JPH09320825A - Manufacture of rare earth magnet - Google Patents

Manufacture of rare earth magnet

Info

Publication number
JPH09320825A
JPH09320825A JP8134860A JP13486096A JPH09320825A JP H09320825 A JPH09320825 A JP H09320825A JP 8134860 A JP8134860 A JP 8134860A JP 13486096 A JP13486096 A JP 13486096A JP H09320825 A JPH09320825 A JP H09320825A
Authority
JP
Japan
Prior art keywords
alloy
magnet
rare earth
orientation
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8134860A
Other languages
Japanese (ja)
Other versions
JP3529551B2 (en
Inventor
Matoo Kusunoki
的生 楠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP13486096A priority Critical patent/JP3529551B2/en
Publication of JPH09320825A publication Critical patent/JPH09320825A/en
Application granted granted Critical
Publication of JP3529551B2 publication Critical patent/JP3529551B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing an Nd magnet which can realize a high orientation, by solving such a problem that good magnetic characteristics corresponding to the composition of the magnet cannot be obtained because of incomplete orientation at the time of molding magnet powder is a magnetic field to manufacture an Nd magnet. SOLUTION: In the method for manufacturing a rare earth made of composition alloy expressed by an expression of Rx (Fe1-a Coa )y Bz Tb (where R is not smaller than one and not larger than 10 types selected from rare earth elements including Y, T is not smaller than one and not larger than 10 types selected from a group of transition metals, 11<=x<=16, 70<=y<=85, 4<=z<=9, 0<=a<=0.2, and 0<=b<=4); the alloy containing crystalline grains having an average grain diameter of not smaller than 50μm and not larger than 10mm is hydro-crushed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は希土類永久磁石、特
にはNd 系焼結磁石の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a rare earth permanent magnet, particularly an Nd based sintered magnet.

【0002】[0002]

【従来の技術】希土類焼結磁石はその高い磁気特性のた
めに、フェライト等に比べて非常に高価であるにも関わ
らず近年高い需要を示している。その中でも特にNd 系
磁石はSm 系磁石に比べて磁気特性が高く、価格も安い
ことから希土類磁石の主流となりつつある。Nd 系焼結
磁石は粉末冶金法を用いて製造され、以下のような工程
を経る。即ち、所定の組成となるよう溶解して合金を作
製し、その合金を粉砕して1〜20μmの微粉末を得る。
得られた微粉の結晶方位を一方向に揃えて異方性を付与
するために磁場中にて成形を行ない、得られた成形体に
焼結及び熱処理を施すことによってNd 系焼結磁石が製
造される。Nd 系磁石の磁気特性を向上させるために
は、その組成をNd 系磁石の主相である2-14-1金属間化
合物相の組成に近づけて行けばよいが、近づけて行けば
行くほどNd 系磁石の磁気特性として重要な保磁力が減
少し、また酸化に対する許容度が無くなるために酸化を
抑制する手段、例えば全ての工程を非酸化性雰囲気中で
行なう等の方法を講じる必要があり製造コストが嵩むな
どの欠点がある。他方、その合金の持つ磁気特性を最大
限引き出すことにより出来るだけ高い磁気特性を得よう
とする際には、微粉末を磁場中にて一方向に結晶方位を
どれくらい完全に揃えることが出来るか、即ち配向度を
如何に高く出来るかが重要となる。しかしながら、一般
的に行なわれている金型を用いた成形方法ではその配向
度は約90%程度しかなく、より高性能なNd 系磁石を製
造するうえで解決すべき課題となっていた。
2. Description of the Related Art Sintered rare earth magnets have recently been in high demand due to their high magnetic properties, although they are much more expensive than ferrites and the like. Among them, Nd magnets are becoming the mainstream of rare earth magnets because they have higher magnetic characteristics and are cheaper than Sm magnets. The Nd-based sintered magnet is manufactured by using the powder metallurgy method and undergoes the following steps. That is, an alloy is prepared by melting so as to have a predetermined composition, and the alloy is pulverized to obtain a fine powder having a size of 1 to 20 μm.
Nd-based sintered magnets are manufactured by performing molding in a magnetic field in order to give anisotropy by aligning the crystal orientation of the obtained fine powders in one direction and subjecting the obtained compacts to sintering and heat treatment. To be done. In order to improve the magnetic characteristics of the Nd-based magnet, its composition may be brought closer to that of the 2-14-1 intermetallic compound phase, which is the main phase of the Nd-based magnet, but the closer it is, the more Nd-based it becomes. Since the coercive force, which is important for the magnetic properties of the system magnet, is reduced and the tolerance for oxidation is lost, it is necessary to take measures to suppress oxidation, such as performing all the steps in a non-oxidizing atmosphere. There are drawbacks such as increased cost. On the other hand, when trying to obtain the highest possible magnetic properties by maximizing the magnetic properties of the alloy, how completely the crystal orientation can be aligned in one direction in the magnetic field of the fine powder, That is, how high the degree of orientation can be made is important. However, in a commonly used molding method using a mold, the degree of orientation is only about 90%, which is a problem to be solved in manufacturing a higher performance Nd-based magnet.

【0003】[0003]

【発明が解決しようとする課題】磁場中成形によりNd
系磁石を製造する際に、成形時の配向度が完全でないた
めにその磁石の持つ組成に応じた磁気特性が得られない
という弊害があった。本発明では、このようなNd 系焼
結磁石の製造に関する問題点を解決し、高い配向度を実
現するNd 系磁石の製造方法を提供しようとするもので
ある。
[Problems to be solved by the invention] Nd by molding in a magnetic field
When manufacturing a system magnet, there is an adverse effect that the magnetic properties according to the composition of the magnet cannot be obtained because the orientation degree at the time of molding is not perfect. The present invention intends to solve the problems associated with the production of such Nd-based sintered magnets and to provide a method for producing an Nd-based magnet that achieves a high degree of orientation.

【0004】[0004]

【課題を解決するための手段】本発明者等は、かかる課
題を解決するために、溶解工程を経て製造されたNd系
磁石用合金の金属組織と粉砕方法が後工程である磁場中
成形工程に影響を及ぼすのではないかと考え、金属組織
と粉砕方法に着目して鋭意検討を行なった結果、溶解後
の合金中の結晶粒子の形状が平均粒径で50μm 以上10mm
以下である合金を水素化粉砕したものを用いて、磁場中
成形を行なって製造したNd 系磁石はその配向度が向上
することを見出し、その結果高い磁気特性を有するNd
系磁石を製造することが可能となり本発明を完成させ
た。本発明の要旨は、組成式Rx(Fe1-aCoa)yzb
(ここにRはYを含む希土類元素の内の1種以上10種以
下、Tは遷移金属の内の1種以上10種以下、x、y、z
は原子%で、11≦x≦16、70≦y≦85、4≦z≦9、
a、bは原子比で、0≦a≦0.2 、0≦b≦4である)
から成る希土類磁石の製造方法において、合金中の結晶
粒子が平均粒径で50μm 以上10mm以下である合金を水素
化粉砕することを特徴とする希土類磁石の製造方法にあ
る。
In order to solve the above problems, the inventors of the present invention have carried out a magnetic field forming step in which the metallographic structure of the Nd-based magnet alloy produced through the melting step and the crushing method are post-steps. As a result of careful investigation focusing on the metallographic structure and pulverization method, it was found that the crystal grain shape in the alloy after melting was 50 μm or more with an average grain size of 10 mm or more.
It was found that the Nd-based magnets produced by forming in the magnetic field using the following alloys obtained by hydrogenation crushing have an improved degree of orientation, and as a result, Nd-based magnets having high magnetic properties are obtained.
It has become possible to manufacture a system magnet, and the present invention has been completed. The gist of the present invention is that the composition formula R x (Fe 1-a Co a ) y B z T b
(Here, R is 1 or more and 10 or less of rare earth elements including Y, T is 1 or more and 10 or less of transition metals, x, y, z
Is atomic%, 11 ≦ x ≦ 16, 70 ≦ y ≦ 85, 4 ≦ z ≦ 9,
a and b are atomic ratios, 0 ≦ a ≦ 0.2 and 0 ≦ b ≦ 4)
The method for producing a rare earth magnet according to claim 1, wherein the alloy having crystal grains in the alloy having an average particle size of 50 μm or more and 10 mm or less is hydro-pulverized.

【0005】[0005]

【発明の実施の形態】以下、本発明を詳細に説明する。
本発明が適用される希土類永久磁石合金の組成式はR
x(Fe1-aCoa)yzbで表され、ここにRは希土類元
素で、Yを含むLa、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、
Dy、Ho、Er、Tm、Yb 及びLu から選択される1種以上
10種以下の希土類元素であり、Tは遷移元素で、Al、S
i、Ti、V、Cr、Mn、Ni、Cu、Zn、Ga、Zr、Nb、Mo、Sn、
Hf、Ta、Wの内から選択される1種以上10種以下であ
り、原子%xは11≦x≦16、yは70≦y≦85、zは4≦
z≦9、原子比aは0≦a≦0.2 、bは0≦b≦4であ
る。この組成においてRの量xが11以下ではα- Fe の
析出があり保磁力が著しく減少するために好ましくな
く、16以上では残留磁化が低くなるために好ましくな
い。Bの量zは4以下ではNd2Fe17 相の析出により保
磁力が著しく減少するので好ましくなく、9以上では非
磁性相であるNd Fe44 相の量が増え残留磁化が減少
するために好ましくない。aはFe とCo の比を表すも
のであり、Fe をCo で置換することによって残留磁化
を上昇させることができるが、aの量が 0.2以上では保
磁力が著しく減少するために好ましくない。添加元素T
は保磁力を上昇させるために用いられるが、bが4以上
では保磁力を上昇させる効果が弱まり、残留磁化の減少
が著しいので好ましくない。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in detail below.
The composition formula of the rare earth permanent magnet alloy to which the present invention is applied is R
x (Fe 1-a Co a ) y B z T b , where R is a rare earth element, Y containing La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb,
One or more selected from Dy, Ho, Er, Tm, Yb and Lu
10 or less rare earth elements, T is a transition element, Al, S
i, Ti, V, Cr, Mn, Ni, Cu, Zn, Ga, Zr, Nb, Mo, Sn,
1 or more and 10 or less selected from Hf, Ta and W, atomic% x is 11 ≦ x ≦ 16, y is 70 ≦ y ≦ 85, z is 4 ≦
z ≦ 9, the atomic ratio a is 0 ≦ a ≦ 0.2, and b is 0 ≦ b ≦ 4. In this composition, when the amount x of R is 11 or less, α-Fe is precipitated and the coercive force is remarkably decreased, which is not preferable, and when it is 16 or more, the residual magnetization is low, which is not preferable. The amount z of B is not preferable because the coercivity is significantly reduced by precipitation of Nd 2 Fe 17 phase is 4 or less, Nd Fe 4 amount of B 4 phase increases residual magnetization to decrease at least 9 is a non-magnetic phase Not good for a represents the ratio of Fe and Co, and the residual magnetization can be increased by substituting Fe for Co. However, if the amount of a is 0.2 or more, the coercive force is remarkably reduced, which is not preferable. Additive element T
Is used to increase the coercive force, but when b is 4 or more, the effect of increasing the coercive force is weakened and the remanent magnetization is significantly reduced, which is not preferable.

【0006】次に本発明の製造方法を述べる。Nd 系磁
石は通常溶解、粗粉砕、微粉砕、成形、焼結、時効の各
工程を経て製造されるが、溶解後の合金中の結晶粒子の
形状が平均粒径で50μm 以上10mm以下である合金を水素
化して粗粉とし、微粉砕を行なった後磁場中成形を行な
えばよい。先ず、上記組成となるように原料金属を秤量
する。真空中或は不活性雰囲気中にて高周波溶解炉にて
溶解を行ない、その後鋳造して所定の組成を持つ合金を
作製する。次に、合金の結晶粒子を平均粒径で50μm 以
上10mm以下となるように 900℃〜1200℃の温度で 0.1〜
100時間熱処理を施す。このようにして作製した平均結
晶粒径50μm 以上10mm以下である合金を水素化し粗粉と
した後、ジェットミルで微粉砕を行なう。次に、得られ
た平均粒径1〜20μm の微粉末を約15kOe の磁場中にて
0.2〜2Ton/cm2 の圧力にて成形し、密度が3〜5g/cc
の成形体を得る。以上のようにして得られた成形体は、
1000℃〜1150℃の真空中或は大気圧以下の不活性ガス中
にて 0.1〜10時間焼結を行ない、冷却した後 400℃〜10
00℃で0.1〜10時間時効処理を行ないNd 系磁石とす
る。
Next, the manufacturing method of the present invention will be described. Nd magnets are usually manufactured through melting, coarse pulverization, fine pulverization, molding, sintering, and aging steps, but the shape of crystal grains in the alloy after melting is 50 μm or more and 10 mm or less in average particle size. The alloy may be hydrogenated into coarse powder, finely pulverized, and then molded in a magnetic field. First, the raw metal is weighed so as to have the above composition. Melting is performed in a high frequency melting furnace in a vacuum or in an inert atmosphere, and then casting is performed to produce an alloy having a predetermined composition. Next, the crystal grains of the alloy should have a mean particle size of 50 μm or more and 10 mm or less at a temperature of 900 ℃ to 1200 ℃ 0.1 ~
Heat treatment for 100 hours. The alloy thus produced having an average crystal grain size of 50 μm or more and 10 mm or less is hydrogenated into coarse powder, and then finely pulverized by a jet mill. Next, the obtained fine powder with an average particle size of 1 to 20 μm is placed in a magnetic field of about 15 kOe.
Molded at a pressure of 0.2 to 2 Ton / cm 2 and a density of 3 to 5 g / cc
To obtain a molded body of. The molded body obtained as described above,
Sinter in a vacuum at 1000 ℃ to 1150 ℃ or in an inert gas below atmospheric pressure for 0.1 to 10 hours, cool it down to 400 ℃ to 10 ℃.
Aging treatment is performed at 00 ° C for 0.1 to 10 hours to obtain an Nd-based magnet.

【0007】ここで、合金の熱処理温度が 900℃未満で
は合金中の結晶粒子の平均粒径を50μm まで成長させる
ために非常に長い時間を要するために好ましくなく、12
00℃を超えると高温のために合金が融解してしまう恐れ
があるために好ましくない。また、合金を熱処理する時
間が 0.1時間未満では合金中の結晶粒子の平均粒径を50
μm まで成長させることが困難であるので好ましくな
く、 100時間を越えても生産性が悪く好ましくない。上
記範囲で条件を選び熱処理を施せばよいが、より好まし
くは1050℃〜1150℃の温度範囲で2〜20時間である。結
晶粒子の平均粒径が50μm 未満では結晶成長が不十分
で、次工程の水素化で起こる結晶粒界からの粉砕率が減
少してしまう。また10mm以下としたのは、この程度の粒
径にしても水素化粉砕効果は変わらないが結晶成長に非
常な長時間を要し、生産性が悪いためである。水素化に
よる粗粉砕は、水素ガス圧力が0.001MPaから5MPa の範
囲で行なわれる。水素ガス圧力が0.001MPa未満では水素
吸蔵速度が著しく遅く生産性が非常に悪いため好ましく
ない。また、水素ガス圧力が5MPa を超えても水素吸蔵
速度は殆ど速くならず、合金表面付近が水素濃度過剰と
なってアモルファス化してしまい、逆に磁気特性を悪化
させてしまうため好ましくない。上記のようにしてNd
系磁石を製造することにより、磁場中成形時の微粉末の
配向度が向上し、結果としてNd 系磁石の磁気特性を向
上させることができる。
If the heat treatment temperature of the alloy is lower than 900 ° C., it takes a very long time to grow the average grain size of the crystal grains in the alloy to 50 μm, which is not preferable.
If the temperature exceeds 00 ° C, the alloy may melt due to the high temperature, which is not preferable. If the heat treatment time of the alloy is less than 0.1 hours, the average grain size of the crystal grains in the alloy is 50
It is not preferable because it is difficult to grow to μm, and productivity is unfavorable even after 100 hours because productivity is poor. The heat treatment may be performed by selecting the conditions in the above range, and more preferably in the temperature range of 1050 ° C to 1150 ° C for 2 to 20 hours. If the average grain size of the crystal grains is less than 50 μm, the crystal growth is insufficient, and the pulverization rate from the crystal grain boundaries that occurs in the hydrogenation in the next step will decrease. Further, the reason why the particle size is set to 10 mm or less is that the hydrogenation and pulverization effect does not change even if the particle size is in this range, but it takes a very long time for crystal growth and the productivity is poor. The coarse pulverization by hydrogenation is performed at a hydrogen gas pressure of 0.001 MPa to 5 MPa. When the hydrogen gas pressure is less than 0.001 MPa, the hydrogen storage rate is extremely slow and the productivity is very poor, which is not preferable. Further, even if the hydrogen gas pressure exceeds 5 MPa, the hydrogen absorption rate does not almost increase, and the vicinity of the alloy surface becomes excessive hydrogen concentration and becomes amorphous, which adversely deteriorates the magnetic characteristics, which is not preferable. Nd as above
By producing a system magnet, the degree of orientation of the fine powder during molding in a magnetic field is improved, and as a result, the magnetic characteristics of the Nd system magnet can be improved.

【0008】本発明の作用は、従来技術が磁気特性を向
上させる手段としてその組成を強磁性体である2-14-1金
属間化合物の組成に近づけることに主眼が置かれていた
のに対して、その組成が持つ磁気特性を 100%引き出そ
うとすることに注目して、合金中の平均結晶粒子径が磁
気特性に及ぼす影響を明らかにしたことにある。通常N
d 系磁石を製造する際に、磁石合金は平均粒径で約5μ
m 程度にまで小さく粉砕される。この微粉末が単結晶で
あった場合には、その後の磁場中形成でも微粉末を磁場
中にて結晶方位と磁場印加方向が平行に揃うことができ
ると考えられるが、微粉粒子内部に金属による結晶粒界
が存在するような微粉末が存在した場合、即ち多結晶で
あった場合は、その微粉末は磁場中で最も安定な方向を
向いて整列するが、その方向は磁場の方向と結晶方向が
平行には揃わないため配向度を下げる要因となっている
と考えられる。このような理由により合金中の平均結晶
粒径は粉砕して得られた微粉末よりも大きい方が好まし
い。さらに水素化による粉砕を行なった場合、合金が結
晶粒界で優先的に粉砕されるという特徴がある。これは
合金中の結晶粒子を大きくするために熱処理を施した結
晶粒界に格子欠陥、希土類元素、不純物等が濃縮され、
水素が合金の結晶粒界に沿って拡散することに起因して
いると考えられる。これらの現象により、大きく成長し
た結晶粒子を内包する合金を用い、水素による粉砕工程
を経た微粉末には粒界を内包する粒子が全くないか又は
非常に少なくなっているものと考えられ、結果として配
向度が上昇したものと考えられる。
While the operation of the present invention has been focused on bringing the composition thereof closer to that of the 2-14-1 intermetallic compound which is a ferromagnetic material, as a means for improving the magnetic properties, the prior art has been focused on. Then, focusing on trying to extract 100% of the magnetic properties of the composition, the effect of the average crystal grain size in the alloy on the magnetic properties was clarified. Usually N
When manufacturing d-based magnets, the magnet alloy has an average grain size of about 5μ.
It is crushed to a size of about m. When this fine powder is a single crystal, it is considered that the fine powder can be aligned in parallel with the crystal orientation in the magnetic field even in the subsequent magnetic field formation. When there is a fine powder that has grain boundaries, that is, when it is a polycrystal, the fine powder is aligned in the most stable direction in the magnetic field, and the direction is the direction of the magnetic field and the crystal. It is considered that this is a factor that reduces the degree of orientation because the directions are not aligned in parallel. For these reasons, the average grain size in the alloy is preferably larger than that of the fine powder obtained by pulverization. Further, when pulverization by hydrogenation is performed, the alloy is characterized by being preferentially pulverized at the grain boundaries. This is because lattice defects, rare earth elements, impurities, etc. are concentrated in the crystal grain boundaries that have been subjected to heat treatment to enlarge the crystal grains in the alloy,
It is considered that hydrogen is caused by diffusion along the grain boundaries of the alloy. Due to these phenomena, it is considered that there is no or very few particles that include grain boundaries in the fine powder that has undergone the pulverization process with hydrogen, using an alloy that includes large-grown crystal particles. It is considered that the degree of orientation is increased.

【0009】[0009]

【実施例】以下、本発明の実施形態を実施例を挙げて具
体的に説明するが、本発明はこれらに限定されるもので
はない。 (実施例1)組成式Nd12.7 Dy2.2Fe74.6 Co46
l0.5となる合金を、純度99.9重量%以上の原料各金属を
誘導加熱高周波溶解炉にてAr 雰囲気中で溶解し、鋳造
して合金を作製した。次に、合金の結晶粒子が平均粒径
で50μm 以上10mm以下となるように1080℃の温度で20時
間熱処理を施したのち冷却する。このようにして作製し
た合金の平均結晶粒径は95μm であった。当該合金を純
度 99.99容量%の水素0.07MPa の雰囲気中で水素化によ
り粗粉砕し、その後窒素ガスを用いたジェットミルで平
均粒径5μm の微粉末を得た。この微粉末を方位を揃え
るために約15kOe の磁場中で、磁場に対して垂直な方向
に約0.9Ton/cm2の圧力にて加圧成形して成形体を得た。
この成形体を真空中にて1060℃で90分焼結を行ないその
後冷却して焼結体を得た。このようにして得られた焼結
体を、引き続き不活性ガス雰囲気中で 600℃で 120分間
時効処理を施しNd 系焼結永久磁石とし、磁気特性を測
定して表1に示した。
EXAMPLES Hereinafter, embodiments of the present invention will be specifically described with reference to examples, but the present invention is not limited thereto. (Example 1) Composition formula Nd 12.7 Dy 2.2 Fe 74.6 Co 4 B 6 A
An alloy of 0.5 was melted in an induction heating high-frequency melting furnace in a raw material metal having a purity of 99.9% by weight or more, and cast to prepare an alloy. Next, heat treatment is performed at a temperature of 1080 ° C. for 20 hours so that the crystal grains of the alloy have an average particle diameter of 50 μm or more and 10 mm or less, and then cooled. The average crystal grain size of the alloy thus produced was 95 μm. The alloy was roughly pulverized by hydrogenation in an atmosphere of 0.07 MPa hydrogen having a purity of 99.99% by volume, and then fine powder having an average particle size of 5 μm was obtained by a jet mill using nitrogen gas. This fine powder was pressure-molded in a magnetic field of about 15 kOe in a direction perpendicular to the magnetic field at a pressure of about 0.9 Ton / cm 2 in order to align the directions, to obtain a compact.
This molded body was sintered in vacuum at 1060 ° C. for 90 minutes and then cooled to obtain a sintered body. The sintered body thus obtained was subsequently subjected to an aging treatment at 600 ° C. for 120 minutes in an inert gas atmosphere to obtain a Nd-based sintered permanent magnet, and the magnetic properties were measured and shown in Table 1.

【0010】(実施例2)1120℃で40時間熱処理を施し
て得られた実施例1と同一組成の平均結晶粒径 150μm
の合金を純度 99.99容量%の水素0.25MPa の雰囲気中で
水素化により粗粉砕した以外は上記実施例1と同様に処
理してNd 系焼結永久磁石を得た。磁気特性を測定して
表1に併記した。
(Example 2) An average crystal grain size of 150 μm having the same composition as in Example 1 obtained by heat treatment at 1120 ° C. for 40 hours
This alloy was treated in the same manner as in Example 1 except that the alloy was roughly pulverized by hydrogenation in an atmosphere of 0.25 MPa of hydrogen having a purity of 99.99% by volume to obtain a Nd-based sintered permanent magnet. The magnetic properties were measured and are also shown in Table 1.

【0011】(比較例1)実施例1の合金を純度 99.99
容量%の水素0.0007MPa の雰囲気中で水素化により粗粉
砕した以外は実施例1と同様に処理してNd 系焼結永久
磁石を得た。磁気特性を測定して表1に併記した。
(Comparative Example 1) The alloy of Example 1 has a purity of 99.99.
A Nd-based sintered permanent magnet was obtained in the same manner as in Example 1 except that coarse pulverization was carried out by hydrogenation in an atmosphere of 0.0007 MPa of hydrogen in volume%. The magnetic properties were measured and are also shown in Table 1.

【0012】(比較例2)実施例2の合金を純度 99.99
容量%の水素5.2MPaの雰囲気中で水素化により粗粉砕し
た以外は実施例2と同様に処理してNd 系焼結永久磁石
を得た。磁気特性を測定して表1に併記した。
(Comparative Example 2) The alloy of Example 2 has a purity of 99.99.
A Nd-based sintered permanent magnet was obtained in the same manner as in Example 2 except that coarse pulverization was carried out by hydrogenation in an atmosphere of 5.2% by volume hydrogen. The magnetic properties were measured and are also shown in Table 1.

【0013】(配向度の計算)配向度の計算は、実施
例、比較例で得られた磁気特性の結果より次式を用いて
算出した。 F=(Br ×(ρt/ρr)2/3/Is)×100 ここに、F:配向度(%)、Br :試料の残留磁化( k
G)、ρt :真密度(g/cc)、ρr :試料の密度(g/c
c)、Is:試料の飽和磁束密度( kG)である。その結
果は表1に示すとうりである。表1から明らかなように
本発明の方法によれば、配向度が向上し残留磁化を上昇
させることができ、結果としてエネルギー積を上昇させ
ることができた。
(Calculation of degree of orientation) The degree of orientation was calculated using the following formula based on the results of the magnetic characteristics obtained in the examples and comparative examples. F = (Br × (ρt / ρr) 2/3 / Is) × 100 F: orientation degree (%), Br: remanent magnetization of sample (k
G), ρt: true density (g / cc), ρr: sample density (g / c)
c), Is: Saturation magnetic flux density (kG) of the sample. The results are shown in Table 1. As is clear from Table 1, according to the method of the present invention, the degree of orientation can be improved, the residual magnetization can be increased, and as a result, the energy product can be increased.

【0014】[0014]

【表1】 [Table 1]

【0015】[0015]

【発明の効果】本発明の製造方法により、配向度の高い
高性能の希土類焼結磁石を提供することができ、産業上
その利用価値は極めて高い。
According to the manufacturing method of the present invention, a high-performance rare earth sintered magnet having a high degree of orientation can be provided, and its utility value is extremely high in industry.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】組成式Rx(Fe1-aCoa)yzb (ここに
RはYを含む希土類元素の内の1種以上10種以下、Tは
遷移金属の内の1種以上10種以下、x、y、zは原子%
で、11≦x≦16、70≦y≦85、4≦z≦9、a、bは原
子比で、0≦a≦0.2 、0≦b≦4である)から成る希
土類磁石の製造方法において、合金中の結晶粒子が平均
粒径で50μm 以上10mm以下である合金を水素化粉砕する
ことを特徴とする希土類磁石の製造方法。
1. A composition formula R x (Fe 1-a Co a ) y B z T b (wherein R is one or more and 10 or less of rare earth elements containing Y, and T is one of transition metals). 10 to 10 species, x, y, z are atomic%
And 11 ≦ x ≦ 16, 70 ≦ y ≦ 85, 4 ≦ z ≦ 9, and a and b are atomic ratios of 0 ≦ a ≦ 0.2 and 0 ≦ b ≦ 4. A method for producing a rare earth magnet, characterized in that an alloy having an average grain size of 50 μm or more and 10 mm or less is hydro-pulverized.
JP13486096A 1996-05-29 1996-05-29 Manufacturing method of rare earth sintered magnet Expired - Fee Related JP3529551B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13486096A JP3529551B2 (en) 1996-05-29 1996-05-29 Manufacturing method of rare earth sintered magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13486096A JP3529551B2 (en) 1996-05-29 1996-05-29 Manufacturing method of rare earth sintered magnet

Publications (2)

Publication Number Publication Date
JPH09320825A true JPH09320825A (en) 1997-12-12
JP3529551B2 JP3529551B2 (en) 2004-05-24

Family

ID=15138172

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13486096A Expired - Fee Related JP3529551B2 (en) 1996-05-29 1996-05-29 Manufacturing method of rare earth sintered magnet

Country Status (1)

Country Link
JP (1) JP3529551B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015070749A (en) * 2013-09-30 2015-04-13 Tdk株式会社 Bow-shaped magnet piece and motor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015070749A (en) * 2013-09-30 2015-04-13 Tdk株式会社 Bow-shaped magnet piece and motor

Also Published As

Publication number Publication date
JP3529551B2 (en) 2004-05-24

Similar Documents

Publication Publication Date Title
US5110374A (en) Rare earth-iron-boron magnet powder and process of producing same
EP0886284B1 (en) Cast alloy used for production of rare earth magnet and method for producing cast alloy and magnet
JPH0521218A (en) Production of rare-earth permanent magnet
JP2746818B2 (en) Manufacturing method of rare earth sintered permanent magnet
JP3250551B2 (en) Method for producing anisotropic rare earth magnet powder
WO2019151244A1 (en) Permanent magnet
WO2003066922A1 (en) Sinter magnet made from rare earth-iron-boron alloy powder for magnet
US8157927B2 (en) Raw material alloy for R-T-B system sintered magnet, R-T-B system sintered magnet and production method thereof
JPH0574618A (en) Manufacture of rare earth permanent magnet
JP2853838B2 (en) Manufacturing method of rare earth permanent magnet
JPH01219143A (en) Sintered permanent magnet material and its production
JPH06128610A (en) Production of anisotropic rare-earth alloy powder for permanent magnet
JPH0776708A (en) Production of anisotropic rare earth alloy powder for permanent magnet
JPH06207204A (en) Production of rare earth permanent magnet
CN113690039A (en) Rare earth sintered magnet and method for producing same
JP3860372B2 (en) Rare earth magnet manufacturing method
JP2002025813A (en) Anisotropic rare earth magnet powder
JP3423965B2 (en) Method for producing anisotropic rare earth alloy powder for permanent magnet
JP3529551B2 (en) Manufacturing method of rare earth sintered magnet
JPH10130796A (en) Production of fine crystal permanent magnet alloy and isotropic permanent magnet powder
JP3053344B2 (en) Rare earth magnet manufacturing method
JPH05182813A (en) Manufacture of rare earth permanent magnet
JPH0521219A (en) Production of rare-earth permanent magnet
JPH07335468A (en) Manufacture of rare-earth magnet
JP3300555B2 (en) Rare earth magnet manufacturing method

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040225

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100305

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140305

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees