても、切削加工などの後加工を実質的に行うことなく、容易に成形することができる。また、切削加工を不要とすることで、原料の歩留まりを飛躍的に向上したり、希土類磁石といった磁性体の生産性を向上したりすることができる。   In addition, since the powder compact of the present invention obtained by compression molding the magnetic member powder of the present invention does not sinter like a sintered magnet, it has a shape due to the shrinkage anisotropy that occurs during sintering. There are no restrictions, and the degree of freedom of shape is large. Therefore, by using the powder of the present invention, for example, even a complicated shape such as a cylindrical shape, a columnar shape, or a pot shape can be easily formed without substantially performing post-processing such as cutting. . Also, by eliminating the need for cutting, the yield of raw materials can be dramatically improved, and the productivity of magnetic materials such as rare earth magnets can be improved.

その上、本発明磁性部材用粉末は、上記磁性粒子の外周に上述のように酸化防止層を具えることで、大気雰囲気といった酸素を含む雰囲気下で圧縮成形を行う場合であっても、圧縮成形時に上記磁性粒子に形成された新生面が酸化されることを効果的に防止できる。従って、本発明粉末を利用することで、希土類元素の酸化物が存在することによる磁性相の低下を抑制することができ、磁性相の密度が高い希土類磁石といった磁性体を製造できる。また、本発明粉末を利用することで、非酸化性雰囲気で成形を行う場合のような大掛かりな設備が不要であり、上記磁性体を生産性よく製造することができる。   In addition, the magnetic member powder of the present invention is provided with an anti-oxidation layer on the outer periphery of the magnetic particles as described above, so that even when compression molding is performed in an atmosphere containing oxygen such as an air atmosphere, the powder is compressed. It is possible to effectively prevent the new surface formed on the magnetic particles from being oxidized during molding. Therefore, by using the powder of the present invention, it is possible to suppress a decrease in the magnetic phase due to the presence of the rare earth element oxide, and it is possible to produce a magnetic body such as a rare earth magnet having a high magnetic phase density. In addition, by using the powder of the present invention, a large-scale facility as in the case of molding in a non-oxidizing atmosphere is unnecessary, and the magnetic body can be manufactured with high productivity.

本発明磁性部材用粉末は、成形性に優れ、相対密度が高い本発明粉末成形体が得られる上に、当該粉末の酸化を防止できる。本発明粉末成形体や本発明磁性部材を用いることで、焼結することなく、磁性相の密度が高い希土類磁石といった磁性体が得られる。   The powder for magnetic member of the present invention is excellent in moldability and can provide the powder molded body of the present invention having a high relative density, and can prevent oxidation of the powder. By using the powder molded body of the present invention or the magnetic member of the present invention, a magnetic body such as a rare earth magnet having a high magnetic phase density can be obtained without sintering.

図1は、実施形態1の磁性部材用粉末を用いて磁性部材を製造する工程の一例を説明する工程説明図である。FIG. 1 is a process explanatory view for explaining an example of a process for producing a magnetic member using the magnetic member powder of Embodiment 1. 図2は、実施形態2の磁性部材用粉末を用いて磁性部材を製造する工程の一例を説明する工程説明図である。FIG. 2 is a process explanatory diagram for explaining an example of a process for producing a magnetic member using the magnetic member powder according to the second embodiment.

以下、本発明をより詳細に説明する。
[磁性部材用粉末]
≪磁性粒子≫
本発明粉末を構成する各磁性粒子は、鉄含有物を主成分とし、その含有量(鉄及び鉄-ホウ素合金の合計含有量)を60体積%以上とする。鉄含有物の含有量が60体積%未満であると、硬質である希土類元素の水素化合物が相対的に多くなり、圧縮成形時、鉄含有物成分を十分に変形することが難しく、多過ぎると磁石特性の低下を招くことから90体積%以下が好ましい。一方、希土類元素の水素化合物を含有しないと、希土類磁石といった希土類磁性体が得られないことから、その含有量は、0体積%超とし、10体積%以上が好ましく、40体積%未満とする。鉄含有物或いは希土類元素の水素化合物の含有量は、本発明粉末の原料となる希土類-鉄-ホウ素系合金の組成や本発明粉末を製造する際の熱処理条件(主に温度)を適宜変化させることで調整できる。なお、上記各磁性粒子は、不可避不純物の含有を許容する。
Hereinafter, the present invention will be described in more detail.
[Powder for magnetic members]
≪Magnetic particles≫
Each magnetic particle constituting the powder of the present invention contains an iron-containing material as a main component, and the content thereof (total content of iron and iron-boron alloy) is 60% by volume or more. When the content of iron-containing material is less than 60% by volume, the amount of hard rare earth element hydrogen compound is relatively large, and it is difficult to sufficiently deform the iron-containing component during compression molding. 90 volume% or less is preferable because it causes a decrease in magnet characteristics. On the other hand, if a rare earth element hydrogen compound is not contained, a rare earth magnetic material such as a rare earth magnet cannot be obtained. Therefore, its content is more than 0% by volume, preferably 10% by volume or more, and less than 40% by volume. The content of the iron-containing material or the rare earth element hydrogen compound appropriately changes the composition of the rare earth-iron-boron alloy used as the raw material of the powder of the present invention and the heat treatment conditions (mainly the temperature) when producing the powder of the present invention. Can be adjusted. In addition, each said magnetic particle accept | permits inclusion of an unavoidable impurity.

上記鉄含有物は、鉄と、鉄-ホウ素合金との双方を含むものとする。鉄-ホウ素合金は、例えば、Fe3Bが挙げられる。その他、Fe2BやFeBが挙げられる。上記磁性粒子は、鉄-ホウ素合金に加えて、純鉄(Fe)を含有することで、成形性に優れる。鉄-ホウ素合金の含有量は、鉄含有物を100%とするとき、10質量%〜50質量%が好ましい。鉄-ホウ素合金の含有量が10質量%以上であることで、ホウ素を十分に含むことができ、最終的に得られる磁性部材中の希土類-鉄-ホウ素合金(代表的にはNd2Fe14B)の割合を50体積%以上とすることができる。鉄-ホウ素合金の含有量が50質量%以下であることで、成形性に優れる。鉄含有物中の鉄と、鉄-ホウ素合金との割合は、例えば、X線回折のピーク強度(ピーク面積)を測定し、測定したピーク強度を比較することで求められる。その他、鉄含有物は、鉄の一部がCo,Ga,Cu,Al,Si,及びNbから選択される少なくとも一種の元素に置換された形態とすることができる。鉄含有物が上記元素を含む形態では、磁気特性や耐食性を向上することができる。鉄及び鉄-ホウ素合金の存在比率は、本発明磁性部材用粉末の製造原料になる希土類-鉄-ホウ素系合金の組成を適宜変更させることで調整できる。 The iron-containing material includes both iron and an iron-boron alloy. Examples of the iron-boron alloy include Fe 3 B. Other examples include Fe 2 B and FeB. The magnetic particles are excellent in formability by containing pure iron (Fe) in addition to the iron-boron alloy. The content of the iron-boron alloy is preferably 10% by mass to 50% by mass when the content of iron is 100%. When the content of the iron-boron alloy is 10% by mass or more, boron can be sufficiently contained, and the rare earth-iron-boron alloy (typically Nd 2 Fe 14 in the magnetic member finally obtained) The proportion of B) can be 50% by volume or more. Formability is excellent when the content of the iron-boron alloy is 50% by mass or less. The ratio of iron to the iron-boron alloy in the iron-containing material is obtained, for example, by measuring the peak intensity (peak area) of X-ray diffraction and comparing the measured peak intensity. In addition, the iron-containing material can be in a form in which a part of iron is substituted with at least one element selected from Co, Ga, Cu, Al, Si, and Nb. In the form in which the iron-containing material contains the above element, magnetic properties and corrosion resistance can be improved. The abundance ratio of iron and iron-boron alloy can be adjusted by appropriately changing the composition of the rare earth-iron-boron alloy used as the raw material for producing the magnetic member powder of the present invention.

上記各磁性粒子に含有される希土類元素は、Sc(スカンジウム),Y(イットリウム),ランタノイド及びアクチノイドから選択される1種以上の元素とする。特に、Nd,Pr,Ce,Dy,及びYから選択される少なくとも1種の元素を含むことが好ましく、とりわけ、Nd(ネオジム)は、磁石特性に優れるR-Fe-B系合金磁石を得ることができて好ましい。希土類元素の水素化合物は、例えば、NdH2,DyH2が挙げられる。 The rare earth element contained in each of the magnetic particles is one or more elements selected from Sc (scandium), Y (yttrium), lanthanoid and actinoid. In particular, it is preferable to contain at least one element selected from Nd, Pr, Ce, Dy, and Y, and in particular, Nd (neodymium) should obtain an R—Fe—B alloy magnet having excellent magnet characteristics. Is preferable. Examples of the rare earth element hydrogen compound include NdH 2 and DyH 2 .

上記各磁性粒子は、上記鉄含有物の相と上記希土類元素の水素化合物の相とが均一的に離散して存在した組織を有する。この離散した状態とは、上記各磁性粒子中において、上記希土類元素の水素化合物の相と上記鉄含有物の相とが隣接して存在し、上記鉄含有物の相を介して隣り合う上記希土類元素の水素化合物の相間の間隔が3μm以下であることを言う。代表的には、上記両相が多層構造となっている層状形態、上記希土類元素の水素化合物の相が粒状であり、上記鉄含有物の相を母相として、この母相中に上記粒状の希土類元素の水素化合物が存在する粒状形態が挙げられる。   Each of the magnetic particles has a structure in which the phase of the iron-containing material and the phase of the hydrogen compound of the rare earth element are uniformly dispersed. This discrete state means that in each of the magnetic particles, the rare earth element hydrogen compound phase and the iron-containing material phase are adjacent to each other, and the rare earth element is adjacent to each other via the iron-containing material phase. The distance between the phases of the elemental hydrogen compound is 3 μm or less. Typically, a layered form in which both phases have a multilayer structure, a phase of the hydrogen compound of the rare earth element is granular, and the phase of the iron-containing material is a parent phase. A granular form in which a rare earth element hydrogen compound is present may be mentioned.

上記両相の存在形態は、本発明磁性部材用粉末を製造する際の熱処理条件(主に温度)に依存し、上記温度を高めると粒状形態になり、上記温度を後述する不均化温度近傍にすると、層状形態となる傾向にある。   The existence form of both phases depends on the heat treatment conditions (mainly temperature) when producing the magnetic member powder of the present invention, and when the temperature is raised, it becomes a granular form, and the temperature is near the disproportionation temperature described later. Then, it tends to be a layered form.

上記層状形態の粉末を用いることで、結合樹脂を用いることなく、例えば、磁性相の密度がボンド磁石と同程度(80体積%程度)である希土類磁石を得ることができる。なお、上記層状形態の場合、希土類元素の水素化合物の相と鉄含有物の相とが隣接するとは、上記磁性粒子の断面をとったとき、各相が実質的に交互に積層された状態を言う。また、上記層状形態の場合、隣り合う希土類元素の水素化合物の相間の間隔とは、上記断面において鉄含有物の相を介して隣り合う二つの上記希土類元素の水素化合物の相の中心間の距離を言う。   By using the layered powder, for example, a rare earth magnet having a magnetic phase density similar to that of a bonded magnet (about 80% by volume) can be obtained without using a binder resin. In the case of the layered form, the phase of the rare earth element hydrogen compound and the phase of the iron-containing material are adjacent to each other when the cross-section of the magnetic particle is taken. To tell. In the case of the layered form, the interval between the phases of the adjacent rare earth element hydrogen compounds is the distance between the centers of the two rare earth element hydrogen compound phases adjacent to each other through the iron-containing material phase in the cross section. Say.

上記粒状形態は、上記希土類元素の水素化合物の粒子の周囲に鉄含有物成分が均一的に存在することで、上記層状形態よりも鉄含有物成分を変形させ易く、例えば、円筒状や円柱状、ポット形状といった複雑な形状の粉末成形体や、相対密度が85%以上、特に90%以上といった高密度の粉末成形体を得易い。上記粒状形態の場合、希土類元素の水素化合物の相と鉄含有物の相とが隣接するとは、代表的には、上記磁性粒子の断面をとったとき、上記希土類元素の水素化合物の粒子の周囲を覆うように鉄含有物が存在し、隣り合う上記各希土類元素の水素化合物の粒子間に鉄含有物が存在する状態を言う。また、上記粒状形態の場合、隣り合う希土類元素の水素化合物の相間の間隔とは、上記断面において隣り合う二つの上記希土類元素の水素化合物の粒子の中心間の距離を言う。   In the granular form, the iron-containing component is uniformly present around the rare-earth element hydrogen compound particles, so that the iron-containing component is more easily deformed than the layered form. It is easy to obtain a powder molded body having a complicated shape such as a pot shape and a high density powder molded body having a relative density of 85% or more, particularly 90% or more. In the case of the granular form, the phase of the rare earth element hydride and the phase of the iron-containing material are typically adjacent to the rare earth element hydride particle when the cross section of the magnetic particle is taken. The iron-containing material is present so as to cover the surface, and the iron-containing material is present between the adjacent hydrogen compound particles of each rare earth element. In the case of the granular form, the interval between phases of adjacent rare earth element hydrogen compounds refers to the distance between the centers of the two adjacent rare earth element hydrogen compound particles in the cross section.

上記間隔の測定は、例えば、上記断面をエッチングして鉄含有物の相を除去して上記希土類元素の水素化合物を抽出したり、或いは溶液の種類によっては希土類元素の水素化合物を除去して上記鉄含有物を抽出したり、上記断面をEDX(エネルギー分散型X線分光法)装置により組成分析したりすることで測定することができる。上記間隔が3μm以下であることで、上記粉末成形体に適宜熱処理を施して磁性部材を形成する場合に、過度なエネルギーを投入しなくて済む上に、希土類-鉄-ホウ素系合金の結晶の粗大化による特性の低下を抑制できる。上記希土類元素の水素化合物の相間に鉄含有物が十分に存在するためには、上記間隔は、0.5μm以上、特に1μm以上が好ましい。上記間隔は、原料に用いる希土類-鉄-ホウ素系合金粉末の組成を調整したり、本発明磁性部材用粉末を製造する際の熱処理条件、特に温度を特定の範囲にしたりすることで調整できる。例えば、上記希土類-鉄-ホウ素系合金粉末において、鉄又はホウ素の比率(原子比)を多くしたり、上記特定の範囲において上記熱処理時の温度を高くすると、上記間隔が大きくなる傾向にある。   The interval may be measured by, for example, etching the cross section to remove the iron-containing phase and extracting the rare earth element hydrogen compound, or removing the rare earth element hydrogen compound depending on the type of the solution. It can be measured by extracting an iron-containing material or by analyzing the composition of the cross section with an EDX (energy dispersive X-ray spectroscopy) apparatus. When the interval is 3 μm or less, when the magnetic material is formed by appropriately heat-treating the powder compact, it is not necessary to input excessive energy, and the rare earth-iron-boron alloy crystal The deterioration of characteristics due to coarsening can be suppressed. In order for the iron-containing material to be sufficiently present between the phases of the rare earth element hydrogen compound, the interval is preferably 0.5 μm or more, and more preferably 1 μm or more. The interval can be adjusted by adjusting the composition of the rare earth-iron-boron alloy powder used as a raw material, or by adjusting the heat treatment conditions, particularly the temperature, in producing the magnetic member powder of the present invention. For example, in the rare earth-iron-boron alloy powder, when the ratio of iron or boron (atomic ratio) is increased or the temperature during the heat treatment is increased within the specific range, the interval tends to increase.

上記磁性粒子の平均粒径が10μm以上500μm以下であると、各磁性粒子の表面において希土類元素の水素化合物が占める割合を相対的に小さくでき、当該磁性粒子の酸化の抑制にある程度効果があると期待される。また、上記磁性粒子は上述のように鉄含有物の相を有して成形性に優れることで、例えば、平均粒径が100μm以上といった粗大な粉末であっても、気孔が少なく、相対密度が高い粉末成形体を形成できる。平均粒径が大き過ぎると、粉末成形体の相対密度の低下を招くことから500μm以下が好ましい。上記平均粒径は、50μm以上200μm以下がより好ましい。   When the average particle size of the magnetic particles is 10 μm or more and 500 μm or less, the proportion of rare earth element hydrogen compounds on the surface of each magnetic particle can be relatively small, and there is some effect in suppressing oxidation of the magnetic particles. Be expected. In addition, the magnetic particles have an iron-containing material phase as described above and have excellent moldability.For example, even a coarse powder having an average particle size of 100 μm or more has few pores and a relative density. A high powder compact can be formed. If the average particle size is too large, the relative density of the powder compact is reduced, and therefore it is preferably 500 μm or less. The average particle size is more preferably 50 μm or more and 200 μm or less.

上記磁性粒子は、その断面における円形度が0.5以上1.0以下である形態が挙げられる。円形度が上記範囲を満たすことで、酸化防止層や後述する絶縁被覆などを均一的な厚さで形成し易い、圧縮成形時に酸化防止層などの破損を抑制できる、といった効果が得られて好ましい。上記磁性粒子が真球に近い、即ち、円形度が1に近いほど、上記効果が得られる。   The magnetic particles may have a form in which the circularity in the cross section is 0.5 or more and 1.0 or less. When the circularity satisfies the above range, it is preferable to obtain an effect that it is easy to form an antioxidant layer or an insulating coating to be described later with a uniform thickness, and damage to the antioxidant layer can be suppressed during compression molding. . As the magnetic particle is closer to a true sphere, that is, the circularity is closer to 1, the above effect can be obtained.

その他、ホウ素の少なくとも一部を炭素に置換した形態とすることができる。例えば、希土類-鉄-炭素系合金磁石の素材となる磁性部材用の粉末として、上述した鉄含有物が鉄と、鉄及び炭素を含む鉄-炭素合金とを含む形態とすることができる。この鉄-炭素合金を含む粉末も、上述した鉄-ホウ素合金を含む粉末と同様に鉄含有物の相を含有することで、成形性に優れる。なお、上述及び後述の各項目における鉄-ホウ素合金や希土類-鉄-ホウ素合金との記載は、鉄-炭素合金や希土類-鉄-炭素合金に置き換えることができる。希土類-鉄-炭素合金は、代表的には、Nd2Fe14Cが挙げられる。 In addition, at least a part of boron can be substituted with carbon. For example, as a powder for a magnetic member that is a material for a rare earth-iron-carbon alloy magnet, the above-described iron-containing material may include iron and an iron-carbon alloy containing iron and carbon. The powder containing this iron-carbon alloy also has excellent formability by containing the phase of the iron-containing material in the same manner as the powder containing the iron-boron alloy described above. In addition, the description of the iron-boron alloy or the rare earth-iron-boron alloy in each item described above and below can be replaced with an iron-carbon alloy or a rare earth-iron-carbon alloy. A typical rare earth-iron-carbon alloy is Nd 2 Fe 14 C.

≪酸化防止層≫
そして、上記各磁性粒子は、その外周に酸化防止層を具えることを特徴の一つとする。酸化防止層は、特に、圧縮成形時に形成された上記磁性粒子の新生面が酸化することを防止するために機能し、この効果を得るために、当該磁性粒子の全周を覆うように酸化防止層を具えると共に、当該磁性粒子が雰囲気中の酸素と十分に遮断されるように、酸素の透過係数(30℃)を1.0×10-11m3・m/(s・m2・Pa)未満とする。酸素の透過係数(30℃)が1.0×10-11m3・m/(s・m2・Pa)以上では、圧縮成形時の雰囲気を例えば、大気雰囲気などの酸素を含む雰囲気とした場合に、上記新生面が酸化されて酸化物が生成され、この酸化物の存在により、磁性部材中の磁性相の低下を招く。従って、酸化防止層は、酸素の透過係数(30℃)が小さいほど好ましく、0.01×10-11m3・m/(s・m2・Pa)以下がより好ましく、下限は設けない。
≪Antioxidation layer≫
And each said magnetic particle is equipped with the antioxidant layer in the outer periphery, It is set as one of the characteristics. The antioxidant layer particularly functions to prevent the new surface of the magnetic particles formed during compression molding from being oxidized, and in order to obtain this effect, the antioxidant layer covers the entire circumference of the magnetic particles. And the oxygen permeability coefficient (30 ° C) is less than 1.0 × 10 -11 m 3・ m / (s ・ m 2・ Pa) so that the magnetic particles are sufficiently shielded from oxygen in the atmosphere. And When the oxygen permeability coefficient (30 ° C) is 1.0 × 10 -11 m 3・ m / (s ・ m 2・ Pa) or higher, the atmosphere during compression molding is, for example, an atmosphere containing oxygen such as an air atmosphere. The new surface is oxidized to produce an oxide, and the presence of the oxide causes a decrease in the magnetic phase in the magnetic member. Therefore, it is preferable that the antioxidant layer has a smaller oxygen permeability coefficient (30 ° C.), more preferably 0.01 × 10 −11 m 3 · m / (s · m 2 · Pa) or less, and no lower limit is provided.

更に、酸化防止層は、透湿率(30℃)が1000×10-13kg/(m・s・MPa)未満であることが好ましい。大気雰囲気中に水分(代表的には水蒸気)が比較的多く存在する多湿状態(例えば、気温30℃程度/湿度80%程度など)では、水分と接触して上記磁性粒子の新生面が酸化する恐れがある。従って、酸化防止層が透湿率が低いものであれば、湿気による酸化を効果的に防止できる。透湿率も小さいほど好ましく、10×10-13kg/(m・s・MPa)以下がより好ましく、下限は設けない。 Furthermore, the antioxidant layer preferably has a moisture permeability (30 ° C.) of less than 1000 × 10 −13 kg / (m · s · MPa). In a humid state (for example, temperature of about 30 ° C./humidity of about 80%, etc.) in which a relatively large amount of moisture (typically water vapor) is present in the atmosphere, there is a risk that the new surface of the magnetic particles may be oxidized by contact with moisture There is. Therefore, if the antioxidant layer has a low moisture permeability, oxidation due to moisture can be effectively prevented. The moisture permeability is preferably as small as possible, more preferably 10 × 10 −13 kg / (m · s · MPa) or less, and no lower limit is set.

上記酸化防止層は、酸素の透過係数や透湿率が上記範囲を満たす種々の材料、例えば、樹脂、セラミックス(酸素透過性でないもの)、金属、ガラス質材料などにより構成することができる。特に、樹脂の場合、(1)圧縮成形時、上記各磁性粒子の変形に十分に追従して、変形中に磁性粒子の新生面が露出されることを効果的に防止できる、(2)粉末成形体を熱処理する際に焼失させられ、酸化防止層の残滓による磁性相の低下を抑制できる、といった効果を有する。特に、セラミックスや金属の場合、酸化防止効果が高く、ガラス質材料では、後述するように絶縁被膜としても機能することができる。   The antioxidant layer can be composed of various materials having an oxygen permeability coefficient and moisture permeability satisfying the above ranges, such as resins, ceramics (non-oxygen permeable materials), metals, and glassy materials. In particular, in the case of a resin, (1) during compression molding, sufficiently following the deformation of each of the above magnetic particles, it is possible to effectively prevent the new surface of the magnetic particles from being exposed during the deformation, (2) powder molding When the body is heat-treated, it is burned down, and the magnetic phase can be prevented from decreasing due to the residue of the antioxidant layer. In particular, in the case of ceramics and metal, the antioxidant effect is high, and the vitreous material can function as an insulating film as described later.

上記酸化防止層は、単層でも多層でもよい。例えば、上記酸化防止層は、酸素の透過係数(30℃)が1.0×10-11m3・m/(s・m2・Pa)未満である材料から構成された酸素低透過層のみを具える単層形態、酸素の透過係数(30℃)が1.0×10-11m3・m/(s・m2・Pa)未満であり、かつ透湿率(30℃)が1000×10-13kg/(m・s・MPa)未満である材料から構成された酸素・湿気低透過層を具える単層形態、上記酸素低透過層と、透湿率(30℃)が1000×10-13kg/(m・s・MPa)未満である材料から構成された湿気低透過層とを積層して具える多層形態が挙げられる。 The antioxidant layer may be a single layer or a multilayer. For example, the antioxidant layer includes only an oxygen low-permeability layer composed of a material having an oxygen permeability coefficient (30 ° C.) of less than 1.0 × 10 −11 m 3 · m / (s · m 2 · Pa). monolayer form to obtain the transmission coefficient of oxygen (30 ° C.) is the 1.0 × 10 -11 m 3 · m / less than (s · m 2 · Pa) , and moisture permeability (30 ° C.) is 1000 × 10 -13 Single layer form comprising a low oxygen / moisture permeable layer composed of a material less than kg / (m · s · MPa), the low oxygen permeable layer, and a moisture permeability (30 ° C.) of 1000 × 10 −13 A multilayer form comprising a low moisture permeation layer composed of a material of less than kg / (m · s · MPa) is mentioned.

上記酸素低透過層の構成材料は、樹脂では、ポリアミド系樹脂、ポリエステル、及びポリ塩化ビニルから選択される一種が挙げられる。ポリアミド系樹脂は、代表的にはナイロン6が挙げられる。ナイロン6は、酸素の透過係数(30℃)が0.0011×10-11m3・m/(s・m2・Pa)と非常に小さく好ましい。上記湿気低透過層の構成材料は、樹脂では、ポリエチレン、フッ素樹脂、ポリプロピレンなどが挙げられる。ポリエチレンは、透湿率(30℃)が7×10-13kg/(m・s・MPa)〜60×10-13kg/(m・s・MPa)と非常に小さく好ましい。 As for the constituent material of the low oxygen permeable layer, the resin may be one selected from polyamide resin, polyester, and polyvinyl chloride. A typical example of the polyamide-based resin is nylon 6. Nylon 6 has an oxygen permeability coefficient (30 ° C.) of 0.0011 × 10 −11 m 3 · m / (s · m 2 · Pa) and is very small. Examples of the constituent material of the moisture low-permeability layer include resins such as polyethylene, fluororesin, and polypropylene. Polyethylene is preferable because it has a very low moisture permeability (30 ° C.) of 7 × 10 −13 kg / (m · s · MPa) to 60 × 10 −13 kg / (m · s · MPa).

上記酸化防止層を上述の酸素低透過層と湿気低透過層との二層構造とする場合、いずれの層が内側(上記磁性粒子側)、外側(最表面側)に配置されていてもよいが、酸素低透過層を内側、湿気低透過層を外側に配置させると、酸化をより効果的に防止できると期待される。また、酸素低透過層と湿気低透過層との両層が上述のように樹脂で構成される場合、両層の密着性に優れて好ましい。   When the anti-oxidation layer has a two-layer structure of the above-described oxygen low-permeability layer and moisture low-permeability layer, any layer may be disposed on the inner side (the magnetic particle side) and the outer side (the outermost surface side). However, it is expected that oxidation can be more effectively prevented by disposing the oxygen low-permeability layer on the inner side and the moisture low-permeability layer on the outer side. In addition, when both the oxygen low-permeability layer and the moisture low-permeability layer are formed of a resin as described above, it is preferable because the adhesion between the two layers is excellent.

上記酸化防止層の厚さは適宜選択することができるが、薄過ぎると酸化防止効果を十分に得られず、厚過ぎると、粉末成形体の密度の低下を招き、例えば、相対密度が85%以上の粉末成形体を形成したり、焼失により除去したりすることが困難になる。従って、酸化防止層の厚さは、10nm以上1000nm以下が好ましく、特に磁性粒子の直径の2倍以下、更に100nm以上300nm以下であると、酸化や密度の低下を抑えられる上に、成形性に優れて好ましい。酸化防止層が上述のように二層構造といった多層構造である場合、各層の厚さは10nm以上500nm以下が好ましい。   The thickness of the antioxidant layer can be appropriately selected, but if it is too thin, the antioxidant effect cannot be sufficiently obtained, and if it is too thick, the density of the powder molded body is lowered, for example, the relative density is 85%. It becomes difficult to form the above powder compact or to remove it by burning. Therefore, the thickness of the antioxidant layer is preferably 10 nm or more and 1000 nm or less, and particularly when it is 2 or less times the diameter of the magnetic particle, and further 100 nm or more and 300 nm or less, oxidation and density reduction can be suppressed and moldability can be reduced. Excellent and preferred. When the antioxidant layer has a multilayer structure such as a two-layer structure as described above, the thickness of each layer is preferably 10 nm or more and 500 nm or less.

≪絶縁被覆≫
更に、上記本発明磁性部材用粉末は、その外周に絶縁材料からなる絶縁被覆を具える形態とすることができる。絶縁被覆を具える粉末を用いることで、電気抵抗が高い磁性部材を得られ、この磁性部材を例えば、モータの磁石の素材に利用した場合、渦電流損を低減できる。絶縁被覆は、例えば、Si,Al,Tiなどの酸化物の結晶性被膜や非晶質のガラス被膜、Me-Fe-O(Me=Ba,Sr,Ni,Mnなどの金属元素)といったフェライトやマグネタイト(Fe3O4)、Dy2O3といった金属酸化物、シリコーン樹脂といった樹脂、シルセスキオキサン化合物などといった酸化物からなる被膜が挙げられる。また、熱伝導性を向上する目的で、Si-N、Si-C系のセラミックス被覆を施してもよい。上記結晶性被膜やガラス被膜、酸化物被膜、セラミックス被膜などは、酸化防止機能を有する場合があり、この場合、酸化防止層に加えてこれらの被膜を具えることで、酸化をより防止することができる。これら絶縁被覆やセラミックス被覆を具える形態では、上記磁性粒子の表面に接するように絶縁被覆を具え、その上にセラミックス被覆や上記酸化防止層を具えることが好ましい。
≪Insulation coating≫
Further, the magnetic member powder of the present invention can be provided with an insulating coating made of an insulating material on its outer periphery. By using a powder having an insulating coating, a magnetic member having high electrical resistance can be obtained. When this magnetic member is used as a material for a magnet of a motor, for example, eddy current loss can be reduced. Insulating coatings include, for example, crystalline films of oxides such as Si, Al, Ti, amorphous glass films, ferrites such as Me-Fe-O (Me = Ba, Sr, Ni, Mn, etc.) Examples thereof include films made of metal oxides such as magnetite (Fe 3 O 4 ) and Dy 2 O 3 , resins such as silicone resins, and oxides such as silsesquioxane compounds. In order to improve thermal conductivity, Si-N or Si-C ceramic coating may be applied. The crystalline film, glass film, oxide film, ceramic film, etc. may have an anti-oxidation function. In this case, by providing these films in addition to the anti-oxidation layer, oxidation can be further prevented. Can do. In the form of providing these insulating coatings and ceramic coatings, it is preferable to provide an insulating coating so as to be in contact with the surface of the magnetic particles, and further to provide the ceramic coating and the antioxidant layer thereon.

[磁性部材用粉末の製造方法]
上記磁性部材用粉末は、例えば、以下の準備工程と、水素化工程と、被覆工程とを具える製造方法により製造することができる。
準備工程:希土類-鉄-ホウ素系合金(例えば、Nd2Fe14B)からなる合金粉末を準備する工程。
水素化工程:上記合金粉末を、水素を含む雰囲気中、上記希土類-鉄-ホウ素系合金の不均化温度以上の温度で熱処理して、希土類元素の水素化合物の相、鉄と鉄及びホウ素を含む鉄-ホウ素合金とを含む鉄含有物の相を生成し、上記鉄含有物の相中に上記希土類元素の水素化合物の相が離散して存在するベース粉末を形成する工程。
被覆工程:上記ベース粉末を構成する各磁性粒子の表面に、酸素の透過係数(30℃)が1.0×10-11m3・m/(s・m2・Pa)未満である酸化防止層を形成する工程。
[Method for producing powder for magnetic member]
The said powder for magnetic members can be manufactured with the manufacturing method which comprises the following preparatory processes, a hydrogenation process, and a coating | coated process, for example.
Preparation step: a step of preparing an alloy powder made of a rare earth-iron-boron alloy (for example, Nd 2 Fe 14 B).
Hydrogenation step: The alloy powder is heat-treated in a hydrogen-containing atmosphere at a temperature equal to or higher than the disproportionation temperature of the rare earth-iron-boron alloy, and the rare earth element hydrogen compound phase, iron, iron, and boron are removed. Forming a phase of an iron-containing material including an iron-boron alloy and forming a base powder in which the phases of the hydrogen compound of the rare earth element are discretely present in the phase of the iron-containing material.
Coating step: An antioxidant layer having an oxygen permeability coefficient (30 ° C.) of less than 1.0 × 10 −11 m 3 · m / (s · m 2 · Pa) on the surface of each magnetic particle constituting the base powder. Forming step.

≪準備工程≫
上記合金粉末は、例えば、希土類-鉄-ホウ素系合金からなる溶解鋳造インゴットや急冷凝固法で得られる箔状体をジョークラッシャー、ジェットミルやボールミルなどの粉砕装置により粉砕したり、ガスアトマイズ法といったアトマイズ法を利用して製造することができる。特に、ガスアトマイズ法を利用する場合、非酸化性雰囲気で粉末を形成することで、実質的に酸素が含有されない粉末(酸素濃度:500質量ppm以下)とすることができる。即ち、合金粉末を構成する粒子中の酸素濃度が500質量ppm以下であることは、非酸化性雰囲気のガスアトマイズ法により製造された粉末であることを示す指標の一つとなる。その他、公知の粉末の製造方法を利用したり、アトマイズ法により製造した粉末を更に粉砕することもできる。粉砕条件や製造条件を適宜変更することで、粉末の粒度分布や磁性粒子の形状を調整することができる。例えば、アトマイズ法を利用すると、円形度が0.5〜1.0である球形に近い粉末が得られ易い。換言すれば、円形度が上記範囲を満たすことは、アトマイズ法により製造された粉末であることを示す指標の一つとなる。上記合金粉末を構成する各粒子は多結晶体でも単結晶体でもよい。多結晶体からなる粒子に適宜熱処理を加えて単結晶体からなる粒子とすることができる。
≪Preparation process≫
The alloy powder is obtained by, for example, melting a cast ingot made of a rare earth-iron-boron alloy or a foil obtained by a rapid solidification method with a crushing device such as a jaw crusher, a jet mill or a ball mill, or an atomizing method such as a gas atomizing method. It can be manufactured using the law. In particular, when the gas atomization method is used, a powder containing substantially no oxygen (oxygen concentration: 500 mass ppm or less) can be obtained by forming the powder in a non-oxidizing atmosphere. That is, the oxygen concentration in the particles constituting the alloy powder being 500 mass ppm or less is one index indicating that the powder is produced by the gas atomization method in a non-oxidizing atmosphere. In addition, a known powder production method can be used, or a powder produced by the atomization method can be further pulverized. By appropriately changing the pulverization conditions and the production conditions, the particle size distribution of the powder and the shape of the magnetic particles can be adjusted. For example, when the atomizing method is used, a nearly spherical powder having a circularity of 0.5 to 1.0 is easily obtained. In other words, the circularity satisfying the above range is one index indicating that the powder is manufactured by the atomizing method. Each particle constituting the alloy powder may be a polycrystal or a single crystal. The particles made of a polycrystal can be appropriately heat treated to form particles made of a single crystal.

この準備工程で用意する合金粉末の大きさは、実質的に本発明磁性部材用粉末の大きさになる。本発明粉末は上述の特定の形態であって成形性に優れることから、平均粒径が100μm程度の比較的粗大なものとすることができる。従って、上記合金粉末も平均粒径が100μm程度にすることができる。このような粗大な合金粉末は、例えば、溶解鋳造インゴットに粗粉砕のみを行ったり、溶湯噴霧法といったアトマイズ法によって製造できる。このような粗大な合金粉末を利用できることから、焼結磁石の製造に利用されている原料粉末(焼結前の成形体を構成する粉末)のように10μm以下といった微粒にするための微粉砕を不要にでき、製造工程の短縮などにより、製造コストの低減を図ることができる。   The size of the alloy powder prepared in this preparation step is substantially the size of the magnetic member powder of the present invention. Since the powder of the present invention has the above-mentioned specific form and is excellent in moldability, it can be made relatively coarse with an average particle diameter of about 100 μm. Therefore, the alloy powder can also have an average particle size of about 100 μm. Such a coarse alloy powder can be produced by, for example, performing only coarse pulverization on a molten cast ingot or an atomizing method such as a molten metal spraying method. Since such a coarse alloy powder can be used, fine pulverization to make particles as small as 10 μm or less like raw material powder (powder constituting the compact before sintering) used in the production of sintered magnets is possible. The manufacturing cost can be reduced by shortening the manufacturing process.

≪水素化工程≫
この工程は、用意した上記合金粉末を、水素を含む雰囲気中で熱処理して、当該合金中の希土類元素と鉄と鉄-ホウ素合金とを分離すると共に、当該希土類元素と水素とを化合してベース粉末を作製する工程である。
≪Hydrogenation process≫
In this process, the prepared alloy powder is heat-treated in an atmosphere containing hydrogen to separate the rare earth element, iron, and iron-boron alloy in the alloy, and combine the rare earth element and hydrogen. This is a step of producing a base powder.

上記水素を含む雰囲気は、水素(H2)のみの単一雰囲気、或いは水素とArやN2といった不活性ガスとの混合雰囲気が挙げられる。上記水素化工程の熱処理時の温度は、上記希土類-鉄-ホウ素系合金の不均化反応が進行する温度、即ち不均化温度以上とする。不均化反応とは、希土類元素の優先水素化により、希土類元素の水素化合物と、鉄と、鉄-ホウ素合金とに分離する反応であり、この反応が生じる下限温度を不均化温度と呼ぶ。上記不均化温度は、上記合金の組成や希土類元素の種類により異なる。例えば、希土類-鉄-ホウ素系合金がNd2Fe14Bの場合、650℃以上が挙げられる。熱処理時の温度を不均化温度近傍とすると、上述した層状形態が得られ、温度を不均化温度+100℃以上に高めると、上述した粒状形態が得られる。上記水素化工程の熱処理時の温度を高めるほど、鉄の相や鉄-ホウ素合金の相を出現させ易く、粉末の成形性を高められるが、高過ぎると粉末の溶融固着などの不具合が発生するため、上記熱処理時の温度は1100℃以下が好ましい。特に、上記希土類-鉄-ホウ素系合金がNd2Fe14Bの場合、上記水素化工程の熱処理時の温度を750℃以上900℃以下の比較的低めにすると、上記間隔が小さい微細な組織となり、このような粉末を利用することで、例えば保磁力が高い希土類磁石が得られ易い。保持時間は、0.5時間以上5時間以下が挙げられる。この熱処理は、上述したHDDR処理の不均化工程までの処理に相当し、公知の不均化条件を適用することができる。 Examples of the atmosphere containing hydrogen include a single atmosphere of only hydrogen (H 2 ), or a mixed atmosphere of hydrogen and an inert gas such as Ar or N 2 . The temperature during the heat treatment in the hydrogenation step is set to a temperature at which the disproportionation reaction of the rare earth-iron-boron alloy proceeds, that is, the disproportionation temperature or higher. The disproportionation reaction is a reaction that separates rare earth element hydrogen compounds, iron, and iron-boron alloys by preferential hydrogenation of rare earth elements, and the lower limit temperature at which this reaction occurs is called the disproportionation temperature. . The disproportionation temperature varies depending on the composition of the alloy and the type of rare earth element. For example, when the rare earth-iron-boron alloy is Nd 2 Fe 14 B, the temperature may be 650 ° C. or higher. When the temperature at the time of heat treatment is in the vicinity of the disproportionation temperature, the above-described layered form is obtained, and when the temperature is increased to the disproportionation temperature + 100 ° C. or higher, the above-described granular form is obtained. The higher the temperature during the heat treatment in the hydrogenation step, the easier it is for the iron phase and iron-boron alloy phase to appear and the powder formability to be improved, but if it is too high, problems such as melting and fixing of the powder will occur. Therefore, the temperature during the heat treatment is preferably 1100 ° C. or lower. In particular, when the rare earth-iron-boron alloy is Nd 2 Fe 14 B, if the temperature during the heat treatment in the hydrogenation process is relatively low, such as 750 ° C. or more and 900 ° C. or less, the microstructure becomes small with a small interval. By using such a powder, for example, a rare earth magnet having a high coercive force can be easily obtained. Examples of the holding time include 0.5 hours or more and 5 hours or less. This heat treatment corresponds to the processing up to the disproportionation step of the above-described HDDR processing, and known disproportionation conditions can be applied.

≪被覆工程≫
この工程は、得られた上記ベース粉末を構成する上記各磁性粒子の表面に、酸化防止層を形成する工程である。
≪Coating process≫
This step is a step of forming an antioxidant layer on the surface of each of the magnetic particles constituting the obtained base powder.

上記酸化防止層の形成には、乾式法及び湿式法のいずれもが利用できる。乾式法では、上記磁性粒子が雰囲気中の酸素に接触して表面が酸化することを防止するために、非酸化性雰囲気、例えば、ArやN2などの不活性雰囲気、減圧雰囲気などとすることが好ましい。湿式法では、上記磁性粒子の表面が雰囲気中の酸素に実質的に接触しないため、上述の不活性雰囲気などとする必要が無く、例えば、大気雰囲気で酸化防止層を形成できる。従って、湿式法は、酸化防止層の形成の作業性に優れる上に、上記磁性粒子の表面に酸化防止層を均一的な厚さに形成し易く好ましい。 Either the dry method or the wet method can be used to form the antioxidant layer. In the dry method, in order to prevent the magnetic particles from coming into contact with oxygen in the atmosphere and oxidizing the surface, a non-oxidizing atmosphere, for example, an inert atmosphere such as Ar or N 2 , a reduced pressure atmosphere, etc. Is preferred. In the wet method, since the surface of the magnetic particles is not substantially in contact with oxygen in the atmosphere, it is not necessary to use the above-described inert atmosphere or the like, and for example, an antioxidant layer can be formed in an air atmosphere. Therefore, the wet method is preferable because it is excellent in workability for forming the antioxidant layer and is easy to form the antioxidant layer in a uniform thickness on the surface of the magnetic particles.

例えば、上記酸化防止層を樹脂やガラス質材料で湿式法により形成する場合、湿式乾燥塗膜法やゾルゲル法を利用することができる。より具体的には、適宜な溶媒に原料を溶解・混合などして作製した溶液と上記ベース粉末と混合して、上記原料の硬化・上記溶媒の乾燥を行うことで酸化防止層を形成することができる。上記酸化防止層を樹脂で乾式法により形成する場合、例えば、粉体塗装を利用することができる。上記酸化防止層をセラミックスや金属で乾式法により形成する場合、スパッタなどのPVD法やCVD法といった蒸着法やメカニカルアロイング法を利用することができる。上記酸化防止層を金属で湿式法により形成する場合、各種のめっき法を利用することができる。 For example, when the antioxidant layer is formed of a resin or glassy material by a wet method, a wet dry coating method or a sol-gel method can be used. More specifically, by mixing was prepared by such dissolving and mixing the raw materials in an appropriate solvent solution and the said base powder to form an oxidation layer by performing a dry curing, the solvent of the starting material be able to. When the antioxidant layer is formed of a resin by a dry method, for example, powder coating can be used. When the antioxidant layer is formed of ceramics or metal by a dry method, a vapor deposition method such as PVD method such as sputtering or a CVD method or a mechanical alloying method can be used. When the antioxidant layer is formed of a metal by a wet method, various plating methods can be used.

なお、上述した絶縁被覆やセラミックス被覆を具える形態とする場合、上記ベース粉末の表面に絶縁被覆を形成してから上記酸化防止層やセラミックス被膜を形成することが好ましい。   In addition, when it is set as the form which provides the insulating coating and ceramics coating mentioned above, it is preferable to form the said antioxidant layer and a ceramics film after forming an insulating coating on the surface of the said base powder.

[粉末成形体]
上記本発明磁性部材用粉末を圧縮成形することで、本発明粉末成形体が得られる。上述のように本発明粉末は、成形性に優れることから相対密度(粉末成形体の真密度に対する実際の密度)が高い粉末成形体を形成できる。例えば、本発明粉末成形体の一形態として、相対密度が85%以上のものが挙げられる。このような高密度の粉末成形体を利用することで、磁性相の密度が高い希土類磁石といった磁性体が得られる。相対密度が高いほど、磁性相が高められる。しかし、上記酸化防止層の構成成分を後述する磁性部材を形成するための熱処理工程で焼失させたり、別途除去のための熱処理で焼失させる場合、相対密度が高過ぎると、上記酸化防止層の構成成分を十分に焼失させることが難しくなる。従って、粉末成形体の相対密度は、90%〜95%程度が好ましいと考えられる。また、粉末成形体の相対密度を高める場合は、酸化防止層の厚さを薄めにしたり、後述するように別途熱処理(被覆除去)を行うと、酸化防止層を除去し易く好ましい。
[Powder compact]
The powder molded body of the present invention can be obtained by compression molding the above magnetic member powder of the present invention. As described above, since the powder of the present invention is excellent in moldability, it is possible to form a powder compact having a high relative density (actual density relative to the true density of the powder compact). For example, one form of the powder compact of the present invention is one having a relative density of 85% or more. By using such a high-density powder compact, a magnetic material such as a rare earth magnet having a high magnetic phase density can be obtained. The higher the relative density, the higher the magnetic phase. However, when the components of the antioxidant layer are burned off in a heat treatment step for forming a magnetic member described later, or in a heat treatment for removal separately, if the relative density is too high, the structure of the antioxidant layer It becomes difficult to burn down the ingredients sufficiently. Therefore, it is considered that the relative density of the powder compact is preferably about 90% to 95%. In order to increase the relative density of the powder molded body, it is preferable to reduce the thickness of the antioxidant layer or to perform a separate heat treatment (coating removal) as will be described later so that the antioxidant layer can be easily removed.

本発明磁性部材用粉末は、成形性に優れることから、圧縮成形時の圧力を比較的小さくすることができ、例えば、8ton/cm2以上15ton/cm2以下とすることができる。更に、本発明粉末は、成形性に優れることから、円筒状といった複雑な形状の粉末成形体であっても、容易に形成できる。加えて、本発明粉末は、当該粉末を構成する上記各磁性粒子が十分に変形できることで、磁性粒子同士の接合性に優れ(磁性粒子表面の凹凸の噛み合いによって生じる強度(所謂ネッキング強度)の発現)、強度が高く、製造中に崩壊し難い粉末成形体が得られる。 Since the magnetic member powder of the present invention is excellent in moldability, the pressure at the time of compression molding can be made relatively small, for example, from 8 ton / cm 2 to 15 ton / cm 2 . Furthermore, since the powder of the present invention is excellent in moldability, it can be easily formed even if it is a powder molded body having a complicated shape such as a cylindrical shape. In addition, the present invention powder is excellent in bondability between magnetic particles because the above-mentioned magnetic particles constituting the powder can be sufficiently deformed (expression of strength (so-called necking strength) generated by engagement of irregularities on the surface of the magnetic particles) ), It is possible to obtain a powder molded body which has high strength and hardly disintegrates during production.

また、本発明磁性部材用粉末は、上述した酸化防止層を具えることで、圧縮成形時に当該粉末を構成する磁性粒子に形成された新生面の酸化を十分に防止できるため、当該成形は、大気雰囲気といった酸素含有雰囲気で行え、作業性に優れる。非酸化性雰囲気で成形することもできる。   In addition, since the powder for a magnetic member of the present invention includes the above-described antioxidant layer, it can sufficiently prevent oxidation of the new surface formed on the magnetic particles constituting the powder during compression molding. It can be performed in an oxygen-containing atmosphere such as an atmosphere and has excellent workability. It can also be molded in a non-oxidizing atmosphere.

その他、圧縮成形時、成形用金型を適宜加熱することで、変形を促進することができ、高密度の粉末成形体が得られ易くなる。   In addition, by appropriately heating the molding die during compression molding, deformation can be promoted, and a high-density powder molded body can be easily obtained.

[磁性部材及びその製造方法]
上記粉末成形体を不活性雰囲気中、又は減圧雰囲気中で熱処理して、上記希土類元素の水素化合物から水素を除去すると共に、鉄と、鉄-ホウ素合金と、水素が除去された希土類元素とを化合することで、本発明磁性部材が得られる。本発明磁性部材は、実質的に、希土類-鉄-ホウ素系合金の相から構成される単一形態、実質的に、鉄相、鉄-ホウ素合金相、及び希土類-鉄合金相から選択される少なくとも一種の相と、希土類-鉄-ホウ素系合金の相との組み合わせで構成される混合形態、例えば、鉄相と希土類-鉄-ホウ素系合金の相との形態、鉄-ホウ素合金相と希土類-鉄-ホウ素系合金の相との形態、希土類-鉄合金相と希土類-鉄-ホウ素系合金の相との形態が挙げられる。上記単一形態は、例えば、上記本発明磁性部材用粉末の原料に用いた希土類-鉄-ホウ素系合金と実質的に同じ組成からなるものが挙げられる。上記混合形態は、代表的には、原料に用いる希土類-鉄-ホウ素系合金の組成により変化する。例えば、鉄の比率(原子比)が高いものを用いると、鉄相と希土類-鉄-ホウ素系合金の相との形態を形成することができる。
[Magnetic member and manufacturing method thereof]
The powder compact is heat-treated in an inert atmosphere or a reduced-pressure atmosphere to remove hydrogen from the rare earth element hydrogen compound, iron, an iron-boron alloy, and a rare earth element from which hydrogen has been removed. The magnetic member of the present invention is obtained by combining. The magnetic member of the present invention is substantially selected from a single form composed of a rare earth-iron-boron alloy phase, substantially an iron phase, an iron-boron alloy phase, and a rare earth-iron alloy phase. Mixed form composed of a combination of at least one phase and a rare earth-iron-boron alloy phase, for example, an iron phase and a rare earth-iron-boron alloy phase, an iron-boron alloy phase and a rare earth -The form with the phase of the iron-boron alloy, the form with the rare earth-iron alloy phase and the phase of the rare earth-iron-boron alloy. Examples of the single form include those having substantially the same composition as the rare earth-iron-boron alloy used as the raw material for the magnetic member powder of the present invention. The mixed form typically varies depending on the composition of the rare earth-iron-boron alloy used as the raw material. For example, when a material having a high iron ratio (atomic ratio) is used, a form of an iron phase and a phase of a rare earth-iron-boron alloy can be formed.

上記熱処理(脱水素)は、上記希土類元素の水素化合物から水素を除去するため、非水素雰囲気で行う。非水素雰囲気は、上述のように不活性雰囲気や減圧雰囲気が挙げられる。不活性雰囲気は、例えば、ArやN2が挙げられる。減圧雰囲気は、標準の大気雰囲気よりも圧力を低下させた真空状態を言い、最終真空度が10Pa以下が好ましい。減圧雰囲気とすることで、上記希土類元素の水素化合物の残存を抑制して、希土類-鉄-ホウ素合金化を完全に起こさせて、磁気特性に優れる磁性体(代表的には希土類磁石)が得られる素材(磁性部材)を製造できる。 The heat treatment (dehydrogenation) is performed in a non-hydrogen atmosphere in order to remove hydrogen from the rare earth element hydrogen compound. Examples of the non-hydrogen atmosphere include an inert atmosphere and a reduced-pressure atmosphere as described above. Examples of the inert atmosphere include Ar and N 2 . The reduced pressure atmosphere refers to a vacuum state in which the pressure is lower than that of a standard air atmosphere, and the final vacuum is preferably 10 Pa or less. By using a reduced-pressure atmosphere, the remaining rare earth element hydrogen compound is suppressed, and the rare earth-iron-boron alloying is completely caused to obtain a magnetic material (typically, a rare earth magnet) having excellent magnetic properties. Material (magnetic member) can be manufactured.

上記脱水素処理時の温度は、上記粉末成形体の再結合温度(分離していた鉄含有物と希土類元素とが化合する温度)以上とする。再結合温度は、粉末成形体(磁性粒子)の組成により異なるものの、代表的には、700℃以上が挙げられる。この温度が高いと水素を十分に除去できる。但し、上記脱水素処理時の温度は、高過ぎると蒸気圧の高い希土類元素が揮発して減少したり、希土類-鉄-ホウ素系合金の結晶の粗大化により希土類磁石の保磁力が低下する恐れがあるため、1000℃以下が好ましい。保持時間は、10分以上600分(10時間)以下が挙げられる。この脱水素処理は、上述したHDDR処理のDR処理に相当し、公知のDR処理の条件を適用できる。   The temperature during the dehydrogenation treatment is equal to or higher than the recombination temperature of the powder compact (the temperature at which the separated iron-containing material and rare earth element combine). Although the recombination temperature varies depending on the composition of the powder compact (magnetic particles), a typical example is 700 ° C. or higher. When this temperature is high, hydrogen can be sufficiently removed. However, if the temperature during the dehydrogenation process is too high, the rare earth element having a high vapor pressure may volatilize and decrease, or the coercivity of the rare earth magnet may decrease due to the coarsening of the rare earth-iron-boron alloy crystal. Therefore, 1000 ° C. or less is preferable. The holding time is 10 minutes or more and 600 minutes (10 hours) or less. This dehydrogenation process corresponds to the above-described DR process of the HDR process, and can be applied with known DR process conditions.

上記酸化防止層が樹脂といった高熱により焼失可能な材質から構成されている場合、上記脱水素処理は、当該酸化防止層の除去も兼ねることもできる。上記酸化防止層を除去するための熱処理(被覆除去)を別途施してもよい。この熱処理(被覆除去)は、上記酸化防止層の構成材料にもよるが、加熱温度:200℃以上400℃以下、保持時間:30分以上300分以下が利用し易い。この熱処理(被覆除去)は、特に、粉末成形体の密度が高い場合に行うと、上記酸化防止層が脱水素処理のための加熱温度に急激に昇温されて不完全燃焼を起こし、残滓が発生することを効果的に防止できて好ましい。   When the antioxidant layer is made of a material that can be burned down by high heat, such as a resin, the dehydrogenation treatment can also serve to remove the antioxidant layer. A heat treatment (coating removal) for removing the antioxidant layer may be separately performed. Although this heat treatment (coating removal) depends on the constituent material of the antioxidant layer, a heating temperature of 200 ° C. to 400 ° C. and a holding time of 30 minutes to 300 minutes are easy to use. This heat treatment (coating removal) is performed particularly when the density of the powder compact is high, and the antioxidant layer is rapidly heated to the heating temperature for the dehydrogenation treatment, causing incomplete combustion, and residue is generated. It can be effectively prevented from occurring.

上述した本発明粉末成形体を利用することで、上記熱処理(脱水素)前後で体積の変化度合い(熱処理後の収縮量)が少なく、従来の焼結磁石を製造する場合と比較して大きな体積変化が無い。例えば、上記熱処理(脱水素)の前の粉末成形体と、上記熱処理(脱水素)の後の磁性部材との体積変化率が5%以下である。このように本発明磁性部材は、熱処理(脱水素)前後の体積変化が小さい、即ち、ネットシェイプであることで、最終形状にするための加工(例えば、切断、切削加工)が不要であり、磁性部材の生産性に優れる。なお、熱処理後に得られた磁性部材は、焼結体と異なり、粉末の粒界が確認できる。従って、粉末の粒界が存在することが粉末成形体に熱処理を施したものであって、焼結体ではないことを示す指標の一つとなり、切削加工などの加工痕が無いことが熱処理前後における体積変化率が小さいことを示す指標の一つになる。   By utilizing the above-described powder molded body of the present invention, the volume change degree (shrinkage amount after heat treatment) before and after the heat treatment (dehydrogenation) is small, and a large volume compared with the case of manufacturing a conventional sintered magnet. There is no change. For example, the volume change rate between the powder compact before the heat treatment (dehydrogenation) and the magnetic member after the heat treatment (dehydrogenation) is 5% or less. Thus, the magnetic member of the present invention has a small volume change before and after heat treatment (dehydrogenation), i.e., it is a net shape, and processing (for example, cutting, cutting) for obtaining a final shape is unnecessary. Excellent magnetic member productivity. In addition, the magnetic member obtained after heat processing can confirm the grain boundary of a powder unlike a sintered compact. Therefore, the presence of the grain boundaries of the powder is one that indicates that the powder compact has been heat-treated and is not a sintered body. It becomes one of the indexes indicating that the volume change rate at is small.

[希土類磁石]
上記本発明磁性部材を適宜着磁することで、希土類磁石を製造できる。特に、上述した相対密度が高い粉末成形体を利用することで、磁性相の密度が80体積%以上、更に90体積%以上といった希土類磁石が得られる。また、本発明磁性部材用粉末を利用することで、酸化物による磁性相の低下を抑制できるため、この点からも磁性相の密度が高い希土類磁石が得られる。
[Rare earth magnet]
A rare earth magnet can be produced by appropriately magnetizing the magnetic member of the present invention. In particular, by using the above-described powder compact having a high relative density, a rare earth magnet having a magnetic phase density of 80% by volume or more, and further 90% by volume or more can be obtained. Moreover, since the fall of the magnetic phase by an oxide can be suppressed by utilizing the powder for magnetic members of this invention, the rare earth magnet with a high density of a magnetic phase is obtained also from this point.

以下、図面を参照して、本発明の具体的な実施形態を説明する。図中の同一符号は同一名称物を示す。なお、図1,図2では、分かり易いように希土類元素の水素化合物や酸化防止層などを誇張して示す。   Hereinafter, specific embodiments of the present invention will be described with reference to the drawings. The same reference numerals in the figure indicate the same names. In FIG. 1 and FIG. 2, the rare earth element hydrogen compound and the antioxidant layer are exaggerated for easy understanding.

[実施形態1]
希土類元素と鉄とホウ素とを含む粉末を作製し、得られた粉末を圧縮成形して、粉末の成形性、酸化状態を調べた。
[Embodiment 1]
A powder containing a rare earth element, iron and boron was prepared, and the obtained powder was compression molded to examine the moldability and oxidation state of the powder.

上記粉末は、準備工程:合金粉末の準備→水素化工程:水素雰囲気中での熱処理→被覆工程:酸化防止層の形成という手順で作製した。   The powder was prepared in the order of preparation step: preparation of alloy powder → hydrogenation step: heat treatment in a hydrogen atmosphere → coating step: formation of an antioxidant layer.

まず、希土類-鉄-ホウ素合金(Nd2Fe14B)からなり、平均粒径100μmの粉末(図1(I))をガスアトマイズ法(Ar雰囲気)により作製した。上記平均粒径は、レーザ回折式粒度分布装置により、積算重量が50%となる粒径(50%粒径)を測定した。また、ここでは、ガスアトマイズ法により、上記合金粉末を構成する各粒子が多結晶体からなるものを作製した。 First, a powder made of a rare earth-iron-boron alloy (Nd 2 Fe 14 B) and having an average particle size of 100 μm (FIG. 1 (I)) was produced by a gas atomization method (Ar atmosphere). The average particle size was measured with a laser diffraction particle size distribution device so that the cumulative weight was 50% (50% particle size). In addition, here, a gas atomizing method was used to produce a material in which each particle constituting the alloy powder was made of a polycrystal.

上記合金粉末を水素(H2)雰囲気中、800℃×1時間で熱処理した。この熱処理(水素化)後に得られたベース粉末にポリアミド系樹脂(ここではナイロン6、酸素の透過係数(30℃):0.0011×10-11m3・m/(s・m2・Pa))からなる酸化防止層を形成した。具体的には、アルコール溶媒に溶かした上記ポリアミド系樹脂に上記ベース粉末を混合した後、上記溶媒を乾燥させると共に、当該樹脂を硬化して、酸化防止層を形成した。なお、酸化防止層の厚さが200nmとなるように上記樹脂量を調整した。この厚さは、ベース粉末を構成する各磁性粒子の表面に酸化防止層が均一的に形成されたと想定した平均厚さ(上記樹脂の体積/上記各磁性粒子の表面積の総和)とする。磁性粒子の表面積は、例えば、BET法で測定することができる。この工程により、磁性部材用粉末を構成する磁性粒子の外周に酸素の透過係数(30℃)が1.0×10-11m3・m/(s・m2・Pa)未満である酸化防止層を具える磁性部材用粉末が得られる。 The alloy powder was heat-treated at 800 ° C. for 1 hour in a hydrogen (H 2 ) atmosphere. Polyamide resin (here nylon 6, oxygen permeability coefficient (30 ° C): 0.0011 × 10 -11 m 3・ m / (s ・ m 2・ Pa)) to the base powder obtained after this heat treatment (hydrogenation) An antioxidant layer made of was formed. Specifically, after the base powder was mixed with the polyamide-based resin dissolved in an alcohol solvent, the solvent was dried and the resin was cured to form an antioxidant layer. The amount of the resin was adjusted so that the thickness of the antioxidant layer was 200 nm. This thickness is an average thickness (the volume of the resin / the total surface area of the magnetic particles) assuming that an antioxidant layer is uniformly formed on the surface of each magnetic particle constituting the base powder. The surface area of the magnetic particles can be measured by, for example, the BET method. Through this process, an antioxidant layer having an oxygen permeability coefficient (30 ° C.) of less than 1.0 × 10 −11 m 3 · m / (s · m 2 · Pa) is provided on the outer periphery of the magnetic particles constituting the magnetic member powder. A magnetic member powder is obtained.

得られた磁性部材用粉末をエポキシ樹脂で固めて、組織観察用のサンプルを作製した。上記サンプルの内部の粉末が酸化しないようにして、当該サンプルを任意の位置で切断又は研磨し、この切断面(又は研磨面)に存在する上記磁性部材用粉末を構成する各磁性粒子の組成をEDX装置により調べた。また、上記切断面(又は研磨面)を光学顕微鏡又は走査電子顕微鏡:SEM(100倍〜10,000倍)で観察し、上記各磁性粒子の形態を調べた。すると、図1(II),(III)に示すように、上記各磁性粒子1は、鉄含有物2の相、具体的には鉄(Fe)及び鉄-ホウ素合金(Fe3B)の相を母相とし、この母相中に複数の粒状の希土類元素の水素化合物(NdH2)3が分散して存在しており、隣り合う希土類元素の水素化合物3の粒子間に鉄含有物2の相が介在していることを確認した。また、図1(III)に示すように磁性粒子1の表面の実質的に全面が酸化防止層4に覆われて、外気と遮断されていることを確認した。更に、磁性粒子1からは希土類元素の酸化物(ここでは、Nd2O3)が検出されなかった。 The obtained powder for a magnetic member was hardened with an epoxy resin to prepare a sample for observing the structure. The composition of each magnetic particle constituting the powder for a magnetic member present on the cut surface (or polished surface) is cut or polished at an arbitrary position so that the powder inside the sample is not oxidized. Investigated with EDX equipment. Further, the cut surface (or polished surface) was observed with an optical microscope or a scanning electron microscope: SEM (100 to 10,000 times), and the form of each magnetic particle was examined. Then, as shown in FIGS. 1 (II) and (III), each of the magnetic particles 1 has a phase of iron-containing material 2, specifically, a phase of iron (Fe) and an iron-boron alloy (Fe 3 B). And a plurality of granular rare earth element hydrogen compounds (NdH 2 ) 3 are dispersed in the mother phase, and between the adjacent rare earth element hydrogen compound 3 particles, It was confirmed that a phase was present. Further, as shown in FIG. 1 (III), it was confirmed that substantially the entire surface of the magnetic particle 1 was covered with the antioxidant layer 4 and was blocked from the outside air. Furthermore, rare earth oxides (here, Nd 2 O 3 ) were not detected from the magnetic particles 1.

上記EDX装置により、得られた磁性部材用粉末の組成の面分析(マッピングデータ)を利用して、隣り合う希土類元素の水素化合物の粒子間の間隔を測定したところ、0.6μmであった。ここでは、上記切断面に面分析を行って、NdH2のピーク位置を抽出し、隣り合うNdH2のピーク位置間の間隔を測定し、全ての間隔の平均値を求めた。 The distance between adjacent rare earth element hydrogen compound particles was measured by the above EDX apparatus using the surface analysis (mapping data) of the composition of the obtained magnetic member powder, and found to be 0.6 μm. Here, surface analysis was performed on the cut surface, NdH 2 peak positions were extracted, intervals between adjacent NdH 2 peak positions were measured, and an average value of all intervals was obtained.

上記エポキシ樹脂を混して作製したサンプルを用いて、各磁性粒子のNdH2,鉄含有物(Fe,Fe-B)の含有量(体積%)を求めたところ、NdH2:33体積%、鉄含有物:67体積%であった。上記含有量は、ここでは、原料に用いた合金粉末の組成、及びNdH2,Fe,Fe3Bの原子量を用いて、体積比を演算により求めた。その他、上記含有量は、例えば、上記ベース粉末を用いて作製した成形体の切断面(或いは研磨面)の面積におけるNdH2,Fe,Fe3Bの面積割合をそれぞれ求め、得られた面積割合を体積割合に換算したり、X線分析を行ってピーク強度比を利用したりすることで求められる。 Using a sample prepared by the above epoxy resin was mixed kneaded, NdH 2 of each of the magnetic particles, iron-containing material was determined (Fe, Fe-B) content (volume%), NdH 2: 33 vol% Iron content: 67% by volume. Here, the content was obtained by calculating the volume ratio using the composition of the alloy powder used as a raw material and the atomic weight of NdH 2 , Fe, and Fe 3 B. In addition, for example, the content is obtained by determining the area ratio of NdH 2 , Fe, Fe 3 B in the area of the cut surface (or polished surface) of the molded body produced using the base powder, respectively, and the obtained area ratio Is converted into a volume ratio, or X-ray analysis is performed to use the peak intensity ratio.

上記エポキシ樹脂を混して作製したサンプルを用いて、磁性粒子の円形度を求めたところ、0.86であった。ここでは、円形度は、以下のようにして求める。光学顕微鏡やSEMなどで粉末の断面の投影像を得て、各粒子についてそれぞれ、実際の断面積Sr及び実際の周囲長を求め、上記実際の断面積Srと、上記実際の周囲長と同じ周長を有する真円の面積Scとの比率:Sr/Scを当該粒子の円形度とする。n=50のサンプリングを行い、n=50の粒子の円形度の平均値を磁性粒子の円形度とする。 Using a sample prepared by the above epoxy resin was mixed kneaded, it was determined the circularity of the magnetic particles was 0.86. Here, the circularity is obtained as follows. Obtain a projected image of the powder cross-section with an optical microscope or SEM, and determine the actual cross-sectional area Sr and the actual perimeter for each particle. The actual cross-sectional area Sr and the same perimeter as the actual perimeter are obtained. Ratio with the area Sc of a perfect circle having a length: Sr / Sc is the circularity of the particle. Sampling with n = 50 is performed, and the average value of the circularity of the particles with n = 50 is defined as the circularity of the magnetic particles.

上述のようにして作製した酸化防止層を具える磁性部材用粉末を面圧10ton/cm2で油圧プレス装置により圧縮成形した(図1(IV))。ここでは、成形は、大気雰囲気(気温:25℃、湿度:40%)で行った。その結果、面圧10ton/cm2で十分に圧縮することができ、外径10mmφ×高さ10mmの円柱状の粉末成形体(図1(V))を形成できた。 The magnetic member powder including the antioxidant layer produced as described above was compression-molded by a hydraulic press device at a surface pressure of 10 ton / cm 2 (FIG. 1 (IV)). Here, the molding was performed in an air atmosphere (temperature: 25 ° C., humidity: 40%). As a result, it was possible to sufficiently compress at a surface pressure of 10 ton / cm 2 and to form a cylindrical powder compact (FIG. 1 (V)) having an outer diameter of 10 mmφ × height of 10 mm.

得られた粉末成形体の相対密度(真密度に対する実際の密度)を求めたところ、93%であった。実際の密度は、市販の密度測定装置を利用して測定した。真密度は、NdH2の密度:5.96g/cm3,Feの密度:7.874g/cm3,Fe3Bの密度:7.474g/cm3とし、上述したNdH2や鉄含有物の体積比を利用して演算により求めた。また、得られた粉末成形体をX線分析したところ、希土類元素の酸化物(ここでは、Nd2O3)の明瞭な回折ピークは検出されなかった。 The relative density (actual density with respect to the true density) of the obtained powder compact was determined to be 93%. The actual density was measured using a commercially available density measuring device. The true density is NdH 2 density: 5.96 g / cm 3 , Fe density: 7.874 g / cm 3 , Fe 3 B density: 7.474 g / cm 3, and the volume ratio of NdH 2 and iron-containing materials described above is used. It was calculated by calculation. Further, when the obtained powder compact was subjected to X-ray analysis, a clear diffraction peak of a rare earth element oxide (here, Nd 2 O 3 ) was not detected.

上述のように希土類元素の水素化合物が40体積%未満で、残部が実質的にFeやFe3Bといった鉄含有物であり、鉄含有物相中に上記希土類元素の水素化合物が離散して存在する粉末を利用することで、円柱状といった複雑な形状の粉末成形体や、相対密度が85%以上といった高密度な粉末成形体が得られることが分かる。また、酸化防止層を具える粉末を利用することで、希土類元素の酸化物の生成を抑制し、当該酸化物が実質的に存在しない粉末成形体が得られることが分かる。 As described above, the rare earth element hydrogen compound is less than 40% by volume, the balance is substantially iron-containing material such as Fe or Fe 3 B, and the rare earth element hydrogen compound is discretely present in the iron-containing material phase. It can be seen that a powder molded body having a complicated shape such as a columnar shape or a high-density powder molded body having a relative density of 85% or more can be obtained by using the powder. Moreover, it turns out that the production | generation of the oxide of a rare earth element is suppressed by using the powder which provides an antioxidant layer, and the powder compact | molding | casting which the said oxide does not exist substantially is obtained.

得られた粉末成形体を窒素雰囲気で300℃×120分保持した後に、水素雰囲気中で750℃まで昇温し、その後、真空(VAC)に切り替えて、真空(VAC)中(最終真空度:1.0Pa)、750℃×60minで熱処理した。昇温を水素雰囲気とすることで、十分に高い温度になってから脱水素反応を開始することができ、反応斑を抑制できる。この熱処理後に得られた円柱状部材(磁性部材(図1(VI)))の組成をEDX装置により調べたところ、Nd2Fe14Bが主相(87体積%以上)であり、上記熱処理により水素が除去されたことが分かる。 After holding the obtained powder compact in a nitrogen atmosphere at 300 ° C. for 120 minutes, the temperature was raised to 750 ° C. in a hydrogen atmosphere, then switched to vacuum (VAC) and in vacuum (VAC) (final vacuum degree: 1.0 Pa) and heat treatment was performed at 750 ° C. × 60 min. By making the temperature rise into a hydrogen atmosphere, the dehydrogenation reaction can be started after the temperature is sufficiently high, and reaction spots can be suppressed. When the composition of the cylindrical member (magnetic member (FIG. 1 (VI))) obtained after this heat treatment was examined with an EDX apparatus, Nd 2 Fe 14 B was the main phase (87% by volume or more). It can be seen that the hydrogen has been removed.

また、円柱状部材をX線分析したところ、希土類元素の酸化物(ここでは、Nd2O3)や酸化防止層の残滓の明瞭な回折ピークは検出されなかった。このように酸化防止層を具える磁性部材用粉末を用いることで、保磁力の低下を招くNd2O3といった希土類元素の酸化物の生成を抑制できることが分かる。更に、実施形態1では、酸化防止層を樹脂で形成していることから、圧縮成形時、上記粉末を構成する磁性粒子の変形に酸化防止層が十分に追従でき、成形性に優れる。 Further, when X-ray analysis was performed on the cylindrical member, a clear diffraction peak of a rare earth element oxide (here, Nd 2 O 3 ) or a residue of the antioxidant layer was not detected. Thus, it can be seen that the use of the powder for a magnetic member having the antioxidant layer can suppress the generation of an oxide of a rare earth element such as Nd 2 O 3 that causes a decrease in coercive force. Furthermore, in Embodiment 1, since the antioxidant layer is formed of a resin, the antioxidant layer can sufficiently follow the deformation of the magnetic particles constituting the powder during compression molding, and is excellent in moldability.

更に、上記熱処理前の粉末成形体の体積と、熱処理後に得られた円柱状部材(磁性部材)の体積とを比較すると、当該熱処理前後の体積変化率が5%以下であった。従って、このような磁性部材を希土類磁石の素材に利用する場合、所望の外形にするための切削加工などの加工が別途不要であり、希土類磁石の生産性の向上に寄与することができると期待される。   Furthermore, when the volume of the powder compact before the heat treatment was compared with the volume of the cylindrical member (magnetic member) obtained after the heat treatment, the volume change rate before and after the heat treatment was 5% or less. Therefore, when such a magnetic member is used as a material for a rare earth magnet, machining such as cutting for obtaining a desired external shape is unnecessary, and it is expected that it can contribute to the improvement of the productivity of the rare earth magnet. Is done.

[実施形態2]
磁性部材の原料粉末として、実施形態1とは異なる形態の酸化防止層を具えるものを作製し、粉末の成形性、酸化状態を調べた。
[Embodiment 2]
As a raw material powder for the magnetic member, a powder having an antioxidant layer in a form different from that of Embodiment 1 was prepared, and the moldability and oxidation state of the powder were examined.

この実施形態2では、上述した実施形態1で作製した、磁性粒子の外周がポリアミド系樹脂(ナイロン6)で被覆された磁性部材用粉末を用意し、この粉末の表面に、更に、ポリエチレン(透湿率(30℃):50×10-13kg/(m・s・MPa))を被覆した。具体的には、溶媒:キシレンに溶かしたポリエチレンに、上記ポリアミド系樹脂による被覆を有する粉末を混合した後、この溶媒を乾燥させると共に、ポリエチレンを硬化した。ここでは、ポリエチレンからなる被覆の平均厚さが250nmとなるようにポリエチレンの量を調整した。この厚さは、用意した粉末を構成する各粒子の表面にポリエチレンからなる層が均一的に形成されたと想定した平均厚さ(ポリエチレンの体積/上記各粒子の表面積の総和)とする。上記各粒子の表面積は、例えば、BET法で測定することができる。この工程により、磁性部材用粉末を構成する磁性粒子1の外周に、酸素の透過係数(30℃)が1.0×10-11m3・m/(s・m2・Pa)未満であるポリアミド系樹脂からなる酸素低透過層4aと、この酸素低透過層4aの外周に、透湿率(30℃)が1000×10-13kg/(m・s・MPa)未満であるポリエチレンからなる湿気低透過層4bとが積層された多層構造の酸化防止層4(合計の平均厚さ:450nm)を具える磁性部材用粉末が得られる。 In this second embodiment, the magnetic member powder prepared in the first embodiment described above, in which the outer periphery of the magnetic particles is coated with a polyamide-based resin (nylon 6), is prepared. Moisture rate (30 ° C.): 50 × 10 −13 kg / (m · s · MPa)). Specifically, the solvent: polyethylene dissolved in xylene was mixed with the powder having the coating with the polyamide resin, and then the solvent was dried and the polyethylene was cured. Here, the amount of polyethylene was adjusted so that the average thickness of the coating made of polyethylene was 250 nm. This thickness is an average thickness (polyethylene volume / total surface area of each particle) assuming that a layer made of polyethylene is uniformly formed on the surface of each particle constituting the prepared powder. The surface area of each particle can be measured by, for example, the BET method. Through this process, the outer circumference of the magnetic particles 1 constituting the magnetic member powder has a polyamide system with an oxygen permeability coefficient (30 ° C.) of less than 1.0 × 10 −11 m 3 · m / (s · m 2 · Pa) Low oxygen moisture permeation layer 4a made of resin, and on the outer periphery of this low oxygen permeation layer 4a, moisture permeation rate (30 ° C.) made of polyethylene having a moisture permeability (30 ° C.) of less than 1000 × 10 −13 kg / (m · s · MPa) A magnetic member powder comprising the multilayered antioxidant layer 4 (total average thickness: 450 nm) laminated with the transmission layer 4b is obtained.

得られた磁性部材用粉末を実施形態1と同様にして、組織観察用のサンプルを作製して、当該粉末を構成する磁性粒子の組成を調べたところ、実施形態1と同様に、Fe,Fe3B,NdH2の3相が検出され、Fe及びFe3Bを母相とし、この母相中に複数の粒状のNdH2が分散して存在していることを確認した。また、図2(III)に示すように磁性粒子1の表面は順に、ポリアミド系樹脂からなる酸素低透過層4a、ポリエチレンからなる湿気低透過層4bを具える多層の酸化防止層4に覆われていることを確認した。更に、磁性粒子1からは希土類元素の酸化物(ここでは、Nd2O3)が検出されなかった。また、実施形態1と同様にして、隣り合うNdH2粒子間の間隔を測定したところ、0.6μmであり、磁性粒子のNdH2,鉄含有物(Fe,Fe-B)の含有量(体積%)を求めたところ、NdH2:32体積%、鉄含有物:68体積%であった。 The obtained powder for a magnetic member was prepared in the same manner as in Embodiment 1 to prepare a sample for tissue observation, and the composition of the magnetic particles constituting the powder was examined. As in Embodiment 1, Fe, Fe Three phases of 3 B and NdH 2 were detected, and it was confirmed that Fe and Fe 3 B were used as a parent phase, and a plurality of granular NdH 2 existed in the parent phase. Further, as shown in FIG. 2 (III), the surfaces of the magnetic particles 1 are sequentially covered with a multilayer antioxidant layer 4 including an oxygen low-permeability layer 4a made of polyamide resin and a moisture low-permeability layer 4b made of polyethylene. Confirmed that. Furthermore, rare earth oxides (here, Nd 2 O 3 ) were not detected from the magnetic particles 1. Further, when the distance between adjacent NdH 2 particles was measured in the same manner as in Embodiment 1, it was 0.6 μm, and the content of NdH 2 and iron-containing materials (Fe, Fe-B) in the magnetic particles (volume%) ) Was determined to be NdH 2 : 32 % by volume and iron-containing material: 68 % by volume.

上述のようにして作製した多層構造の酸化防止層を具える磁性部材用粉末を面圧10ton/cm2で油圧プレス装置により圧縮成形した(図2(IV))。ここでは、成形は、大気雰囲気(気温:25℃、湿度:75%(多湿))で行った。その結果、実施形態1と同様に面圧10ton/cm2で十分に圧縮することができ、外径10mmφ×高さ10mmの円柱状の粉末成形体(図2(V))を形成できた。得られた粉末成形体の相対密度を実施形態1と同様にして求めたところ、91%であった。 The magnetic member powder including the antioxidant layer having the multilayer structure produced as described above was compression-molded with a hydraulic press device at a surface pressure of 10 ton / cm 2 (FIG. 2 (IV)). Here, the molding was performed in an air atmosphere (temperature: 25 ° C., humidity: 75% (humidity)). As a result, it was possible to sufficiently compress at a surface pressure of 10 ton / cm 2 as in Embodiment 1, and to form a cylindrical powder compact (FIG. 2 (V)) having an outer diameter of 10 mmφ × height of 10 mm. When the relative density of the obtained powder compact was determined in the same manner as in Example 1, it was 91%.

更に、得られた粉末成形体を実施形態1と同様の条件で熱処理(脱水素)を施し、得られた円柱状部材(磁性部材(図2(VI)))の組成をEDX装置により調べたところ、主としてNd2Fe14Bが主相(89体積%以上)であり、上記熱処理により水素が除去されたことを確認した。また、円柱状部材をX線分析したところ、希土類元素の酸化物(ここでは、Nd2O3)や酸化防止層の残滓の明瞭な回折ピークは検出されなかった。更に、実施形態2の磁性部材も、上記熱処理(脱水素)前後の体積変化率が5%以下であった。 Further, the obtained powder compact was subjected to heat treatment (dehydrogenation) under the same conditions as in Embodiment 1, and the composition of the obtained cylindrical member (magnetic member (FIG. 2 (VI))) was examined using an EDX apparatus. However, it was confirmed that mainly Nd 2 Fe 14 B was the main phase (89% by volume or more), and hydrogen was removed by the heat treatment. Further, when X-ray analysis was performed on the cylindrical member, a clear diffraction peak of a rare earth element oxide (here, Nd 2 O 3 ) or a residue of the antioxidant layer was not detected. Further, the volume change rate before and after the heat treatment (dehydrogenation) of the magnetic member of Embodiment 2 was 5% or less.

このように上記酸化防止層を具える磁性部材用粉末を用いることで、保磁力の低下を招くNd2O3といった希土類元素の酸化物の生成を抑制できることが分かる。特に、水分が比較的多く存在する多湿状態で圧縮成形した場合であっても、希土類元素の酸化物の発生を効果的に抑制できることが分かる。また、実施形態2では、酸素低透過層及び湿気低透過層のいずれも樹脂で形成されていることから、圧縮成形時、上記粉末を構成する磁性粒子の変形に両層が十分に追従できて成形性に優れると共に、両層の密着性に優れる。 Thus, it can be seen that by using the powder for a magnetic member having the antioxidant layer, it is possible to suppress the formation of an oxide of a rare earth element such as Nd 2 O 3 which causes a decrease in coercive force. In particular, it can be seen that the generation of oxides of rare earth elements can be effectively suppressed even when compression molding is performed in a humid state where a relatively large amount of moisture exists. In Embodiment 2, since both the oxygen low-permeability layer and the moisture low-permeability layer are formed of resin, both layers can sufficiently follow the deformation of the magnetic particles constituting the powder during compression molding. Excellent formability and excellent adhesion between both layers.

[試験例]
実施形態1,2で作製した希土類-鉄-ホウ素合金からなる磁性部材を2.4MA/m(=30kOe)のパルス磁界で着磁した後、得られた各試料(希土類-鉄-ホウ素合金磁石)の磁石特性を、BHトレーサ(理研電子株式会社製DCBHトレーサ)を用いて調べた。その結果を表1に示す。ここでは、磁石特性として、飽和磁束密度:Bs(T)、残留磁束密度:Br(T)、固有保磁力:iHc、磁束密度Bと減磁界の大きさHとの積の最大値:(BH)maxを求めた。
[Test example]
After magnetizing the magnetic member made of the rare earth-iron-boron alloy prepared in Embodiments 1 and 2 with a pulsed magnetic field of 2.4 MA / m (= 30 kOe), each obtained sample (rare earth-iron-boron alloy magnet) The magnet characteristics of the were examined using a BH tracer (DCBH tracer manufactured by Riken Denshi Co., Ltd.). The results are shown in Table 1. Here, as the magnetic characteristics, saturation magnetic flux density: Bs (T), residual magnetic flux density: Br (T), intrinsic coercive force: iHc, maximum value of product of magnetic flux density B and demagnetizing field size H: (BH ) max was determined.

Figure 0005051270
Figure 0005051270

表1に示すように、40体積%未満の希土類元素の水素化合物と、残部が実質的に鉄含有物とからなり、鉄含有物相中に上記希土類元素の水素化合物が離散して存在する粉末を用いて作製した希土類磁石は、磁石特性に優れることが分かる。特に、相対密度が85%以上の粉末成形体を用いることで、焼結することなく磁性相が高密度になり、磁石特性に優れる希土類磁石が得られることが分かる。   As shown in Table 1, less than 40% by volume of a rare earth element hydrogen compound and the balance substantially consisting of an iron-containing material, and the rare earth element hydrogen compound is discretely present in the iron-containing material phase. It can be seen that the rare earth magnets produced using the above have excellent magnet characteristics. In particular, it can be seen that by using a powder compact having a relative density of 85% or more, the magnetic phase becomes high without sintering and a rare earth magnet having excellent magnetic properties can be obtained.

なお、上述した実施形態は、本発明の要旨を逸脱することなく、適宜変更することが可能であり、上述した構成に限定されるものではない。例えば、希土類元素の種類、磁性粒子の組成(希土類元素の水素化合物や鉄含有物の割合など)・円形度、磁性部材用粉末の平均粒径、酸化防止層の材質・厚さ・酸素の透過係数・透湿率、粉末成形体の相対密度、各種の熱処理条件(加熱温度、保持時間)、原料に用いる希土類-鉄-ホウ素系合金の組成などを適宜変更することができる。   The above-described embodiment can be appropriately changed without departing from the gist of the present invention, and is not limited to the above-described configuration. For example, type of rare earth elements, composition of magnetic particles (ratio of rare earth element hydrogen compounds and iron-containing materials), circularity, average particle size of powder for magnetic members, material / thickness of antioxidant layer, oxygen transmission The coefficient / moisture permeability, the relative density of the powder compact, various heat treatment conditions (heating temperature, holding time), the composition of the rare earth-iron-boron alloy used as a raw material, and the like can be appropriately changed.

本発明磁性部材用粉末、この粉末から得られた粉末成形体、磁性部材は、各種のモータ、特に、ハイブリッド車(HEV)やハードディスクドライブ(HDD)などに具備される高速モータに用いられる永久磁石の原料、素材に好適に利用することができる。   The magnetic member powder of the present invention, the powder compact obtained from the powder, and the magnetic member are permanent magnets used in various motors, in particular, high-speed motors included in hybrid vehicles (HEV) and hard disk drives (HDD). It can be suitably used for raw materials and materials.

1 磁性粒子 2 鉄含有物 3 希土類元素の水素化合物 4 酸化防止層
4a 酸素低透過層 4b 湿気低透過層
1 Magnetic particle 2 Iron-containing material 3 Rare earth element hydrogen compound 4 Antioxidation layer
4a Oxygen low permeability layer 4b Moisture low permeability layer

Claims (12)

磁性部材の原料に用いられる磁性部材用粉末であって、
前記磁性部材用粉末を構成する各磁性粒子は、
40体積%未満の希土類元素の水素化合物と、残部が鉄含有物とからなり、
前記鉄含有物は、鉄と、鉄及びホウ素を含む鉄-ホウ素合金とを含み、
前記鉄含有物の相中に前記希土類元素の水素化合物が離散して存在しており、
前記磁性粒子の外周に、酸素の透過係数(30℃)が1.0×10-11m3・m/(s・m2・Pa)未満である酸化防止層を具えることを特徴とする磁性部材用粉末。
A magnetic member powder used as a raw material for a magnetic member,
Each magnetic particle constituting the powder for a magnetic member,
A rare earth element hydrogen compound of less than 40% by volume, and the balance consists of iron-containing materials,
The iron-containing material includes iron and an iron-boron alloy containing iron and boron,
The rare earth element hydride is present discretely in the phase of the iron-containing material,
A magnetic member comprising an antioxidant layer having an oxygen permeability coefficient (30 ° C.) of less than 1.0 × 10 −11 m 3 · m / (s · m 2 · Pa) on the outer periphery of the magnetic particles Powder.
前記酸化防止層は、樹脂により構成されていることを特徴とする請求項1に記載の磁性部材用粉末。   2. The magnetic member powder according to claim 1, wherein the antioxidant layer is made of a resin. 前記酸化防止層は、透湿率(30℃)が1000×10-13kg/(m・s・MPa)未満であることを特徴とする請求項1又は2に記載の磁性部材用粉末。 3. The powder for a magnetic member according to claim 1, wherein the antioxidant layer has a moisture permeability (30 ° C.) of less than 1000 × 10 −13 kg / (m · s · MPa). 前記酸化防止層は、酸素の透過係数(30℃)が1.0×10-11m3・m/(s・m2・Pa)未満である材料から構成された酸素低透過層と、透湿率(30℃)が1000×10-13kg/(m・s・MPa)未満である材料から構成された湿気低透過層とを具えることを特徴とする請求項1〜3のいずれか1項に記載の磁性部材用粉末。 The oxidation preventing layer comprises an oxygen low permeability layer composed of a material having an oxygen permeability coefficient (30 ° C.) of less than 1.0 × 10 −11 m 3 · m / (s · m 2 · Pa), and a moisture permeability A moisture low permeability layer composed of a material having a (30 ° C) of less than 1000 × 10 -13 kg / (m · s · MPa). The powder for magnetic members as described in 2. 前記磁性粒子は、円形度が0.5以上1.0以下であることを特徴とする請求項1〜4のいずれか1項に記載の磁性部材用粉末。   5. The magnetic member powder according to claim 1, wherein the magnetic particles have a circularity of 0.5 or more and 1.0 or less. 前記酸化防止層の厚さが10nm以上1000nm以下であることを特徴とする請求項1〜5のいずれか1項に記載の磁性部材用粉末。   6. The magnetic member powder according to claim 1, wherein the antioxidant layer has a thickness of 10 nm to 1000 nm. 前記酸化防止層は、酸素の透過係数(30℃)が1.0×10-11m3・m/(s・m2・Pa)未満であるポリアミド系樹脂、ポリエステル、及びポリ塩化ビニルから選択される1種から構成された酸素低透過層を具えることを特徴とする請求項1〜6のいずれか1項に記載の磁性部材用粉末。 The antioxidant layer is selected from polyamide resin, polyester, and polyvinyl chloride having an oxygen permeability coefficient (30 ° C.) of less than 1.0 × 10 −11 m 3 · m / (s · m 2 · Pa). 7. The powder for a magnetic member according to claim 1, further comprising an oxygen low-permeability layer composed of one kind. 前記希土類元素は、Nd,Pr,Ce,Dy,及びYから選択される少なくとも1種の元素を含むことを特徴とする請求項1〜7のいずれか1項に記載の磁性部材用粉末。   8. The magnetic member powder according to claim 1, wherein the rare earth element contains at least one element selected from Nd, Pr, Ce, Dy, and Y. 磁性部材の原料に用いられる粉末成形体であって、
請求項1〜8のいずれか1項に記載の磁性部材用粉末を圧縮成形して製造されたことを特徴とする粉末成形体。
A powder molded body used as a raw material for a magnetic member,
A powder molded body produced by compression molding the powder for a magnetic member according to any one of claims 1 to 8.
前記粉末成形体の相対密度が85%以上であることを特徴とする請求項9に記載の粉末成形体。   10. The powder compact according to claim 9, wherein a relative density of the powder compact is 85% or more. 請求項9又は10に記載の粉末成形体を不活性雰囲気中、又は減圧雰囲気中で熱処理して製造されたことを特徴とする磁性部材。   11. A magnetic member produced by heat-treating the powder compact according to claim 9 or 10 in an inert atmosphere or a reduced-pressure atmosphere. 前記熱処理の前の粉末成形体と、前記熱処理の後の磁性部材との体積変化率が5%以下であることを特徴とする請求項11に記載の磁性部材。   12. The magnetic member according to claim 11, wherein a volume change rate between the powder compact before the heat treatment and the magnetic member after the heat treatment is 5% or less.
JP2010115229A 2010-05-19 2010-05-19 Powder for magnetic member, powder molded body, and magnetic member Expired - Fee Related JP5051270B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2010115229A JP5051270B2 (en) 2010-05-19 2010-05-19 Powder for magnetic member, powder molded body, and magnetic member
KR1020127010195A KR101362036B1 (en) 2010-05-19 2011-05-10 Powder for magnetic member, powder compact, and magnetic member
CN2013100873785A CN103151130A (en) 2010-05-19 2011-05-10 Powder for magnetic member, powder compact, and magnetic member
CN201180004578.9A CN102665970B (en) 2010-05-19 2011-05-10 Powder for magnetic member, powder compact, and magnetic member
US13/511,061 US9196403B2 (en) 2010-05-19 2011-05-10 Powder for magnetic member, powder compact, and magnetic member
EP11783414.3A EP2484464B1 (en) 2010-05-19 2011-05-10 Powder for magnetic member, powder compact, and magnetic member
PCT/JP2011/060744 WO2011145477A1 (en) 2010-05-19 2011-05-10 Powder for magnetic member, powder compact, and magnetic member
TW100117090A TW201212059A (en) 2010-05-19 2011-05-16 Powder for magnetic material, powder compact, and magnetic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010115229A JP5051270B2 (en) 2010-05-19 2010-05-19 Powder for magnetic member, powder molded body, and magnetic member

Publications (3)

Publication Number Publication Date
JP2011241453A JP2011241453A (en) 2011-12-01
JP2011241453A5 JP2011241453A5 (en) 2012-03-08
JP5051270B2 true JP5051270B2 (en) 2012-10-17

Family

ID=45408417

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010115229A Expired - Fee Related JP5051270B2 (en) 2010-05-19 2010-05-19 Powder for magnetic member, powder molded body, and magnetic member

Country Status (1)

Country Link
JP (1) JP5051270B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102228107B1 (en) * 2016-01-15 2021-03-15 제이에프이 스틸 가부시키가이샤 Mixed powder for powder metallurgy
JP6939339B2 (en) * 2017-09-28 2021-09-22 日立金属株式会社 Manufacturing method of RTB-based sintered magnet

Also Published As

Publication number Publication date
JP2011241453A (en) 2011-12-01

Similar Documents

Publication Publication Date Title
JP5059929B2 (en) Magnet powder
WO2011145477A1 (en) Powder for magnetic member, powder compact, and magnetic member
JP5059955B2 (en) Magnet powder
JP5218869B2 (en) Rare earth-iron-nitrogen alloy material, method for producing rare earth-iron-nitrogen alloy material, rare earth-iron alloy material, and method for producing rare earth-iron alloy material
JP2021122061A (en) MAGNETIC POWDER CONTAINING Sm-Fe-N-BASED CRYSTAL PARTICLE, SINTERED MAGNET PRODUCED FROM THE SAME, METHOD FOR PRODUCING THE MAGNETIC POWDER, AND METHOD FOR PRODUCING THE SINTERED MAGNET
JP2006303197A (en) Method for manufacturing r-t-b system sintered magnet
JP2018028123A (en) Method for producing r-t-b sintered magnet
JP2019075493A (en) Magnet junction body
JP5051270B2 (en) Powder for magnetic member, powder molded body, and magnetic member
JP2023052675A (en) R-t-b system based sintered magnet
JP4930813B2 (en) Powder for magnetic member, powder molded body, and magnetic member
JP2010206046A (en) Magnet molding and method of making the same
JP2014192460A (en) Method of manufacturing r-t-x based powder-compacted magnet, and r-t-x based powder-compacted magnet
JP2012023223A (en) Powder for magnetic member, powder compact, magnetic member, and method of manufacturing magnetic member

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120125

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120125

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20120125

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20120217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120626

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120709

R150 Certificate of patent or registration of utility model

Ref document number: 5051270

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150803

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees