JP3771710B2 - Raw material alloy for rare earth magnet and method for producing the same - Google Patents

Raw material alloy for rare earth magnet and method for producing the same Download PDF

Info

Publication number
JP3771710B2
JP3771710B2 JP08266698A JP8266698A JP3771710B2 JP 3771710 B2 JP3771710 B2 JP 3771710B2 JP 08266698 A JP08266698 A JP 08266698A JP 8266698 A JP8266698 A JP 8266698A JP 3771710 B2 JP3771710 B2 JP 3771710B2
Authority
JP
Japan
Prior art keywords
raw material
roll
alloy
material alloy
magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP08266698A
Other languages
Japanese (ja)
Other versions
JPH10317110A (en
Inventor
祐義 山本
尚志 前田
宏樹 徳原
尚幸 石垣
浩二 西尾
勝 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Neomax Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Neomax Co Ltd filed Critical Neomax Co Ltd
Priority to JP08266698A priority Critical patent/JP3771710B2/en
Publication of JPH10317110A publication Critical patent/JPH10317110A/en
Application granted granted Critical
Publication of JP3771710B2 publication Critical patent/JP3771710B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)

Description

【0001】
【産業上の利用分野】
この発明は、冷却用ロールを用いた急冷凝固法により製造される種々組成のR−T−B系磁石用原料合金の製造に係り、ロール表面に基材よりも熱伝導率の小さな材料による特定厚みの表面層を設けて緩冷却化し、得られる合金薄片のロール面側表面近傍に生成する微細なチル晶組織の量を少なく、すなわち、微細なチル晶組織の合金薄片の厚み断面に占める割合を5%以下となすことにより、合金薄片の微粉砕時に発生する微細粉末を減少させ、所定の粒度分布からなり磁気特性の向上が期待できる磁石用合金粉末の製造を可能にした、希土類系磁石用原料合金とその製造方法に関する。
【0002】
【従来の技術】
近年、高性能な希土類(R)系焼結磁石であるNd‐Fe‐B系焼結磁石は様々な分野で使用されている。例えば、ハードディスク装置など電子機器の内部に組み込まれるモーターをはじめ核磁気共鳴断層撮影装置(MRI)のような医療機器の磁界発生源などに、その需要は拡大するとともに、更なる高性能化の要求も増大している。かかる背景の中で、磁石特性の向上を目的とした原料合金の製造技術とそれによる原料合金に関しいくつかの提案がなされている。
【0003】
当初は、溶湯を鋳型に鋳込んだインゴットを粉砕、焼結して磁石を製造していたが、インゴット外周部と中心部では組織が著しく異なること、結晶粒が粗大であること及び粗大なFeが析出する等の問題があった。鋳造インゴットを粉砕して得た原料合金を用いて磁石化した場合、磁石粒子間及び磁石粒子内の希土類元素に不都合な偏在があり、磁石特性を劣化させるとともに、製造面でも焼結性、粉砕性、及び原料歩留まりを悪化させていた。
【0004】
かかる問題に対する解決策として、急冷ロールを用いた急冷凝固法に関するいくつかの提案がなされている。特開昭60‐89546号では急冷することにより5μm以下の正方晶組織を得ることにより優れた保磁力を持つ磁石を製作することができるとしている。また、特開昭63‐317643号では、急冷ロールを用いて得られる原料合金の柱状晶結晶粒径、鋳造板厚を規定して、得られる磁石の高性能化を図った製造方法が提案されている。
【0005】
特開平5‐222488号、特開平5‐295490号及び特開平7‐66022号には、急冷ロールによる製造条件、すなわち冷却速度、過冷度、冷却方向等を規定して適正な柱状組織を得ようとした製造方法が提案されている。
【0006】
さらに、特開平4−55042号、特開平5‐135919では、ロール外周部にCrメッキ層を10〜100μmで被覆してロールの耐久性を改善するとともに、適正な結晶粒径をより得やすくしようとした製造方法が提案されている。
【0007】
【発明が解決しようとする課題】
一方、R−T−B系焼結磁石の磁気特性の向上を考えると、鋳造インゴットを粉砕して得た場合も急冷ロールを用いて得られる薄帯合金を粉砕した原料合金を用いる場合も、粉砕時に発生する粒径1μm以下の微細粉は、酸化されやすくまた結晶粒径より小さいことにより磁石特性を悪化させ、原料歩留まりの低下をもたらすことが指摘されている。
【0008】
前述の冷却用ロールを用いた急冷凝固法により製造されるR−T−B系磁石用原料合金は、いずれも磁石の高性能化を図ることができるが、粉砕時に粒径1μm以下の微細粉の発生を防止することはできないものであった。さらなる磁石特性の向上には微細粉の除去が必要となるが、容易なことではなく、粉砕時に微細粉の発生が少ない原料合金が求められている。
【0009】
この発明は、冷却用ロールを用いた急冷凝固法により製造されるR−T−B系磁石用原料合金において、その粉砕時に粒径1μm以下の微細粉の発生の低減が可能な当該原料合金並びにその製造方法の提供を目的としている。
【0010】
【課題を解決するための手段】
発明者らは、急冷凝固法による希土類系薄帯合金の粉砕時における粒径1μm以下の微細粉の発生を解決するために、R−T−B系合金磁石用原料合金の急冷凝固組織を調査した結果、粉砕工程時に微細粉発生の要因として、ロール急冷による急冷時、主として鋳造片のロールと接触する側に図1及び図2に示すような等軸微細なチル晶組織が生成されており、この微細チル晶が粉砕工程において微細粉末を生成することを知見した。
【0011】
そこで、発明者らは、粉砕時の微細粉発生の原因である、ロールと接触する側に生成される微細チル晶組織の生成防止を図るために種々検討を重ねた結果、次の1)〜9)の点に着目し、この発明を完成させた。
【0012】
1) 従来、一般的に用いられている冷却ロールの材質は純銅またはこれに近い銅合金であり、熱伝導率が高い。
2) 鋳片の断面凝固組織のうち、ロール表面近傍領域においては凝固時の冷却速度が大きいために、過冷度も大きく、凝固の核生成速度が大きい。
3) 急冷凝固鋳片の断面組織のうち、核生成速度の大きいロール面側近傍領域には、微細なチル晶組織が生成しやすい。
4) 微細なチル晶組織の生成を防止するためにはロールの冷却面における材質を銅又は銅合金に比較して熱伝導率の低い材質に変更することが効果的である。
5) 一方、冷却用ロールそのものの材質を全て一様に熱伝導率の低いものに変更することは水冷によるロールの冷却効率の観点から望ましくない。
6) そこで、銅ロールの表面部分の材質のみを熱伝導率の低い材質に変更する、すなわち、表面改質による緩冷却化が効果的である。
7) 6)の方法によって製造される希土類系磁石原料合金の凝固組織においては、チル晶の生成率が低く、ロール面側から自由表面側に向かって均一な柱状晶組織を生成している。
8) 6)の方法によって微粉末の生成が抑制され、粉砕工程における歩留まりが改善され、また均一な粒度分布が得られる。
9) 6)の方法によって製造される希土類系磁石用原料合金を粉砕、成型、焼結して得られる焼結磁石は良好な磁気特性を有する。
【0013】
すなわち、この発明は、冷却用ロールを用いた急冷凝固法により製造されるR-T-B系磁石用原料合金であり、該原料合金のロール面に接触した薄帯表面近傍に生成する微細なチル晶組織の断面組織全体に占める面積比率(チル晶組織の平均生成比率)が5%以下、かつ柱状晶組織の平均 1 次デンドライトアーム間隔が 3 10 μ mである希土類系磁石用原料合金である。
【0014】
また、この発明は、R-T-B系合金溶湯を冷却用ロールにて急冷凝固させて合金薄帯を得る希土類系磁石用原料合金の製造方法において、冷却用ロールの溶湯冷却面にロール基材よりも熱伝導率の小さい材料からなる表面層を少なくとも0.1mmを超える厚みで形成し、異材質表面層による緩冷却化を施して急冷凝固し、該原料合金のロール面に接触した薄帯表面近傍に生成する微細なチル晶組織の断面組織全体に占める面積比率 ( チル晶組織の平均生成比率 ) 5% 以下、かつ柱状晶組織の平均 1 次デンドライトアーム間隔が 3 10 μ m である該原料合金を得る希土類系磁石用原料合金の製造方法である。
【0015】
【発明の実施の形態】
この発明により製造されるR‐T‐B系磁石用原料合金の組成は、希土類元素(R)、遷移金属元素(T)およびBを主成分とし、適宜選定される種々の添加元素、その他に溶製上不可避的な不純物元素により構成されるものである。これは、この発明による永久磁石を優れた磁気特性を示すR2141の原子比からなる正方晶の主磁性相と粒界に偏析して焼結工程において液相焼結を促進する役割を果たすRに富んだRリッチ相の2相でもって構成させるためである。
【0016】
Rは、具体的には、Ndを主成分とし、PrやDy等の希土類元素を含有してもよく、その組成範囲(Rの合計)は10原子%〜30原子%が望ましい。
10原子%未満では十分な保磁力(IHc)が得られず、また30原子%超えると十分な残留磁束密度(Br)が得られないからである。さらに望ましいRの範囲は、12〜15原子%である。
【0017】
Tは、具体的にはFeを主成分とし、Coを含有してもよく、その組成範囲は、42原子%〜88原子%である。42原子%未満では十分な残留磁束密度得られず、また88原子%超えると十分な保磁力が得られないからである。さらに望ましいTの範囲は、77〜84原子%である。Coによる置換は永久磁石の耐熱性および耐食性向上に効果的である。
【0018】
Bの組成範囲は、2原子%〜28原子%である。2原子%未満では十分な保磁力が得られず、また28原子%超えると十分な残留磁束密度Brが得られないからである。さらに望ましいTの範囲は、4〜8原子%である。
【0019】
さらに、前記R、B、Fe合金あるいはCoを含有するR−Fe−B合金に、9.5原子%以下のAl、4.5原子%以下のTi、9.5原子%以下のV、8.5原子%以下のCr、8.0原子%以下のMn、5原子%以下のBi、12.5原子%以下のNb、10.5原子%以下のTa、9.5原子%以下のMo、9.5原子%以下のW、2.5原子%以下のSb、7原子%以下のGe、3.5原子%以下のSn、5.5原子%以下のZr、5.5原子%以下のHfのうち少なくとも1種添加含有させることにより、永久磁石合金の高保磁力が可能になる。この発明のR−Fe−B系永久磁石において、結晶層は主層が正方晶であることが不可欠であり、特に、微細で均一な合金粉末を得て、すぐれた磁気特性を有する焼結永久磁石を作製するのに効果的である。
【0020】
この発明は、上述の組成になるように配合した合金溶湯を、常法に従ってArガスのような不活性雰囲気中あるいは真空中において、急冷ロールを用いて急冷凝固させてR‐T‐B系磁石用原料合金を製造するに際して、特に冷却用ロールの溶湯接触面を表面改質することにより緩冷却化を図ることを特徴としている。その理由は、後の粉砕工程において微粉末を生成する要因となる微細なチル晶組織の生成を抑制するためである。
【0021】
すなわち、急冷ロール本体に銅や銅合金のような熱伝導率の高い材料を用いることが多いが、溶湯の冷却効果が過大となり、鋳片のロール面側近傍に等軸微細なチル晶組織が生成しやすいが、ロールの表面にロール材質よりも熱伝導率の低い材料でもって表面改質を施すことによって微細なチル晶の生成を抑制することかできる。
【0022】
冷却用ロールの表面層の材料としては、Ni、Mo、Cr、WC‐Co、
アルミナ、TiN、SiC、AlN、Si34、ジルコニア、
Ni‐50Cr、Co−23Cr−12Al−0.5Y、
Co−32Ni‐21Cr‐8Al−0.5Υ、
Ni−22Cr−10Al−1Y、
Co‐28Cr−4W−3Fe‐1C、
Co−28Mo−17Cr‐3Si、
WC−27NiCr、Al23‐3TiO2
Al23‐25ZrO2‐2TiO2、A123‐22Si、
ZrO2‐8Y23、ZrO2−25MgO、WC−14CoCr、
Cr32‐25NiCr、ZrO2−33SiO2
Cr32、TiC、ZrC、ZrB2が効果的であり、もちろん、これらの材質を積層して複合的に用いてもよい。これらの材質が効果的な理由は、いずれの材質も銅や銅ベリリウムなどの銅を主成分とする合金に比較して熱伝導率が低いため、緩冷却化の効果が得られやすいからである。
【0023】
Niおよび/またはCrによる表面改質にはメッキ法が望ましい。また、Mo、WC‐Co、アルミナ、TiN、SiC、AlN、Si34
ジルコニア、Ni‐50Cr、Co−23Cr−12Al−0.5Y、
Co−32Ni‐21Cr‐8Al−0.5Υ、
Ni−22Cr−10Al−1Y、Co‐28Cr−4W−3Fe‐1C、
Co−28Mo−17Cr‐3Si、WC−27NiCr、
Al23‐3TiO2、Al23‐25ZrO2‐2TiO2
A123‐22Si、ZrO2‐8Y23、ZrO2−25MgO、
WC−14CoCr、Cr32‐25NiCr、ZrO2−33SiO2
Cr32、TiC、ZrC、ZrB2による表面改質には溶射が望ましい。その理由は、ロール本体との材質との密着性に優れるために熱伝達が良好であるためである。
【0024】
また、これらの表面層は複合的に用いてもよい。すなわち、例えば、ロール面にNi、MoまたはCrを単独であるいは複合的にメッキした後に、さらにその表面に、WC‐Co、アルミナ、TiN、SiC、AlN、Si34
ジルコニア、Ni‐50Cr、Co−23Cr−12Al−0.5Y、
Co−32Ni‐21Cr−8Al−0.5Y、
Ni‐22Cr−10Al−1Y、Co−28Cr−4W‐3Fe−1C、
Co−28Mo−17Cr‐3Si、WC−27NiCr、
Al23‐3TiO2、Al23‐25ZrO2‐2TiO2
Al23‐22Si、ZrO2‐8Υ23、ZrO2‐25MgO、
WC−14CoCr、Cr32‐25NiCr、ZrO2‐33SiO2
Cr32、TiC、ZrC、ZrB2を単独であるいは複合的に溶射しても良い。また、金属の複合溶射も効果的である。たとえば、
W‐Cu、Fe‐Ni‐Cuをそれぞれ複合溶射してもよい。さらに、金属とセラミックスの複合溶射を施してもよい。たとえば、
SiCとNiをダブルトーチを用いて複合溶射してもよく、この場合には溶射後の緻密化処理として熱間静水圧プレス(Hot Isostatic Pressing; HIP)を施すことが好ましい。
【0025】
冷却用ロールの表面層の厚みとしては、0.1mm以上、10mm以下の範囲が望ましい。0.1mm以下では合金鋳片の緩冷却化を十分に実現することができず、チル晶が生成してしまうためである。10mmを超えると、凝固組織の粗大化が著しいため、永久磁石に製造した場合に保磁力が低下する問題を生じ、さらに緩冷却化が過ぎるために初晶のγ‐Feが晶出し、凝固後の相変態によりα‐Fe相が原料合金中に残留して、粉砕特性ひいては磁石特性の低下を招来し好ましくない。この観点から、さらに望ましい表面層の厚み範囲は、Ni、
Mo、W−Cu、Fe−Ni−Cu、Ni−50Cr、
Co−23Cr−12Al−0.5Y、
Co−32Ni−21Cr−8Al−0.5Y、
Ni−22Cr−10Al−1Y、Co−28Cr−4W−3Fe−1C、
Co−28Mo−17Cr−3Siの場合は0.5mm、アルミナ、
TiN、SiC、AlN、Si34、ジルコニア、
Al23−3TiO2、Al23−25ZrO2−2TiO2
Al23−22Si、ZrO2−8Y23、ZrO2−25MgO、
WC−14CoCr、Cr32−25NiCr、ZrO2−33SiO2
Cr32、TiC、ZrC、ZrB2の場合は0.1〜2mm、
WC−Co、WC−27NiCrの場合は0.5〜4mmである。
【0026】
この発明の希土類磁石用原料合金は、上述の表面層を施した冷却用ロールを用いて製造されるが、その形態は単ロール法によっても双ロール法によっても良い。特に、双ロールを用いる場合には、溶湯の凝固鋳片の両側から進行するためにより均一な柱状晶組織をより厚く形成させることができる。その結果、原料合金の製造効率が向上し、また粉砕特性、磁石特性が向上するという利点がある。
【0027】
双ロール法の場合、溶湯の供給方法については、上注ぎ法あるいはタンディッシュを用いる横注ぎ法のいずれであっても良い。ロールのサイズについては、特に限定しないが、製造効率と内部の水冷による冷却効率の観点からは、径が200mm〜700mmで、幅が200mm〜1000mmであることが望ましい。
【0028】
上述のこの発明の冷却用ロールを用いたストリップキャスティング法により製造されるR‐T‐B系磁石用原料合金は、チル晶の生成率が低く均一な柱状晶組織を有する。具体的には、この発明のR−T−B系磁石用原料合金は、図1及び図2に示すごとく、ロール面側表面1近傍に生成するチル晶組織3の平均生成比率が、断面組織における面積比で5%以下で、且つ残部が均一な柱状晶組織4を有することを特徴とする。さらに望ましくは平均生成比率が2%以下である。
【0029】
ここで、この発明ではチル晶組織の平均生成比率について以下のように定義し、判定する。まず、組織観察用試料として、R−T−B系磁石用原料合金の縦断面組織を観察面に検出させ、偏光顕微鏡を用いて500倍で観察する。組織の検出には、原料合金を樹脂等に埋め込み研磨し、縦断面を仕上げバフ研磨により鏡面状に仕上げたものをそのまま用い、特に腐食液等による検出を要しない。観察には走査型電子顕微鏡の反射電子像を用いても良い。偏光像または反射電子像を用いるのはチル晶組織を鮮明に検出させるためである。
【0030】
観察する視野は、ロール面側近傍の断面組織を無作為に選択し、図1及び図2のごとき連続する400mm(500倍で)の縦断面組織写真を撮影する。同時に、例えば50倍程度の低倍率で組織写真を撮影しておき、先に観察した領域に対応する原料合金の総断面積を求めておく。次に、500倍で撮影した組織写真の中で、チル晶組織3を呈する領域の面積を求め、先に求めた総断面積との比をもってチル晶組織の生成比率とする。このような方法で、無作為に抽出した合計10個所の断面組織連続写真についてチル晶の生成比率を求め、チル晶組織の平均生成比率とする。
【0031】
また、通常柱状晶の1次デンドライトアーム間隔を柱状晶の粒径(又は短軸方向の粒径)としているが、均一な柱状晶組織とは、柱状晶組織の平均1次デンドライトアーム間隔が3〜10μmとなることである。ここで1次デンドライトアーム間隔は次のように定義し、判定する。まず、組織観察用試料として、
R−T−B系磁石用原料合金の縦断面組織を観察面に検出させ、通常の光学顕微鏡を用いて200倍で観察する。組織の検出には、原料合金を樹脂等に埋め込み研磨し、縦断面を仕上げバフ研磨により鏡面状に仕上げたものをそのまま用い、特に腐食液等による検出を要しない。
【0032】
観察する視野は、ロール面側近傍の断面組織を無作為に10視野選択し、200倍で縦断面組織写真を撮影する。これらの断面組織写真においてロール面側から20mm(写真上実寸)の位置に直線を引き、その直線を横切る1次アームの数をカウントする。その直線の長さに相当する試料実寸をカウントした数で除し、1次デンドライトアーム間隔とする。
【0033】
上述の合金組織を有するR−T−B系磁石用原料合金を得るためには、鋳片の厚みが0.1〜10mmであることが望ましい。0.1mm未満では冷却効果が過大となり、チル晶の生成比率が5%を超え、また、10mm以上では冷却効果が十分に発揮されず、凝固組織の粗大化やα‐Feの生成を招く問題がある。その観点から、さらに望ましい鋳片の厚みは0.2〜5mmである。
【0034】
上述の方法により製造されるR−T−B系磁石用原料合金は以下に述べる粉末冶金工程、すなわち、粉砕、磁場中成形、焼結、熱処理を施すことにより、磁石特性の良好な永久磁石に製造される。
【0035】
粉砕には、水素化‐脱水素による予備粉砕(水素粉砕)を施すことが好ましい。水素化処理は、R−T−B系磁石用原料合金をチャンバ内等で真空状態においた後、水素ガスを導入し、少なくとも5分以上保持した後にもう一度真空に引き、必要に応じてArガス等不活性ガスで置換し、室温まで冷却することによって処理する。水素化処理の後、脱水素処理を施すことにより、予備粉砕を施す。脱水素処理は100℃〜600℃で真空中に30分以上保持した後、室温まで冷却することにより処理する。
【0036】
上述の予備粉砕後、ジェットミルによる粉砕を施す。粉砕には乾式あるいは湿式のアトライタあるいはボールミルを用いても良い。粉砕後の平均粉末粒度は2〜8μmが望ましい。平均粒度が2μm未満の微粉末粒子は粉砕中に酸化されやすく、磁石特性を低下させるために使用できず、結果的に歩留まりの低下を招くという問題がある。平均粒度が8μm超の粗粉末粒子は焼結磁石の結晶粒組織を粗大にするため、保磁力の低下を招くという問題がある。この観点から、より望ましい平均粒度は2〜4μmである。
【0037】
この発明のR−T−B系磁石用原料合金に上述の一連の粉砕処理を施すことにより、従来材に比べて微粉末の少ない良好な粒度分布特性を有する粉末が得られる。磁場中成形においては、非磁性材料の型、例えばゴム製やオーステナイト系鋼製あるいはマルテンサイト系鋼製の型に上述の方法で得られるR−T−B系磁石用原料合金の粉末を充填し、パルス磁界を印加することによって粉末粒子を配向させた後にプレスにより成形する。またパルス磁界のかわりに静磁界あるいはパルス磁界と静磁界とを組み合わせても良い。
【0038】
焼結は、真空中あるいはAr不活性ガス雰囲気中において、
1030℃〜1150℃で2〜4時間処理する。その後必要に応じて450℃〜650℃で30〜90分の時効熱処理を施すことにより、この発明の永久磁石が製造される。また、この発明により製造された磁石用原料合金はHDDRプロセスへの適用も可能であり、ボンド磁石にも使用可能である。
【0039】
【実施例】
実施例1
表1に示す組成の合金を一旦0.01Torrまで減圧し、Arガスをゲージ圧0.2気圧まで注入した雰囲気中で高周波誘導加熱により溶解した。この溶湯を用いて図3に示す双ロール急冷装置により急冷凝固鋳片を作製した。図3は急冷凝固装置を模式的に示したもので、溶湯をタンデイッシュ5上方より注湯し、タンデイッシュ5内に一旦溜め、注湯するに従って湯面7は次第に上昇し。タンデイッシュ堰6より溢れ出てロール8に至る。ロール8は予め図中の矢印の方向に回転しており、ロール8により急冷凝固して急冷凝固鋳片9が作製される。
【0040】
ロールの直径は600mmで、その基材は銅ベリリウム合金を用い、その表面層の材質は表2及び表5に示すものとした。またロール間のギャップは1〜2mmになるように調整した。なお、この実施例は双ロールを使用した場合で説明するが、単ロールを使用した場合でも同様の効果が得られたことを確認した。
【0041】
得られた鋳片を3kg/cm2のH2ガス雰囲気に2時間保持して水素化処理し、その後真空中500℃で5時間保持して脱水素処理を施し、室温迄冷却することで予備粉砕とした。磁場成形については、得られた粉末をゴム製の型に充填し、30kOeのパルス磁界を瞬間的に印加することにより粉末を配向させた後に静水圧プレスを施した。この成形体を1090℃で3時間で保持して焼結した後、600℃で1時間の時効熱処理を施し、永久磁石を得た。
【0042】
この発明の方法により得られた鋳片のチル晶生成率は表3及び表6に示すように、5%以下であり、柱状晶の1次アーム間隔は3.2〜7μmとなり、粉砕後の微細粉生成率は低く、磁石の最大エネルギー積は比較例と較べて大きく良好であった。
【0043】
比較例1
急冷ロールの外周面を改質せずに、基材である銅ベリリウム合金のままのものを用いて、実施例と同様な試験を行った。その結果を比較例として表4に示す。デンライト1次アームの間隔は実施例と同様であったが、チル晶の生成率は5%を超えており、微粉生成率も高く、磁石特性も最大エネルギー積は実施例と比較して小さく劣るものであった。
【0044】
比較例2
厚さ50μmのCrメッキにより外周面を改質した急冷ロールを用い、実施例と同様の試験を行った。その結果を表4に示す。Crメッキでは、十分に緩冷却化の効果を得ることができないため、チル晶の生成率が5%を越え、微粉末を生成して歩留まりを低下させる問題があるほか、磁石特性もこの発明の実施例に比較して劣ることが明らかである。
【0045】
【表1】

Figure 0003771710
【0046】
【表2】
Figure 0003771710
【0047】
【表3】
Figure 0003771710
【0048】
【表4】
Figure 0003771710
【0049】
【表5】
Figure 0003771710
【0050】
【表6】
Figure 0003771710
【0051】
【発明の効果】
この発明は、冷却用ロールを用いた急冷凝固法により製造される種々組成のR−T−B系磁石用原料合金の製造に際し、ロール表面に基材よりも熱伝導率の小さな材料による特定厚みの表面層を設けて緩冷却化を図ることにより、微細なチル晶組織の生成を抑制でき、その結果、粉砕工程での微粉末の生成を防止して良好な粒度分布の成形用粉末を得ることを可能にした。さらに、その成形用粉末を用いて成形、焼結、時効熱処理を施すことにより、磁石特性の良好なR−T−B系磁石を提供することを可能とした。
【図面の簡単な説明】
【図1】単ロールによるR−T−B系磁石用原料合金の断面偏光顕微鏡組織図である。
【図2】単ロールによるR−T−B系磁石用原料合金の断面偏光顕微鏡組織図であり、図1の続きである。
【図3】双ロール急冷装置を模式的に示す説明図である。
【符号の説明】
1 ロール面側
2 自由表面側
3 チル晶組織
4 柱状晶組織
5 タンデイッシュ
6 タンデイッシュ堰
7 湯面
8 急冷ロール
9 急冷凝固鋳片[0001]
[Industrial application fields]
The present invention relates to the production of raw material alloys for RTB-based magnets of various compositions produced by a rapid solidification method using a cooling roll, and is specified by a material having a thermal conductivity smaller than that of the base material on the roll surface. A thin surface layer is provided for slow cooling and the amount of fine chill crystal structure formed near the roll surface side surface of the obtained alloy flakes is small, that is, the ratio of the fine chill crystal structure to the thickness cross section of the alloy flakes 5% or less to reduce the fine powder generated during fine pulverization of the alloy flakes, enabling the production of a magnet alloy powder that has a predetermined particle size distribution and can be expected to improve magnetic properties. The present invention relates to a raw material alloy and a manufacturing method thereof.
[0002]
[Prior art]
In recent years, Nd—Fe—B based sintered magnets, which are high performance rare earth (R) based sintered magnets, have been used in various fields. For example, the demand for magnetic field generation sources for medical equipment such as magnetic resonance tomography (MRI) as well as motors incorporated in electronic equipment such as hard disk drives is increasing, and demands for higher performance are required. Has also increased. In such a background, several proposals have been made regarding a raw material alloy manufacturing technique for the purpose of improving magnet characteristics and a raw material alloy thereby.
[0003]
Initially, magnets were manufactured by crushing and sintering ingots in which molten metal was cast into molds. However, the structure of the ingot was significantly different between the outer periphery and the center, the crystal grains were coarse, and the coarse Fe There was a problem such as precipitation. When a raw material alloy obtained by pulverizing a cast ingot is magnetized, there is an unfavorable uneven distribution of rare earth elements between the magnet particles and in the magnet particles, which deteriorates the magnet characteristics and sinterability and pulverization also in terms of production And the raw material yield was deteriorated.
[0004]
As a solution to such a problem, some proposals have been made regarding a rapid solidification method using a quench roll. JP-A-60-89546 states that a magnet having an excellent coercive force can be produced by obtaining a tetragonal structure of 5 μm or less by rapid cooling. Japanese Patent Laid-Open No. 63-317643 proposes a production method for improving the performance of a magnet obtained by defining the columnar crystal grain size and cast plate thickness of a raw material alloy obtained by using a quenching roll. ing.
[0005]
In JP-A-5-222488, JP-A-5-295490, and JP-A-7-66022, manufacturing conditions with a quenching roll, that is, a cooling rate, a degree of supercooling, a cooling direction, and the like are defined to obtain an appropriate columnar structure. Such a manufacturing method has been proposed.
[0006]
Further, in JP-A-4-55042 and JP-A-5-135919, the roll outer periphery is coated with a Cr plating layer with 10 to 100 μm to improve the durability of the roll and to make it easier to obtain an appropriate crystal grain size. A manufacturing method has been proposed.
[0007]
[Problems to be solved by the invention]
On the other hand, considering the improvement of the magnetic properties of the R-T-B system sintered magnet, both when the cast ingot is pulverized and when the raw material alloy obtained by pulverizing the ribbon alloy obtained using the quenching roll is used, It has been pointed out that a fine powder having a particle size of 1 μm or less generated during pulverization is easily oxidized and is smaller than the crystal particle size, thereby deteriorating magnet characteristics and reducing the raw material yield.
[0008]
The R-T-B magnet raw material alloy produced by the rapid solidification method using the cooling roll described above can improve the performance of the magnet, but it is a fine powder having a particle size of 1 μm or less when pulverized. It was impossible to prevent the occurrence of. To further improve the magnetic properties, it is necessary to remove fine powder. However, this is not easy, and there is a demand for a raw material alloy that generates less fine powder during pulverization.
[0009]
The present invention relates to a raw material alloy for an R-T-B system magnet manufactured by a rapid solidification method using a cooling roll, the raw material alloy capable of reducing the generation of fine powder having a particle size of 1 μm or less when pulverized, and It aims at providing the manufacturing method.
[0010]
[Means for Solving the Problems]
Inventors investigated the rapid solidification structure of a raw alloy for RTB-based alloy magnets in order to solve the generation of fine powder having a particle size of 1 μm or less during the pulverization of a rare earth-based ribbon alloy by the rapid solidification method. As a result, an equiaxed fine chill crystal structure as shown in FIGS. 1 and 2 is generated mainly on the side of the cast piece in contact with the roll during quenching by roll quenching as a cause of fine powder generation during the pulverization process. The fine chill crystals were found to produce fine powder in the pulverization process.
[0011]
Therefore, the inventors have conducted various studies in order to prevent the formation of a fine chill crystal structure produced on the side in contact with the roll, which is the cause of fine powder generation during pulverization. Focusing on the point 9), the present invention was completed.
[0012]
1) Conventionally, the material of the cooling roll generally used is pure copper or a copper alloy close thereto, and has high thermal conductivity.
2) Of the cross-section solidified structure of the slab, in the region near the roll surface, the cooling rate during solidification is large, so the degree of supercooling is large and the solidification nucleation rate is large.
3) Of the cross-sectional structure of the rapidly solidified slab, a fine chill crystal structure is likely to be generated in the region near the roll surface where the nucleation rate is high.
4) In order to prevent the formation of a fine chill crystal structure, it is effective to change the material on the cooling surface of the roll to a material having a lower thermal conductivity than copper or a copper alloy.
5) On the other hand, it is not desirable from the viewpoint of the cooling efficiency of the roll by water cooling to change all the materials of the cooling roll itself to one having a low thermal conductivity.
6) Therefore, only the material of the surface portion of the copper roll is changed to a material having low thermal conductivity, that is, slow cooling by surface modification is effective.
7) In the solidification structure of the rare earth magnet raw material alloy produced by the method of 6), the generation rate of chill crystals is low, and a uniform columnar crystal structure is generated from the roll surface side to the free surface side.
8) Production of fine powder is suppressed by the method of 6), the yield in the pulverization process is improved, and a uniform particle size distribution is obtained.
9) A sintered magnet obtained by pulverizing, molding and sintering a rare earth magnet raw material alloy produced by the method 6) has good magnetic properties.
[0013]
That is, the present invention is a RTB magnet raw material alloy produced by a rapid solidification method using a cooling roll, and has a fine chill crystal structure formed in the vicinity of the ribbon surface in contact with the roll surface of the raw material alloy. ratio area of total cross-sectional structure (average ratio of generated chill crystal structure) of 5% or less, and an average primary dendrite arm spacing of the columnar crystal structure is a material alloy for rare-earth magnet is a 3 ~ 10 μ m.
[0014]
Further, the present invention provides a method for producing a raw material alloy for a rare earth-based magnet in which an RTB alloy melt is rapidly solidified by a cooling roll to obtain an alloy ribbon. A surface layer made of a material with low conductivity is formed to a thickness of at least 0.1 mm, and it is cooled and solidified by slow cooling with a surface layer of a different material, and is generated near the surface of the ribbon contacting the roll surface of the raw material alloy fine chill crystals tissue area ratio to the whole sectional structure (average ratio of generated chill crystal structure) of 5% or less, and an average primary dendrite arm spacing of the columnar crystal structure is 3 ~ 10 mu m raw material alloy a method for producing a rare-earth material alloy magnet obtained.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
The composition of the raw material alloy for RTB-based magnets manufactured in accordance with the present invention is composed of rare earth elements (R), transition metal elements (T) and B as main components, and various additive elements selected as appropriate. It is composed of impurity elements unavoidable for melting. This promotes liquid phase sintering in the sintering process by segregating the permanent magnet according to the present invention to the tetragonal main magnetic phase and the grain boundary having an atomic ratio of R 2 T 14 B 1 showing excellent magnetic properties. This is because the structure is composed of two R-rich phases rich in R.
[0016]
Specifically, R may contain Nd as a main component and may contain rare earth elements such as Pr and Dy, and the composition range (the total of R) is preferably 10 atomic% to 30 atomic%.
This is because if it is less than 10 atomic%, a sufficient coercive force (IHc) cannot be obtained, and if it exceeds 30 atomic%, a sufficient residual magnetic flux density (Br) cannot be obtained. A more desirable range of R is 12 to 15 atomic%.
[0017]
T is specifically composed mainly of Fe and may contain Co, and its composition range is 42 atomic% to 88 atomic%. This is because a sufficient residual magnetic flux density cannot be obtained if it is less than 42 atomic%, and a sufficient coercive force cannot be obtained if it exceeds 88 atomic%. A more desirable range of T is 77 to 84 atomic%. Substitution with Co is effective in improving the heat resistance and corrosion resistance of the permanent magnet.
[0018]
The composition range of B is 2 atomic% to 28 atomic%. This is because if it is less than 2 atomic%, a sufficient coercive force cannot be obtained, and if it exceeds 28 atomic%, a sufficient residual magnetic flux density Br cannot be obtained. A more desirable range of T is 4 to 8 atomic%.
[0019]
Further, R, Fe, Fe alloy or R-Fe-B alloy containing Co is added to 9.5 atomic% or less of Al, 4.5 atomic% or less of Ti, 9.5 atomic% or less of V, 8 0.5 atomic% or less Cr, 8.0 atomic% or less Mn, 5 atomic% or less Bi, 12.5 atomic% or less Nb, 10.5 atomic% or less Ta, 9.5 atomic% or less Mo 9.5 atomic% or less W, 2.5 atomic% or less Sb, 7 atomic% or less Ge, 3.5 atomic% or less Sn, 5.5 atomic% or less Zr, 5.5 atomic% or less By adding at least one of Hf, the permanent magnet alloy can have a high coercive force. In the R—Fe—B permanent magnet of the present invention, it is indispensable that the crystal layer is a tetragonal main layer. In particular, a sintered permanent permanent having excellent magnetic properties can be obtained by obtaining a fine and uniform alloy powder. It is effective for producing a magnet.
[0020]
In the present invention, a molten alloy compounded to have the above-mentioned composition is rapidly solidified using a quenching roll in an inert atmosphere such as Ar gas or in a vacuum according to a conventional method, and an R-T-B system magnet. When manufacturing a raw material alloy, it is characterized in that a slow cooling is achieved particularly by modifying the surface of the molten metal contact surface of the cooling roll. The reason for this is to suppress the formation of a fine chill crystal structure that becomes a factor for producing fine powder in the subsequent pulverization step.
[0021]
That is, a material having high thermal conductivity such as copper or copper alloy is often used for the quench roll body, but the cooling effect of the molten metal becomes excessive, and an equiaxed fine chill crystal structure is formed near the roll surface side of the slab. Although it is easy to produce | generate, the production | generation of a fine chill crystal | crystallization can be suppressed by surface-modifying with the material whose heat conductivity is lower than a roll material on the surface of a roll.
[0022]
As a material for the surface layer of the cooling roll, Ni, Mo, Cr, WC-Co,
Alumina, TiN, SiC, AlN, Si 3 N 4 , zirconia,
Ni-50Cr, Co-23Cr-12Al-0.5Y,
Co-32Ni-21Cr-8Al-0.5%,
Ni-22Cr-10Al-1Y,
Co-28Cr-4W-3Fe-1C,
Co-28Mo-17Cr-3Si,
WC-27NiCr, Al 2 O 3 -3TiO 2,
Al 2 O 3 -25ZrO 2 -2TiO 2 , A1 2 O 3 -22Si,
ZrO 2 -8Y 2 0 3, ZrO 2 -25MgO, WC-14CoCr,
Cr 3 C 2 -25NiCr, ZrO 2 -33SiO 2,
Cr 3 C 2 , TiC, ZrC, and ZrB 2 are effective. Of course, these materials may be laminated and used in combination. The reason why these materials are effective is that any of these materials has a low thermal conductivity compared to an alloy containing copper as a main component, such as copper and copper beryllium, so that it is easy to obtain an effect of slow cooling. .
[0023]
Plating is desirable for surface modification with Ni and / or Cr. In addition, Mo, WC-Co, alumina, TiN, SiC, AlN, Si 3 N 4 ,
Zirconia, Ni-50Cr, Co-23Cr-12Al-0.5Y,
Co-32Ni-21Cr-8Al-0.5%,
Ni-22Cr-10Al-1Y, Co-28Cr-4W-3Fe-1C,
Co-28Mo-17Cr-3Si, WC-27NiCr,
Al 2 O 3 -3TiO 2 , Al 2 O 3 -25ZrO 2 -2TiO 2 ,
A1 2 O 3 -22Si, ZrO 2 -8Y 2 0 3 , ZrO 2 -25MgO,
WC-14CoCr, Cr 3 C 2 -25NiCr, ZrO 2 -33SiO 2,
Thermal spraying is desirable for surface modification with Cr 3 C 2 , TiC, ZrC, and ZrB 2 . The reason is that heat transfer is good because of excellent adhesion to the material of the roll body.
[0024]
These surface layers may be used in combination. That is, for example, after Ni or Mo or Cr is plated on the roll surface alone or in combination, WC-Co, alumina, TiN, SiC, AlN, Si 3 N 4 ,
Zirconia, Ni-50Cr, Co-23Cr-12Al-0.5Y,
Co-32Ni-21Cr-8Al-0.5Y,
Ni-22Cr-10Al-1Y, Co-28Cr-4W-3Fe-1C,
Co-28Mo-17Cr-3Si, WC-27NiCr,
Al 2 O 3 -3TiO 2 , Al 2 O 3 -25ZrO 2 -2TiO 2 ,
Al 2 O 3 -22Si, ZrO 2 -8Υ 2 O 3 , ZrO 2 -25MgO,
WC-14CoCr, Cr 3 C 2 -25NiCr, ZrO 2 -33SiO 2,
Cr 3 C 2 , TiC, ZrC, ZrB 2 may be sprayed alone or in combination. Also, metal composite spraying is effective. For example,
W-Cu and Fe-Ni-Cu may be composite sprayed respectively. Further, composite spraying of metal and ceramics may be performed. For example,
SiC and Ni may be composite sprayed using a double torch. In this case, it is preferable to perform hot isostatic pressing (HIP) as a densification treatment after spraying.
[0025]
The thickness of the surface layer of the cooling roll is preferably in the range of 0.1 mm or more and 10 mm or less. If the thickness is 0.1 mm or less, the alloy slab cannot be sufficiently cooled slowly, and chill crystals are generated. If the thickness exceeds 10 mm, the solidification structure becomes very coarse, which causes a problem of reduced coercive force when manufactured into a permanent magnet. Further, since the cooling is too slow, the primary γ-Fe crystallizes out and solidifies. Due to this phase transformation, the α-Fe phase remains in the raw material alloy, which leads to a decrease in pulverization characteristics and consequently magnet characteristics, which is not preferable. From this point of view, the more desirable surface layer thickness range is Ni,
Mo, W-Cu, Fe-Ni-Cu, Ni-50Cr,
Co-23Cr-12Al-0.5Y,
Co-32Ni-21Cr-8Al-0.5Y,
Ni-22Cr-10Al-1Y, Co-28Cr-4W-3Fe-1C,
In the case of Co-28Mo-17Cr-3Si, 0.5 mm, alumina,
TiN, SiC, AlN, Si 3 N 4 , zirconia,
Al 2 O 3 -3TiO 2 , Al 2 O 3 -25ZrO 2 -2TiO 2 ,
Al 2 O 3 -22Si, ZrO 2 -8Y 2 O 3, ZrO 2 -25MgO,
WC-14CoCr, Cr 3 C 2 -25NiCr, ZrO 2 -33SiO 2,
In the case of Cr 3 C 2 , TiC, ZrC, ZrB 2 , 0.1 to 2 mm,
In the case of WC-Co and WC-27NiCr, the thickness is 0.5 to 4 mm.
[0026]
The raw material alloy for rare earth magnets of the present invention is manufactured using the cooling roll having the above-mentioned surface layer, and the form may be either a single roll method or a twin roll method. In particular, when twin rolls are used, a more uniform columnar crystal structure can be formed thicker because it proceeds from both sides of the solidified cast slab. As a result, there are advantages that the production efficiency of the raw material alloy is improved, and the pulverization characteristics and the magnet characteristics are improved.
[0027]
In the case of the twin roll method, the molten metal supply method may be either an upper pouring method or a horizontal pouring method using a tundish. Although it does not specifically limit about the size of a roll, From a viewpoint of manufacturing efficiency and the cooling efficiency by internal water cooling, it is desirable that a diameter is 200 mm-700 mm and a width | variety is 200 mm-1000 mm.
[0028]
The RTB-based magnet raw material alloy produced by the above-described strip casting method using the cooling roll of the present invention has a uniform columnar crystal structure with a low generation rate of chill crystals. Specifically, as shown in FIGS. 1 and 2, the RTB-based magnet raw material alloy according to the present invention has an average generation ratio of the chill crystal structure 3 generated in the vicinity of the roll surface side surface 1 in the cross-sectional structure. The area ratio is 5% or less, and the remainder has a uniform columnar crystal structure 4. More preferably, the average production ratio is 2% or less.
[0029]
Here, in the present invention, the average generation ratio of the chill crystal structure is defined and determined as follows. First, as a structure observation sample, the longitudinal cross-sectional structure of the R-T-B magnet raw material alloy is detected on the observation surface and observed at 500 times using a polarizing microscope. The structure is detected by embedding the raw material alloy in resin or the like and polishing the longitudinal section into a mirror surface by finishing buffing, and does not require detection with a corrosive liquid or the like. For the observation, a reflection electron image of a scanning electron microscope may be used. The reason why the polarized image or the reflected electron image is used is to detect the chill crystal structure clearly.
[0030]
For the field of view, a cross-sectional structure in the vicinity of the roll surface side is selected at random, and a continuous 400 mm (at 500 times) vertical cross-sectional structure photograph as shown in FIGS. 1 and 2 is taken. At the same time, for example, a structure photograph is taken at a low magnification of about 50 times, and the total cross-sectional area of the raw material alloy corresponding to the previously observed region is obtained. Next, the area of the region exhibiting the chill crystal structure 3 is determined in the structure photograph taken at a magnification of 500 times, and the ratio to the total cross-sectional area previously determined is used as the generation ratio of the chill crystal structure. By using such a method, the generation ratio of chill crystals is obtained for a total of 10 cross-sectional structure continuous photographs randomly extracted, and the average generation ratio of chill crystal structures is obtained.
[0031]
In addition, the primary dendrite arm interval of the columnar crystals is usually the columnar crystal grain size (or minor axis direction particle size). The uniform columnar crystal structure is an average primary dendrite arm interval of 3 columnar crystal structures. 10 μm. Here, the primary dendrite arm interval is defined and determined as follows. First, as a tissue observation sample,
The longitudinal cross-sectional structure of the R-T-B magnet raw material alloy is detected on the observation surface and observed at 200 times using a normal optical microscope. The structure is detected by embedding the raw material alloy in resin or the like and polishing the longitudinal section into a mirror surface by finishing buffing, and does not require detection with a corrosive liquid or the like.
[0032]
As the visual field to be observed, 10 visual fields are selected at random from the cross-sectional structure in the vicinity of the roll surface, and a longitudinal cross-sectional structural photograph is taken at 200 times. In these sectional structure photographs, a straight line is drawn at a position of 20 mm (actual size on the photograph) from the roll surface side, and the number of primary arms crossing the straight line is counted. Divide the actual sample size corresponding to the length of the straight line by the counted number to obtain the primary dendrite arm interval.
[0033]
In order to obtain an R-T-B magnet raw material alloy having the above-described alloy structure, it is desirable that the thickness of the slab is 0.1 to 10 mm. If the thickness is less than 0.1 mm, the cooling effect becomes excessive, the generation ratio of chill crystals exceeds 5%, and if it is 10 mm or more, the cooling effect is not sufficiently exerted, resulting in coarsening of the solidified structure and generation of α-Fe. There is. From that point of view, a more desirable slab thickness is 0.2 to 5 mm.
[0034]
The raw material alloy for R-T-B system magnets manufactured by the above-mentioned method is subjected to the powder metallurgy process described below, that is, by crushing, forming in a magnetic field, sintering, and heat treatment, to obtain a permanent magnet having good magnet characteristics. Manufactured.
[0035]
For pulverization, it is preferable to perform preliminary pulverization (hydrogen pulverization) by hydrogenation-dehydrogenation. In the hydrogenation process, the raw material alloy for the R-T-B system magnet is placed in a vacuum state in a chamber or the like, then hydrogen gas is introduced, held for at least 5 minutes, and then evacuated again, and if necessary, Ar gas Treat by replacing with an inert gas and cooling to room temperature. After the hydrogenation treatment, preliminary pulverization is performed by performing a dehydrogenation treatment. The dehydrogenation treatment is carried out by holding at 100 to 600 ° C. in a vacuum for 30 minutes or more and then cooling to room temperature.
[0036]
After the above preliminary pulverization, pulverization by a jet mill is performed. A dry or wet attritor or ball mill may be used for pulverization. The average powder particle size after pulverization is desirably 2 to 8 μm. Fine powder particles having an average particle size of less than 2 μm are liable to be oxidized during pulverization and cannot be used to reduce magnet properties, resulting in a decrease in yield. Coarse powder particles having an average particle size of more than 8 μm have a problem that the coercive force is lowered because the crystal grain structure of the sintered magnet is coarsened. From this viewpoint, the more desirable average particle size is 2 to 4 μm.
[0037]
By subjecting the R-T-B magnet raw material alloy of this invention to the above-described series of pulverization treatments, a powder having good particle size distribution characteristics with fewer fine powders than conventional materials can be obtained. In forming in a magnetic field, a non-magnetic material mold, for example, a mold made of rubber, austenitic steel, or martensitic steel, is filled with powder of the raw alloy for the R-T-B magnet obtained by the above method. The powder particles are oriented by applying a pulsed magnetic field and then shaped by pressing. Further, a static magnetic field or a combination of a pulse magnetic field and a static magnetic field may be used instead of the pulse magnetic field.
[0038]
Sintering is performed in vacuum or in an Ar inert gas atmosphere.
Treat at 1030-1150 ° C. for 2-4 hours. Then, the permanent magnet of this invention is manufactured by performing aging heat processing for 30 to 90 minutes at 450 to 650 degreeC as needed. In addition, the magnet raw material alloy produced according to the present invention can be applied to the HDDR process, and can also be used for bonded magnets.
[0039]
【Example】
Example 1
An alloy having the composition shown in Table 1 was once depressurized to 0.01 Torr and dissolved by high frequency induction heating in an atmosphere in which Ar gas was injected to a gauge pressure of 0.2 atm. Using this molten metal, a rapidly solidified slab was produced by a twin roll quenching apparatus shown in FIG. FIG. 3 schematically shows a rapid solidification apparatus. The molten metal is poured from above the tundish 5, temporarily accumulated in the tundish 5, and the molten metal surface 7 gradually rises as the molten metal is poured. It overflows from the tundish weir 6 and reaches the roll 8. The roll 8 rotates in advance in the direction of the arrow in the figure, and is rapidly solidified by the roll 8 to produce a rapidly solidified slab 9.
[0040]
The diameter of the roll was 600 mm, the base material was a copper beryllium alloy, and the material of the surface layer was as shown in Tables 2 and 5. The gap between the rolls was adjusted to be 1 to 2 mm. In addition, although this Example demonstrates by the case where a twin roll is used, it confirmed that the same effect was acquired even when the single roll was used.
[0041]
The obtained slab is hydrogenated by holding it in an H 2 gas atmosphere of 3 kg / cm 2 for 2 hours, and then dehydrogenating by holding it at 500 ° C. for 5 hours in a vacuum, followed by cooling to room temperature. It was pulverized. For magnetic field molding, the obtained powder was filled into a rubber mold, and the powder was oriented by instantaneously applying a pulse magnetic field of 30 kOe, followed by hydrostatic pressing. The molded body was sintered at 1090 ° C. for 3 hours and then subjected to aging heat treatment at 600 ° C. for 1 hour to obtain a permanent magnet.
[0042]
As shown in Tables 3 and 6, the chill crystal production rate of the slab obtained by the method of the present invention is 5% or less, and the primary arm interval of the columnar crystals is 3.2 to 7 μm, and after pulverization The fine powder production rate was low, and the maximum energy product of the magnet was large and good compared to the comparative example.
[0043]
Comparative Example 1
A test similar to the example was performed using the copper beryllium alloy as the base material without modifying the outer peripheral surface of the quenching roll. The results are shown in Table 4 as comparative examples. The distance between the denlite primary arms was the same as in the example, but the generation rate of chill crystals exceeded 5%, the generation rate of fine powder was high, and the maximum energy product of the magnet characteristics was small and inferior compared to the example. It was a thing.
[0044]
Comparative Example 2
The same test as in the example was performed using a quenching roll whose outer peripheral surface was modified by Cr plating with a thickness of 50 μm. The results are shown in Table 4. In Cr plating, since the effect of slow cooling cannot be obtained sufficiently, there is a problem that the yield of chill crystals exceeds 5% and fine powder is produced and the yield is lowered. Obviously, it is inferior to the examples.
[0045]
[Table 1]
Figure 0003771710
[0046]
[Table 2]
Figure 0003771710
[0047]
[Table 3]
Figure 0003771710
[0048]
[Table 4]
Figure 0003771710
[0049]
[Table 5]
Figure 0003771710
[0050]
[Table 6]
Figure 0003771710
[0051]
【The invention's effect】
In the production of R-T-B magnet raw materials having various compositions produced by a rapid solidification method using a cooling roll, the present invention provides a specific thickness for the roll surface due to a material having a smaller thermal conductivity than the base material. By forming a surface layer of this material and slow cooling, the formation of fine chill crystal structure can be suppressed, and as a result, the formation of fine powder in the pulverization process can be prevented and a molding powder having a good particle size distribution can be obtained. Made it possible. Furthermore, it has become possible to provide an R-T-B magnet having good magnet characteristics by performing molding, sintering, and aging heat treatment using the molding powder.
[Brief description of the drawings]
FIG. 1 is a cross-sectional polarization microscope structure diagram of a raw material alloy for RTB-based magnets using a single roll.
FIG. 2 is a cross-sectional polarization microscope structure diagram of a raw material alloy for RTB-based magnets using a single roll, and is a continuation of FIG.
FIG. 3 is an explanatory view schematically showing a twin roll quenching apparatus.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Roll surface side 2 Free surface side 3 Chill crystal structure 4 Columnar crystal structure 5 Tundish 6 Tundish weir 7 Hot water surface 8 Rapid cooling roll 9 Rapid solidification cast

Claims (3)

冷却用ロールを用いた急冷凝固法により製造されるR-T-B系磁石用原料合金であり、該原料合金のロール面に接触した薄帯表面近傍に生成する微細なチル晶組織の断面組織全体に占める面積比率(チル晶組織の平均生成比率)が5%以下、かつ柱状晶組織の平均 1 次デンドライトアーム間隔が 3 10 μ mである希土類系磁石用原料合金。An RTB magnet raw material alloy produced by a rapid solidification method using a cooling roll, the area occupying the entire cross-sectional structure of the fine chill crystal structure formed in the vicinity of the ribbon surface in contact with the roll surface of the raw material alloy ratio (chill crystals average ratio of generated tissue) of 5% or less, and columnar crystal average primary dendrite arm spacing of the tissue is 3 ~ 10 mu m rare-earth magnet material alloy. R-T-B系合金溶湯を冷却用ロールにて急冷凝固させて合金薄帯を得る希土類系磁石用原料合金の製造方法において、冷却用ロールの溶湯冷却面にロール基材よりも熱伝導率の小さい材料からなる表面層を少なくとも0.1mmを超える厚みで形成し、異材質表面層による緩冷却化を施して急冷凝固し、該原料合金のロール面に接触した薄帯表面近傍に生成する微細なチル晶組織の断面組織全体に占める面積比率 ( チル晶組織の平均生成比率 ) 5% 以下、かつ柱状晶組織の平均 1 次デンドライトアーム間隔が 3 10 μ m である該原料合金を得る希土類系磁石用原料合金の製造方法。In the manufacturing method of a raw material alloy for a rare earth magnet, which rapidly solidifies an RTB alloy melt with a cooling roll to obtain an alloy ribbon, a material having a lower thermal conductivity than the roll base material is used on the molten metal cooling surface of the cooling roll. A fine chill crystal structure formed in the vicinity of the ribbon surface in contact with the roll surface of the raw material alloy. ratio area to the total of the cross-sectional structure (chill crystals average ratio of generated tissue) of 5% or less, and rare-earth system magnets to obtain a raw material alloy average primary dendrite arm spacing of the columnar crystal structure is 3 ~ 10 μ m Raw material alloy manufacturing method. 請求項2において、表面層厚みが0.1mmを超え、10mm以下である希土類系磁石用原料合金の製造方法。  3. The method for producing a raw material alloy for a rare earth magnet according to claim 2, wherein the surface layer thickness is more than 0.1 mm and not more than 10 mm.
JP08266698A 1997-03-14 1998-03-13 Raw material alloy for rare earth magnet and method for producing the same Expired - Lifetime JP3771710B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08266698A JP3771710B2 (en) 1997-03-14 1998-03-13 Raw material alloy for rare earth magnet and method for producing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP8224197 1997-03-14
JP9-82241 1997-03-14
JP08266698A JP3771710B2 (en) 1997-03-14 1998-03-13 Raw material alloy for rare earth magnet and method for producing the same

Publications (2)

Publication Number Publication Date
JPH10317110A JPH10317110A (en) 1998-12-02
JP3771710B2 true JP3771710B2 (en) 2006-04-26

Family

ID=26423256

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08266698A Expired - Lifetime JP3771710B2 (en) 1997-03-14 1998-03-13 Raw material alloy for rare earth magnet and method for producing the same

Country Status (1)

Country Link
JP (1) JP3771710B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3275882B2 (en) 1999-07-22 2002-04-22 セイコーエプソン株式会社 Magnet powder and isotropic bonded magnet
JP2001052911A (en) * 1999-08-11 2001-02-23 Seiko Epson Corp Manufacturing for magnetic material, thin band-shaped magnetic material, magnetic powder, and bonded magnet
JP3611107B2 (en) * 2000-04-12 2005-01-19 セイコーエプソン株式会社 Cooling roll
JP3728396B2 (en) * 2000-04-12 2005-12-21 セイコーエプソン株式会社 Manufacturing method of magnet material
JP2002057016A (en) 2000-05-30 2002-02-22 Seiko Epson Corp Method of manufacturing magnet material, thin belt-like magnet material, powdery magnet material, and bonded magnet
JP3587140B2 (en) 2000-07-31 2004-11-10 セイコーエプソン株式会社 Method for producing magnet powder, magnet powder and bonded magnet
US6676773B2 (en) 2000-11-08 2004-01-13 Sumitomo Special Metals Co., Ltd. Rare earth magnet and method for producing the magnet
CN1306527C (en) 2001-12-18 2007-03-21 昭和电工株式会社 Rare earth magnetic alloy sheet, its manufacturing method, sintered rare earth magnetic alloy powder, sintered rare earth magnet, metal powder for bonded magnet, and bonded magnet
US9862030B2 (en) * 2010-07-02 2018-01-09 Santoku Corporation Method for producing alloy cast slab for rare earth sintered magnet
JP7251158B2 (en) * 2019-01-16 2023-04-04 Tdk株式会社 Evaluation method of raw material alloy for rare earth magnet, apparatus for evaluating raw material alloy for rare earth magnet, and manufacturing method of rare earth magnet
JP7251157B2 (en) * 2019-01-16 2023-04-04 Tdk株式会社 Evaluation method of raw material alloy for rare earth magnet, apparatus for evaluating raw material alloy for rare earth magnet, and manufacturing method of rare earth magnet

Also Published As

Publication number Publication date
JPH10317110A (en) 1998-12-02

Similar Documents

Publication Publication Date Title
JP4832856B2 (en) Method for producing RTB-based alloy and RTB-based alloy flakes, fine powder for RTB-based rare earth permanent magnet, RTB-based rare earth permanent magnet
US7431070B2 (en) Rare earth magnet alloy ingot, manufacturing method for the same, R-T-B type magnet alloy ingot, R-T-B type magnet, R-T-B type bonded magnet, R-T-B type exchange spring magnet alloy ingot, R-T-B type exchange spring magnet, and R-T-B type exchange spring bonded magnet
EP1626418A2 (en) Rare-earth alloy, rare-earth sintered magnet, and methods of manufacturing
EP2513917B1 (en) Rare earth magnet and manufacturing method therefor
TW200903533A (en) R-T-B system alloy, method of preparing R-T-B system alloy, fine powder for R-T-B system rare earth permanent magnet, and R-T-B system rare earth permanent magnet
KR20100027111A (en) R-fe-b type rare earth sintered magnet and process for production of the same
JP3267133B2 (en) Alloy for rare earth magnet, method for producing the same, and method for producing permanent magnet
JP4389427B2 (en) Sintered magnet using alloy powder for rare earth-iron-boron magnet
JP3771710B2 (en) Raw material alloy for rare earth magnet and method for producing the same
JP4121039B2 (en) Thin plate magnet with fine crystal structure
JP2727507B2 (en) Permanent magnet and manufacturing method thereof
US7846273B2 (en) R-T-B type alloy, production method of R-T-B type alloy flake, fine powder for R-T-B type rare earth permanent magnet, and R-T-B type rare earth permanent magnet
JP2727505B2 (en) Permanent magnet and manufacturing method thereof
JP4879503B2 (en) Alloy block for RTB-based sintered magnet, manufacturing method thereof and magnet
EP0323125B1 (en) Rare earth permanent magnet
KR100310647B1 (en) Sheet magnet having microcrystalline structure and method of manufacturing the same, and method of manufacturing isotropic permanent magnet powder
JP2010010665A (en) HIGH COERCIVE FIELD NdFeB MAGNET AND CONSTRUCTION METHOD THEREFOR
JP4479944B2 (en) Alloy flake for rare earth magnet and method for producing the same
US20110286878A1 (en) Method for production of ndfebga magnet and ndfebga magnet material
JP5299737B2 (en) Quenched alloy for RTB-based sintered permanent magnet and RTB-based sintered permanent magnet using the same
JP3492823B2 (en) Quenching roll for magnet alloy production
JP4238999B2 (en) Manufacturing method of rare earth sintered magnet
EP1263003B1 (en) Preparation of a rare earth magnet alloy powder for a bonded magnet and rare earth bonded magnet therewith
JP3594084B2 (en) Rare earth alloy ribbon manufacturing method, rare earth alloy ribbon and rare earth magnet
JP3535253B2 (en) Method for producing cast slab for R-Fe-B permanent magnet

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050607

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050808

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060210

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090217

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090217

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100217

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100217

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110217

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120217

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120217

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130217

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130217

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130217

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130217

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140217

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term