JP4835758B2 - Rare earth magnet manufacturing method - Google Patents

Rare earth magnet manufacturing method Download PDF

Info

Publication number
JP4835758B2
JP4835758B2 JP2010002995A JP2010002995A JP4835758B2 JP 4835758 B2 JP4835758 B2 JP 4835758B2 JP 2010002995 A JP2010002995 A JP 2010002995A JP 2010002995 A JP2010002995 A JP 2010002995A JP 4835758 B2 JP4835758 B2 JP 4835758B2
Authority
JP
Japan
Prior art keywords
rare earth
powder
compound
rare
earth element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010002995A
Other languages
Japanese (ja)
Other versions
JP2010258412A (en
Inventor
英樹 中村
尚樹 森
博文 中野
孝司 田辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2010002995A priority Critical patent/JP4835758B2/en
Priority to US12/749,165 priority patent/US20100247367A1/en
Priority to EP10158135A priority patent/EP2237289B1/en
Priority to CN2010101584810A priority patent/CN101853724B/en
Publication of JP2010258412A publication Critical patent/JP2010258412A/en
Application granted granted Critical
Publication of JP4835758B2 publication Critical patent/JP4835758B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/02Compacting only
    • B22F3/087Compacting only using high energy impulses, e.g. magnetic field impulses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/0553Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 obtained by reduction or by hydrogen decrepitation or embrittlement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/0555Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together
    • H01F1/0556Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together pressed
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/0555Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together
    • H01F1/0558Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together bonded together
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0573Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes obtained by reduction or by hydrogen decrepitation or embrittlement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0576Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together pressed, e.g. hot working
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0578Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together bonded together
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/06Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/08Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/09Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials mixtures of metallic and non-metallic particles; metallic particles having oxide skin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0266Moulding; Pressing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0273Imparting anisotropy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0293Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets diffusion of rare earth elements, e.g. Tb, Dy or Ho, into permanent magnets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/06Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/08Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
    • H01F1/083Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together in a bonding agent

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

A method of producing a rare-earth magnet containing a rare-earth compound having a first rare-earth element and a second rare-earth element different from the first rare-earth element includes: a mixing step of mixing rare-earth compound powder including the first rare-earth element and subjected to a process based on hydrogenation disproportionation desorption recombination with a diffusion material including the second rare-earth element; a molding step of molding the mixed powder into a compact in a magnetic field; and a heating step of heating the compact to diffuse the second rare-earth element into the rare-earth compound powder.

Description

本発明は希土類磁石の製造方法に関する。   The present invention relates to a method for producing a rare earth magnet.

希土類元素を含有する希土類磁石の一形態として、希土類ボンド磁石が知られている。このような希土類ボンド磁石は、優れた磁気特性を有するとともに、複雑な形状にも比較的容易に対応できることから、モータなどの各種機器に使用されている。最近、各種機器は、小型化・高効率化が図られており、それに伴って、希土類ボンド磁石の一層の磁気特性の向上が求められている。   A rare earth bonded magnet is known as an embodiment of a rare earth magnet containing a rare earth element. Such rare earth bonded magnets are used in various devices such as motors because they have excellent magnetic properties and can easily cope with complex shapes. Recently, various devices have been reduced in size and increased in efficiency, and accordingly, further improvement in magnetic properties of rare earth bonded magnets is required.

希土類ボンド磁石の製造方法としては、以下のような方法が提案されている。まず、HDDR法(水素化分解・脱水素再結合法)によって作製した磁石粉末に、TbやDyなどの希土類元素を含む拡散粉末を混合し、拡散熱処理を行うことによって希土類元素が磁石粉末の表面及び内部に拡散された異方性磁石粉末を調製する。そして、この異方性磁石粉末を樹脂やカップリング剤、滑剤等と混練して希土類ボンド磁石を作製する(特許文献1参照)。この希土類ボンド磁石の製造方法では、TbやDyなどの希土類元素が拡散した異方性磁石粉末を用いていることから、保磁力等を向上することが可能になる。   As a method for producing a rare earth bonded magnet, the following method has been proposed. First, a magnetic powder produced by the HDDR method (hydrocracking / dehydrogenation recombination method) is mixed with a diffusing powder containing a rare earth element such as Tb or Dy and subjected to a diffusion heat treatment so that the rare earth element becomes a surface of the magnetic powder And an anisotropic magnet powder diffused inside is prepared. And this rare earth magnet magnet is knead | mixed with resin, a coupling agent, a lubricant, etc., and a rare earth bond magnet is produced (refer to patent documents 1). In this rare earth bonded magnet manufacturing method, since the anisotropic magnet powder in which rare earth elements such as Tb and Dy are diffused is used, the coercive force and the like can be improved.

特許第3452254号公報Japanese Patent No. 3452254

しかしながら、上述の特許文献1の希土類ボンド磁石の製造方法では、磁石粉末における希土類元素の拡散状態が不均一になってしまい易く、得られる希土類ボンド磁石の保磁力や角型比があまり高くない。また、上述の拡散熱処理時には、磁性粉末を700〜1000℃程度に加熱する必要があるため、磁石粉末同士が融着して塊を形成する傾向にある。このため上述のような希土類ボンド磁石の製造方法では、磁気的な異方性を有する磁性粉末を用いても、最終的に得られる希土類ボンド磁石に含まれる各磁性粉末の配向が乱れてしまい、角型比などの磁気特性が低下してしまう。   However, in the method for producing a rare earth bonded magnet of Patent Document 1 described above, the diffusion state of the rare earth element in the magnet powder is likely to be uneven, and the coercive force and squareness ratio of the obtained rare earth bonded magnet are not so high. Moreover, since it is necessary to heat a magnetic powder at about 700-1000 degreeC at the time of the above-mentioned diffusion heat processing, it exists in the tendency for magnet powder to fuse | melt and form a lump. For this reason, in the method for producing a rare earth bonded magnet as described above, even if magnetic powder having magnetic anisotropy is used, the orientation of each magnetic powder contained in the finally obtained rare earth bonded magnet is disturbed, Magnetic properties such as the squareness ratio will deteriorate.

本発明は、上記事情に鑑みてなされたものであり、十分に優れた磁気特性を有する希土類磁石を製造することが可能な希土類磁石の製造方法を提供することを目的とする。   This invention is made | formed in view of the said situation, and it aims at providing the manufacturing method of the rare earth magnet which can manufacture the rare earth magnet which has the magnetic characteristics which were fully excellent.

本発明では、上記目的を達成するため、第1の希土類元素を含む水素化分解・脱水素再結合法による処理が施された希土類化合物粉末、及び第1の希土類元素とは異なる第2の希土類元素を含む拡散材を混合して混合粉末を調製する混合工程と、混合粉末を磁場中成形して成形体を作製する成形工程と、成形体を加熱して第2の希土類元素を希土類化合物粉末に拡散させる加熱工程と、を有しており、拡散材は、第2の希土類元素のハロゲン化物、第2の希土類元素の水素化物、第2の希土類元素とFeの化合物、又は第2の希土類元素とFeとCoの化合物を含有する、第1の希土類元素及び第2の希土類元素を有する希土類化合物を含有する希土類磁石の製造方法を提供する。 In the present invention, in order to achieve the above object, the rare earth compound powder subjected to the hydrocracking / dehydrogenation recombination method containing the first rare earth element, and the second rare earth element different from the first rare earth element are used. A mixing step of preparing a mixed powder by mixing a diffusing material containing an element; a forming step of forming a mixed powder by forming the mixed powder in a magnetic field; and heating the molded body to convert the second rare earth element into a rare earth compound powder and it possesses a heating step of diffusing, to, the diffusing material, a halide of a second rare-earth element, a hydride of the second rare-earth element, a compound of the second rare earth element and Fe, or the second rare earth Provided is a method for producing a rare earth magnet containing a rare earth compound having a first rare earth element and a second rare earth element, which contains a compound of an element, Fe, and Co.

この製造方法によれば、希土類化合物粉末と拡散材とが密着した状態で加熱されるため、粉末状態で混合された希土類化合物と拡散材の混合物に拡散処理を施す場合に比べて、拡散材に含まれる第2の希土類元素を、希土類化合物粒子の外周部により均一に拡散させることができる。このため、保磁力(HcJ)及び角型比に優れた希土類磁石を製造することができる。   According to this manufacturing method, since the rare earth compound powder and the diffusing material are heated in close contact with each other, compared to the case where the diffusion treatment is performed on the mixture of the rare earth compound and the diffusing material mixed in the powder state, The contained second rare earth element can be uniformly diffused in the outer peripheral portion of the rare earth compound particles. For this reason, the rare earth magnet excellent in coercive force (HcJ) and squareness ratio can be manufactured.

また、加熱工程を行う前に、磁場中成形を行って成形体を作製していることから、磁性粉末同士が融着していない状態で磁場配向させることが可能となる。このため、水素化分解・脱水素再結合法による処理が施された希土類化合物粉末の粒子の配向性を十分に高めた状態で拡散処理が施されることとなる。したがって、配向度が高く残留磁束密度(Br)に優れる希土類磁石を製造することができる。   In addition, since the molded body is formed by performing molding in a magnetic field before the heating step, it is possible to perform magnetic field orientation in a state where the magnetic powders are not fused. For this reason, the diffusion treatment is performed in a state in which the orientation of the particles of the rare earth compound powder subjected to the treatment by the hydrocracking / dehydrogenation recombination method is sufficiently enhanced. Therefore, a rare earth magnet having a high degree of orientation and excellent residual magnetic flux density (Br) can be manufactured.

本発明の製造方法では、加熱工程の後に、成形体に樹脂を含浸して樹脂を硬化することにより希土類ボンド磁石を得る含浸工程を有することが好ましい。このような製造方法によって得られる希土類ボンド磁石は、上述のような配向度が高く拡散材が均一に拡散した成形体を用いて作製されるものであるため、磁気特性に優れる。また、成形体を作製した後に樹脂を含浸させているため、成形体の作製前に樹脂を混合する場合に比べて、磁気的な異方性を有する希土類化合物粉末(HDDR粉末)の配向性が損なわれず、配向度が高く磁気特性に十分優れる希土類ボンド磁石とすることができる。また、この方法によれば、樹脂硬化前後の大きさの変化、すなわち縮率を十分に小さくすることができる。このため、寸法精度の高い希土類ボンド磁石を製造することができる。   The production method of the present invention preferably includes an impregnation step of obtaining a rare earth bonded magnet by impregnating a molded body with a resin and curing the resin after the heating step. The rare earth bonded magnet obtained by such a manufacturing method is manufactured using a molded body having a high degree of orientation as described above and in which a diffusing material is uniformly diffused, and thus has excellent magnetic properties. In addition, since the resin is impregnated after forming the molded body, the orientation of the rare earth compound powder (HDDR powder) having magnetic anisotropy is higher than when the resin is mixed before manufacturing the molded body. A rare earth bonded magnet having a high degree of orientation and sufficiently excellent magnetic properties can be obtained without being damaged. Further, according to this method, the change in size before and after the resin curing, that is, the shrinkage can be sufficiently reduced. For this reason, a rare earth bonded magnet with high dimensional accuracy can be manufactured.

本発明の製造方法は、上記加熱工程の後に、成形体を粉砕して粉砕粉末を調製する粉砕工程と、粉砕粉末と樹脂との混合物を磁場中成形し、樹脂を硬化させて希土類ボンド磁石を得る磁石作製工程とを有してもよい。この製造方法では、粉砕粉末と樹脂との混合物を磁場中成形しているため、複雑な形状の希土類ボンド磁石も容易に作製することができる。   In the production method of the present invention, after the heating step, a pulverizing step of pulverizing a compact to prepare a pulverized powder, a mixture of the pulverized powder and a resin is molded in a magnetic field, the resin is cured, and a rare earth bonded magnet is obtained. And obtaining a magnet. In this manufacturing method, since the mixture of the pulverized powder and the resin is molded in a magnetic field, a rare earth bonded magnet having a complicated shape can be easily produced.

本発明によれば、十分に優れた磁気特性を有する希土類磁石を製造することが可能な希土類磁石の製造方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method of the rare earth magnet which can manufacture the rare earth magnet which has the magnetic characteristics which were fully excellent can be provided.

本発明の一実施形態に係る希土類磁石の製造方法によって得られる希土類ボンド磁石の斜視図である。It is a perspective view of the rare earth bonded magnet obtained by the manufacturing method of the rare earth magnet concerning one embodiment of the present invention. 本発明の一実施形態に係る希土類磁石の製造方法によって得られる希土類ボンド磁石の磁気ヒステリシスル−プを示す図である。It is a figure which shows the magnetic hysteresis loop of the rare earth bond magnet obtained by the manufacturing method of the rare earth magnet which concerns on one Embodiment of this invention.

以下、場合により図面を参照して、本発明の好適な実施形態について説明する。   In the following, preferred embodiments of the present invention will be described with reference to the drawings as the case may be.

本実施形態の希土類磁石の製造方法は、第1の希土類元素を含む原料化合物に水素化分解・脱水素再結合法による処理を施して、希土類化合物粉末を調製するHDDR処理工程と、第2の希土類元素を含む拡散材を調製する調製工程と、第1の希土類元素を含む水素化分解・脱水素再結合法による処理が施された希土類化合物粉末及び第2の希土類元素を含む拡散材を混合して、混合粉末を調製する混合工程と、混合粉末を磁場中成形して成形体を作製する成形工程と、成形体を加熱して第2の希土類元素を希土類化合物粉末の外周部に拡散させる加熱工程と、成形体に樹脂を含浸して樹脂を硬化することにより希土類ボンド磁石を得る含浸工程を有する。以下、各工程の詳細について説明する。   The manufacturing method of the rare earth magnet of the present embodiment includes an HDDR processing step of preparing a rare earth compound powder by subjecting a raw material compound containing the first rare earth element to a hydrocracking / dehydrogenation recombination method, Mixing a preparation step for preparing a diffusing material containing a rare earth element, a rare earth compound powder subjected to hydrocracking / dehydrogenation recombination containing a first rare earth element, and a diffusing material containing a second rare earth element Then, a mixing step for preparing the mixed powder, a molding step for molding the mixed powder in a magnetic field to produce a compact, and heating the compact to diffuse the second rare earth element to the outer periphery of the rare earth compound powder A heating step and an impregnation step of obtaining a rare-earth bonded magnet by impregnating the molded body with resin and curing the resin. Details of each step will be described below.

HDDR処理工程では、まず、第1の希土類元素を含む原料化合物を準備する。原料化合物は、通常の鋳造方法、例えばストリップキャスト法、ブックモールド法、又は遠心鋳造法によって得た化合物や合金を使用できる。また、さらに均質化熱処理を施してもよい。原料化合物は、原料金属又は原料化合物や製造工程に由来する不可避な不純物を含んでいてもよい。   In the HDDR processing step, first, a raw material compound containing a first rare earth element is prepared. As the raw material compound, a compound or alloy obtained by a normal casting method such as a strip casting method, a book mold method, or a centrifugal casting method can be used. Further, a homogenization heat treatment may be performed. The raw material compound may contain an inevitable impurity derived from the raw material metal or the raw material compound or the production process.

第1の希土類元素としては、いずれの希土類元素を用いてもよく、好ましくは軽希土類元素を、より好ましくはNd及び/又はPrを用いる。   Any rare earth element may be used as the first rare earth element, preferably a light rare earth element, more preferably Nd and / or Pr.

なお、本明細書において、希土類元素は、長周期型周期表の第3族に属するスカンジウム(Sc)、イットリウム(Y)及びランタノイド元素のことをいう。ランタノイド元素には、例えば、ランタン(La)、セリウム(Ce)、プラセオジウム(Pr)、ネオジム(Nd)、サマリウム(Sm)、ユーロピウム(Eu)、ガドリニウム(Gd)、テルビニウム(Tb)、ジスプロシウム(Dy)、ホルミウム(Ho)、エルビウム(Er)、ツリウム(Tm)、イッテルビウム(Yb)、ルテチウム(Lu)等が含まれる。また、希土類元素は、軽希土類元素及び重希土類元素に分類することができる。本明細書における「重希土類元素」とはGd、Tb、Dy、Ho、Er、Tm、Yb、Luをいい、「軽希土類元素」とはSc,Y,La,Ce,Pr,Nd、Sm,Euをいう。   Note that in this specification, rare earth elements refer to scandium (Sc), yttrium (Y), and lanthanoid elements belonging to Group 3 of the long-period periodic table. Examples of lanthanoid elements include lanthanum (La), cerium (Ce), praseodymium (Pr), neodymium (Nd), samarium (Sm), europium (Eu), gadolinium (Gd), terbium (Tb), dysprosium (Dy). ), Holmium (Ho), erbium (Er), thulium (Tm), ytterbium (Yb), lutetium (Lu) and the like. The rare earth elements can be classified into light rare earth elements and heavy rare earth elements. In the present specification, “heavy rare earth element” refers to Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, and “light rare earth element” refers to Sc, Y, La, Ce, Pr, Nd, Sm, Eu.

原料化合物の好適な組成としては、希土類元素としてNd及びPrの少なくとも一方を含み、Bを0.5〜4.5質量%含み、残部がFe及び不可避的不純物であるR−Fe−B系の組成を有するものが挙げられる。また、原料化合物は、必要に応じて、Co、Ni、Mn、Al、Cu、Nb、Zr、Ti、W、Mo、V、Ga、Zn、Si等の他の元素を更に含んでもよい。   As a suitable composition of the raw material compound, an R—Fe—B-based material containing at least one of Nd and Pr as a rare earth element, 0.5 to 4.5% by mass of B, and the balance being Fe and inevitable impurities. What has a composition is mentioned. The raw material compound may further contain other elements such as Co, Ni, Mn, Al, Cu, Nb, Zr, Ti, W, Mo, V, Ga, Zn, and Si as necessary.

上述の組成を有する原料化合物を調製した後、HDDR法による処理を行う。HDDR法とは、水素化(Hydrogenation)、不均化(Disproportionation)、脱水素化(Desorption)、及び再結合(Recombination)を順次実行するプロセスである。HDDR処理の詳細について、以下に説明する。   After preparing the raw material compound which has the above-mentioned composition, the processing by HDDR method is performed. The HDDR method is a process of sequentially executing hydrogenation, disproportionation, dehydrogenation, and recombination. Details of the HDDR processing will be described below.

まず、原料化合物を、減圧雰囲気(1kPa以下)又はアルゴンや窒素などの不活性ガス雰囲気中、温度1000〜1200℃で5〜48時間保持する均質化熱処理を行う。   First, the homogenization heat processing which hold | maintains a raw material compound for 5 to 48 hours at the temperature of 1000-1200 degreeC in reduced pressure atmosphere (1 kPa or less) or inert gas atmosphere, such as argon and nitrogen.

均質化させた原料化合物は、スタンプミル又はジョークラッシャーなどの粉砕手段を用いて粉砕した後、篩分けすることが好ましい。これによって、粒径が10mm以下の粉末状の原料化合物を調製することができる。   The homogenized raw material compound is preferably pulverized using a pulverizing means such as a stamp mill or a jaw crusher and then sieved. Thereby, a powdery raw material compound having a particle size of 10 mm or less can be prepared.

水素吸蔵工程では、上述の粉末状の原料化合物を、水素分圧が100〜300kPaである水素雰囲気中、100〜200℃の温度中、0.5〜2時間保持する。これによって、原料化合物の結晶格子中に水素が吸蔵される。   In the hydrogen storage step, the powdery raw material compound is held in a hydrogen atmosphere having a hydrogen partial pressure of 100 to 300 kPa at a temperature of 100 to 200 ° C. for 0.5 to 2 hours. Thereby, hydrogen is occluded in the crystal lattice of the raw material compound.

次に、水素を吸蔵させた原料化合物を、水素雰囲気中、所定の温度で保持することによって、水素化分解させて分解生成物を得る。水素化分解時の水素分圧は10〜100kPa、温度は700〜850℃とすることが好ましい。このような条件で水素化分解を行うことによって、磁気的な異方性を有する粒子からなる希土類化合物粉末を得ることができる。   Next, the raw material compound in which hydrogen is occluded is hydrocracked by holding it at a predetermined temperature in a hydrogen atmosphere to obtain a decomposition product. The hydrogen partial pressure during hydrocracking is preferably 10 to 100 kPa, and the temperature is preferably 700 to 850 ° C. By performing hydrogenolysis under such conditions, it is possible to obtain a rare earth compound powder comprising particles having magnetic anisotropy.

水素化分解によって得られる分解生成物は、RHなどの水素化物、α−Fe及びFeBなどの鉄化合物を含んでいる。この段階における分解生成物は、100nmオーダーの微細なマトリックスを形成している。 The decomposition product obtained by hydrocracking includes a hydride such as RH x and an iron compound such as α-Fe and Fe 2 B. The decomposition products at this stage form a fine matrix of the order of 100 nm.

続いて、水素分圧を低減させることによって、分解生成物から水素を放出させて、第1の希土類元素を含有する異方性の希土類化合物粉末を得る。この希土類化合物粉末は、上述の原料化合物と同等の組成を有する。希土類化合物粉末の粒径は、好ましくは350μm以下であり、より好ましくは250μm以下であり、さらに好ましくは212μm以下である。希土類化合物粉末の粒径の下限に特に制限はないが、実用上、例えば1μm以上とすることが好ましい。   Subsequently, by reducing the hydrogen partial pressure, hydrogen is released from the decomposition product to obtain an anisotropic rare earth compound powder containing the first rare earth element. This rare earth compound powder has a composition equivalent to that of the above-mentioned raw material compound. The particle size of the rare earth compound powder is preferably 350 μm or less, more preferably 250 μm or less, and even more preferably 212 μm or less. Although there is no restriction | limiting in particular in the minimum of the particle size of rare earth compound powder, For example, it is preferable to set it as 1 micrometer or more practically.

上述のHDDR処理によって得られた希土類化合物粉末は、例えばジェットミル、ボールミル、振動ミル、湿式アトライター等の微粉砕機を用いてさらに粉砕してもよい。HDDR処理を施した希土類化合物粉末は、結晶粒の粒子径が小さく且つ異方性であるため、密度が十分に高く且つ優れた磁気特性を有する希土類磁石を容易に得ることができる。   The rare earth compound powder obtained by the HDDR treatment described above may be further pulverized using a fine pulverizer such as a jet mill, a ball mill, a vibration mill, or a wet attritor. Since the rare earth compound powder subjected to HDDR treatment has a small crystal grain size and is anisotropic, a rare earth magnet having a sufficiently high density and excellent magnetic properties can be easily obtained.

調製工程では、第2の希土類元素を含む粉末状の拡散材を調製する。第2の希土類元素は上述の第1の希土類元素と異なる元素であれば特に制限されない。ただし、一層高い保磁力を有する希土類磁石を得る観点から、第2の希土類元素は、好ましくは重希土類元素であり、より好ましくはDy又はTbである。拡散材としては、希土類元素の水素化物、酸化物、ハロゲン化物及び水酸化物等の一般的な希土類化合物や、希土類金属が挙げられる。これらのうち、希土類磁石の磁気特性を一層向上させる観点から、構成元素として重希土類元素を有する重希土類化合物を用いることが好ましい。   In the preparation step, a powdery diffusion material containing the second rare earth element is prepared. The second rare earth element is not particularly limited as long as it is an element different from the first rare earth element. However, from the viewpoint of obtaining a rare earth magnet having a higher coercive force, the second rare earth element is preferably a heavy rare earth element, and more preferably Dy or Tb. Examples of the diffusing material include general rare earth compounds such as hydrides, oxides, halides and hydroxides of rare earth elements, and rare earth metals. Among these, from the viewpoint of further improving the magnetic properties of the rare earth magnet, it is preferable to use a heavy rare earth compound having a heavy rare earth element as a constituent element.

重希土類化合物は、重希土類金属元素以外の元素を含んでいてもよく、重希土類金属と希土類金属以外の金属との合金であってもよい。一層優れた磁気特性を有する希土類磁石とする観点から、重希土類化合物は、好ましくは水素化物及びフッ化物であり、より好ましくは水素化物である。このような重希土類化合物を用いると、希土類磁石中に残存する不純物の量を十分に低くすることができる。また、水素化物及びフッ化物は容易に分解することから、組織が微細であるHDDR処理によって得られた希土類化合物粉末に対しても、十分に均一に第2の希土類元素を拡散させることができる。これらの要因によって、一層優れた磁気特性を有する希土類磁石を得ることができる。好ましい重希土類化合物としては、DyH、DyF及びTbHを挙げることが出来る。 The heavy rare earth compound may contain an element other than the heavy rare earth metal element, and may be an alloy of the heavy rare earth metal and a metal other than the rare earth metal. The heavy rare earth compound is preferably a hydride or fluoride, more preferably a hydride, from the viewpoint of a rare earth magnet having even more excellent magnetic properties. When such a heavy rare earth compound is used, the amount of impurities remaining in the rare earth magnet can be sufficiently reduced. Further, since the hydride and fluoride are easily decomposed, the second rare earth element can be diffused sufficiently uniformly even to the rare earth compound powder obtained by the HDDR process having a fine structure. Due to these factors, a rare earth magnet having more excellent magnetic properties can be obtained. Preferred heavy rare earth compounds include DyH 2 , DyF 3 and TbH 2 .

希土類化合物や希土類金属は、通常の方法によって製造することができる。通常の方法によって製造した希土類化合物又は希土類金属を、ジェットミルを用いて乾式粉砕する方法、又は有機溶媒と混合し、ボールミル等を用いて湿式粉砕する方法によって希土類化合物粉末又は希土類金属粉末を調製することができる。   Rare earth compounds and rare earth metals can be produced by conventional methods. A rare earth compound powder or a rare earth metal powder is prepared by a dry pulverization method using a jet mill with a rare earth compound or rare earth metal produced by an ordinary method, or a wet pulverization method using a ball mill or the like after mixing with an organic solvent. be able to.

拡散材の平均粒径は、好ましくは100nm〜30μmであり、より好ましくは0.5〜10μmであり、さらに好ましくは1〜5μmである。拡散材の平均粒径が30μmを超えると、希土類化合物粉末中への第2の希土類元素の拡散が生じ難くなって、十分大きなHcJ及び角型比の向上効果が損なわれる場合がある。一方、拡散材の平均粒径が100nm未満であると、希土類元素が酸化しやすくなる傾向がある。このように、希土類酸化物が生成すると、第1の希土類元素を含む希土類化合物への第2の希土類元素の拡散量が少なくなり、拡散による保磁力の向上が小さくなる傾向にある。なお、本明細書における拡散材の平均粒径は、市販の粒度分布計を用いて測定される体積平均粒子径(d(50))である。   The average particle diameter of the diffusing material is preferably 100 nm to 30 μm, more preferably 0.5 to 10 μm, and further preferably 1 to 5 μm. If the average particle diameter of the diffusing material exceeds 30 μm, the diffusion of the second rare earth element into the rare earth compound powder becomes difficult to occur and the effect of improving the sufficiently large HcJ and squareness ratio may be impaired. On the other hand, when the average particle diameter of the diffusing material is less than 100 nm, the rare earth element tends to be oxidized. Thus, when the rare earth oxide is generated, the amount of the second rare earth element diffused into the rare earth compound containing the first rare earth element decreases, and the improvement in coercive force due to the diffusion tends to be small. In addition, the average particle diameter of the diffusing material in the present specification is a volume average particle diameter (d (50)) measured using a commercially available particle size distribution meter.

混合工程では、上述の通りにしてHDDR処理を施した第1の希土類元素を含む希土類化合物粉末と、第2の希土類元素を含む拡散材とを混合して混合粉末を調製する。混合粉体は、例えば、所定の配合比で希土類化合物粉末と拡散材とを容器に投入後、スペックスミキサーを用いて、1〜30分間混合することによって得ることができる。混合は、拡散材や希土類化合物粉末の酸化を抑制する観点から、アルゴンガスなどの不活性ガス雰囲気下で行うことが好ましい。なお、混合方法は、特に限定されるものではなく、例えば、Vミキサー、ボールミル、又はライカイ機などを用いた方法であってもよい。なお、混合の際に成形助剤となるステアリン酸亜鉛などの潤滑材を添加してもよい。この場合、添加量は0.01〜0.5質量%程度でよい。   In the mixing step, a mixed powder is prepared by mixing the rare earth compound powder containing the first rare earth element that has been subjected to HDDR treatment as described above and the diffusion material containing the second rare earth element. The mixed powder can be obtained, for example, by mixing the rare earth compound powder and the diffusing material in a predetermined mixing ratio into a container and then mixing for 1 to 30 minutes using a specs mixer. The mixing is preferably performed in an inert gas atmosphere such as argon gas from the viewpoint of suppressing the oxidation of the diffusing material and the rare earth compound powder. In addition, the mixing method is not particularly limited, and for example, a method using a V mixer, a ball mill, or a reiki machine may be used. In addition, a lubricant such as zinc stearate that becomes a molding aid during mixing may be added. In this case, the addition amount may be about 0.01 to 0.5% by mass.

希土類化合物粉末と拡散材との配合比は、混合粉体における拡散材の含有量が、好ましくは0.5〜5質量%、より好ましくは1〜4質量%、さらに好ましくは1.5〜3.5質量%となるような比率とする。当該含有量が0.5質量%未満であると、第2の希土類元素の拡散量が少なくなって、十分に大きなHcJ及び角型比の向上効果が得られ難くなる傾向がある。一方、当該含有量が5質量%を超えると、第2の希土類元素が希土類化合物粉末の内部にまで拡散してしまいBrが小さくなる傾向があると共に材料コストが上昇する傾向にある。   The mixing ratio of the rare earth compound powder and the diffusion material is such that the content of the diffusion material in the mixed powder is preferably 0.5 to 5% by mass, more preferably 1 to 4% by mass, and still more preferably 1.5 to 3%. The ratio should be 5% by mass. If the content is less than 0.5% by mass, the amount of diffusion of the second rare earth element tends to be small, and a sufficiently large HcJ and squareness ratio improving effect tends to be difficult to obtain. On the other hand, when the content exceeds 5% by mass, the second rare earth element diffuses into the rare earth compound powder, so that Br tends to decrease and the material cost tends to increase.

成形工程では、上述の混合粉末を磁場中成形して所望の形状を有する成形体を作製する。磁場中成形は、磁場を印加しながら行い、これにより異方性を有する希土類化合物粉末を所定方向に配向させた状態で固定する。成形は、例えば、機械プレスや油圧プレス等の圧縮成形機を用いた圧縮成形により行うことができる。具体的には、混合粉末を金型キャビティ内に充填した後、充填された粉末を上パンチと下パンチとの間で挟むようにして加圧することによって、混合粉末を所定形状に成形することができる。   In the molding step, the above-mentioned mixed powder is molded in a magnetic field to produce a molded body having a desired shape. Molding in a magnetic field is performed while applying a magnetic field, thereby fixing the rare earth compound powder having anisotropy oriented in a predetermined direction. The molding can be performed by, for example, compression molding using a compression molding machine such as a mechanical press or a hydraulic press. Specifically, the mixed powder can be formed into a predetermined shape by filling the mixed powder in the mold cavity and then pressing the filled powder so as to be sandwiched between the upper punch and the lower punch.

成形によって得られる成形体の形状は特に制限されず、柱状、平板状、リング状等、所望とする希土類ボンド磁石の形状に応じて決定する。磁場中成形時の加圧は、580〜1400MPaとすることが好ましい。また、配向磁界は、800〜2000kA/mとすることが好ましい。なお、成形方法としては、上述のように混合粉末をそのまま成形する乾式成形のほか、混合粉末を油等の溶媒に分散させたスラリーを成形する湿式成形を適用することもできる。   The shape of the molded body obtained by molding is not particularly limited, and is determined according to the desired shape of the rare earth bonded magnet, such as a columnar shape, a flat plate shape, or a ring shape. The pressurization during molding in a magnetic field is preferably 580 to 1400 MPa. Moreover, it is preferable that an orientation magnetic field shall be 800-2000 kA / m. In addition, as a shaping | molding method, the wet shaping | molding which shape | molds the slurry which disperse | distributed mixed powder in solvents, such as oil other than dry shaping | molding which shape | molds mixed powder as it is as above-mentioned, can also be applied.

本実施形態では、HDDR処理を施した希土類化合物粉末を用いるとともに、拡散のための加熱処理の前に、樹脂と混合することなく、混合粉末の磁場中成形を行っている。このため、磁気的な異方性を有する希土類化合物粉末の配向を十分に揃えることが可能となる。したがって、特に残留磁束密度に優れる希土類ボンド磁石を得ることができる。すなわち、HDDR処理によって得られる異方性の高い希土類化合物粉末の磁気的な特性を十分に発揮させることが可能となる。   In the present embodiment, the rare earth compound powder subjected to HDDR treatment is used, and the mixed powder is molded in a magnetic field without being mixed with the resin before the heat treatment for diffusion. For this reason, it is possible to sufficiently align the orientation of the rare earth compound powder having magnetic anisotropy. Therefore, it is possible to obtain a rare earth bonded magnet that is particularly excellent in residual magnetic flux density. That is, the magnetic characteristics of the highly anisotropic rare earth compound powder obtained by the HDDR process can be sufficiently exhibited.

加熱工程では、磁場中成形によって得られた成形体を、拡散材に含まれる第2の希土類元素を希土類化合物粉末の外周部に拡散させることが可能な程度に加熱する。具体的には、成形体を減圧下又はアルゴンガスなどの不活性ガス雰囲気下、好ましくは700〜1100℃、より好ましくは700〜950℃、さらに好ましくは800〜900℃で10分間〜12時間保持する。このような条件で加熱することにより、第2の希土類元素が希土類化合物粉末の外周部に拡散し、第1の希土類元素がリッチな内層と該内層を被覆する第2の希土類元素がリッチな外層とを有する粒子が形成される。これによって、十分に高い保磁力を有する希土類ボンド磁石を形成することが可能となる。また、HDDR処理された希土類化合物粉末には微細なクラックが存在するが、このクラックに拡散材が侵入してクラックを埋めることができる。このため、最終的に得られる希土類ボンド磁石の耐酸化性及び強度を向上させることができる。   In the heating step, the molded body obtained by molding in a magnetic field is heated to such an extent that the second rare earth element contained in the diffusing material can be diffused to the outer periphery of the rare earth compound powder. Specifically, the compact is held under reduced pressure or in an inert gas atmosphere such as argon gas, preferably at 700 to 1100 ° C., more preferably at 700 to 950 ° C., and even more preferably at 800 to 900 ° C. for 10 minutes to 12 hours. To do. By heating under such conditions, the second rare earth element diffuses into the outer peripheral portion of the rare earth compound powder, and the inner layer rich in the first rare earth element and the outer layer rich in the second rare earth element covering the inner layer. Are formed. This makes it possible to form a rare earth bonded magnet having a sufficiently high coercive force. In addition, although there are fine cracks in the HDDR-treated rare earth compound powder, the diffusion material can enter the cracks and fill the cracks. For this reason, the oxidation resistance and strength of the finally obtained rare earth bonded magnet can be improved.

加熱工程において、成形体の加熱温度を高くし過ぎたり加熱時間を長くし過ぎたりすると、希土類化合物粉末の焼結が進行して、後に行う含浸工程において、成形体中に樹脂を含浸し難くなる傾向がある。また、HDDR処理を施して得られた異方性の磁性粉末の相分解が生じ、高い磁気特性が損なわれる可能性がある。一方、成形体の加熱温度を低くし過ぎたり加熱時間を短くし過ぎたりすると、第2の希土類元素の拡散が十分に進行しない傾向がある。したがって、第1及び第2の希土類元素の種類や、希土類化合物粉末の粒径に応じて、加熱温度及び加熱時間を設定することが好ましい。   In the heating process, if the heating temperature of the molded body is too high or the heating time is excessively long, the sintering of the rare earth compound powder proceeds, making it difficult to impregnate the molded body with the resin in the subsequent impregnation process. Tend. Moreover, phase decomposition of the anisotropic magnetic powder obtained by performing the HDDR treatment may occur, and high magnetic properties may be impaired. On the other hand, if the heating temperature of the molded body is too low or the heating time is too short, the diffusion of the second rare earth element tends not to proceed sufficiently. Therefore, it is preferable to set the heating temperature and the heating time according to the types of the first and second rare earth elements and the particle size of the rare earth compound powder.

本実施形態の製造方法では、成形体とした状態で加熱処理を施しているため、希土類化合物粉末と拡散材との密着性がよく、拡散材に含まれる第2の希土類元素を希土類化合物粉末の外周部に、より均一に拡散させることが可能となる。したがって、角型比や保磁力が十分に高い希土類ボンド磁石を得ることができる。   In the manufacturing method of the present embodiment, since the heat treatment is performed in the state of the molded body, the adhesion between the rare earth compound powder and the diffusing material is good, and the second rare earth element contained in the diffusing material is replaced with the rare earth compound powder. It becomes possible to diffuse more uniformly in the outer periphery. Therefore, a rare earth bonded magnet having a sufficiently high squareness ratio and coercive force can be obtained.

含浸工程では、成形体に樹脂を含浸させ、加熱して樹脂を硬化することにより、希土類化合物粒子と希土類化合物粒子間に充填された樹脂とを含有する希土類ボンド磁石を得る。具体的には、まず、加熱処理を施した成形体を予め調製した樹脂含有溶液に浸漬し、密閉容器中で減圧することによって脱泡させて樹脂含有溶液を成形体の空隙内に浸透させる。その後、成形体を樹脂含有溶液中から取り出し、成形体の表面に付着した余剰の樹脂含有溶液を取り除く。余剰の樹脂含有溶液を取り除くには遠心分離機などを用いればよい。また、樹脂含有溶液に浸漬する前に成形体を密閉溶液中に入れ減圧雰囲気に保持しつつトルエン等の溶剤に浸漬することによって、脱泡が促進されて樹脂の含浸量を増やすことが可能となり、成形体中の空隙を減らすことができる。   In the impregnation step, the molded body is impregnated with a resin and heated to cure the resin, thereby obtaining a rare earth bonded magnet containing rare earth compound particles and a resin filled between the rare earth compound particles. Specifically, first, the molded body subjected to the heat treatment is immersed in a resin-containing solution prepared in advance and degassed by reducing the pressure in a sealed container so that the resin-containing solution penetrates into the voids of the molded body. Thereafter, the molded body is taken out from the resin-containing solution, and excess resin-containing solution attached to the surface of the molded body is removed. A centrifuge or the like may be used to remove excess resin-containing solution. In addition, defoaming is promoted and the amount of resin impregnation can be increased by immersing the molded body in a sealed solution before immersing in the resin-containing solution and immersing in a solvent such as toluene while maintaining a reduced pressure atmosphere. , Voids in the molded body can be reduced.

樹脂含有溶液に含まれる樹脂としては、エポキシ樹脂、フェノール樹脂等の熱硬化性樹脂や、スチレン系、オレフィン系、ウレタン系、ポリエステル系、ナイロンなどのポリアミド系のエラストマー、アイオノマー、エチレンプロピレン共重合体(EPM)、エチレン−エチルアクリレート共重合体等の熱可塑性樹脂が挙げられる。これらのなかでも、熱硬化性樹脂が好ましく、エポキシ樹脂又はフェノール樹脂がより好ましい。   Examples of resins contained in the resin-containing solution include thermosetting resins such as epoxy resins and phenol resins, polyamide-based elastomers such as styrene, olefin, urethane, polyester, and nylon, ionomers, and ethylene propylene copolymers. (EPM) and thermoplastic resins such as ethylene-ethyl acrylate copolymer. Among these, a thermosetting resin is preferable, and an epoxy resin or a phenol resin is more preferable.

樹脂含有溶液は、上述の樹脂を溶媒に溶解させることによって調製することができる。溶媒としては、トルエン、アセトン、エチルアルコールなどの一般的な有機溶媒を用いることができる。溶媒は、樹脂を十分に溶解させるために、用いる樹脂の種類に応じて選択することが好ましい。樹脂含有溶液における樹脂含有量に特に制限はないが、密度が高く空隙の少ない希土類ボンド磁石を得るためには、樹脂の含有量は高い方が好ましい。   The resin-containing solution can be prepared by dissolving the above resin in a solvent. As the solvent, a general organic solvent such as toluene, acetone, ethyl alcohol or the like can be used. The solvent is preferably selected according to the type of resin used in order to sufficiently dissolve the resin. Although there is no restriction | limiting in particular in resin content in a resin containing solution, in order to obtain the rare earth bonded magnet with a high density and few voids, the one where the resin content is higher is preferable.

樹脂含有溶液を空隙内に浸透させた成形体を、例えば恒温槽内で、減圧雰囲気(1kPa以下)又はアルゴンガスや窒素ガスなどの不活性ガス雰囲気下、120〜230℃で1〜5時間保持することによって、樹脂含有溶液に含まれる溶媒を蒸発させるとともに樹脂を硬化させる。その後、必要に応じて表面処理を施すことにより、異方性の希土類ボンド磁石を得ることができる。   The molded body in which the resin-containing solution is infiltrated into the voids is held at 120 to 230 ° C. for 1 to 5 hours, for example, in a constant temperature bath under a reduced pressure atmosphere (1 kPa or less) or an inert gas atmosphere such as argon gas or nitrogen gas. By doing so, the solvent contained in the resin-containing solution is evaporated and the resin is cured. Thereafter, an anisotropic rare earth bonded magnet can be obtained by performing a surface treatment as necessary.

希土類ボンド磁石の樹脂含有量は、優れた磁気特性と優れた形状保持性とを両立させる観点から、好ましくは0.5〜10質量%、より好ましくは1〜5質量%である。この樹脂含浸量は、樹脂含有溶液における樹脂濃度や、成形体作製時の成形圧力を変えることによって調整することができる。   The resin content of the rare earth bonded magnet is preferably 0.5 to 10% by mass, more preferably 1 to 5% by mass from the viewpoint of achieving both excellent magnetic properties and excellent shape retention. This resin impregnation amount can be adjusted by changing the resin concentration in the resin-containing solution and the molding pressure at the time of molding.

図1は、本実施形態の製造方法によって得られる希土類ボンド磁石の斜視図である。本実施形態の製造方法によって得られる希土類ボンド磁石10は、希土類化合物を主成分として有する粒子と、該粒子間に充填された樹脂とを含有する。希土類化合物は、構成元素として第1の希土類元素及び第2の希土類元素を有する。希土類ボンド磁石10は、拡散材に含まれる第2の希土類元素が希土類化合物粒子の外周部に従来のものよりも均一に拡散しているため、十分に高いHcJと角型比を有する。また、異方性の希土類化合物粉末を、加熱処理及び樹脂と混合することなく、磁場中成形しているために、希土類化合物の各粒子の配向を従来よりも揃えることが可能となり、配向度が高くなって磁気特性に優れた希土類ボンド磁石とすることができる。   FIG. 1 is a perspective view of a rare earth bonded magnet obtained by the manufacturing method of the present embodiment. The rare earth bonded magnet 10 obtained by the manufacturing method of this embodiment contains particles having a rare earth compound as a main component and a resin filled between the particles. The rare earth compound has a first rare earth element and a second rare earth element as constituent elements. The rare earth bonded magnet 10 has a sufficiently high HcJ and squareness ratio because the second rare earth element contained in the diffusing material diffuses more uniformly than the conventional one in the outer peripheral portion of the rare earth compound particles. In addition, since anisotropic rare earth compound powder is molded in a magnetic field without being mixed with heat treatment and resin, it is possible to align the orientation of each particle of the rare earth compound as compared with the conventional one, and the degree of orientation is increased. It becomes high and can be set as the rare earth bond magnet excellent in the magnetic characteristic.

次に、上記実施形態の変形例について説明する。本変形例の希土類磁石の製造方法では、加熱工程で得られた、第2の希土類元素が外周部に拡散した希土類化合物粉末で形成される成形体を粉砕し、粉砕粉末を調製する粉砕工程と、粉砕粉末と樹脂との混合物を磁場中成形し、樹脂を硬化させて希土類ボンド磁石を得る磁石作製工程とを有する。   Next, a modification of the above embodiment will be described. In the rare earth magnet manufacturing method of the present modification, a pulverizing step of preparing a pulverized powder by pulverizing a molded body formed of a rare earth compound powder in which the second rare earth element is diffused in the outer periphery, obtained in the heating step; And a magnet manufacturing step of forming a mixture of the pulverized powder and the resin in a magnetic field and curing the resin to obtain a rare earth bonded magnet.

本変形例における製造方法は、成形体を作製し、拡散材に含まれる第2の希土類元素を希土類化合物粉末中に拡散させる加熱工程までは、上記実施形態と同様である。   The manufacturing method in the present modification is the same as that in the above-described embodiment until a heating step for producing a molded body and diffusing the second rare earth element contained in the diffusing material into the rare earth compound powder.

粉砕工程では、成形体をスタンプミルで粉砕し必要に応じて篩分けを行って、平均粒径が100〜300μmの粉砕粉末を調製する。粉砕方法は特に限定されず、ジョークラッシャーや公知の各種粉砕手段を用いることができる。   In the pulverization step, the compact is pulverized with a stamp mill and sieved as necessary to prepare a pulverized powder having an average particle size of 100 to 300 μm. The crushing method is not particularly limited, and a jaw crusher and various known crushing means can be used.

磁石作製工程では、まず、粉砕粉末と樹脂との混合物であるボンド磁石用コンパウンドを調製する。具体的には、粉砕粉末と上記実施形態と同様の樹脂含有溶液とを混合し、加熱して樹脂含有溶液中の溶媒の少なくとも一部を揮発させることによって、ボンド磁石用コンパウンドを得ることができる。ボンド磁石用コンパウンドにおける樹脂含有量は、好ましくは0.5〜10質量%、より好ましくは1〜5質量%、さらに好ましくは1〜3質量%である。   In the magnet manufacturing step, first, a bonded magnet compound that is a mixture of pulverized powder and resin is prepared. Specifically, a compound for a bonded magnet can be obtained by mixing the pulverized powder and the same resin-containing solution as in the above embodiment and heating to volatilize at least part of the solvent in the resin-containing solution. . The resin content in the compound for bonded magnet is preferably 0.5 to 10% by mass, more preferably 1 to 5% by mass, and still more preferably 1 to 3% by mass.

次に、ボンド磁石用コンパウンドを磁場中成形して成形体を作製する。磁場中成形は、上記実施形態と同様にして行うことができる。その後、作製した成形体を、例えば恒温槽内で、減圧雰囲気(1kPa以下)又はアルゴンガスや窒素ガスなどの不活性ガス雰囲気下、120〜230℃で1〜5時間保持することによって、溶媒を蒸発させるとともに樹脂を硬化させる。その後、必要に応じて表面処理を施すことにより、図1に示す希土類ボンド磁石10を得ることができる。   Next, the bonded magnet compound is molded in a magnetic field to produce a molded body. Molding in a magnetic field can be performed in the same manner as in the above embodiment. Then, the produced compact is held in a constant-temperature bath, for example, at 120 to 230 ° C. for 1 to 5 hours under a reduced pressure atmosphere (1 kPa or less) or an inert gas atmosphere such as argon gas or nitrogen gas, thereby removing the solvent. Evaporate and cure the resin. Then, the rare earth bond magnet 10 shown in FIG. 1 can be obtained by performing a surface treatment as necessary.

本変形例の製造方法では、上記実施形態と同様に、磁場中成形後の成形体の状態で加熱処理を行うことから、拡散材に含まれる第2の希土類元素が希土類化合物粉末の外周部に、従来のものよりも均一に拡散している。したがって、十分に高いHcJと角型比を有する希土類ボンド磁石を得ることができる。また、希土類化合物粉末及び拡散材を含む粉砕粉末と、樹脂含有溶液とを混合した後、成形することが可能であるため、複雑な形状の希土類ボンド磁石も容易に製造することができる。   In the manufacturing method of this modification, as in the above embodiment, the heat treatment is performed in the state of the compact after being molded in a magnetic field, so that the second rare earth element contained in the diffusing material is present on the outer peripheral portion of the rare earth compound powder. , Spread more uniformly than the conventional one. Therefore, a rare earth bonded magnet having a sufficiently high HcJ and squareness ratio can be obtained. In addition, since a pulverized powder containing a rare earth compound powder and a diffusion material and a resin-containing solution can be mixed and then molded, a complex-shaped rare earth bonded magnet can be easily manufactured.

以上、本発明の好適な実施形態について説明したが、本発明は上記実施形態に何ら限定されるものではない。上記実施形態においては、希土類磁石として希土類ボンド磁石を挙げたが、本発明の製造方法によって得られる希土類磁石は、樹脂が含浸されていない態様であってもよい。このような希土類磁石としては、例えば、上記実施形態の加熱工程によって得られたものが挙げられる。   The preferred embodiment of the present invention has been described above, but the present invention is not limited to the above embodiment. In the said embodiment, although the rare earth bonded magnet was mentioned as a rare earth magnet, the aspect in which the resin is not impregnated may be sufficient as the rare earth magnet obtained by the manufacturing method of this invention. Examples of such rare earth magnets include those obtained by the heating process of the above embodiment.

本発明の内容を実施例及び比較例を用いて以下に詳細に説明するが、本発明は以下の実施例に限定されるものではない。   The content of the present invention will be described in detail below using examples and comparative examples, but the present invention is not limited to the following examples.

(実施例1)
[希土類ボンド磁石の作製]
ストリップキャスト法によって、主成分としてNdFe14Bを含有する、下記組成を有する原料化合物を調製した。
Example 1
[Preparation of rare earth bonded magnet]
A raw material compound having the following composition containing Nd 2 Fe 14 B as a main component was prepared by a strip casting method.

Nd:28.0質量%
B : 1.1質量%
Ga: 0.35質量%
Nb: 0.30質量%
Cu: 0.03質量%
Co: 3.8質量%
Fe及び不可避不純物:残部
Nd: 28.0% by mass
B: 1.1% by mass
Ga: 0.35 mass%
Nb: 0.30 mass%
Cu: 0.03 mass%
Co: 3.8% by mass
Fe and inevitable impurities: balance

この原料化合物は、微量の不可避不純物(原料化合物全体で0.5質量%以下)を含んでいた。この原料化合物を、減圧雰囲気中(1kPa以下)、1000〜1200℃の温度範囲で24時間保持した(均質化熱処理工程)。均質化熱処理で得られた生成物(NdFe14B)を、スタンプミルを用いて粉砕し、篩分けを行って、原料粉末(粒径1〜2mm)を得た。 This raw material compound contained a small amount of inevitable impurities (0.5% by mass or less in the whole raw material compound). This raw material compound was held in a reduced pressure atmosphere (1 kPa or less) in a temperature range of 1000 to 1200 ° C. for 24 hours (homogenization heat treatment step). The product (Nd 2 Fe 14 B) obtained by the homogenization heat treatment was pulverized using a stamp mill and sieved to obtain a raw material powder (particle diameter of 1 to 2 mm).

この原料粉末を、モリブテン製の容器に充填し、赤外線加熱方式を有する管状熱処理炉に装填し、以下の条件で水素化分解・脱水素再結合法による処理(HDDR処理)を施した。   This raw material powder was filled in a molybdenum-made container, loaded into a tubular heat treatment furnace having an infrared heating method, and subjected to a treatment by hydrocracking / dehydrogenation recombination (HDDR treatment) under the following conditions.

まず、水素ガス雰囲気下、水素分圧100〜300kPa、温度100℃で原料粉末を2時間保持する水素吸蔵工程を行った。続いて、炉内の水素分圧を下げるとともに炉内温度を昇温し、水素ガスを吸蔵した原料粉末を、水素分圧40kPa、温度850℃の条件で1.5時間保持する水素化分解工程を行った。   First, a hydrogen occlusion process was performed in which a raw material powder was held for 2 hours at a hydrogen partial pressure of 100 to 300 kPa and a temperature of 100 ° C. in a hydrogen gas atmosphere. Subsequently, the hydrocracking step of lowering the hydrogen partial pressure in the furnace and raising the temperature in the furnace to hold the raw material powder storing the hydrogen gas for 1.5 hours under the conditions of a hydrogen partial pressure of 40 kPa and a temperature of 850 ° C. Went.

その後、炉内850℃に維持しながら水素圧力を低減して脱水素再結合工程を行った。これによって、HDDR処理された異方性の磁性粉末を得た。得られた磁性粉末を、窒素ガス雰囲気中でスタンプミルを用いて粉砕し、篩い分けを行って、粒径が300μm以下であるNdFe14B粉末を得た。 Thereafter, the hydrogen pressure was reduced while maintaining the temperature in the furnace at 850 ° C., and a dehydrogenation recombination step was performed. Thus, HDDR-treated anisotropic magnetic powder was obtained. The obtained magnetic powder was pulverized using a stamp mill in a nitrogen gas atmosphere and sieved to obtain Nd 2 Fe 14 B powder having a particle size of 300 μm or less.

次に、上記NdFe14B粉末とは別に、以下の通りにして拡散材を調製した。まず、Dy粉末を水素雰囲気下350℃で1時間吸蔵させ、これに続いてAr雰囲気下にて600℃で1時間処理することによりDy水素化物を得た。得られたDy水素化物は、X線回折測定により、DyHであることを確認した。得られたDyH粉体をエタノール溶液に入れてボールミル粉砕を行い、平均粒径[d(50)]が3μmのDyH微粉末とした。 Next, apart from the Nd 2 Fe 14 B powder, a diffusion material was prepared as follows. First, Dy powder was occluded at 350 ° C. for 1 hour in a hydrogen atmosphere, followed by treatment at 600 ° C. for 1 hour in an Ar atmosphere to obtain a Dy hydride. The obtained Dy hydride was confirmed to be DyH 2 by X-ray diffraction measurement. The obtained DyH 2 powder was placed in an ethanol solution and ball milled to obtain DyH 2 fine powder having an average particle size [d (50)] of 3 μm.

上述の方法によって得られたNdFe14B粉末と拡散材であるDyH微粉末とを、Vミキサーを用いて混合し、混合粉末を調製した。NdFe14B粉末と拡散材との混合比率は、得られる混合粉末全体を基準として、拡散材が3質量%となるような比率とした。また、混合粉末全量に対し、ステアリン酸亜鉛を0.1質量%添加混合した。成形圧力980MPa、配向磁界1.2Tの条件で、この混合粉末の磁場中成形を行って、図1に示すような直方体形状の成形体10を得た。なお、磁場印加方向は図1のa方向とした。この成形体10の寸法及び密度は表1に示す通りであった。 Nd 2 Fe 14 B powder obtained by the above-described method and DyH 2 fine powder as a diffusing material were mixed using a V mixer to prepare a mixed powder. The mixing ratio of the Nd 2 Fe 14 B powder and the diffusing material was such that the diffusing material was 3% by mass based on the entire mixed powder obtained. Moreover, 0.1 mass% of zinc stearate was added and mixed with respect to the total amount of the mixed powder. The mixed powder was molded in a magnetic field under the conditions of a molding pressure of 980 MPa and an orientation magnetic field of 1.2 T, to obtain a rectangular parallelepiped shaped molded body 10 as shown in FIG. The magnetic field application direction was the a direction in FIG. The dimensions and density of the molded body 10 were as shown in Table 1.

この成形体を、アルゴンガス雰囲気下、900℃で30分間加熱する熱処理によって、拡散材に含まれるDyをNdFe14B粉末の外周部に拡散させる拡散処理を行った。拡散処理後の成形体の相対密度は80%程度であった。 The molded body was subjected to a diffusion treatment in which Dy contained in the diffusing material was diffused into the outer peripheral portion of the Nd 2 Fe 14 B powder by a heat treatment in which an atmosphere of argon gas was heated at 900 ° C. for 30 minutes. The relative density of the molded body after the diffusion treatment was about 80%.

次に、上記成形体をトルエンの入った容器と共に真空ベルジャー内に入れ、成形体をトルエンに浸漬して容器内の圧力を10kPa以下の状態で30分間保持する脱泡処理を行った後、常圧に戻した。   Next, the molded body is placed in a vacuum bell jar together with a container containing toluene, and after the molded body is immersed in toluene and subjected to defoaming treatment in which the pressure in the container is kept at 10 kPa or less for 30 minutes, Returned to pressure.

上記成形体とは別に、トルエンにエポキシ樹脂を溶解させてエポキシ樹脂溶液(エポキシ樹脂含有量:50質量%)を調製した。真空ベルジャーに、上述のエポキシ樹脂溶液と、拡散処理を施し脱泡処理した成形体とを順次投入した。真空ベルジャー内を10kPa以下に減圧して60分間保持し、成形体内にエポキシ樹脂溶液を浸透させた。   Apart from the molded article, an epoxy resin was dissolved in toluene to prepare an epoxy resin solution (epoxy resin content: 50% by mass). The above-mentioned epoxy resin solution and the molded product subjected to the diffusion treatment and defoaming treatment were sequentially put into a vacuum bell jar. The inside of the vacuum bell jar was decompressed to 10 kPa or less and held for 60 minutes, and the epoxy resin solution was infiltrated into the molded body.

エポキシ樹脂溶液から成形体を取り出し、遠心分離機によって成形体表面に付着したエポキシ樹脂溶液を除去した。その後、エポキシ樹脂溶液を含浸させた成形体を、温度150℃の恒温槽中(雰囲気:窒素ガス)に5時間保持し、成形体中のエポキシ樹脂を硬化させ、希土類ボンド磁石10を得た。得られた希土類ボンド磁石10の寸法と質量を測定し、希土類ボンド磁石の密度を求めた。希土類ボンド磁石の寸法及び密度を表1及び表2に示す。   The molded body was taken out from the epoxy resin solution, and the epoxy resin solution adhering to the surface of the molded body was removed by a centrifuge. Thereafter, the molded body impregnated with the epoxy resin solution was held in a constant temperature bath (atmosphere: nitrogen gas) at a temperature of 150 ° C. for 5 hours to cure the epoxy resin in the molded body, and thus a rare earth bonded magnet 10 was obtained. The size and mass of the obtained rare earth bonded magnet 10 were measured, and the density of the rare earth bonded magnet was determined. Tables 1 and 2 show the dimensions and density of the rare earth bonded magnet.

Figure 0004835758
Figure 0004835758

[磁気特性の評価]
上述の通り製造した希土類ボンド磁石の磁気特性を、BHトレーサーにより測定した。得られた結果から、残留磁束密度(Br)、保磁力(HcJ)、角型比(Hk/iHc)を求めた。また、磁気ヒステリシスループからHk,bHcを求め、HcJとHkとを用いて、下記式(1)によって角型比を求めた。評価結果を表2に示す。
[Evaluation of magnetic properties]
The magnetic properties of the rare earth bonded magnet produced as described above were measured with a BH tracer. From the obtained results, residual magnetic flux density (Br), coercive force (HcJ), and squareness ratio (Hk / iHc) were determined. Further, Hk and bHc were obtained from the magnetic hysteresis loop, and the squareness ratio was obtained by the following formula (1) using HcJ and Hk. The evaluation results are shown in Table 2.

なお、角型比は磁石性能の指標となるものであり、BHトレーサーを用いて測定した磁気ヒステリシスル−プの第2象限における角張の度合いを表す。式(1)におけるHkは、磁気ヒステリシスル−プの第2象限において、残留磁束密度に対する磁化の割合が90%になるときの外部磁界強度である。   The squareness ratio is an index of magnet performance and represents the degree of squareness in the second quadrant of the magnetic hysteresis loop measured using a BH tracer. Hk in equation (1) is the external magnetic field strength when the ratio of magnetization to the residual magnetic flux density is 90% in the second quadrant of the magnetic hysteresis loop.

角型比(%)=Hk/HcJ×100 (1)   Squareness ratio (%) = Hk / HcJ × 100 (1)

(実施例2)
混合粉末全体を基準として、拡散材(DyH微粉末)の混合比率を3質量%から1質量%に変えたこと以外は、実施例1と同様にして希土類ボンド磁石を調製し、評価を行った。評価結果を表2に示す。
(Example 2)
A rare earth bonded magnet was prepared and evaluated in the same manner as in Example 1 except that the mixing ratio of the diffusing material (DyH 2 fine powder) was changed from 3% by mass to 1% by mass with reference to the entire mixed powder. It was. The evaluation results are shown in Table 2.

(実施例3)
実施例1と同様にして成形体の拡散処理を行った。拡散処理後の成形体を、窒素ガス雰囲気中でスタンプミルを用いて粉砕し、粒径が250μm以下である粉砕粉末を調製した。この粉砕粉末と実施例1と同様にして調製したエポキシ樹脂溶液とを、成形体のエポキシ樹脂含有量が3質量%となるような比率で混合した後、トルエンを蒸発させ磁性粉末と樹脂からなるボンド磁石用コンパウンドを調製した。このボンド磁石用コンパウンドを、成形圧力980MPa、配向磁界1.2Tの条件で磁場中成形して、直方体形状の成形体を得た。
(Example 3)
The molded body was subjected to a diffusion treatment in the same manner as in Example 1. The formed product after the diffusion treatment was pulverized using a stamp mill in a nitrogen gas atmosphere to prepare a pulverized powder having a particle size of 250 μm or less. This pulverized powder and an epoxy resin solution prepared in the same manner as in Example 1 were mixed at a ratio such that the epoxy resin content of the molded product was 3% by mass, and then toluene was evaporated to form a magnetic powder and a resin. A compound for a bonded magnet was prepared. This bonded magnet compound was molded in a magnetic field under the conditions of a molding pressure of 980 MPa and an orientation magnetic field of 1.2 T to obtain a rectangular parallelepiped shaped molded body.

この成形体を温度150℃の恒温槽中に5時間保持し、成形体中のエポキシ樹脂を硬化させ、希土類ボンド磁石を得た。そして、実施例1と同様にして、得られた希土類ボンド磁石の評価を行った。評価結果を表2に示す。   This molded body was held in a thermostatic bath at a temperature of 150 ° C. for 5 hours, and the epoxy resin in the molded body was cured to obtain a rare earth bonded magnet. Then, in the same manner as in Example 1, the obtained rare earth bonded magnet was evaluated. The evaluation results are shown in Table 2.

(実施例4)
平均粒径3μmのDyH微粉末に代えて、平均粒径1μmのDyH微粉末を用いたこと以外は、実施例1と同様にして希土類ボンド磁石を調製し、評価を行った。評価結果を表2に示す。なお、DyH微粉末の平均粒径は、ボールミル粉砕の条件を変えることによって調整した。
Example 4
A rare-earth bonded magnet was prepared and evaluated in the same manner as in Example 1 except that DyH 2 fine powder having an average particle diameter of 1 μm was used instead of DyH 2 fine powder having an average particle diameter of 3 μm. The evaluation results are shown in Table 2. The average particle size of the DyH 2 fine powder was adjusted by changing the ball milling conditions.

(実施例5)
拡散材として、DyH微粉末に代えて、平均粒径3μmのDy−Fe化合物[Dy:Fe=80:20(モル比率)]の微粉末を用いたこと以外は、実施例1と同様にして希土類ボンド磁石を調製し、評価を行った。評価結果を表2に示す。なお、Dy−Fe化合物の微粉末は、次の通りにして調製した。まず、DyFe合金及びFe(電解鉄)を所望の組成になるように秤量して配合し、高周波溶解にて溶融後、ストリップキャスト法によってDy−Fe化合物を得た。得られたDy−Fe化合物を、ジョークラッシャーを用いて粉砕した後、ボールミルを用いて、エタノール溶液中、100rpmで、120時間粉砕し、平均粒径3μmのDy−Fe化合物の微粉末を得た。
(Example 5)
The same procedure as in Example 1 was performed except that a fine powder of Dy-Fe compound [Dy: Fe = 80: 20 (molar ratio)] having an average particle diameter of 3 μm was used as the diffusing material in place of the fine powder of DyH 2. A rare earth bonded magnet was prepared and evaluated. The evaluation results are shown in Table 2. The fine powder of the Dy-Fe compound was prepared as follows. First, a DyFe alloy and Fe (electrolytic iron) were weighed and blended so as to have a desired composition, melted by high frequency dissolution, and then a Dy-Fe compound was obtained by a strip casting method. The obtained Dy-Fe compound was pulverized using a jaw crusher and then pulverized in an ethanol solution at 100 rpm for 120 hours using a ball mill to obtain a fine powder of Dy-Fe compound having an average particle size of 3 μm. .

(実施例6)
拡散材として、DyH微粉末に代えて、平均粒径3μmのDy−Fe−Co化合物[Dy:Fe:Co=80:10:10(モル比率)]の微粉末を用いたこと以外は、実施例1と同様にして希土類ボンド磁石を調製し、評価を行った。評価結果を表2に示す。なお、Dy−Fe−Co化合物の微粉末は、次の通りにして調製した。まず、DyFe合金、Fe(電解鉄)及びCoを所望の組成になるように秤量して配合し、アーク溶解にて溶融固化してDy−Fe−Co化合物を得た。このDy−Fe−Co化合物を窒素雰囲気中、スタンプミルを用いて粗粉砕した後、ボールミルを用いて、エタノール溶液中、100rpmで60時間粉砕し、平均粒径3μmのDy−Fe−Co化合物の微粉末を得た。
(Example 6)
Except for using a fine powder of Dy-Fe-Co compound [Dy: Fe: Co = 80: 10: 10 (molar ratio)] having an average particle size of 3 μm instead of DyH 2 fine powder as the diffusing material, A rare earth bonded magnet was prepared and evaluated in the same manner as in Example 1. The evaluation results are shown in Table 2. The fine powder of the Dy-Fe-Co compound was prepared as follows. First, DyFe alloy, Fe (electrolytic iron) and Co were weighed and blended so as to have a desired composition, and melted and solidified by arc melting to obtain a Dy-Fe-Co compound. This Dy-Fe-Co compound was roughly pulverized in a nitrogen atmosphere using a stamp mill, and then pulverized in an ethanol solution at 100 rpm for 60 hours using a ball mill. A fine powder was obtained.

(実施例7)
拡散材として、DyH微粉末に代えて、平均粒径3μmのDyF微粉末を用いたこと以外は、実施例1と同様にして希土類ボンド磁石を調製し、評価を行った。評価結果を表2に示す。なお、DyF微粉末は、日本イットリウム株式会社製のDyF粉末を、ボールミルを用いて、エタノール溶液中、100rpmで12時間粉砕して調製した。
(Example 7)
A rare-earth bonded magnet was prepared and evaluated in the same manner as in Example 1 except that DyF 3 fine powder having an average particle size of 3 μm was used as the diffusing material in place of DyH 2 fine powder. The evaluation results are shown in Table 2. The DyF 3 fine powder was prepared by pulverizing DyF 3 powder manufactured by Japan Yttrium Co., Ltd. in an ethanol solution at 100 rpm for 12 hours using a ball mill.

(実施例8)
混合粉末全体を基準として、拡散材(DyF微粉末)の混合比率を3質量%から1質量%に変えたこと以外は、実施例7と同様にして希土類ボンド磁石を調製し、評価を行った。評価結果を表2に示す。
(Example 8)
A rare earth bonded magnet was prepared and evaluated in the same manner as in Example 7, except that the mixing ratio of the diffusing material (DyF 3 fine powder) was changed from 3% by mass to 1% by mass based on the entire mixed powder. It was. The evaluation results are shown in Table 2.

(比較例1)
実施例1と同様にして、NdFe14B粉末と拡散材(DyH微粉末)との混合粉末を得た。この混合粉末を、アルゴンガス雰囲気下、900℃で30分間加熱する熱処理によって、拡散材に含まれるDyをNdFe14B粉末中に拡散させる拡散処理を行った。
(Comparative Example 1)
In the same manner as in Example 1, a mixed powder of Nd 2 Fe 14 B powder and a diffusion material (DyH 2 fine powder) was obtained. The mixed powder was subjected to a diffusion treatment in which Dy contained in the diffusion material was diffused into the Nd 2 Fe 14 B powder by a heat treatment in which the mixed powder was heated at 900 ° C. for 30 minutes in an argon gas atmosphere.

拡散処理を施した混合粉末と、実施例1と同様にして調製したエポキシ樹脂溶液とを混合した後、トルエンを蒸発させ磁性粉末と樹脂からなるボンド磁石用コンパウンドを調整し、そのコンパウンドを成形圧力980MPa、配向磁界1.2Tの条件で磁場中成形を行って成形体を得た。   After mixing the mixed powder subjected to the diffusion treatment and the epoxy resin solution prepared in the same manner as in Example 1, the compound for bonded magnet composed of magnetic powder and resin is prepared by evaporating toluene, and the compound is subjected to molding pressure. Molding was performed in a magnetic field under conditions of 980 MPa and an orientation magnetic field of 1.2 T to obtain a molded body.

この成形体を温度150℃の恒温槽中に5時間保持し、成形体中のエポキシ樹脂を硬化させ、希土類ボンド磁石を得た。そして、実施例1と同様にして希土類ボンド磁石の評価を行った。評価結果を表2に示す。   This molded body was held in a thermostatic bath at a temperature of 150 ° C. for 5 hours, and the epoxy resin in the molded body was cured to obtain a rare earth bonded magnet. Then, the rare earth bonded magnet was evaluated in the same manner as in Example 1. The evaluation results are shown in Table 2.

(比較例2)
混合粉末中のDyH微粉末の含有量を3質量%から1質量%としたこと以外は、比較例1と同様にして希土類ボンド磁石を作製し評価を行った。評価結果を表2に示す。
(Comparative Example 2)
A rare earth bonded magnet was produced and evaluated in the same manner as in Comparative Example 1 except that the content of the DyH 2 fine powder in the mixed powder was changed from 3 mass% to 1 mass%. The evaluation results are shown in Table 2.

(比較例3)
NdFe14B粉末と拡散材(DyH微粉末)との混合粉末に代えて、NdFe14B粉末のみを用いたこと以外は、実施例1と同様にして希土類ボンド磁石を作製し評価を行った。評価結果を表2に示す。
(Comparative Example 3)
A rare earth bonded magnet was prepared in the same manner as in Example 1 except that only the Nd 2 Fe 14 B powder was used instead of the mixed powder of the Nd 2 Fe 14 B powder and the diffusion material (DyH 2 fine powder). Evaluation was performed. The evaluation results are shown in Table 2.

(比較例4)
実施例1と同様にして、粒径が300μm以下であるNdFe14B粉末を得た。そして、実施例1と同様にして調製したエポキシ樹脂溶液と上記NdFe14B粉末とを、成形体のエポキシ樹脂含有量が3質量%となるような比率で混合した後、トルエンを蒸発させ磁性粉末(NdFe14B粉末)と樹脂からなるボンド磁石用コンパウンドを調製した。このボンド磁石用コンパウンドを、成形圧力980MPa、配向磁界1.2Tの条件で磁場中成形して、直方体形状の成形体を得た。
(Comparative Example 4)
In the same manner as in Example 1, Nd 2 Fe 14 B powder having a particle size of 300 μm or less was obtained. Then, the epoxy resin solution prepared in the same manner as in Example 1 and the Nd 2 Fe 14 B powder were mixed at a ratio such that the epoxy resin content of the molded body was 3% by mass, and then toluene was evaporated. A compound for a bonded magnet made of magnetic powder (Nd 2 Fe 14 B powder) and a resin was prepared. This bonded magnet compound was molded in a magnetic field under the conditions of a molding pressure of 980 MPa and an orientation magnetic field of 1.2 T to obtain a rectangular parallelepiped shaped molded body.

この成形体を温度150℃の恒温槽中に5時間保持し、成形体中のエポキシ樹脂を硬化させ、希土類ボンド磁石を得た。そして、実施例1と同様にして、得られた希土類ボンド磁石の評価を行った。評価結果を表2に示す。   This molded body was held in a thermostatic bath at a temperature of 150 ° C. for 5 hours, and the epoxy resin in the molded body was cured to obtain a rare earth bonded magnet. Then, in the same manner as in Example 1, the obtained rare earth bonded magnet was evaluated. The evaluation results are shown in Table 2.

(比較例5)
所定の組成を有するインゴットを、高周波溶解炉で溶製して、窒素ガス雰囲気中でスタンプミルを用いて粉砕し、篩い分けを行って、粒径が300μm以下であるNdFe14B粉末を得た。このHDDR処理を施していないNdFe14B粉末を、HDDR処理を施して得られたNdFe14B粉末の代わりに用いたこと以外は、実施例1と同様にして希土類ボンド磁石を作製して評価を行った。評価結果を表2に示す。
(Comparative Example 5)
An ingot having a predetermined composition is melted in a high-frequency melting furnace, pulverized using a stamp mill in a nitrogen gas atmosphere, sieved, and Nd 2 Fe 14 B powder having a particle size of 300 μm or less is obtained. Obtained. A rare earth bonded magnet was produced in the same manner as in Example 1 except that this Nd 2 Fe 14 B powder not subjected to HDDR treatment was used in place of the Nd 2 Fe 14 B powder obtained after HDDR treatment. And evaluated. The evaluation results are shown in Table 2.

Figure 0004835758
Figure 0004835758

表2に示すとおり、成形体の状態で拡散材の拡散処理を施した実施例1〜8では、粉末の状態で拡散材の拡散処理を施している比較例1,2に比べて、磁気特性が高かった。特に、保磁力及び角型比が大幅に向上した。また、拡散処理を施さなかった比較例3,4は、実施例1〜8に比べて磁気特性が低かった。HDDR処理を施していない希土類化合物粉末を用いた比較例5は、実施例1〜8よりも磁気特性がかなり低かった。これは、HDDR処理を施していない希土類化合物粉末(NdFe14B粉末)自体が、微細組織で構成された異方性の粉末ではないため、拡散材が希土類化合物粉末中に拡散しても保磁力が向上しないことが原因であると考えられる。 As shown in Table 2, in Examples 1 to 8 where the diffusion treatment of the diffusing material was performed in the state of the molded body, compared with Comparative Examples 1 and 2 where the diffusion treatment of the diffusing material was performed in the state of powder, the magnetic properties Was expensive. In particular, the coercive force and the squareness ratio were greatly improved. In addition, Comparative Examples 3 and 4 that were not subjected to the diffusion treatment had lower magnetic properties than Examples 1-8. Comparative Example 5 using rare earth compound powder not subjected to HDDR treatment had considerably lower magnetic properties than Examples 1-8. This is because the rare earth compound powder (Nd 2 Fe 14 B powder) that has not been subjected to HDDR treatment is not an anisotropic powder composed of a fine structure, so that even if the diffusion material diffuses into the rare earth compound powder. This is thought to be because the coercive force does not improve.

図2は、BHトレーサーを用いて測定した磁気ヒステリシスル−プである。図2中、「1」の曲線が、実施例1の希土類ボンド磁石の磁気ヒステリシスル−プであり、「2」の曲線が、比較例1の希土類ボンド磁石の磁気ヒステリシスル−プである。実施例1の希土類ボンド磁石の方が、比較例1よりも角型性に優れていることが確認された。   FIG. 2 is a magnetic hysteresis loop measured using a BH tracer. In FIG. 2, the curve “1” is the magnetic hysteresis loop of the rare earth bonded magnet of Example 1, and the curve “2” is the magnetic hysteresis loop of the rare earth bonded magnet of Comparative Example 1. It was confirmed that the rare earth bonded magnet of Example 1 was superior in squareness to Comparative Example 1.

10…希土類ボンド磁石(成形体)。   10: Rare earth bonded magnet (molded body).

Claims (4)

第1の希土類元素を含む水素化分解・脱水素再結合法による処理が施された希土類化合物粉末、及び前記第1の希土類元素とは異なる第2の希土類元素を含む拡散材を混合して混合粉末を調製する混合工程と、
前記混合粉末を磁場中成形して成形体を作製する成形工程と、
前記成形体を加熱して前記第2の希土類元素を前記希土類化合物粉末に拡散させる加熱工程と、を有しており、
前記拡散材は、前記第2の希土類元素のハロゲン化物、前記第2の希土類元素の水素化物、前記第2の希土類元素とFeの化合物、又は前記第2の希土類元素とFeとCoの化合物を含有する、前記第1の希土類元素及び前記第2の希土類元素を有する希土類化合物を含有する希土類磁石の製造方法。
Mixing and mixing a rare earth compound powder that has been subjected to a hydrocracking / dehydrogenation recombination process that includes a first rare earth element, and a diffusion material that includes a second rare earth element different from the first rare earth element A mixing step to prepare the powder;
A molding step of molding the mixed powder in a magnetic field to produce a molded body;
A heating step of diffusing the second rare-earth element by heating the molded body in the rare-earth compound powder, and have a,
The diffusing material comprises a halide of the second rare earth element, a hydride of the second rare earth element, a compound of the second rare earth element and Fe, or a compound of the second rare earth element and Fe and Co. A method for producing a rare earth magnet containing the rare earth compound containing the first rare earth element and the second rare earth element.
前記第2の希土類元素とFeの化合物がDy−Fe化合物であり、前記第2の希土類元素とFeとCoの化合物がDy−Fe−Co化合物である、請求項1に記載の希土類磁石の製造方法。2. The rare earth magnet manufacturing method according to claim 1, wherein the second rare earth element and Fe compound is a Dy—Fe compound, and the second rare earth element, Fe and Co compound is a Dy—Fe—Co compound. Method. 前記加熱工程の後に、前記成形体に樹脂を含浸して前記樹脂を硬化することにより希土類ボンド磁石を得る含浸工程を有する、請求項1又は2に記載の希土類磁石の製造方法。 After said heating step, with an impregnating step of obtaining a rare-earth bonded magnet by curing the resin by impregnating a resin into the molded body, method of producing the rare-earth magnet according to claim 1 or 2. 前記加熱工程の後に、
前記成形体を粉砕して粉砕粉末を調製する粉砕工程と、
前記粉砕粉末と樹脂との混合物を磁場中成形し、前記樹脂を硬化させて希土類ボンド磁石を得る磁石作製工程と、を有する、請求項1又は2に記載の希土類磁石の製造方法。
After the heating step,
Crushing step of crushing the molded body to prepare a pulverized powder;
Wherein a mixture of pulverized powder and a resin molded in a magnetic field, having a magnet producing step of obtaining a rare-earth bonded magnet by curing the resin, the method of producing the rare-earth magnet according to claim 1 or 2.
JP2010002995A 2009-03-30 2010-01-08 Rare earth magnet manufacturing method Expired - Fee Related JP4835758B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2010002995A JP4835758B2 (en) 2009-03-30 2010-01-08 Rare earth magnet manufacturing method
US12/749,165 US20100247367A1 (en) 2009-03-30 2010-03-29 Method of producing rare-earth magnet
EP10158135A EP2237289B1 (en) 2009-03-30 2010-03-29 Method of Producing Rare-Earth Magnet
CN2010101584810A CN101853724B (en) 2009-03-30 2010-03-30 Method of producing rare-earth magnet

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009082275 2009-03-30
JP2009082275 2009-03-30
JP2010002995A JP4835758B2 (en) 2009-03-30 2010-01-08 Rare earth magnet manufacturing method

Publications (2)

Publication Number Publication Date
JP2010258412A JP2010258412A (en) 2010-11-11
JP4835758B2 true JP4835758B2 (en) 2011-12-14

Family

ID=42174703

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010002995A Expired - Fee Related JP4835758B2 (en) 2009-03-30 2010-01-08 Rare earth magnet manufacturing method

Country Status (4)

Country Link
US (1) US20100247367A1 (en)
EP (1) EP2237289B1 (en)
JP (1) JP4835758B2 (en)
CN (1) CN101853724B (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102368439B (en) * 2011-11-22 2012-12-05 严高林 Optimization process method for preparing high-coercivity permanent magnet by adding heavy rare earth hydroxide into neodymium iron boron
JP5908271B2 (en) 2011-12-20 2016-04-26 三星電子株式会社Samsung Electronics Co.,Ltd. Polymer compound, oxygen permeable membrane, oxygen permeable material and electrochemical device
CN103050267B (en) * 2012-12-31 2016-01-20 厦门钨业股份有限公司 A kind of based on fine powder heat treated sintered Nd-Fe-B based magnet manufacture method
BR112015031725A2 (en) 2013-06-17 2017-07-25 Urban Mining Tech Company Llc method for manufacturing a recycled nd-fe-b permanent magnet
US9336932B1 (en) 2014-08-15 2016-05-10 Urban Mining Company Grain boundary engineering
CN107301916A (en) * 2016-04-15 2017-10-27 北京中科三环高技术股份有限公司 Anisotropy neodymium iron boron binding magnet and preparation method thereof
JP6652011B2 (en) * 2016-08-05 2020-02-19 Tdk株式会社 RTB based sintered magnet
CN108922765B (en) * 2018-07-11 2021-02-09 江西开源自动化设备有限公司 Method for manufacturing rare earth sintered permanent magnet
CN111354524B (en) * 2018-12-24 2021-10-01 董元 Preparation method of neodymium iron boron anisotropic bonded magnetic powder
CN113889336B (en) * 2021-12-08 2022-03-11 天津三环乐喜新材料有限公司 Preparation method of high-performance neodymium iron boron permanent magnet
CN114999807B (en) * 2022-06-29 2023-12-01 矿冶科技集团有限公司 Preservative for flexible neodymium-iron-boron magnet and method for surface preservative treatment of flexible neodymium-iron-boron magnet
CN118366743B (en) * 2024-06-14 2024-08-16 深圳众诚达应用材料股份有限公司 Rare earth permanent magnet diffusion source slurry and preparation method and application thereof

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03214609A (en) * 1990-01-19 1991-09-19 Fuji Elelctrochem Co Ltd Manufacture of bonded magnet
JPH0547528A (en) * 1990-08-16 1993-02-26 Inter Metallics Kk Manufacturing method of anisotropical rare earth bonded magnet
JP3540438B2 (en) * 1995-05-16 2004-07-07 Tdk株式会社 Magnet and manufacturing method thereof
JP3623571B2 (en) * 1995-11-20 2005-02-23 株式会社Neomax Method for producing RTB-based anisotropic bonded magnet
JP3597615B2 (en) * 1995-12-01 2004-12-08 株式会社Neomax Method for producing RTB based anisotropic bonded magnet
JP2000223306A (en) * 1998-11-25 2000-08-11 Hitachi Metals Ltd R-t-b rare-earth sintered magnet having improved squarene shape ratio and its manufacturing method
JP3452254B2 (en) * 2000-09-20 2003-09-29 愛知製鋼株式会社 Method for producing anisotropic magnet powder, raw material powder for anisotropic magnet powder, and bonded magnet
CN1246864C (en) * 2001-01-30 2006-03-22 株式会社新王磁材 Method for preparation of permanent magnet
JP2003168602A (en) * 2001-11-30 2003-06-13 Japan Science & Technology Corp Anisotropic rare earth bonded magnet and its manufacturing method
JP4029714B2 (en) * 2002-10-10 2008-01-09 日産自動車株式会社 High coercivity anisotropic magnet and manufacturing method thereof
CN1333410C (en) * 2003-01-16 2007-08-22 爱知制钢株式会社 Process for producing anisotropic magnet powder
US7357880B2 (en) * 2003-10-10 2008-04-15 Aichi Steel Corporation Composite rare-earth anisotropic bonded magnet, composite rare-earth anisotropic bonded magnet compound, and methods for their production
JP4867632B2 (en) * 2005-12-22 2012-02-01 株式会社日立製作所 Low loss magnet and magnetic circuit using it
EP1970916B1 (en) * 2006-05-18 2015-04-01 Hitachi Metals, Ltd. R-Fe-B POROUS MAGNET AND METHOD FOR PRODUCING THE SAME
JP4700578B2 (en) * 2006-08-30 2011-06-15 株式会社日立製作所 Method for producing high resistance rare earth permanent magnet

Also Published As

Publication number Publication date
EP2237289A1 (en) 2010-10-06
US20100247367A1 (en) 2010-09-30
CN101853724A (en) 2010-10-06
EP2237289B1 (en) 2012-09-19
CN101853724B (en) 2012-06-20
JP2010258412A (en) 2010-11-11

Similar Documents

Publication Publication Date Title
JP4835758B2 (en) Rare earth magnet manufacturing method
JP5472320B2 (en) Rare earth anisotropic magnet powder, method for producing the same, and bonded magnet
JP6202722B2 (en) R-T-B Rare Earth Sintered Magnet, R-T-B Rare Earth Sintered Magnet Manufacturing Method
JP5892139B2 (en) Rare earth anisotropic magnet and manufacturing method thereof
WO2008065903A1 (en) R-Fe-B MICROCRYSTALLINE HIGH-DENSITY MAGNET AND PROCESS FOR PRODUCTION THEREOF
JP2006303197A (en) Method for manufacturing r-t-b system sintered magnet
JP4543940B2 (en) Method for producing RTB-based sintered magnet
EP1494251A1 (en) Composite rare earth anisotropic bonded magnet, compound for composite rare earth anisotropic bonded magnet, and method for production thereof
WO2012043139A1 (en) Alloy material for r-t-b system rare earth permanent magnet, method for producing r-t-b system rare earth permanent magnet, and motor
JP2011216836A (en) Rare-earth bond magnet, method of manufacturing the same, and rotating machine
JP2010098080A (en) Method of manufacturing r-t-b system sintered magnet
JP3540438B2 (en) Magnet and manufacturing method thereof
JP5743458B2 (en) Alloy material for RTB-based rare earth permanent magnet, method for manufacturing RTB-based rare earth permanent magnet, and motor
JP2012199423A (en) Production method of anisotropic magnetic powder and anisotropic bond magnet
JP4702522B2 (en) R-T-B system sintered magnet and manufacturing method thereof
JP2011176014A (en) Manufacturing method for rare earth bonded magnet
JP2014192460A (en) Method of manufacturing r-t-x based powder-compacted magnet, and r-t-x based powder-compacted magnet
JP2005116991A (en) Composite rare earth anisotropic bond magnet, compound for composite rare earth anisotropic bond magnet, and method for manufacturing them
JP2011216641A (en) Method of manufacturing rare earth bond magnet
JP2011159919A (en) Method of manufacturing anisotropic rare earth bond magnet
JP3604853B2 (en) Manufacturing method of anisotropic bonded magnet
KR102236096B1 (en) Method for manufacturing ceramic bonded magnet and ceramic bonded magnet manufactured therefrom
KR102254190B1 (en) Method for manufacturing rare-earth based permanent magnet with magnetic anisotropy and rare-earth based permanent magnet with magnetic anisotropy manufactured therefrom
JP3670424B2 (en) Method for manufacturing anisotropic bonded magnet
JP3652751B2 (en) Anisotropic bonded magnet

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110412

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110830

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110912

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141007

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees