JP3535253B2 - Method for producing cast slab for R-Fe-B permanent magnet - Google Patents

Method for producing cast slab for R-Fe-B permanent magnet

Info

Publication number
JP3535253B2
JP3535253B2 JP06208795A JP6208795A JP3535253B2 JP 3535253 B2 JP3535253 B2 JP 3535253B2 JP 06208795 A JP06208795 A JP 06208795A JP 6208795 A JP6208795 A JP 6208795A JP 3535253 B2 JP3535253 B2 JP 3535253B2
Authority
JP
Japan
Prior art keywords
slab
roll
nozzle
permanent magnet
magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP06208795A
Other languages
Japanese (ja)
Other versions
JPH08229641A (en
Inventor
宏樹 徳原
尚幸 石垣
道夫 山田
雅己 植田
尊 児嶋
幸良 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to JP06208795A priority Critical patent/JP3535253B2/en
Publication of JPH08229641A publication Critical patent/JPH08229641A/en
Application granted granted Critical
Publication of JP3535253B2 publication Critical patent/JP3535253B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0572Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes with a protective layer

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、微細均質組織を有す
るR−Fe−B系永久磁石用鋳片の製造方法に係り、R
−Fe−B系合金溶湯を溶解炉にて溶解後、タンディッ
シュ先端部のノズルより、溶湯を特定の空隙長に配置さ
れ、且つ特定角度に配置された急冷片ロールに注湯して
急冷凝固して、Rリッチ相が微細に分散した均質組織を
有する特定厚の急冷鋳片を得ることを特徴とするR−F
e−B系永久磁石用鋳片の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an R--Fe--B based permanent magnet slab having a fine homogeneous structure.
-After the molten Fe-B alloy is melted in a melting furnace, the molten metal is poured from a nozzle at the tip of the tundish onto a quenched piece roll arranged at a specific gap length and at a specific angle, and rapidly solidified. To obtain a quenched slab of a specific thickness having a homogeneous structure in which the R-rich phase is finely dispersed.
The present invention relates to a method for producing a cast piece for an e-B permanent magnet.

【0002】[0002]

【従来の技術】高性能永久磁石として代表的なR−Fe
−B系永久磁石(特開昭59−46008号)は、三元
系正方晶化合物の主相とRリッチ相を有する組織にて高
い磁石特性が得られ、一般家庭の各種電器製品から大型
コンピューターの周辺機器まで幅広い分野で使用され、
用途に応じた種々の磁石特性を発揮するよう種々の組成
のR−Fe−B系永久磁石が提案されている。
2. Description of the Related Art A typical R-Fe as a high performance permanent magnet
-B-based permanent magnets (JP-A-59-46008) provide high magnet properties in a structure having a main phase and an R-rich phase of a ternary tetragonal compound, and can be used for various household electrical appliances and large computers. Used in a wide range of fields, including peripheral devices,
R-Fe-B permanent magnets of various compositions have been proposed so as to exhibit various magnet characteristics according to the application.

【0003】R−Fe−B系焼結磁石の残留磁束密度
(Br)を高めるためには、1)強磁性相であり、主相
のR2Fe14B相の存在量を多くすること、2)焼結体
の密度を主相の理論密度まで高めること、3)さらに、
主相結晶粒の磁化容易軸方向の配向度を高めることが要
求される。
In order to increase the residual magnetic flux density (Br) of the R—Fe—B based sintered magnet, 1) increasing the abundance of the main phase, R 2 Fe 14 B phase, which is a ferromagnetic phase; 2) increasing the density of the sintered body to the theoretical density of the main phase, 3)
It is required to increase the degree of orientation of the main phase crystal grains in the easy axis direction.

【0004】すなわち、前記1)項の達成のためには、
磁石の組成を上記R2Fe14Bの化学量論的組成に近づ
けることが重要であるが、上記組成の合金を溶解し、鋳
型に鋳造した合金塊を、出発原料としてR−Fe−B系
焼結磁石を作製しようとすると、合金塊に晶出したα−
Feや、R−rich相が局部的に遍在していることな
どから、特に微粉砕時に粉砕が困難となり、組成ずれを
生ずる等の問題があった。
That is, in order to achieve the above item 1),
It is important that the composition of the magnet be close to the stoichiometric composition of the above R 2 Fe 14 B, but an alloy lump obtained by melting an alloy having the above composition and casting in a mold is used as an R-Fe-B-based starting material. When trying to make a sintered magnet, the α-
Since Fe and the R-rich phase are locally ubiquitous, there is a problem that pulverization becomes difficult particularly during fine pulverization and a composition deviation occurs.

【0005】最近、鋳塊粉砕法によるR−Fe−B系合
金粉末の欠点たる結晶粒の粗大化、α−Feの残留、偏
析を防止するために、R−Fe−B系合金溶湯を双ロー
ル法により、特定板厚の鋳片となし、前記鋳片を通常の
粉末冶金法に従って、焼結磁石を製造する方法が提案
(特開昭63−317643号公報)されている。
Recently, in order to prevent coarsening of crystal grains, residual α-Fe, and segregation, which are disadvantages of the R-Fe-B alloy powder by the ingot grinding method, a molten R-Fe-B alloy is used. A method has been proposed in which a slab having a specific thickness is formed by a roll method and a sintered magnet is manufactured from the slab according to a usual powder metallurgy method (Japanese Patent Application Laid-Open No. 63-317643).

【0006】また、R−Fe−B系合金溶湯を片ロール
を用いて、横注ぎストリップキャスト法により永久磁石
用急冷鋳片を製造する方法として、タンディッシュ先端
部の水平方向に所要幅のノズルを設け、このノズルに隣
接させて片ロールを水平方向に軸支配置し、高周波溶解
炉にて溶解した溶湯をタンディッシュに収容後、該ノズ
ルから溶湯を水平配置されて連続回転する片ロール面に
注湯して、急冷凝固させて急冷鋳片を製造する方法が提
案(特開平5−222488号公報、特開平6−846
24号公報)されている。
A method of manufacturing a quenched cast for a permanent magnet by a horizontal casting strip casting method using a single roll of a molten R-Fe-B alloy has been proposed by using a nozzle having a required width in the horizontal direction at the tip of a tundish. Is provided adjacent to the nozzle, and a single roll is horizontally supported and placed in a tundish after melting the molten metal in the high-frequency melting furnace, and then the molten metal is horizontally disposed from the nozzle and continuously rotates. And quenched and solidified to produce quenched cast slabs (JP-A-5-222488, JP-A-6-846).
No. 24).

【0007】[0007]

【発明が解決しようとする課題】一般に、横注ぎストリ
ップキャスト法の場合、前記ノズルと片ロール間の空隙
より溶湯の漏洩流出を防止するため、前記空隙にはアル
ミナ、シリカ等の耐火物からなるクッション材を介在さ
せて、ノズル部を片ロールに押圧して使用していた。し
かし、前記クッション材が溶湯に接触しているため、凝
固した鋳片がクッション材に固着し、鋳片がクッション
材を徐々に引き裂きながら鋳造されるため、前記クッシ
ョン材が鋳片中に混入し、混入した耐火物は焼結時に磁
石合金の液相により還元され、例えば、耐火物がアルミ
ナの場合は、Al23が還元されてできたAlの回りに
希土類酸化物が集積した異常組織となり、焼結磁石の耐
食性を劣化する問題があった。
Generally, in the case of the horizontal casting strip casting method, the gap is made of a refractory material such as alumina or silica in order to prevent the molten metal from leaking out from the gap between the nozzle and the one roll. The nozzle portion was pressed against a single roll with a cushion material interposed, and used. However, since the cushion material is in contact with the molten metal, the solidified slab adheres to the cushion material, and the slab is cast while gradually tearing the cushion material, so that the cushion material is mixed into the slab. The mixed refractory is reduced by the liquid phase of the magnet alloy during sintering. For example, when the refractory is alumina, an abnormal structure in which rare earth oxides are accumulated around Al formed by reducing Al 2 O 3. Thus, there is a problem that the corrosion resistance of the sintered magnet is deteriorated.

【0008】また、横注ぎストリップキャスト法の場合
は、溶湯温度や溶湯と片ロールの熱伝達係数等が一定で
あれば、ノズル部の湯面高さとロール周速度、すなわち
溶湯と片ロールの接触長とロール周速度により、鋳片の
板厚および結晶組織が決定されるが、操業上、湯面高さ
を一定にすることは難しく、板厚が変動するために結晶
組織は大小にばらつく問題がある。かかる結晶組織の短
軸方向の結晶粒径の大きさとそのバラツキは、磁石特
性、特に保磁力を変動させるため、安定した磁石特性が
得難い問題があった。さらに、鋳片と片ロールの接触時
間が短かいと、鋳片の冷却が不十分で、鋳片が片ロール
を離れた時の鋳片温度が高いため、結晶粒は成長して粗
大化するため、磁石特性、特に保磁力が低下する問題が
あった。
In the case of the horizontal casting strip casting method, if the temperature of the molten metal and the heat transfer coefficient between the molten metal and the single roll are constant, the level of the molten metal in the nozzle portion and the peripheral speed of the roll, ie, the contact between the molten metal and the single roll, The thickness and crystal structure of the slab are determined by the length and the peripheral speed of the roll, but it is difficult to keep the molten metal level constant during operation, and the crystal structure varies from large to small due to the fluctuation of the plate thickness. There is. Since the size and the variation of the crystal grain size in the minor axis direction of the crystal structure fluctuate the magnet characteristics, particularly the coercive force, there is a problem that it is difficult to obtain stable magnet characteristics. Furthermore, if the contact time between the slab and the single roll is short, the cooling of the slab is insufficient, and the slab temperature when the slab leaves the single roll is high, so that the crystal grains grow and become coarse. Therefore, there has been a problem that magnet properties, particularly coercive force, are reduced.

【0009】この発明は、横注ぎストリップキャスト法
における溶湯と片ロールとの問題点を解消し、R−Fe
−B系永久磁石の耐食性の劣化を防止でき、また、結晶
組織を安定的に微細化でき、保磁力などの磁石特性がす
ぐれかつ安定したR−Fe−B系永久磁石用鋳片の製造
方法の提供を目的としている。
The present invention solves the problem of the molten metal and the single roll in the horizontal casting strip casting method, and
A method for producing a cast piece for an R-Fe-B permanent magnet, which can prevent deterioration of the corrosion resistance of the -B permanent magnet, stably refine the crystal structure, and have excellent and stable magnet properties such as coercive force. The purpose is to provide.

【0010】[0010]

【課題を解決するための手段】この発明は、発明者は、
横注ぎストリップキャスト法のクッション材の問題を解
消するため、ノズルとロール間のクッション材をなく
とを目的に種々検討した結果、ノズルとロール間の空
隙長はロール周速度によって変化し、周速度が速い程、
空隙長を大きくすることができ、又鋳造時の急冷片ロー
ルの熱膨張により空隙長が変化することより、予め急冷
片ロールの材質、周速度等により、空隙長を所要長さに
調整する必要があり、前々空隙長を0.01〜3.0m
mに設定することが重要であることを知見した。
SUMMARY OF THE INVENTION The present invention provides
To eliminate lateral pour cushion strip casting problems, to eliminate the cushioning material between the nozzle and the rolls
A result of various studies and this to the purpose, the air gap length between the nozzle and the roll is changed by the roll peripheral speed, as the peripheral speed is higher,
Since the gap length can be increased, and the gap length changes due to the thermal expansion of the quenched piece roll during casting, it is necessary to adjust the gap length to the required length in advance according to the material, peripheral speed, etc. of the quenched piece roll. And the gap length is set to 0.01 to 3.0 m
It has been found that setting m is important.

【0011】また、発明者は鋳片の厚みを0.03mm
〜10mmにして、その組織を微細化するため、ノズル
とロールとの位置関係について種々検討した結果、急冷
片ロールの最上部と中心点を結ぶ線とノズルとのなす角
度が30°〜90°になるよう配置することにより、急
冷片ロールにより鋳造される鋳片の厚みを0.03〜1
0mmの所要厚みとなし、その組織を微細化できること
を知見し、この発明を完成した。
Further, the inventor has set the thickness of the slab to 0.03 mm.
As a result of various investigations on the positional relationship between the nozzle and the roll to make the structure finer, the angle between the line connecting the uppermost portion and the center point of the quenched piece roll and the nozzle is 30 ° to 90 °. , The thickness of the slab cast by the quenched slab roll is reduced to 0.03 to 1
With the required thickness of 0 mm, it was found that the structure could be refined, and the present invention was completed.

【0012】すなわち、この発明は、真空中又は不活性
雰囲気でR-Fe-B系合金溶湯をノズルより急冷片ロールに
注湯して主相が R 2Fe 14B 結晶からなる急冷鋳片を得るR-F
e-B系永久磁石用鋳片の製造方法において、前記合金溶
湯を収容するタンディッシュ先端部のノズルを、急冷片
ロールの最上部と中心点を結ぶ線に対して、45°〜80°
の角度範囲位置に臨ませて配置し、かつ急冷片ロール表
面と前記ノズル端間0.01mm〜3.0mmの空隙長を設けて
注湯し、厚みが 0.03mm 10mm でかつ前記主相の短軸方向
の寸法が 0.1mm 50mm である急冷鋳片を得ることを特徴
とするR-Fe-B系永久磁石用鋳片の製造方法である。
That is, the present invention provides a quenched cast slab in which the main phase is made of R 2 Fe 14 B crystal by pouring a molten R-Fe-B alloy from a nozzle into a quenched roll in a vacuum or an inert atmosphere. Get RF
In the method for producing a cast piece for an eB permanent magnet, the nozzle at the tip of the tundish containing the molten alloy is set at 45 ° to 80 ° with respect to a line connecting the top and the center point of the quenched piece roll.
Placed facing the angle range position, and providing a gap length of 0.01 mm to 3.0 mm between the quenching piece roll surface and the nozzle end
Pouring, 0.03mm to 10mm thick and short axis direction of the main phase
Is a method for producing a slab for R-Fe-B-based permanent magnets, characterized in that a quenched slab having a dimension of 0.1 mm to 50 mm is obtained .

【0013】以下にこの発明においてR−Fe−B系永
久磁石を製造する合金鋳片の好ましい合金組成を説明す
る。この発明の永久磁石鋳片に含有される希土類元素R
はイットリウム(Y)を包含し、軽希土類及び重希土類
を包含する希土類元素である。Rとしては、軽希土類を
もって足り、特にNd,Prが好ましい。また通常Rの
うち1種もって足りるが、実用上は2種類以上の混合物
(ミッシュメタル、ジジム等)を入手上の便宜等の理由
により用いることができ、Sm,Y,La,Ce,Gd
等は他のR、特にNd,Pr等との混合物として用いる
ことができる。なお、このRは純希土類元素でなくても
よく、工業上入手可能な範囲で製造上不可避な不純物を
含有するものでも差し支えない。
The preferred alloy composition of the alloy slab for producing the R-Fe-B permanent magnet in the present invention will be described below. Rare earth element R contained in the permanent magnet slab of the present invention
Is a rare earth element containing yttrium (Y) and including light rare earth elements and heavy rare earth elements. As R, a light rare earth element is sufficient, and Nd and Pr are particularly preferable. Usually, one kind of R is sufficient, but in practice, a mixture of two or more kinds (mish metal, dymium, etc.) can be used for reasons such as convenience in obtaining, and Sm, Y, La, Ce, Gd
Etc. can be used as a mixture with other R, especially Nd, Pr and the like. Note that this R may not be a pure rare earth element, and may contain impurities that are unavoidable in production within the industrially available range.

【0014】Rは、R−Fe−B系永久磁石を製造する
合金鋳片の必須元素であって、10原子%未満では高磁
気特性、特に高保磁力が得られず、30原子%を越える
と残留磁束密度(Br)が低下して、すぐれた特性の永
久磁石が得られない。よって、Rは10原子%〜30原
子%の範囲とする。
R is an essential element of alloy slabs for producing R—Fe—B permanent magnets. If it is less than 10 atomic%, high magnetic properties, especially high coercive force, cannot be obtained. The residual magnetic flux density (Br) decreases, and a permanent magnet with excellent characteristics cannot be obtained. Therefore, R is in the range of 10 at% to 30 at%.

【0015】Bは、R−Fe−B系永久磁石を製造する
合金鋳片の必須元素であって、2原子%未満では高い保
磁力(iHc)は得られず、28%原子を越えると残留
磁束密度(Br)が低下するため、すぐれた永久磁石が
得られない。よって、Bは2原子%〜28原子%の範囲
とする。
B is an essential element of the alloy slab for producing the R—Fe—B permanent magnet. If it is less than 2 atomic%, a high coercive force (iHc) cannot be obtained. Since the magnetic flux density (Br) decreases, an excellent permanent magnet cannot be obtained. Therefore, B is set in the range of 2 to 28 atomic%.

【0016】Feは、R−Fe−B系永久磁石を製造す
る合金鋳片の必須元素であって、42原子%未満では残
留磁束密度(Br)が低下し、88%原子を超えると高
い保磁力が得られないので、Feは42原子%〜88原
子%に限定する。また、Feの一部をCo、Niの1種
又は2種で置換可能であり、これは永久磁石の温度特性
を向上させる効果及び耐食性を向上させる効果が得られ
るためであるが、Co、Niの1種又は2種はFeの5
0%を越えると高い保磁力が得られず、すぐれた永久磁
石が得られない。よって、Co、Niの1種又は2種の
置換量はFeの50%を上限とする。
Fe is an essential element of alloy slabs for producing R—Fe—B permanent magnets. When the content is less than 42 atomic%, the residual magnetic flux density (Br) decreases. Since magnetic force cannot be obtained, Fe is limited to 42 to 88 atomic%. Further, a part of Fe can be replaced by one or two of Co and Ni. This is because the effect of improving the temperature characteristics of the permanent magnet and the effect of improving the corrosion resistance can be obtained. Is one or two of Fe5
If it exceeds 0%, a high coercive force cannot be obtained, and an excellent permanent magnet cannot be obtained. Therefore, the upper limit of the substitution amount of one or two of Co and Ni is 50% of Fe.

【0017】この発明による合金鋳片において、高い残
留磁束密度と高い保磁力を共に有するすぐれた永久磁石
を得るためには、R12原子%〜16原子%、B4原子
%〜12原子%、Fe72原子%〜84原子%が好まし
い。、また、この発明による合金鋳片は、R、B、Fe
の他、酸素、C、Ca、Mgなどの工業的生産上不可避
的不純物の存在を許容できるが、Bの一部を4.0原子
%以下のC、3.5原子%以下のP、2.5原子%以下
のS、3.5原子%以下のCuのうち少なくとも1種、
合計量で4.0原子%以下で置換することにより、磁石
合金の製造性改善、低価格化が可能である。
In order to obtain an excellent permanent magnet having both a high residual magnetic flux density and a high coercive force in the alloy slab according to the present invention, R12 atomic% to 16 atomic%, B4 atomic% to 12 atomic%, and Fe 72 atomic%. % To 84 at%. Further, the alloy slab according to the present invention comprises R, B, Fe
In addition, the presence of unavoidable impurities such as oxygen, C, Ca, and Mg in industrial production can be tolerated, but a part of B is converted to 4.0 atomic% or less of C, 3.5 atomic% or less of P, At least one of S at most 3.5 at.%, Cu at most 3.5 at.%,
By replacing the total amount by 4.0 atomic% or less, it is possible to improve the productivity of the magnet alloy and reduce the price.

【0018】さらに、前記R、B、Fe合金あるいはC
oを含有するR−Fe−B合金に、9.5原子%以下の
Al、4.5原子%以下のTi、9.5原子%以下の
V、8.5原子%以下のCr、8.0原子%以下のM
n、5原子%以下のBi、12.5原子%以下のNb、
10.5原子%以下のTa、9.5原子%以下のMo、
9.5原子%以下のW、2.5原子%以下のSb、7原
子%以下のGe、35原子%以下のSn、5.5原子%
以下のZr、5.5原子%以下のHfのうち少なくとも
1種添加含有させることにより、永久磁石合金の高保磁
力が可能になる。この発明のR−Fe−B系永久磁石に
おいて、結晶相は主相が正方晶であることが不可欠であ
り、特に、微細で均一な合金粉末を得て、すぐれた磁気
特性を有する焼結永久磁石を作製するのに効果的であ
る。
Further, the R, B, Fe alloy or C
In an R-Fe-B alloy containing o, 9.5 atomic% or less of Al, 4.5 atomic% or less of Ti, V of 9.5 atomic% or less, Cr of 8.5 atomic% or less, M of 0 atomic% or less
n, Bi at 5 atomic% or less, Nb at 12.5 atomic% or less,
10.5 atomic% or less of Ta, 9.5 atomic% or less of Mo,
9.5 at% or less W, 2.5 at% or less Sb, 7 at% or less Ge, 35 at% or less Sn, 5.5 at%
By adding at least one of the following Zr and 5.5 atomic% or less of Hf, a high coercive force of the permanent magnet alloy becomes possible. In the R-Fe-B-based permanent magnet of the present invention, it is essential that the main phase of the crystal phase is tetragonal, and in particular, a sintered permanent magnet having excellent magnetic properties is obtained by obtaining a fine and uniform alloy powder. It is effective for producing a magnet.

【0019】この発明において、Rリッチ相が微細に分
散した組織を有する磁石材料の鋳片の板厚を0.03mm〜10
mmに限定した理由は、0.03mm未満では急冷効果が大とな
り、結晶粒径が3mmより小となり、粉末化した際に酸化
しやすくなるため、磁気特性の劣化を招来するととも
に、微粉砕後の粒子が多結晶となり配向度が低下しBrが
低下するので好ましくなく、また10mmを越えると、冷却
速度が遅くなり、α-Feが晶出しやすく、結晶粒径が大
となり、Ndリッチ相の遍在も生じるため、磁気特性、特
に保磁力が低下するので好ましくないことによる。より
好ましくは板厚0.05mm〜3mmである。
In the present invention, the thickness of the slab of the magnet material having a structure in which the R-rich phase is finely dispersed is set to 0.03 mm to 10 mm.
The reason for limiting to mm is that if it is less than 0.03 mm , the quenching effect will be large, the crystal grain size will be smaller than 3 mm, and it will be easy to oxidize when powdered, leading to deterioration of magnetic properties and after fine grinding. Undesirably, since the grains become polycrystalline, the degree of orientation decreases and Br decreases, and if it exceeds 10 mm, the cooling rate decreases, α-Fe tends to crystallize, the crystal grain size increases, and the Nd-rich phase This is not preferable because magnetic properties, especially coercive force, are reduced because of the presence of the magnetic flux. More preferably, the thickness is 0.05 mm to 3 mm.

【0020】この発明のストリップキャスティング法に
より得られた特定組成のR−Fe−B系合金の断面組織
は、主相のR2Fe14B結晶が従来の鋳型に鋳造して得
られた鋳塊のものに比べて、約1/10以上も微細であ
り、例えば、その短軸方向の寸法は0.1μm〜50μ
m、長軸方向は5μm〜200μmの微細結晶であり、
かつその主相結晶粒を取り囲むようにRリッチ相が微細
に分散されており、局部に遍在している領域において
も、その大きさは20μm以下である。
The cross-sectional structure of the R—Fe—B alloy having a specific composition obtained by the strip casting method according to the present invention is an ingot obtained by casting a main phase R 2 Fe 14 B crystal in a conventional mold. Is about 1/10 or more finer than that of, for example, its short axis dimension is 0.1 μm to 50 μm.
m, the long axis direction is a fine crystal of 5 μm to 200 μm,
In addition, the R-rich phase is finely dispersed so as to surround the main phase crystal grains, and the size thereof is 20 μm or less even in a locally ubiquitous region.

【0021】[0021]

【作用】この発明による製造方法の作用を図に基づいて
詳述する。図1はこの発明のストリップキャスティング
法に使用する装置の概略を示す説明図である。真空中も
しくは不活性雰囲気となした密閉室1内には、高周波溶
解炉2と先端部にノズル4を有するタンディッシュ3、
これに隣接配置する急冷用片ロール5、さらに急冷用片
ロール5面に接触させて設けるスクレパー6、並びに鋳
片回収容器7が配置、収容されている。急冷用片ロール
5は、水平方向に軸配置されて図示しない回転駆動装置
にて所定の回転数で水平回転する構成で、また、図示し
ない水冷装置で冷却されている。
The operation of the manufacturing method according to the present invention will be described in detail with reference to the drawings. FIG. 1 is an explanatory view schematically showing an apparatus used for the strip casting method of the present invention. A tundish 3 having a high-frequency melting furnace 2 and a nozzle 4 at a tip thereof is placed in a closed chamber 1 in a vacuum or an inert atmosphere.
A quenching piece roll 5 disposed adjacent thereto, a scraper 6 provided in contact with the surface of the quenching piece roll 5, and a slab collection container 7 are arranged and accommodated therein. The quenching piece roll 5 has a configuration in which the quenching piece roll 5 is axially arranged in a horizontal direction and horizontally rotates at a predetermined rotation speed by a rotation driving device (not shown), and is cooled by a water cooling device (not shown).

【0022】タンディッシュ3の先端部のノズル4は、
上記の急冷用片ロール5の最上部5aと中心点5bを結
ぶ線に対して、θ=30°〜90°の角度範囲位置に臨
むように配置され、かつ急冷用片ロール5表面より、空
隙長Tを0.01mm〜3.0mmに設定してある。溶
解炉2にて溶解したR−Fe−B系磁石組成の合金溶湯
8をタンディッシュ3内に傾注した後、タンディッシュ
3内の溶湯8は、急冷用片ロール5に対して所定の角度
範囲位置に所定の空隙長をもって配置されるノズル4よ
り、矢印方向に回転中の急冷用片ロール5面に注湯さ
れ、冷却されたロール面で急冷凝固して板厚0.03m
m〜10mmの鋳片となり、次いでスクレパー6にて掻
きとられたのち鋳片回収容器7に収納される。
The nozzle 4 at the tip of the tundish 3
It is arranged so as to face an angle range of θ = 30 ° to 90 ° with respect to a line connecting the uppermost portion 5a and the center point 5b of the quenching piece roll 5, and a gap is formed from the surface of the quenching piece roll 5 The length T is set to 0.01 mm to 3.0 mm. After the molten alloy 8 of the R—Fe—B magnet composition melted in the melting furnace 2 is poured into the tundish 3, the molten metal 8 in the tundish 3 is set in a predetermined angle range with respect to the quenching single roll 5. The molten metal is poured from the nozzle 4 disposed at a predetermined gap length to the surface of the quenching piece roll 5 rotating in the direction of the arrow, and quenched and solidified on the cooled roll surface to obtain a plate thickness of 0.03 m.
The slab is formed into a slab of m to 10 mm, then scraped off by the scraper 6 and stored in the slab recovery container 7.

【0023】この発明において、急冷片ロールの最上部
と中心線を結ぶ線に対してノズルの位置を30°〜90
°に限定した理由は、30°未満では鋳片とロールとの
接触時間が短く、鋳片の冷却が十分でなく、またノズル
部の湯面高さの変動による鋳片の板厚変動を生じ、鋳片
内組織の変化が大であり、所要の組織を得ることができ
ず、さらに90°を越えると溶湯がロール面を滑りやす
く、ノズル部での溶湯の凝固によるノズルづまりを発生
し易くなり好ましくないことによる。より好ましい角度
範囲は45°〜80°である。
In the present invention, the position of the nozzle is set to 30 ° to 90 ° with respect to a line connecting the uppermost portion of the quenching piece roll and the center line.
The reason for limiting to °° is that if it is less than 30 °, the contact time between the slab and the roll is short, the slab is not sufficiently cooled, and the thickness of the slab varies due to the variation in the level of the nozzle surface. The structure in the slab changes greatly, and the required structure cannot be obtained. If the angle exceeds 90 °, the molten metal easily slides on the roll surface, and the nozzle is liable to be clogged by solidification of the molten metal in the nozzle portion. It is not good. A more preferable angle range is 45 ° to 80 °.

【0024】又、この発明において、タンディッシュの
ノズル先端とロール面間の空隙長を0.01mm 〜
3.0mmに限定した理由は、0.01mm未満では急
冷ロールとノズルが接触してロール表面に疵を生成した
り、ノズル先端部が欠ける恐れがあり好ましくなく、ま
た、3.0mmを越えるとロール面とノズル間より湯洩
れを生ずるので好ましくない。好ましい空隙長は0.1
mm〜0.5mmである。
In the present invention, the gap length between the tip of the tundish nozzle and the roll surface is set to 0.01 mm or less.
The reason for limiting to 3.0 mm is that if it is less than 0.01 mm, the quenching roll and the nozzle come into contact with each other and flaws may be formed on the roll surface, or the tip of the nozzle may be chipped, which is not preferable. It is not preferable because the molten metal leaks from between the roll surface and the nozzle. The preferred void length is 0.1
mm to 0.5 mm.

【0025】[0025]

【実施例】【Example】

実施例1 図1に示す溶解炉、ノズルを有するタンディッシュ及び
急冷片ロールが収容される密閉室を真空となし、31.
0Nd−1.0Dy−1.1B−3.0Co−63.9
Fe(wt%)磁石になる如く、溶解炉にて溶解した。
急冷片ロールには、径300mm、回転数130rpm
の水冷Cuロールを用い、タンディッシュ先端部のノズ
ルは、水冷Cuロール最上部と中心点を結ぶ線に対して
角度60°並びに0.3mmの空隙をもって配置され、
Ar300Torrの雰囲気にした後、前記溶湯をタン
ディッシュ内に収容後、水冷Cuロール上に溶湯をノズ
ル部の湯面高さ20mmでノズルより注湯して、幅10
0mm、長さ10〜300mmの急冷鋳片を得た。
Example 1 A closed chamber containing a melting furnace, a tundish having a nozzle and a quenching piece roll shown in FIG.
0Nd-1.0Dy-1.1B-3.0Co-63.9
It was melted in a melting furnace so as to become a Fe (wt%) magnet.
The quenched piece roll has a diameter of 300 mm and a rotation speed of 130 rpm.
Using a water-cooled Cu roll, the nozzle at the tip of the tundish is arranged at an angle of 60 ° and a gap of 0.3 mm with respect to a line connecting the top of the water-cooled Cu roll and the center point,
After the atmosphere was Ar 300 Torr, the molten metal was housed in a tundish, and then poured on a water-cooled Cu roll from the nozzle at a nozzle height of 20 mm and a width of 10 mm.
A quenched slab of 0 mm and a length of 10 to 300 mm was obtained.

【0026】鋳片300枚を任意に選びその鋳片厚を測
定した結果、板厚0.23〜0.35mm、平均値0.
31mmであった。前記鋳片の結晶粒径は短軸方向の寸
法0.5μm〜15μm、長軸方向寸法は10μm〜2
50μmであり、Rリッチ相は主相を取囲むように1μ
m以下に微細に分散して存在することを確認した。
As a result of arbitrarily selecting 300 slabs and measuring the slab thickness, the plate thickness was 0.23 to 0.35 mm, and the average value was 0.3 mm.
It was 31 mm. The crystal grain size of the slab is 0.5 μm to 15 μm in the minor axis direction and 10 μm to 2 μm in the major axis direction.
50 μm, and the R-rich phase is 1 μm so as to surround the main phase.
It was confirmed that the particles were finely dispersed below m.

【0027】前記鋳片を公知の方法で粗粉砕、微粉砕し
て、平均粒度3.5μm合金粉末を得た後、磁場強度1
5kOe中で圧力1.0T/にて成型し、1060℃に
3時間の条件にて焼結後、600℃に1時間の時効処理
を行い、永久磁石を得た。得られた永久磁石の磁石特性
及び耐食性試験結果を表1に示す。なお、耐食性試験は
焼結磁石を15mm×15mm×8mm寸法に加工後、
膜厚25μmのエポキシ樹脂塗装をした後、磁石10個
を80℃×90%RHの環境に200時間保持した後、
その外観を検査する方法で行った。
The slab is coarsely and finely pulverized by a known method to obtain an alloy powder having an average particle size of 3.5 μm.
It was molded in 5 kOe at a pressure of 1.0 T /, sintered at 1060 ° C. for 3 hours, and then subjected to an aging treatment at 600 ° C. for 1 hour to obtain a permanent magnet. Table 1 shows the magnet properties and the corrosion resistance test results of the obtained permanent magnet. The corrosion resistance test was performed after processing the sintered magnet into a size of 15 mm x 15 mm x 8 mm.
After applying a 25 μm-thick epoxy resin coating, 10 magnets were kept in an environment of 80 ° C. × 90% RH for 200 hours.
It was performed by a method of inspecting its appearance.

【0028】比較例1 実施例1と同一の磁石組成を有する溶湯をタンディッシ
ュのノズルと急冷ロール間に厚み3mmのアルミナのク
ッション材を介在させる以外は、実施例1と同一の鋳造
条件、製造条件にて磁石を得た。得られた鋳片の結晶粒
径は実施例の場合とほぼ同一であった。また、得られた
永久磁石の磁石特性及び実施例1と同一の耐食性試験結
果を表1に表す。耐食性試験結果は、表に示すごとく、
磁石10個中3個の塗膜に直径0.5〜2mmのフクレ
が認められた。
Comparative Example 1 The same casting conditions and production as in Example 1 were carried out except that a 3 mm-thick alumina cushion material was interposed between the melt having the same magnet composition as in Example 1 and the tumbling nozzle and the quenching roll. A magnet was obtained under the conditions. The crystal grain size of the obtained slab was almost the same as that of the example. Table 1 shows the magnet properties of the obtained permanent magnet and the same corrosion resistance test results as in Example 1. As shown in the table, the corrosion resistance test results
Swelling having a diameter of 0.5 to 2 mm was observed in three coating films out of ten magnets.

【0029】上記のフクレ部の塗膜を除去してEPMA
により調査した結果、Alの周りにNd酸化物が集積し
ていることが確認された。鋳片に混入したAl23製の
クッション材が焼結時にNdリッチな液相により還元さ
れ、Alの周りにNd酸化物が集積するNd酸化物は耐
食性がきわめて悪く、水分と反応してNd(OH)3
変化するため、塗膜がふくれることが確認された。
After removing the coating film on the blisters, EPMA
As a result, it was confirmed that Nd oxide was accumulated around Al. The cushion material made of Al 2 O 3 mixed in the slab is reduced by the Nd-rich liquid phase during sintering, and the Nd oxide in which Nd oxide accumulates around Al has extremely poor corrosion resistance and reacts with moisture. Since it changed to Nd (OH) 3 , it was confirmed that the coating film was swollen.

【0030】比較例2 実施例1と同一磁石組成を有する溶湯を、ノズルと水冷
Cuロールの最上部と中心点を結ぶ線に対する角度が2
0°で、湯面高さ11mmで実施例1と同一の鋳造条
件、磁石化製造条件にて磁石を得た。得られた鋳片の寸
法は幅100mm長さ10〜300mmであり、鋳片3
00枚を任意に選び、厚みを測定した結果、板厚0.1
8〜0.42mm平均値0.32mmであった。また、
この比較例の鋳片結晶粒径は短軸方向は寸法3μm〜3
0μm、長軸方向寸法は30μm〜200μmであっ
た。得られた永久磁石の磁石特性及び耐食性試験結果を
第1表に表す。
COMPARATIVE EXAMPLE 2 A molten metal having the same magnet composition as in Example 1 was placed at an angle of 2 with respect to a line connecting the nozzle, the top of the water-cooled Cu roll, and the center point.
A magnet was obtained at 0 ° at a molten metal height of 11 mm under the same casting conditions and magnetizing production conditions as in Example 1. The dimensions of the obtained slab are 100 mm in width and 10 to 300 mm in length.
00 sheets were arbitrarily selected and the thickness was measured.
It was 8-0.42 mm and the average value was 0.32 mm. Also,
The crystal grain diameter of the slab of this comparative example is 3 μm to 3 in the minor axis direction.
0 μm, and the major axis dimension was 30 μm to 200 μm. Table 1 shows the magnet properties and the corrosion resistance test results of the obtained permanent magnets.

【0031】比較例3 実施例1と同一磁石組成を有する溶湯を、ノズルと水冷
Cuロールの最上部と中心点を結ぶ線に対する角度が1
00°で湯面高さ18mm以外は実施例1と同一の鋳造
条件で溶湯をノズルより注湯した。鋳造開始後12秒で
ノズル部で溶湯が凝固し、ノズルづまりが発生し、鋳造
できなくなった。
COMPARATIVE EXAMPLE 3 A molten metal having the same magnet composition as in Example 1 was placed at an angle of 1 with respect to a line connecting the nozzle, the top of the water-cooled Cu roll, and the center point.
The molten metal was poured from the nozzle under the same casting conditions as in Example 1 except that the molten metal surface height was 18 mm at 00 °. Twelve seconds after the start of casting, the molten metal solidified in the nozzle portion, clogging of the nozzle occurred, and casting became impossible.

【0032】[0032]

【表1】 [Table 1]

【0033】[0033]

【発明の効果】この発明は、横注ぎストリップキャスト
法における溶湯と片ロールとの問題点を解消するため、
ノズルとロール間のクッション材をなくし、かつノズル
とロール間の空隙長並びにノズルとロールとの位置関係
を特定し最適化することにより、実施例に明らかなよう
にクッション材の混入によるR−Fe−B系永久磁石の
耐食性の劣化を防止でき、また、結晶組織を安定的に微
細化でき、保磁力などがすぐれかつ安定した磁石特性の
R−Fe−B系永久磁石を得ることが可能な同系磁石用
鋳片を安定的に製造できる。
The present invention solves the problem of the molten metal and the single roll in the horizontal casting strip casting method.
By eliminating the cushion material between the nozzle and the roll, and specifying and optimizing the gap length between the nozzle and the roll and the positional relationship between the nozzle and the roll, the R-Fe It is possible to prevent the corrosion resistance of the -B permanent magnet from deteriorating, stably refine the crystal structure, and obtain an R-Fe-B permanent magnet having excellent coercive force and stable magnet properties. It is possible to stably produce casts for similar magnets.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明のストリップキャスティング法に使用
する装置の概略を示す説明図である。
FIG. 1 is an explanatory view schematically showing an apparatus used for a strip casting method of the present invention.

【符号の説明】[Explanation of symbols]

1 密閉室 2 高周波溶解炉 3 タンディッシュ 4 ノズル 5 急冷用片ロール 5a 最上部 5b 中心点 6 スクレパー 7 鋳片回収容器 8 合金溶湯 1 closed room 2 High frequency melting furnace 3 Tundish 4 nozzles 5 Roll for rapid cooling 5a Top 5b Center point 6 scraper 7 Slab collection container 8 molten alloy

───────────────────────────────────────────────────── フロントページの続き (72)発明者 植田 雅己 大阪府吹田市南吹田2丁目19番1号 住 友特殊金属株式会社 吹田製作所内 (72)発明者 児嶋 尊 大阪府吹田市南吹田2丁目19番1号 住 友特殊金属株式会社 吹田製作所内 (72)発明者 渡辺 幸良 大阪府吹田市南吹田2丁目19番1号 住 友特殊金属株式会社 吹田製作所内 (56)参考文献 特開 平6−297114(JP,A) 特表 昭63−501062(JP,A) (58)調査した分野(Int.Cl.7,DB名) B22D 11/06 360 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Masami Ueda 2-191-1, Minami Suita, Suita-shi, Osaka Sumitomo Special Metals Co., Ltd. In Suita Works (72) Inventor Takashi Kojima 2-chome, Minami Suita, Suita-shi, Osaka No. 19-1, Sumitomo Special Metals Co., Ltd., Suita Works (72) Inventor Yukiyoshi Watanabe 2-9-1, Minami Suita, Suita-shi, Osaka Sumitomo Special Metals Co., Ltd., Suita Works (56) References JP-A-6 -297114 (JP, A) Special table 63-63,1062 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) B22D 11/06 360

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 真空中又は不活性雰囲気でR-Fe-B系合金
溶湯をノズルより急冷片ロールに注湯して主相が R 2Fe 14
B 結晶からなる急冷鋳片を得るR-Fe-B系永久磁石用鋳片
の製造方法において、前記合金溶湯を収容するタンディ
ッシュ先端部のノズルを、急冷片ロールの最上部と中心
点を結ぶ線に対して、45°〜80°の角度範囲位置に臨ま
せて配置し、かつ急冷片ロール表面と前記ノズル端間
0.01mm〜3.0mmの空隙長を設けて注湯し、厚みが 0.03mm
10mm でかつ前記主相の短軸方向の寸法が 0.1mm 50mm
である急冷鋳片を得ることを特徴とするR-Fe-B系永久磁
石用鋳片の製造方法。
1. An R-Fe-B alloy melt is poured from a nozzle into a quenched roll in a vacuum or in an inert atmosphere, and the main phase is R 2 Fe 14.
In the method of manufacturing a slab for an R-Fe-B-based permanent magnet to obtain a quenched slab made of a B crystal, a nozzle at the tip of a tundish containing the molten alloy is connected to the top of the quenched slab roll and a center point. to the line, so as to face an angular range position of 45 ° to 80 ° are arranged, and a quench piece roll surface between the nozzle end
Pouring with a gap length of 0.01mm to 3.0mm , thickness 0.03mm
Is 0.1 mm ~ 50 mm minor axis dimension of ~ 10 mm and and said main phase
A method for producing a slab for an R-Fe-B-based permanent magnet, characterized by obtaining a quenched slab .
JP06208795A 1995-02-23 1995-02-23 Method for producing cast slab for R-Fe-B permanent magnet Expired - Lifetime JP3535253B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06208795A JP3535253B2 (en) 1995-02-23 1995-02-23 Method for producing cast slab for R-Fe-B permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06208795A JP3535253B2 (en) 1995-02-23 1995-02-23 Method for producing cast slab for R-Fe-B permanent magnet

Publications (2)

Publication Number Publication Date
JPH08229641A JPH08229641A (en) 1996-09-10
JP3535253B2 true JP3535253B2 (en) 2004-06-07

Family

ID=13189934

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06208795A Expired - Lifetime JP3535253B2 (en) 1995-02-23 1995-02-23 Method for producing cast slab for R-Fe-B permanent magnet

Country Status (1)

Country Link
JP (1) JP3535253B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE60131561T2 (en) * 2000-10-06 2008-03-06 Neomax Co., Ltd. METHOD FOR PRODUCING A RAW ALLOY THROUGH BELT FORMING FOR NANOVERIC COMPOSITE PERMANENT MAGNETS
JP4754739B2 (en) * 2001-09-03 2011-08-24 昭和電工株式会社 Alloy ingot for rare earth magnet, method for producing the same, and sintered magnet
JP3602120B2 (en) 2002-08-08 2004-12-15 株式会社Neomax Manufacturing method of quenched alloy for nanocomposite magnet
CN100371106C (en) * 2002-08-08 2008-02-27 株式会社新王磁材 Method and producing device for making rapidly solidified alloy for magnet
CN101256859B (en) * 2007-04-16 2011-01-26 有研稀土新材料股份有限公司 Rare-earth alloy casting slice and method of producing the same
JP5344296B2 (en) * 2009-03-30 2013-11-20 日立金属株式会社 TANDISH AND METHOD FOR PRODUCING R-T-B BASE ALLOY USING THE SAME
CN102179493B (en) * 2011-04-20 2013-03-20 钢铁研究总院 Vacuum continuous casting apparatus for high-temperature alloy

Also Published As

Publication number Publication date
JPH08229641A (en) 1996-09-10

Similar Documents

Publication Publication Date Title
JP4591633B2 (en) Nanocomposite bulk magnet and method for producing the same
EP1626418A2 (en) Rare-earth alloy, rare-earth sintered magnet, and methods of manufacturing
US6527874B2 (en) Rare earth magnet and method for making same
JP4389427B2 (en) Sintered magnet using alloy powder for rare earth-iron-boron magnet
JP4106099B2 (en) Method for producing slab for R-Fe-B magnet alloy
KR0151244B1 (en) Permanent magnet
JP2639609B2 (en) Alloy ingot for permanent magnet and method for producing the same
JP3535253B2 (en) Method for producing cast slab for R-Fe-B permanent magnet
US5690752A (en) Permanent magnet containing rare earth metal, boron and iron
JP4479944B2 (en) Alloy flake for rare earth magnet and method for producing the same
JP3505261B2 (en) Sm-Co permanent magnet material, permanent magnet and method for producing the same
JP3771710B2 (en) Raw material alloy for rare earth magnet and method for producing the same
JP3492823B2 (en) Quenching roll for magnet alloy production
JP2001355050A (en) R-t-b-c based rare earth magnet powder and bond magnet
EP1632299B1 (en) Method for producing rare earth based alloy powder and method for producing rare earth based sintered magnet
EP1263003B1 (en) Preparation of a rare earth magnet alloy powder for a bonded magnet and rare earth bonded magnet therewith
JP4238999B2 (en) Manufacturing method of rare earth sintered magnet
JPH07272914A (en) Sintered magnet, and its manufacture
JP3299630B2 (en) Manufacturing method of permanent magnet
JP3953768B2 (en) R-Fe-B-C magnet alloy slab with excellent corrosion resistance
JP3479168B2 (en) Method for producing cast piece for R-Fe-BC magnet alloy having excellent corrosion resistance
JP4680357B2 (en) Rare earth permanent magnet manufacturing method
JP4574820B2 (en) Method for producing magnet powder for rare earth bonded magnet
JP3455552B2 (en) Method for producing rare earth metal-iron binary alloy ingot for permanent magnet
JP3445405B2 (en) Manufacturing method of alloy slab and scraper for manufacturing alloy slab

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20031126

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20040115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040311

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080319

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080319

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090319

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100319

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100319

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110319

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140319

Year of fee payment: 10

EXPY Cancellation because of completion of term