JPH0371601A - Manufacture of rare-earth magnet - Google Patents

Manufacture of rare-earth magnet

Info

Publication number
JPH0371601A
JPH0371601A JP1207660A JP20766089A JPH0371601A JP H0371601 A JPH0371601 A JP H0371601A JP 1207660 A JP1207660 A JP 1207660A JP 20766089 A JP20766089 A JP 20766089A JP H0371601 A JPH0371601 A JP H0371601A
Authority
JP
Japan
Prior art keywords
powder
less
magnet
alloy powder
magnetic flux
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1207660A
Other languages
Japanese (ja)
Inventor
Toshio Mukai
俊夫 向井
Tatsuo Fujimoto
辰雄 藤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP1207660A priority Critical patent/JPH0371601A/en
Publication of JPH0371601A publication Critical patent/JPH0371601A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0576Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together pressed, e.g. hot working

Abstract

PURPOSE:To contrive improvement both in thermal stability and magnetic characteristics by a method wherein alloy powder having high coercive force is added to the main alloy powder containing a small quantity of Nd and also having high residual magnetic flux density, and the mixture is subjected to heat compression molding. CONSTITUTION:Alloy powder (X) consists of 8-13% R (rare-earth element including at least Nd or Pr except Dy) manufactured using a liquid quenching method, 4 to 8% B and the remaining part consisting of Fe and inevitable impurities, alloy powder (Y) consists of 13 to 20% R, 0.2 to 8% Dy, 4 to 8% B, 0.2 to 8% Cu, and the remaining part consisting of Fe and inevitable impurities. A mixture containing 5-50wt.% powder (X) and the balance of powder (Y) is subjected to hot compression. As a result, both high coercive force and high residual magnetic flux density can be obtained, and high thermal stability can also be obtained with a small added quantity of Dy.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、RzFe+J化合物(ただしRはNd又はP
rの少なくとも1種を含む希土類元素)を主相とする希
土類磁石の製造方法に関する。
Detailed Description of the Invention (Industrial Field of Application) The present invention provides an RzFe+J compound (where R is Nd or P
The present invention relates to a method for producing a rare earth magnet having a main phase containing at least one rare earth element.

本発明の方法により製造した磁石は、高性能で低価格に
なりうるという可能性から、小型モータ等各種アクチュ
エーターに広範な利用分野を有する。
Magnets produced by the method of the present invention have a wide range of applications in various actuators such as small motors due to their potential for high performance and low cost.

〔従来の技術〕[Conventional technology]

希土類元素Rと代表的遷移金属元素FeとBとを2:1
4:1に近い割合で含む合金溶湯を単ロール法等の液体
急冷法により超急冷することにより優れた磁石特性を有
する急冷薄帯を得ることができる(米国特許第4802
931号明細書、特開昭5964739号公報、特開昭
60−9852号公報)。
Rare earth element R and representative transition metal elements Fe and B at 2:1
By ultra-quenching a molten alloy containing a ratio close to 4:1 by a liquid quenching method such as a single roll method, a quenched ribbon with excellent magnetic properties can be obtained (U.S. Pat. No. 4,802).
931 specification, JP-A-5964739, JP-A-60-9852).

Nd−Fe−B系の合金の溶湯を、回転する銅製のロー
ルの表面に噴射する、いわゆる単ロール法による液体急
冷により、厚さ約30μmのフレーク状の薄帯が得られ
る。急冷の程度によって、薄帯は非晶質になったり、結
晶粒径が0.01〜0.5印の微細な結晶粒組織になっ
たりすることが知られている。
A flaky thin strip with a thickness of about 30 μm is obtained by liquid quenching by a so-called single roll method in which a molten Nd-Fe-B alloy is injected onto the surface of a rotating copper roll. It is known that depending on the degree of rapid cooling, the ribbon becomes amorphous or has a fine crystal grain structure with a crystal grain size of 0.01 to 0.5 marks.

この急冷薄帯は、その結晶粒径が0.05n前後の時に
高い保磁力を示す。
This quenched ribbon exhibits high coercive force when its crystal grain size is around 0.05n.

Nd−Fe−B系合金の急冷薄帯を粉砕して得た粉末を
、熱間で圧縮成形すること(ホットプレス)により合金
の真密度に近い状態で成形バルク化することができる。
By hot compression molding (hot pressing) a powder obtained by pulverizing a rapidly solidified ribbon of an Nd-Fe-B alloy, it is possible to form a molded bulk in a state close to the true density of the alloy.

これは、米国特許第4792367号明細書、特開昭6
0−10.042号公報およびR,W、Leeによる発
表論文IFot−pressed neodymium
−iron−boronmagnets」(Appli
ed Physics Letters+ Vol、4
6゜No、8. pp 790−791. April
 15.1985)に報告されている。ここで、圧縮応
力下で熱間成形した場合には塑性流動が成形体内に起こ
り、その塑性流動によってプレス加圧方向に平行に磁化
容易軸(C軸)がわずかに向く傾向がある。その結果、
加圧方向に約8kGの残留磁束密度が得られることが従
来の技術として知られている。
This is described in U.S. Patent No. 4,792,367,
0-10.042 and the paper published by R.W. Lee IFot-pressed neodymium
-iron-boron magnets” (Appli
ed Physics Letters+ Vol.4
6°No, 8. pp 790-791. April
15.1985). Here, when hot forming is carried out under compressive stress, plastic flow occurs within the molded body, and the easy magnetization axis (C axis) tends to be slightly oriented parallel to the pressing direction due to the plastic flow. the result,
It is known from the prior art that a residual magnetic flux density of about 8 kG can be obtained in the pressurizing direction.

上記の熱間圧縮成形磁石を実用に供するためには、特性
面ではより高い残留磁束密度の磁石が要求される一方、
その磁石を低コストで量産できる方法が必要とされる。
In order to put the above-mentioned hot compression molded magnet into practical use, a magnet with higher residual magnetic flux density is required in terms of characteristics.
A method is needed that allows mass production of such magnets at low cost.

特開昭64−42554号公報において、Nd含有量の
異なる異種粉末を混合して熱間圧縮することにより、成
形性及び塑性加工性を改善する技術が開示されているが
、この発明は低Ndの粉末の成分としてそのなかにZr
、 Nb、 Tf、 V、 If、 Ta、、Wの一種
以上を必須成分として含むことに限定している。そのよ
うな成分系においては、上記公開公報の実施例において
示されているように、高Nd成分の粉末を50%加えた
ときに初めて成形体の密度が真密度(7,5g/cd)
に近くなっている。
JP-A-64-42554 discloses a technique for improving formability and plastic workability by mixing different types of powders with different Nd contents and hot-compressing the mixture. Zr is included as a component of the powder of
, Nb, Tf, V, If, Ta, , W as essential components. In such a component system, as shown in the example of the above-mentioned publication, the density of the molded body reaches the true density (7.5 g/cd) only when 50% of high Nd component powder is added.
It is close to.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

R−Fe−B系合金粉末の熱間圧縮成形を通常のホント
プレス機で行う場合には、ダイを高周波誘導によって加
熱し、間接的にダイ中の粉末を加熱するのが一般的であ
る。この方法は、ダイの加熱及び冷却に時間を要するの
で磁石の量産には適しない。
When hot compression molding of R-Fe-B alloy powder is performed using a normal real press machine, it is common to heat the die by high-frequency induction to indirectly heat the powder in the die. This method is not suitable for mass production of magnets because it takes time to heat and cool the die.

熱間圧witc形における加熱を通電加熱により行う方
法(通電焼結)により、短時間で成形を完了することが
できる。この加熱方式は、100〜1000 kg/c
dの圧縮応力をダイ中の粉末に加えた状態でパンチを通
じて粉末に電流を流し、粉末を直接加熱する方式である
。この方式にしたがえば、通電開始後1〜4 mtnで
成形体の密度は合金の真密度に達する。成形終了後のダ
イ及び成形体の冷却も速いのでこの通電焼結は量産に適
する。
Molding can be completed in a short time by heating in the hot pressure WITC type by heating by electrical current heating (current sintering). This heating method uses 100 to 1000 kg/c
In this method, a compressive stress of d is applied to the powder in the die, and an electric current is passed through the powder through a punch to directly heat the powder. According to this method, the density of the compact reaches the true density of the alloy in 1 to 4 mtn after the start of energization. This current sintering is suitable for mass production because the die and molded body can be cooled quickly after molding is completed.

通電焼結における課題は以下の通りである。通電焼結に
よって短時間にR−Fe−B系粉末の成形が可能である
が、焼結完了時の成形体の温度は800〜900″Cに
達する。そのために粉末を構成する結晶粒が戒長し、成
形磁石の熱安定性が低下する。
The challenges in current sintering are as follows. Although it is possible to mold R-Fe-B powder in a short time by electrical sintering, the temperature of the molded product reaches 800 to 900"C when sintering is completed. Therefore, the crystal grains that make up the powder are The thermal stability of the molded magnet decreases.

本発明者らの実験によれば、Fe−14at$Nd−6
atXB(以下Nd H4Fea。B、として記す)の
M1戒を有する急冷粉末を通電焼結機と通常のホットプ
レス機とによって圧縮成形した場合の成形磁石の熱安定
性には差が現れた。パーミアンス係数Pc=2の条件で
測定した180°Cにおける不可逆減磁率(ΔΦ1rr
)はそれぞれの磁石で以下の通りであった。
According to the experiments of the present inventors, Fe-14at$Nd-6
Differences appeared in the thermal stability of molded magnets when a rapidly cooled powder of atXB (hereinafter referred to as Nd H4Fea.B) having an M1 precept was compression molded using an electric sintering machine and a normal hot press machine. Irreversible demagnetization rate (ΔΦ1rr
) was as follows for each magnet.

ホットブレ、ス磁石: ΔΦ1rr=−7.4%(iHc= 16.5 koe
)通電焼結磁石: ΔΦ1rr=−12,4%(iHc= 16.7 ko
e)ここで、ホットプレスは2000kg/efflの
圧力のもとて600℃において行い、通電焼結は400
)cg/c111の圧力のもとで477A/C4の電流
を流して行った。
Hot blur, magnet: ΔΦ1rr = -7.4% (iHc = 16.5 koe
) Current-carrying sintered magnet: ΔΦ1rr = -12.4% (iHc = 16.7 ko
e) Here, hot pressing is performed at 600°C under a pressure of 2000 kg/effl, and electrical sintering is performed at 400°C.
) A current of 477 A/C4 was applied under a pressure of cg/c111.

通電焼結の場合には、通電開始と共に急速に温度が上昇
して約3w1n後には810°Cに到達し、その時点で
焼結が完了した。上記のように、通電焼結磁石の熱安定
性が悪く、それを改善することがその磁石を実用に供す
るために必要である。
In the case of energization sintering, the temperature rose rapidly with the start of energization and reached 810° C. after about 3 w1n, at which point sintering was completed. As mentioned above, the thermal stability of energized sintered magnets is poor, and it is necessary to improve this in order to put the magnets into practical use.

R−Fe−B系磁石の熱安定性の向上によく用いられて
いるのがDyの添加である。Dyの添加で焼結磁石の保
磁力が著しく向上することが知られている(M、Sag
aiva他、IEEE Trans、Mag、 Vol
、Mag−20゜No、5. pp1584−1589
(1984))。この保磁力ノ上昇効果により磁石の不
可逆減磁率が小さくなることが知られている(M、To
kunaga他、IEEE Trans、Mag。
Addition of Dy is often used to improve the thermal stability of R-Fe-B magnets. It is known that the coercive force of sintered magnets is significantly improved by the addition of Dy (M, Sag
aiva et al., IEEE Trans, Mag, Vol.
, Mag-20°No, 5. pp1584-1589
(1984)). It is known that the irreversible demagnetization rate of the magnet decreases due to the effect of increasing the coercive force (M, To
kunaga et al., IEEE Trans, Mag.

Vol、Mag−22,No、5. pp904−90
9(1986))。液体急冷によって作製されたNd−
Fe−B系の急冷薄帯においても、Ndの一部をDVで
置換することにより保磁力が向上することが知られてい
る(J、J、Croat他、J、へpp)、Phys、
シo1.55.No、6.pp207B−2087(1
984))。
Vol, Mag-22, No, 5. pp904-90
9 (1986)). Nd- prepared by liquid quenching
It is known that the coercive force of Fe-B-based quenched ribbons can be improved by substituting a portion of Nd with DV (J, J, Croat et al., J, Hepp), Phys,
Si o1.55. No, 6. pp207B-2087(1
984)).

以上のどの公知文献においても、Dyの添加量は比較的
に多く、Ndの置換率で表して10〜20%である。
In all of the above-mentioned known documents, the amount of Dy added is relatively large, ranging from 10 to 20% expressed as a Nd substitution rate.

Dyを添加することにより、急冷薄帯の熱間圧縮成形磁
石の熱安定性を向上させうることか期待される。一方、
上記のJ、J、Croatらの報告にも見られるように
、Dyの添加は残留磁束密度(Br)の著しい低下を招
く。本発明者らの実験によれば、Ndの10%をDyで
置換した急冷薄帯((Ndo、 qDVo、 +)+h
FeteB6)の熱間圧縮成形磁石のBrは7.0 k
G、 iHcは21.4 kOeであり、実用上必要な
りr=8.0〜8、5 kGを確保できない。また、1
0%に及ぶDyの置換(磁石全体では1.6at%の添
加)は、Dy元素が高価なために磁石のコスト高の原因
にもなる。
It is expected that by adding Dy, the thermal stability of the hot compression molded magnet of the quenched ribbon can be improved. on the other hand,
As seen in the above-mentioned report by J. J. Croat et al., the addition of Dy causes a significant decrease in the residual magnetic flux density (Br). According to experiments conducted by the present inventors, quenched ribbon ((Ndo, qDVo, +) + h
FeteB6) hot compression molded magnet has a Br of 7.0 k
G and iHc are 21.4 kOe, which is practically necessary and r=8.0 to 8.5 kG cannot be secured. Also, 1
Substitution of Dy up to 0% (addition of 1.6 at% in the entire magnet) also causes an increase in the cost of the magnet because the Dy element is expensive.

本発明は、添加するayO量が従来よりも少ない成分系
において、高い熱安定性を示す熱間圧縮成形磁石の製造
方法を提供することを目的とする。
An object of the present invention is to provide a method for producing a hot compression molded magnet that exhibits high thermal stability in a component system in which the amount of ayO added is smaller than conventional ones.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の希土類磁石の製造方法は、原子百分率で9%以
上で14%以下のR(ただしRはNd又はPrの少なく
とも1種を含むDyを除く希土類元素)、0105%以
上で2%以下のoy、4%以上で8%以下のB、0.0
5%以上で2%以下のCu、及び残部がFeならびに不
可避的不純物からなる希土類磁石の製造方法において、
液体急冷法で作製した8%以上で13%未満のR14%
以上で8%以下のB、及び残部がFeならびに不可避的
不純物からなる合金粉末(X)と、同じく液体急冷法で
作製した13%以上で20%以下のR10,2%以上で
8%以下のDy、4%以上で8%以下のB、0.2%以
上で8%以下のCu、及び残部がFeならびに不可避的
不純物からなる合金粉末(Y)とを混合し、前記合金粉
末(Y)の体積百分率が5%以上で50%以下である混
合物を得たのち、該混合物を熱間圧縮成形することを特
徴とする。ここでFelの20%までをCoで置換する
ことが可能である。熱間圧縮成形における加熱を通電加
熱により行うことにより高い生産性をもって希土類磁石
を製造することが出来る。
The method for producing a rare earth magnet of the present invention includes an atomic percentage of R of 9% or more and 14% or less (R is a rare earth element excluding Dy containing at least one of Nd or Pr), 0.105% or more and 2% or less. oy, B of 4% or more and 8% or less, 0.0
In a method for producing a rare earth magnet consisting of 5% or more and 2% or less Cu, and the balance being Fe and unavoidable impurities,
R14% of 8% or more and less than 13% produced by liquid quenching method
Alloy powder (X) consisting of 8% or less B, and the balance Fe and unavoidable impurities, and 13% or more and 20% R10, 2% or more and 8% or less, also produced by the liquid quenching method. An alloy powder (Y) consisting of Dy, 4% or more and 8% or less B, 0.2% or more and 8% or less Cu, and the balance consisting of Fe and unavoidable impurities is mixed to form the alloy powder (Y). After obtaining a mixture having a volume percentage of 5% or more and 50% or less, the mixture is hot compression molded. Here, it is possible to replace up to 20% of Fel with Co. Rare earth magnets can be manufactured with high productivity by heating in hot compression molding by electrical heating.

〔作 用] 以下本発明の詳細について説明する。[For production] The details of the present invention will be explained below.

液体急冷法により作製されるNd−Fe−B系急冷薄帯
の磁気特性はNd及びDyの含有量によって大きく異な
る。すなわち、Ndo量がNdzFe+J化合物のNd
の割合(11,8%)よりも多くなるにしたがい、保磁
力(illc)は増加するが、残留磁束密度(Br)は
低下することが知られている。また、ayの少量の添加
によってiHcが著しく増加する。さらに、本発明者ら
は、DyとCuの複合添加によって、oy単独の添加の
場合よりもiHcが増加することを見出した。下に、種
々の合金薄帯の磁気特性の一例を示す。
The magnetic properties of the Nd-Fe-B quenched ribbon produced by the liquid quenching method vary greatly depending on the Nd and Dy contents. That is, the amount of Ndo is higher than that of the NdzFe+J compound.
It is known that as the ratio (11.8%) increases, the coercive force (ILLC) increases, but the residual magnetic flux density (Br) decreases. Furthermore, addition of a small amount of ay significantly increases iHc. Furthermore, the present inventors have found that the combined addition of Dy and Cu increases iHc more than when only oy is added. Examples of the magnetic properties of various alloy ribbons are shown below.

Fe−12X Nd−6X B : iHc = 9.
9kOe、 Br = 7.0kGFe−15X Nd
−6χB : iHc =19.1kOe、 Br =
 5.9kGFe−14,4χNd−1,6X Dy−
6X B : iHc =25.6kOe。
Fe-12X Nd-6X B: iHc = 9.
9kOe, Br = 7.0kGFe-15X Nd
-6χB: iHc = 19.1 kOe, Br =
5.9kGFe-14,4χNd-1,6X Dy-
6X B: iHc =25.6kOe.

Br = 5.3kG Fe−14,4χNd−1,6X Dy−5X B4.
5χCu: iHe >26 kOe、 Br = 5
.2kGこれらの値は、合金薄帯を1501Im以下に
粉砕し、それによって得た粉末を樹脂で固めたボンド磁
石(密度6.0 g /CTII)の測定結果である。
Br = 5.3kG Fe-14,4χNd-1,6X Dy-5X B4.
5χCu: iHe >26 kOe, Br = 5
.. 2kG These values are the measurement results of a bonded magnet (density 6.0 g/CTII) in which the alloy ribbon is crushed to 1501 Im or less and the resulting powder is solidified with resin.

本発明の製造方法は、高Brを有する低Nd量の合金粉
末(主粉末)に対して、高iceの合金粉末(添加粉末
)を添加し、混合ののちに熱間で圧縮成形することを特
徴とする。本発明者らは、新しく、oyとCuを複合添
加した粉末の添加によって、熱間圧縮成形磁石の熱安定
性が著しく向上するという現象を見出した。詳しくは実
施例1に示すが、例えば、Fe−12XNd−4,92
Co−6χBの主粉末とFe14.4χNd−1,6χ
Dy−52B−1,5χCuの添加粉末とを4対1の割
合で混合し、通電加熱を用いた熱間圧縮成形により真密
度の95%以上にまで密度を高めた高密度磁石において
は、Pc=2における不可逆減磁率は180″Cで−4
,2%であった(不可逆減磁率:室温(30°C)で着
磁後に所定温度(例えば180°C)に磁石を加熱し、
再度室温に戻したときの磁束の減少率)。実施例2.3
において示すように、このような高い熱安定性は、Dy
とCuを複合添加することなしには得られない。
The manufacturing method of the present invention involves adding high ice alloy powder (additional powder) to alloy powder with high Br and low Nd content (main powder), and hot compression molding after mixing. Features. The present inventors have newly discovered a phenomenon in which the thermal stability of hot compression molded magnets is significantly improved by adding a powder containing a combination of oy and Cu. Details are shown in Example 1, but for example, Fe-12XNd-4,92
Main powder of Co-6χB and Fe14.4χNd-1,6χ
In a high-density magnet that is made by mixing Dy-52B-1,5χCu additive powder at a ratio of 4:1 and increasing the density to more than 95% of the true density by hot compression molding using electrical heating, Pc The irreversible demagnetization rate at =2 is -4 at 180″C
, 2% (irreversible demagnetization rate: after magnetization at room temperature (30 °C), the magnet is heated to a predetermined temperature (for example, 180 °C),
rate of decrease in magnetic flux when returned to room temperature). Example 2.3
Such high thermal stability is due to Dy
This cannot be obtained without the combined addition of Cu and Cu.

本発明においては、Dy & Cuを複合添加した添加
粉末を用い、かつその添加粉末の量が5〜50%におい
て十分に効果が発揮される。したがって、成形磁石の残
留磁束密度は低NdO主粉末によってほぼ決められ、B
r−8〜8.5kGの高い値が保たれる。
In the present invention, the effect is sufficiently exhibited when an additive powder containing a combination of Dy and Cu is used and the amount of the additive powder is 5 to 50%. Therefore, the residual magnetic flux density of the shaped magnet is almost determined by the low NdO main powder, and the B
A high value of r-8 to 8.5 kG is maintained.

本発明の希土類磁石は、組成の異なる2種の合金粉末X
とYを混合し、熱間圧縮により固化することによって得
られる。希土類元素RとしてはNdが最も好ましいが、
Ndの一部又は全部をPrで置き換えることも可能であ
る。ここで、粉末XのR1をR2Fe+J相の組成比で
ある11.8%を中心に8%以上で13%未満に限定し
、高い残留磁束密度を粉末Xに付与する。Rの量が8%
未満のときには、粉末Xの保磁力が極端に低下し、実用
に供し得ない。また、Rの量が13%以上のときには残
留磁束密度が低下する。このような組成範囲の粉末Xに
対して、高保磁力粉末のYを添加する。粉末Yの性質と
しては、R−rich相(3元Nd−Fe−B系で融点
は約700°Cである)が合金中に含まれ、熱間圧縮時
にそのR−rich相が溶けて滲み出すことが必要であ
る。この滲み出たR−richの溶融体が粉末χの表面
を濡らし、粉末Xを高保磁力化するメカニズムが妥当で
ある。このような理由により粉末YのRの量は13%以
上で20%以下に限定される。ここでRの量が20%を
越える時には粉末Yの残留磁束密度が著しく低下し、粉
末XとYを混合して得られる高密度磁石の特性が低下す
る。
The rare earth magnet of the present invention has two types of alloy powders X having different compositions.
and Y are mixed and solidified by hot compression. As the rare earth element R, Nd is most preferable, but
It is also possible to replace part or all of Nd with Pr. Here, R1 of the powder X is limited to 8% or more and less than 13%, centering around 11.8%, which is the composition ratio of the R2Fe+J phase, to impart a high residual magnetic flux density to the powder X. The amount of R is 8%
When it is less than 1, the coercive force of powder X is extremely reduced and cannot be put to practical use. Furthermore, when the amount of R is 13% or more, the residual magnetic flux density decreases. High coercive force powder Y is added to powder X having such a composition range. The properties of powder Y include an R-rich phase (a ternary Nd-Fe-B system with a melting point of about 700°C) that melts and oozes during hot compression. It is necessary to bring it out. An appropriate mechanism is that this oozing R-rich melt wets the surface of the powder χ and increases the coercive force of the powder X. For these reasons, the amount of R in powder Y is limited to 13% or more and 20% or less. When the amount of R exceeds 20%, the residual magnetic flux density of the powder Y decreases significantly, and the characteristics of the high-density magnet obtained by mixing the powders X and Y deteriorate.

DyとCuは、粉末Yの成分として添加される。ここで
、CuはR−rich相に濃縮され、R−rich相の
融点を約200°C低下させる。これは、熱間圧縮時に
おけるR−rich溶融体の滲み出しを容易にする。D
yの一部はR−rich溶融体に取り込まれ、滲み出し
によって粉末Xの表面近傍にたどりつき、粉末Xの高保
磁力化、引いては成形磁石の高保磁力化に寄与し、成形
磁石に高い熱安定性を与えると考えられる。したがって
、いわば、CuはDy拡散の促進剤であり、両元素−緒
になって拡散し、粉末Xの表面(成形磁石においてはX
−X界面)を覆うのである。
Dy and Cu are added as components of powder Y. Here, Cu is concentrated in the R-rich phase and lowers the melting point of the R-rich phase by about 200°C. This facilitates oozing of the R-rich melt during hot pressing. D
A part of y is taken into the R-rich melt and reaches near the surface of powder X by oozing out, contributing to increasing the coercive force of powder It is thought to provide stability. Therefore, Cu is, so to speak, a promoter of Dy diffusion, and both elements diffuse together, and the surface of the powder
-X interface).

粉末Yの成分として添加する。yは0.2%以上で8%
以下に限定される。その理由は、rhが0.2%未満で
はR−rich溶融体に取り込まれるDyの量が少なく
、8%を越えると粉末Yの残留磁束密度の低下が著しい
。Cuは0.2%以上で8%以下の範囲で粉末Yの成分
として添加される。そのCuの添加量は0.2%未満で
は成形磁石の熱安定性の向上に寄与せず、8%を越える
と粉末Yの残留磁束密度の低下が無視できない。
Add as a component of powder Y. y is 0.2% or more and 8%
Limited to: The reason is that when rh is less than 0.2%, the amount of Dy incorporated into the R-rich melt is small, and when rh is more than 8%, the residual magnetic flux density of the powder Y is significantly reduced. Cu is added as a component of powder Y in a range of 0.2% or more and 8% or less. If the amount of Cu added is less than 0.2%, it does not contribute to improving the thermal stability of the shaped magnet, and if it exceeds 8%, the reduction in the residual magnetic flux density of the powder Y cannot be ignored.

粉末XとYの混合物におけるYの体積百分率は5%以上
で50%以下に限定される。その理由は次の通りである
。添加粉末のYの体積百分率が5%未満では十分に高い
保磁力と優れた熱安定性が得られない。また、Yの体積
百分率が50%を越えると、粉末Xの持つ高い残留磁束
密度を十分に活かすことができない。このような混合比
のもとで得られる磁石の平均的なR(ただし、RはNd
又はPrの少なくとも一種を含むDyを除く希土類元素
)の原子百分率は、9%以上で14%以下に限定される
。その理由は、Rが9%未満では十分に高い保磁力が得
られず、14%を越えると高い残留磁束密度が得られな
いからである。磁石中の平均的なりyの量は、Rの組成
の限定と同じ理由により、0.05%以上で2%以下に
限定される。より好ましいoyO組戒範囲は、高Brと
高熱安定性の両方を確保できる範囲で、0.1%以上で
1%以下である。
The volume percentage of Y in the mixture of powders X and Y is limited to 5% or more and 50% or less. The reason is as follows. If the volume percentage of Y in the additive powder is less than 5%, a sufficiently high coercive force and excellent thermal stability cannot be obtained. Furthermore, if the volume percentage of Y exceeds 50%, the high residual magnetic flux density of the powder X cannot be fully utilized. The average R of the magnet obtained under such a mixing ratio (where R is Nd
The atomic percentage of rare earth elements (excluding Dy and containing at least one type of Pr) is limited to 9% or more and 14% or less. The reason for this is that if R is less than 9%, a sufficiently high coercive force cannot be obtained, and if R exceeds 14%, a high residual magnetic flux density cannot be obtained. The average amount of y in the magnet is limited to 0.05% or more and 2% or less for the same reason as the limitation on the composition of R. A more preferable oyO composition range is 0.1% or more and 1% or less, which is a range that can ensure both high Br and high thermal stability.

平均的なCuO量は、0.05%以上で2%以下に限定
される。より好ましいCuの組成範囲は、ayの場合と
同じ理由で0.1%以上で1%以下である。
The average amount of CuO is limited to 0.05% or more and 2% or less. A more preferable composition range of Cu is 0.1% or more and 1% or less for the same reason as in the case of ay.

Bの量は、原子百分率で4%未満ではRzFe+=相が
出現し、8%を越えるとB−rich相が出現する。
When the amount of B is less than 4% in atomic percentage, an RzFe+= phase appears, and when it exceeds 8%, a B-rich phase appears.

いずれの相も熱間圧縮による粉体の緻密化を阻害する。Either phase inhibits densification of the powder by hot compression.

したがって、本発明に係わる急冷薄帯及びそれらの固化
された磁石におけるBの量は一律4%以上で8%以下に
限定される。
Therefore, the amount of B in the quenched ribbons and their solidified magnets according to the present invention is uniformly limited to 4% or more and 8% or less.

合金のキュリー温度をあげて使用温度における磁束密度
の温度変化を小さくするために、Feの一部をCoで置
換することがある。本発明による磁石においても、磁石
特性を損なうこと無く、FeO量の20%まではCoで
置換することが可能である。
In order to raise the Curie temperature of the alloy and reduce the temperature change in magnetic flux density at the operating temperature, a portion of Fe may be replaced with Co. Also in the magnet according to the present invention, up to 20% of the FeO amount can be replaced with Co without impairing the magnetic properties.

次に、本発明の製造方法の詳細について述べる。Next, details of the manufacturing method of the present invention will be described.

上記限定成分の超急冷合金粉末は、通常の単ロール法に
よって最も安定して得られるが、他の双ロール法もしく
はガスアトマイズ法によっても得られる。単ロール法の
場合には、厚さ20〜3〇−1幅1.5〜2印、長さ1
0〜20mmのフレーク状の薄帯が得られる。単ロール
法による急冷薄帯の磁気特性は、ロールの回転速度によ
って制御される急冷度に依存して変化する。最適の急冷
条件では、大きさ0.01−0.1tmの微細な結晶粒
からなる薄帯が得られ、その薄帯は優れた磁石特性を示
す。一方、過急冷の条件では、非晶質に近い状態の薄帯
が得られるが、その薄帯は熱処理によって結晶化し、高
い磁石特性を示すようになる。いずれの薄帯も、粉砕し
て熱間圧縮成形磁石に供することができる。粉末の粒径
としては、100,77111前後が好適である。本発
明では、2種類の合金粉末を適当な割合で混合する必要
があるが、それは例えばV型混合機により容易に行いう
る。
The ultra-quenched alloy powder having the above-mentioned limiting components is most stably obtained by the usual single-roll method, but it can also be obtained by other twin-roll methods or gas atomization methods. In the case of a single roll method, the thickness is 20 to 30-1, the width is 1.5 to 2 marks, and the length is 1.
Flake-like ribbons of 0 to 20 mm are obtained. The magnetic properties of a ribbon quenched by the single roll method vary depending on the degree of quenching, which is controlled by the rotational speed of the roll. Under optimal quenching conditions, a ribbon consisting of fine grains with a size of 0.01-0.1 tm is obtained, and the ribbon exhibits excellent magnetic properties. On the other hand, under superquenching conditions, a nearly amorphous ribbon is obtained, but the ribbon is crystallized by heat treatment and exhibits high magnetic properties. Either ribbon can be crushed and subjected to hot compression molding magnets. The particle size of the powder is preferably around 100,77111. In the present invention, it is necessary to mix two types of alloy powders in an appropriate ratio, which can be easily done using, for example, a V-type mixer.

本発明の熱間圧縮は、ホットプレス、HIP、通電焼結
等で行いうるが、通電加熱のできる通電焼結機を用いた
方法が高い量産性をもって行いうるので最も好ましい。
The hot compression of the present invention can be carried out by hot pressing, HIP, current sintering, etc., but it is most preferable to use a method using a current sintering machine that can perform current heating because it can be carried out with high mass productivity.

通電焼結の特徴は、800〜900 ’Cに近い高温で
比較的低い圧力のもとて短時間(1〜4 m1n)で焼
結を完了させることにある。本発明の製造方法に基づ<
DyとCuの複合添加磁石は、上記のような高温におい
て成形しても高い熱安定性を示す。
The characteristic of current sintering is that sintering can be completed in a short time (1 to 4 m1n) at a high temperature close to 800 to 900'C and a relatively low pressure. Based on the manufacturing method of the present invention
A magnet with a composite addition of Dy and Cu exhibits high thermal stability even when molded at the above-mentioned high temperature.

〔実施例〕〔Example〕

実施例1 原子百分率でFe−12zNd−4,9%Co−6XB
(Nd+z(Fee、 qaCoo、 06) 112
B6)の組成の合金粉末XとFe−14,4χNd1、
6XDV−52B−1、5%Cu ((Ndo、 gD
yo、 +) + bFet7.5BsCu L s)
の組成の合金粉末Yとを用意した。これらの粉末を作製
するにあたって、まず上記組成の合金を高周波誘導加熱
により溶解し、直径1mmの穴を持つ石英ノズルからそ
の溶湯を回転する銅製ロールの表面上に噴射した。この
時のO−ルの表面速度は25m/secで、微細な結晶
粒の得られる最適の急冷条件である。得られた薄帯の厚
さは20〜3〇−1幅は約1.5恥、長さはlO〜20
[+1111である。
Example 1 Fe-12zNd-4,9%Co-6XB in atomic percentage
(Nd+z(Fee, qaCoo, 06) 112
B6) alloy powder X with the composition Fe-14,4χNd1,
6XDV-52B-1, 5% Cu ((Ndo, gD
yo, +) + bFet7.5BsCu L s)
An alloy powder Y having the composition was prepared. To produce these powders, an alloy having the above composition was first melted by high-frequency induction heating, and the molten metal was injected onto the surface of a rotating copper roll from a quartz nozzle having a hole with a diameter of 1 mm. The surface speed of the O-ru at this time was 25 m/sec, which is the optimum rapid cooling condition for obtaining fine crystal grains. The thickness of the obtained thin strip is 20~30-1, the width is about 1.5 mm, and the length is 10~20.
[+1111.

この薄帯を150−以下に粉砕し、プレス成形用の粉末
X及びYとした。それぞれの粉末にエポキシ樹脂を3w
t%加え、圧縮成形によりボンド磁石を作製した。その
ボンド磁石(密度6.0g/afl)の磁気特性を60
kOeのパルス着磁を行ったのちに自記磁束計によって
測定した結果を下に示す。
This ribbon was ground to 150 mm or less to obtain powders X and Y for press molding. Add 3w of epoxy resin to each powder
t% was added, and a bonded magnet was produced by compression molding. The magnetic properties of the bonded magnet (density 6.0g/afl) are 60
The results measured using a self-recording magnetometer after performing pulse magnetization of kOe are shown below.

粉末X : 1Hc=10.6kOe 、、Br=7.
0kG。
Powder X: 1Hc=10.6kOe, Br=7.
0kG.

(88)max=11.0MGOe 粉末Y : iHc>26kOe 、 Br=5.2k
G。
(88) max=11.0MGOe Powder Y: iHc>26kOe, Br=5.2k
G.

(BH)max=6.2MGOe 粉末XとYを種々の割合で混合し、その混合粉末を通電
焼結機を用いて熱間で圧縮成形した。この実験において
は、粉末をカーボン製のダイのキャビティに装填し、粉
末に400kg/C11lの圧力を加えた状態で、15
00Aの通電により粉末を加熱した。ここでキャビティ
は、直径20m+nの円柱状である。混合粉末の混合比
によっても異なったが、上記の圧力下では試料の実測温
度が800〜900°Cに到達した時点で混合粉末の密
度は合金粉末Xの真密度に近い7.6g/c+dに達し
た。加熱開始から焼結終了までに要した時間は3〜4 
minであった。
(BH)max=6.2MGOe Powders X and Y were mixed in various proportions, and the mixed powder was hot compression molded using an electric current sintering machine. In this experiment, the powder was loaded into the cavity of a carbon die, and a pressure of 400 kg/C11l was applied to the powder.
The powder was heated by applying a current of 00A. Here, the cavity has a cylindrical shape with a diameter of 20 m+n. Although it varied depending on the mixing ratio of the mixed powder, under the above pressure, the density of the mixed powder reached 7.6 g/c+d, which is close to the true density of alloy powder X, when the measured temperature of the sample reached 800 to 900°C. Reached. The time required from the start of heating to the end of sintering was 3-4
It was min.

第1図に混合粉末における粉末Yの体積百分率が異なる
場合の熱間圧縮成形磁石の加圧方向の磁気特性と140
 ’Cと180″Cにおける不可逆減磁率を示す。磁気
特性は60kOeのパルス着磁を行った後に自記磁束計
で測定したものである。不可逆減磁率は、バーξアンス
係数Pc(=−B/II)が2の円柱状試料の磁束の加
熱による変化量を測定して求めたものである。第1図か
られかるように、DyとCuを複合添加した粉末Yを主
粉末Xに対して10〜20%添加することにより保磁力
iHcが著しく向上する。上記の粉末Yの添加範囲では
、8.2〜8、4 kGの高い残留磁束密度Brが確保
される。また、iHeの上昇に対応して不可逆減磁率の
絶対値も小さくなる。粉末Yの添加量が20%のときに
、140°Cと180″Cにおける不可逆減磁率はそれ
ぞれ−1,7%と−4,2%である。
Figure 1 shows the magnetic properties of the hot compression molded magnet in the pressing direction when the volume percentage of powder Y in the mixed powder is different, and 140
'C and 180''C. The magnetic properties were measured with a self-recording magnetometer after pulse magnetization at 60 kOe. The irreversible demagnetization rate is the balance coefficient Pc (=-B/ II) was obtained by measuring the amount of change in magnetic flux due to heating of the cylindrical sample in 2.As can be seen from Figure 1, powder Y to which Dy and Cu were added in combination was compared to the main powder X. By adding 10 to 20%, the coercive force iHc is significantly improved.With the above addition range of powder Y, a high residual magnetic flux density Br of 8.2 to 8.4 kG is ensured.Also, due to the increase in iHe, Correspondingly, the absolute value of the irreversible demagnetization rate becomes smaller. When the amount of powder Y added is 20%, the irreversible demagnetization rate at 140°C and 180"C is -1.7% and -4.2%, respectively. be.

実施例2 添加粉末Yの種類を変えて混合粉末の通電焼結を行った
。主粉末Xには実施例1に記したものを用い、実験条件
も実施例1で詳述した条件と同じにした。第1表に添加
粉末の組成、添加量、粉末XとYからなる混合粉末の平
均組成を示した。Nd系と記したものは、単一のFe−
14XNd−62:Bの組成を有する粉末を固めて得た
磁石の成分系である。
Example 2 Electrical sintering of mixed powder was performed while changing the type of added powder Y. The main powder X described in Example 1 was used, and the experimental conditions were the same as those detailed in Example 1. Table 1 shows the composition of the added powder, the amount added, and the average composition of the mixed powder consisting of powders X and Y. What is described as Nd-based is a single Fe-
This is a component system of a magnet obtained by solidifying powder having a composition of 14XNd-62:B.

Nd + Cu系、Nd f Dy系、及びNd + 
Dy f Cu系と記したものは、それぞれCu及び/
又はDyを含む添加粉末と上記主粉末とからなる磁石の
成分系である。
Nd + Cu system, Nd f Dy system, and Nd +
Dy f Cu type refers to Cu and /
Alternatively, it is a magnet component system consisting of an additive powder containing Dy and the above-mentioned main powder.

第2図にそれぞれの成分系の通電焼結磁石の減磁lIh
線を示す。残留磁束密度は成分系によってあまり変化せ
ずに8.2〜8.4kGであるが、保磁力はNd 十D
y f Cu系において最も大きい。第3図にPc=2
における不可逆減磁率の測定結果を示す。不可逆減磁率
の絶対値は、Nd系、Nd f Cu系、Nd +DV
系、Nd十DyfCu系の順番に小さくなっているのが
わかる。ここで、5%以下のCoの添加の有無によって
は、磁気特性及び不可逆減磁率はさほど変化しないこと
を確認している。
Figure 2 shows the demagnetization lIh of the current-carrying sintered magnets of each component system.
Show the line. The residual magnetic flux density does not change much depending on the component system and is 8.2 to 8.4 kG, but the coercive force is Nd
y f It is the largest in the Cu system. In Figure 3, Pc=2
The measurement results of the irreversible demagnetization rate are shown below. The absolute value of irreversible demagnetization rate is Nd system, Nd f Cu system, Nd +DV
It can be seen that the size decreases in the order of Nd+DyfCu series. Here, it has been confirmed that the magnetic properties and irreversible demagnetization rate do not change much depending on the presence or absence of addition of 5% or less Co.

実施例3 種々の主粉末X及び添加粉末Yからなる混合粉末の通電
焼結磁石を作製し、磁気特性及び不可逆減磁率の値を比
較した。加える添加粉末の体積百分率(添加N)は−例
を除いて20%にし、その他の実験条件は実施例1で詳
述した条件と同しにした。第2表に示す種々の主粉末及
び添加粉末からなる混合粉末の通電焼結磁石を作製し、
それらの磁石をNo、1,2.3.4.5.6とした。
Example 3 Current-applied sintered magnets of mixed powders consisting of various main powders X and additive powders Y were produced, and the values of magnetic properties and irreversible demagnetization rates were compared. The volume percentage of the added powder (addition N) was 20% except for the - example, and the other experimental conditions were the same as those detailed in Example 1. Electrically sintered magnets of mixed powders consisting of various main powders and additive powders shown in Table 2 were prepared,
These magnets were designated as No. 1, 2.3.4.5.6.

第3表に各磁石の磁気特性(iHc、 Brs (BH
)max)及びPC−2の条件での180°Cにおける
不可逆減磁率(ΔΦ1rr)を示す。
Table 3 shows the magnetic properties of each magnet (iHc, Brs (BH
)max) and the irreversible demagnetization rate (ΔΦ1rr) at 180°C under the conditions of PC-2.

第 3 表 第2表及び第3表かられかるように、保磁力(iHc)
が殆ど同じであっても、Nd−Pe−83元系又はNd
−Fe−B−Dy 4元系に比較して、Nd−Fe−B
−Dy−Cu5元系の不可逆減磁率(ΔΦ1rr)の絶
対値は小さく熱安定性に優れる。また、No、 6の磁
石の結果かられかるように、Ndの代わりにPrを使う
ことができる。
3 As seen from Tables 2 and 3, coercive force (iHc)
Even if they are almost the same, the Nd-Pe-83 element system or Nd
-Fe-B-Dy Compared to the four-element system, Nd-Fe-B
The absolute value of the irreversible demagnetization rate (ΔΦ1rr) of the -Dy-Cu five-element system is small and has excellent thermal stability. Also, as seen from the results for magnet No. 6, Pr can be used instead of Nd.

〔発明の効果〕〔Effect of the invention〕

本発明により得られたNd−Fe−B系磁石の磁気特性
は、縦磁場成形のSm−Go焼結磁石の特性に匹敵し、
水系磁石の弱点であった熱安定性の悪さが大きく改善さ
れた。本発明の場合、原料の希土類として主に安価なN
dを用いるので低コストの磁石の提供が可能である。ま
た、本発明により得られた磁石の形状は、熱間圧縮成形
に用いるダイのキャビティの形状の通りに精度よく決め
られるので、研磨等の後加工を必要としない。これによ
って、後加工を必要とする通常の常圧焼結によるNd−
PeB磁石に対してもコスト的に有利な立場を取りうる
The magnetic properties of the Nd-Fe-B magnet obtained by the present invention are comparable to the properties of Sm-Go sintered magnet formed by vertical magnetic field forming,
The poor thermal stability, which was a weak point of water-based magnets, has been greatly improved. In the case of the present invention, the rare earth raw material is mainly N, which is inexpensive.
Since d is used, it is possible to provide a low-cost magnet. Furthermore, the shape of the magnet obtained according to the present invention can be precisely determined according to the shape of the cavity of the die used for hot compression molding, and therefore post-processing such as polishing is not required. This allows Nd-
It can also be advantageous in terms of cost compared to PeB magnets.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はFe−Nd−Dy−B4:u系粉末の体積百分
率(それから計算される平均のDyとCuの原子百分率
:に対して通電焼結磁石の磁気特性と不可逆減磁率を表
す図である。第2図は各成分系の通電焼結磁石の減磁曲
線で、第3図は各成分系の磁石の不可逆減磁率を表す図
である。 第1図 (Ndo、qDyat)taFensEscuts r
n末の付1責百分4’(%)平均のDyの原子百分子(
’/、) 平均のCUの原子臼分卆(〃) H(セ0e) 4π1(/2σ)
Figure 1 shows the magnetic properties and irreversible demagnetization rate of an energized sintered magnet with respect to the volume percentage of Fe-Nd-Dy-B4:u-based powder (the average atomic percentage of Dy and Cu calculated from it). Figure 2 shows the demagnetization curves of the energized sintered magnets of each component system, and Figure 3 shows the irreversible demagnetization rate of the magnets of each component system.
n-terminus 1% 4' (%) average Dy atomic hundred molecules (
'/,) Average CU atomic capacity (〃) H(Se0e) 4π1(/2σ)

Claims (3)

【特許請求の範囲】[Claims] (1) 原子百分率で9%以上で14%以下のR(ただ
しRはNd又はPrの少なくとも1種を含むDyを除く
希土類元素)、0.05%以上で2%以下のDy、4%
以上で8%以下のB、0.05%以上で2%以下のCu
、及び残部がFeならびに不可避的不純物からなる希土
類磁石の製造方法において、液体急冷法で作製した8%
以上で13%未満のR、4%以上で8%以下のB、及び
残部がFeならびに不可避的不純物からなる合金粉末(
X)と、同じく液体急冷法で作製した13%以上で20
%以下のR、0.2%以上で8%以下のDy、4%以上
で8%以下のB、0.2%以上で8%以下のCu、及び
残部がFeならびに不可避的不純物からなる合金粉末(
Y)とを混合し、前記合金粉末(Y)の体積百分率が5
%以上で50%以下である混合物を得たのち、該混合物
を熱間圧縮成形することを特徴とする希土類磁石の製造
方法。
(1) R in an atomic percentage of 9% or more and 14% or less (R is a rare earth element excluding Dy containing at least one of Nd or Pr), 0.05% or more and 2% or less of Dy, 4%
More than 8% B, 0.05% or more and less than 2% Cu
, and the balance is Fe and unavoidable impurities.
Alloy powder consisting of less than 13% R, 4% or more and 8% or less B, and the balance being Fe and unavoidable impurities (
X) and 20 with 13% or more produced by the same liquid quenching method.
% or less, Dy of 0.2% or more and 8% or less, B of 4% or more and 8% or less, Cu of 0.2% or more and 8% or less, and the balance consisting of Fe and inevitable impurities. Powder (
Y) and the alloy powder (Y) has a volume percentage of 5.
% or more and 50% or less, and then hot compression molding the mixture.
(2) Fe量の20%までをCoで置換することを特
徴とする請求項1記載の希土類磁石の製造方法。
(2) The method for producing a rare earth magnet according to claim 1, characterized in that up to 20% of the amount of Fe is replaced with Co.
(3) 熱間圧縮成形における加熱を通電加熱により行
うことを特徴とする請求項1及び2記載の希土類磁石の
製造方法。
(3) The method for manufacturing a rare earth magnet according to claims 1 and 2, wherein the heating in the hot compression molding is performed by electrical heating.
JP1207660A 1989-08-10 1989-08-10 Manufacture of rare-earth magnet Pending JPH0371601A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1207660A JPH0371601A (en) 1989-08-10 1989-08-10 Manufacture of rare-earth magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1207660A JPH0371601A (en) 1989-08-10 1989-08-10 Manufacture of rare-earth magnet

Publications (1)

Publication Number Publication Date
JPH0371601A true JPH0371601A (en) 1991-03-27

Family

ID=16543447

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1207660A Pending JPH0371601A (en) 1989-08-10 1989-08-10 Manufacture of rare-earth magnet

Country Status (1)

Country Link
JP (1) JPH0371601A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05205925A (en) * 1992-01-29 1993-08-13 Sumitomo Special Metals Co Ltd Material powder for r-fe-b base permanent magnet
JP2012209442A (en) * 2011-03-30 2012-10-25 Hitachi Metals Ltd Bulk magnet and method for manufacturing the same
JP2014057075A (en) * 2009-12-09 2014-03-27 Aichi Steel Works Ltd Rare earth anisotropic magnet and method for manufacturing the same
JP2018073988A (en) * 2016-10-28 2018-05-10 ミネベアミツミ株式会社 Isotropic bulk magnet, and method for manufacturing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05205925A (en) * 1992-01-29 1993-08-13 Sumitomo Special Metals Co Ltd Material powder for r-fe-b base permanent magnet
JP2014057075A (en) * 2009-12-09 2014-03-27 Aichi Steel Works Ltd Rare earth anisotropic magnet and method for manufacturing the same
JP2012209442A (en) * 2011-03-30 2012-10-25 Hitachi Metals Ltd Bulk magnet and method for manufacturing the same
JP2018073988A (en) * 2016-10-28 2018-05-10 ミネベアミツミ株式会社 Isotropic bulk magnet, and method for manufacturing the same

Similar Documents

Publication Publication Date Title
EP3291249B1 (en) Manganese bismuth-based sintered magnet having improved thermal stability and preparation method therefor
JPH02288305A (en) Rare earth magnet and manufacture thereof
US5930582A (en) Rare earth-iron-boron permanent magnet and method for the preparation thereof
EP0657899A1 (en) Iron-based permanent magnet alloy powders for resin bonded magnets and magnets made therefrom
JP2727506B2 (en) Permanent magnet and manufacturing method thereof
JPH0447024B2 (en)
JPH0371601A (en) Manufacture of rare-earth magnet
JP2002057017A (en) Isotropic powdery magnet material, its manufacturing method, and bonded magnet
JPH0831626A (en) Rare earth magnetic powder, permanent magnet thereof, and manufacture of them
JPH07263210A (en) Permanent magnet, alloy powder for permanent magnet and their production
JP3641021B2 (en) High coercive force iron-based permanent magnet and bonded magnet
JP3623564B2 (en) Anisotropic bonded magnet
JPH0845719A (en) Quenched thin band for bond magnet, particles for bond magnet, bond magnet and manufacture thereof
JP3670424B2 (en) Method for manufacturing anisotropic bonded magnet
JP5235264B2 (en) Rare earth sintered magnet and manufacturing method thereof
JP4687493B2 (en) Rare earth sintered magnet and manufacturing method thereof
JPS63252403A (en) Liquisol quenching alloy composite type rare earth permanent magnet and manufacture thereof
JPH09320876A (en) Manufacture of anisotropic bond magnet
JP4972919B2 (en) Rare earth sintered magnet and manufacturing method thereof
JP3623583B2 (en) Anisotropic bonded magnet
JPH03194904A (en) Rare earth magnet and its manufacture
JP2704745B2 (en) Manufacturing method of permanent magnet
JP3032385B2 (en) Fe-BR bonded magnet
JPH04218903A (en) Manufacture of anisotropic rare earth magnet or anisotropic rare earth magnet powder
JPH0992515A (en) Anisotropic bonded magnet