JP2018073988A - Isotropic bulk magnet, and method for manufacturing the same - Google Patents

Isotropic bulk magnet, and method for manufacturing the same Download PDF

Info

Publication number
JP2018073988A
JP2018073988A JP2016212062A JP2016212062A JP2018073988A JP 2018073988 A JP2018073988 A JP 2018073988A JP 2016212062 A JP2016212062 A JP 2016212062A JP 2016212062 A JP2016212062 A JP 2016212062A JP 2018073988 A JP2018073988 A JP 2018073988A
Authority
JP
Japan
Prior art keywords
magnet
powder
rare earth
amount
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016212062A
Other languages
Japanese (ja)
Other versions
JP6513623B2 (en
Inventor
健太郎 花島
Kentaro Hanashima
健太郎 花島
幸村 治洋
Haruhiro Yukimura
治洋 幸村
淳詔 鈴木
Toshinori Suzuki
淳詔 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MinebeaMitsumi Inc
Original Assignee
MinebeaMitsumi Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MinebeaMitsumi Inc filed Critical MinebeaMitsumi Inc
Priority to JP2016212062A priority Critical patent/JP6513623B2/en
Publication of JP2018073988A publication Critical patent/JP2018073988A/en
Application granted granted Critical
Publication of JP6513623B2 publication Critical patent/JP6513623B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an isotropic bulk magnet which can reduce the amount of rare earth element used, and which makes it possible to ensure a residual magnetic flux density (Br) and a practical coercive force (Hc).SOLUTION: An isotropic bulk magnet according to the present invention comprises: a Nd-Fe-B based magnet region (A) including 12 at% or less of a rare earth element; and a Nd-Fe-B based magnet region (B) including more than 12 at% of a rare earth element. It is preferred that the Nd-Fe-B based magnet region (A) or Nd-Fe-B based magnet region (B) includes, as the rare earth element, Nd, and at least one element (e1) selected from a group consisting of Sc, Y, La, Ce, Pr, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu.SELECTED DRAWING: Figure 1

Description

本発明は、等方性バルク磁石および等方性バルク磁石の製造方法に関する。   The present invention relates to an isotropic bulk magnet and a method for producing an isotropic bulk magnet.

機器の小型化、高性能化に伴い、機器中のモータに使われる磁石として、高磁気特性を有する希土類永久磁石の使用が増えている。また、近年、モータは車載用途の需要が増えてきており、耐熱性や耐環境性が求められている。モータ用磁石として、磁石粉末と樹脂とを混合して成形した磁石(いわゆる、ボンド磁石)がある。しかしながら、ボンド磁石は、成形の自由度がある一方、バインダに有機材料である樹脂を使用しているため、エンジンルームなどの高温となる環境下での使用は難しい。   With the miniaturization and high performance of equipment, the use of rare earth permanent magnets having high magnetic properties is increasing as magnets used in motors in equipment. In recent years, demand for motors has increased for in-vehicle applications, and heat resistance and environmental resistance are required. As a magnet for a motor, there is a magnet (so-called bonded magnet) formed by mixing magnet powder and resin. However, the bond magnet has a degree of freedom of molding, but uses a resin, which is an organic material, for the binder, so it is difficult to use it in an environment where the temperature is high such as in an engine room.

これに対して、特許文献1では、合金組成Nd14.0Co7.56.0Fe72.5の合金を溶融して合金薄片を作製し、この合金薄片について、バインダを用いずに放電プラズマ焼結(Spark Plasma Sintering(SPS)(なお、本明細書において「放電プラズマ焼結」を「SPS」ともいう。))させて希土類鉄系永久磁石を製造している。 On the other hand, in Patent Document 1, an alloy flake is produced by melting an alloy having an alloy composition of Nd 14.0 Co 7.5 B 6.0 Fe 72.5 , and this alloy flake is used without using a binder. A rare earth iron-based permanent magnet is manufactured by spark plasma sintering (SPS) (in this specification, “discharge plasma sintering” is also referred to as “SPS”).

また、特許文献2では、希土類−鉄系合金を主体とする急冷磁石粉末と、無機バインダとから得られた粉末磁石混練物に対して、成形型中で直接圧縮通電してフル密度複合磁石を製造している。なお、特許文献2には、無機バインダは磁石粉末の結晶化温度あるいはそれよりやや低い温度で熱軟化することが望ましいと記載されている。また、特許文献2では、SPSにおける焼結温度を低くできる。   Further, in Patent Document 2, a full density composite magnet is obtained by directly compressing and energizing a powder magnet kneaded material obtained from a quenched magnet powder mainly composed of a rare earth-iron alloy and an inorganic binder in a mold. Manufactured. Patent Document 2 describes that it is desirable that the inorganic binder be thermally softened at the crystallization temperature of the magnet powder or slightly lower than that. Moreover, in patent document 2, the sintering temperature in SPS can be made low.

特開平3−40410号公報Japanese Patent Laid-Open No. 3-40410 特開平5−121220号公報Japanese Patent Laid-Open No. 5-121220

しかしながら、特許文献1では、焼結を容易にするために希土類量の多い磁粉のみを使用しており、磁粉のコストが高くなってしまう。また、残留磁化(残留磁束密度)も希土類の増加と共に低下する傾向がある。また、特許文献2で得られる希土類鉄系永久磁石は、高い電気抵抗を有する磁石を得る目的で無機バインダが混合されているため、残留磁束密度(Br)が低い。   However, in patent document 1, in order to make sintering easy, only the magnetic powder with many rare earth amounts is used, and the cost of magnetic powder will become high. Further, the residual magnetization (residual magnetic flux density) also tends to decrease as the rare earth increases. The rare earth iron-based permanent magnet obtained in Patent Document 2 has a low residual magnetic flux density (Br) because an inorganic binder is mixed for the purpose of obtaining a magnet having high electrical resistance.

本発明は、上記に鑑みてなされたものであって、本発明の目的は、希土類元素の使用量を低減し、残留磁束密度(Br)および実用的な保磁力(Hc)を確保できる等方性バルク磁石を提供することを目的とする。   The present invention has been made in view of the above, and it is an object of the present invention to reduce the amount of rare earth elements used and to ensure residual magnetic flux density (Br) and practical coercive force (Hc). It is an object to provide a bulk magnetic magnet.

上述した課題を解決し、目的を達成するために、本発明の一態様に係る等方性バルク磁石は、希土類元素が12at%以下の量で含まれるNd−Fe−B系磁石の領域(A)と、希土類元素が12at%よりも多い量で含まれるNd−Fe−B系磁石の領域(B)とを含む。   In order to solve the above-described problems and achieve the object, an isotropic bulk magnet according to one embodiment of the present invention includes a region of an Nd—Fe—B-based magnet containing a rare earth element in an amount of 12 at% or less (A ) And a region (B) of an Nd—Fe—B magnet in which the rare earth element is contained in an amount of more than 12 at%.

本発明の一態様によれば、高価な希土類元素の使用量を低減でき、残留磁束密度(Br)および保磁力(Hc)を確保できる。   According to one embodiment of the present invention, the amount of expensive rare earth elements used can be reduced, and the residual magnetic flux density (Br) and the coercive force (Hc) can be ensured.

図1は、等方性バルク磁石の構造を説明するための図である。FIG. 1 is a diagram for explaining the structure of an isotropic bulk magnet. 図2は、Nd−Fe−B系磁石粉末(B)の配合量に対する残留磁化および保磁力の変化を示す図である。FIG. 2 is a diagram showing changes in remanent magnetization and coercive force with respect to the blending amount of Nd—Fe—B magnet powder (B). 図3は、実施例1で得られた等方性バルク磁石および比較例2で得られたボンド磁石の磁化曲線を示す図である。FIG. 3 is a diagram showing magnetization curves of the isotropic bulk magnet obtained in Example 1 and the bonded magnet obtained in Comparative Example 2.

以下、実施の形態について、詳細に説明する。なお、以下の実施の形態により何ら限定されるものではない。   Hereinafter, embodiments will be described in detail. In addition, it is not limited at all by the following embodiment.

<等方性バルク磁石の製造方法>
本実施の形態に係る等方性バルク磁石の製造方法は、希土類元素が12at%以下の量で含まれるNd−Fe−B系磁石粉末(A)と、希土類元素が12at%よりも多い量で含まれるNd−Fe−B系磁石粉末(B)とを混合して混合粉末を得る混合工程と、上記混合工程で得られた混合粉末を加圧しながら加熱して等方性バルク磁石を得る加熱工程とを含む。
<Manufacturing method of isotropic bulk magnet>
The method for producing an isotropic bulk magnet according to the present embodiment includes an Nd—Fe—B magnet powder (A) containing rare earth elements in an amount of 12 at% or less and an amount of rare earth elements greater than 12 at%. A mixing step of mixing the Nd-Fe-B magnet powder (B) contained therein to obtain a mixed powder, and a heating step of heating the mixed powder obtained in the mixing step while pressing to obtain an isotropic bulk magnet Process.

希土類元素の含有量が少なく、等方性の磁粉として通常大きい残留磁束密度(Br)を有するNd−Fe−B系磁石粉末(A)は、単独では緻密化しにくい。一方、希土類元素の含有量が多く、等方性の磁粉として通常大きい保磁力(Hc)を有するNd−Fe−B系磁石粉末(B)は、緻密化が容易である。そこで、本実施の形態のように、Nd−Fe−B系磁石粉末(A)とともにNd−Fe−B系磁石粉末(B)を用いると、Nd−Fe−B系磁石粉末(B)がバインダとして働き、Nd−Fe−B系磁石粉末(A)が緻密化した等方性バルク磁石が得られる。より詳細には、たとえばSPS等による焼結は液相焼結であるため、低い温度で液相となる希土類元素リッチ相、たとえばNdリッチ相(主相のNd2Fe146よりもNd量の多い組成の相など)が必要である。希土類元素の含有量が少ないNd−Fe−B系磁石粉末(A)は、希土類元素リッチ相(Ndリッチ相)を少量含んでいるにすぎないが、希土類元素の含有量が多いNd−Fe−B系磁石粉末(B)は、希土類元素リッチ相(Ndリッチ相)を多く含んでいる。これにより、焼結の際には、Nd−Fe−B系磁石粉末(B)の希土類元素リッチ相(Ndリッチ相)が液相となって緻密化が進行する。 Nd—Fe—B based magnet powder (A) having a small content of rare earth elements and usually having a large residual magnetic flux density (Br) as an isotropic magnetic powder is difficult to be densified alone. On the other hand, the Nd—Fe—B magnet powder (B) having a large content of rare earth elements and usually having a large coercive force (Hc) as an isotropic magnetic powder can be easily densified. Therefore, when the Nd—Fe—B magnet powder (B) is used together with the Nd—Fe—B magnet powder (A) as in the present embodiment, the Nd—Fe—B magnet powder (B) becomes the binder. Thus, an isotropic bulk magnet in which the Nd—Fe—B magnet powder (A) is densified is obtained. More specifically, since sintering by SPS or the like is liquid phase sintering, for example, a rare earth element rich phase that becomes a liquid phase at a low temperature, for example, an Nd rich phase (Nd amount more than Nd 2 Fe 14 B 6 of the main phase) A phase having a high composition). The Nd—Fe—B-based magnet powder (A) having a low content of rare earth elements contains only a small amount of a rare earth element rich phase (Nd rich phase), but has a high content of rare earth elements. B system magnet powder (B) contains many rare earth element rich phases (Nd rich phase). Thereby, in sintering, the rare earth element rich phase (Nd rich phase) of the Nd—Fe—B based magnet powder (B) becomes a liquid phase and densification proceeds.

また、本実施の形態によれば、希土類元素の含有量が多い原料を用いる特許文献1の製造方法よりも、希土類元素の使用量を低減できる。希土類元素の価格が高騰しているため、本実施の形態はコストの面からもメリットがある。また、本実施の形態ではバインダとして磁石粉末を使用しているため、無機バインダを使用している特許文献2の製造方法よりも、残留磁束密度(Br)の高い等方性バルク磁石が得られる。   Moreover, according to this Embodiment, the usage-amount of rare earth elements can be reduced rather than the manufacturing method of patent document 1 using the raw material with much content of rare earth elements. Since the price of rare earth elements is soaring, this embodiment is advantageous from the viewpoint of cost. Moreover, since magnet powder is used as the binder in the present embodiment, an isotropic bulk magnet having a higher residual magnetic flux density (Br) can be obtained than the manufacturing method of Patent Document 2 using an inorganic binder. .

(混合工程)
混合工程では、Nd−Fe−B系磁石粉末(A)と、Nd−Fe−B系磁石粉末(B)とを混合して混合粉末を得る。
(Mixing process)
In the mixing step, the Nd—Fe—B magnet powder (A) and the Nd—Fe—B magnet powder (B) are mixed to obtain a mixed powder.

Nd−Fe−B系磁石粉末(A)を構成する等方性のNd−Fe−B系磁石(100at%)において、希土類元素は12at%以下の量で含まれ、8at%以上11at%以下の量で含まれることが好ましい。ここで、Nd−Fe−B系磁石粉末(A)を構成するNd−Fe−B系磁石に含まれる希土類元素は、Ndのみであってもよく、Ndおよび後述する元素(e1)であってもよい。したがって、希土類元素がNdのみのときの希土類元素の量は、Ndのみの量であり、希土類元素がNdおよび後述する元素(e1)のときの希土類元素の量は、Ndおよび後述する元素(e1)の合計量である。Nd−Fe−B系磁石粉末(A)は、1種単独で用いても、2種以上を混合して用いてもよい。この範囲にあると、Nd−Fe−B系磁石は通常大きい残留磁束密度(Br)を有し、本実施の形態において希土類元素の使用量を低減できる。   In the isotropic Nd—Fe—B magnet (100 at%) constituting the Nd—Fe—B magnet powder (A), the rare earth element is contained in an amount of 12 at% or less, and 8 at% or more and 11 at% or less. It is preferably included in an amount. Here, the rare earth element contained in the Nd—Fe—B magnet constituting the Nd—Fe—B magnet powder (A) may be Nd alone, Nd and an element (e1) described later. Also good. Therefore, when the rare earth element is only Nd, the amount of the rare earth element is only Nd. When the rare earth element is Nd and the element (e1) described later, the amount of the rare earth element is Nd and the element (e1 described below). ). Nd-Fe-B type magnetic powder (A) may be used individually by 1 type, or 2 or more types may be mixed and used for it. When in this range, the Nd—Fe—B magnet usually has a large residual magnetic flux density (Br), and the amount of rare earth elements used can be reduced in this embodiment.

このようなNd−Fe−B系磁石粉末(A)としては、たとえばナノコンポジットタイプの磁石粉末(具体的には、MQP−15−7(商品名)、マグネクエンチ社製)が好適に用いられる。ナノコンポジットタイプの磁石は、通常α−Fe相/Nd2Fe14B相、Fe3B相/Nd2Fe14B相のようにソフト相およびハード相を含み、全体の希土類量が少ないことから希土類元素リッチ相(Ndリッチ相)の量が少ない。 As such an Nd—Fe—B based magnet powder (A), for example, a nanocomposite type magnet powder (specifically, MQP-15-7 (trade name), manufactured by Magnequench) is preferably used. . Nanocomposite type magnets usually contain soft and hard phases such as α-Fe phase / Nd 2 Fe 14 B phase, Fe 3 B phase / Nd 2 Fe 14 B phase, and the total amount of rare earths is small. The amount of rare earth element rich phase (Nd rich phase) is small.

Nd−Fe−B系磁石粉末(A)(具体的には、上記粉末(A)を構成するNd−Fe−B系磁石)は、Nd、FeおよびBの他に、希土類元素として、Sc、Y、La、Ce、Pr、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、YbおよびLuからなる群から選択された少なくとも1種の元素(e1)をさらに含んでいてもよい。   Nd—Fe—B based magnet powder (A) (specifically, Nd—Fe—B based magnet constituting the above powder (A)) includes Sc, It may further include at least one element (e1) selected from the group consisting of Y, La, Ce, Pr, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu. Good.

また、Nd−Fe−B系磁石粉末(A)(具体的には、上記粉末(A)を構成するNd−Fe−B系磁石)は、Nd、FeおよびBの他に、Ti、Co、Zr、Nb、Mo、Hf、TaおよびWからなる群から選択された少なくとも1種の元素(e2)をさらに含んでいてもよい。   Further, Nd—Fe—B based magnet powder (A) (specifically, Nd—Fe—B based magnet constituting the above powder (A)) includes Ti, Co, It may further contain at least one element (e2) selected from the group consisting of Zr, Nb, Mo, Hf, Ta and W.

なお、Nd−Fe−B系磁石粉末(A)(具体的には、上記粉末(A)を構成するNd−Fe−B系磁石)は、Si、Al等の不可避の不純物元素を含む場合がある。   The Nd—Fe—B magnet powder (A) (specifically, the Nd—Fe—B magnet constituting the powder (A)) may contain inevitable impurity elements such as Si and Al. is there.

また、上記粉末(A)を構成するNd−Fe−B系磁石(100at%)において、Bは3at%以上10at%以下の量で含まれることが好ましい。   In the Nd—Fe—B magnet (100 at%) constituting the powder (A), B is preferably contained in an amount of 3 at% or more and 10 at% or less.

元素(e1)を含む場合、上記粉末(A)を構成するNd−Fe−B系磁石(100at%)において、元素(e1)は、合計で0at%を超え4at%以下の量であり、かつNdよりも少ない量で含まれることが好ましい。また、元素(e2)および/または不可避の不純物元素を含む場合、上記粉末(A)を構成するNd−Fe−B系磁石(100at%)において、元素(e2)および/または不可避の不純物元素は、合計で0.1at%以上10at%以下の量で含まれることが好ましい。   In the case of containing the element (e1), in the Nd—Fe—B magnet (100 at%) constituting the powder (A), the element (e1) is in a total amount exceeding 0 at% and not more than 4 at%, and It is preferable to be contained in an amount smaller than Nd. When the element (e2) and / or the inevitable impurity element is included, in the Nd—Fe—B magnet (100 at%) constituting the powder (A), the element (e2) and / or the inevitable impurity element is The total amount is preferably 0.1 at% or more and 10 at% or less.

ここで、Nd−Fe−B系磁石粉末(A)(具体的には、上記粉末(A)を構成するNd−Fe−B系磁石)において、上述したいずれの場合も、残部(at%)はFeである。   Here, in the Nd—Fe—B based magnet powder (A) (specifically, the Nd—Fe—B based magnet constituting the powder (A)), in any of the cases described above, the balance (at%) Is Fe.

Nd−Fe−B系磁石粉末(A)の粒子の粒径は、緻密化促進の観点から、75μm以上355μm以下であることが好ましい。粒径が75μm未満となると、SPSによる焼結性が悪くなり、緻密化したときの磁気特性が低下してしまうことがある。上記平均粒径は、日本工業規格JIS Z8815のふるい分け法に準拠して測定される。また、2.5μm以下の細かい平均粒径の測定は、レーザー回折式粒度測定分布法により測定することができる。   From the viewpoint of promoting densification, the particle size of the Nd—Fe—B magnet powder (A) is preferably 75 μm or more and 355 μm or less. When the particle size is less than 75 μm, the sinterability by SPS is deteriorated, and the magnetic properties when densified may be deteriorated. The average particle diameter is measured in accordance with the screening method of Japanese Industrial Standard JIS Z8815. The fine average particle diameter of 2.5 μm or less can be measured by a laser diffraction particle size distribution method.

Nd−Fe−B系磁石粉末(B)を構成する等方性のNd−Fe−B系磁石(100at%)において、希土類元素は12at%超える量で含まれ、13at%以上21at%以下の量で含まれることが好ましく、13.5at%以上17at%以下の量で含まれることがより好ましい。ここで、Nd−Fe−B系磁石粉末(B)を構成するNd−Fe−B系磁石に含まれる希土類元素は、Ndのみであってもよく、Ndおよび後述する元素(e1)であってもよい。したがって、希土類元素がNdのみのときの希土類元素の量は、Ndのみの量であり、希土類元素がNdおよび後述する元素(e1)のときの希土類元素の量は、Ndおよび後述する元素(e1)の合計量である。Nd−Fe−B系磁石粉末(B)は、1種単独で用いても、2種以上を混合して用いてもよい。この範囲にあると、Nd−Fe−B系磁石は通常大きい保磁力(Hc)を有し、本実施の形態において緻密化を促進できる。   In the isotropic Nd—Fe—B magnet (100 at%) constituting the Nd—Fe—B magnet powder (B), the rare earth element is contained in an amount exceeding 12 at%, and an amount of 13 at% to 21 at%. Preferably, it is contained in an amount of 13.5 at% or more and 17 at% or less. Here, the rare earth element contained in the Nd—Fe—B magnet constituting the Nd—Fe—B magnet powder (B) may be Nd alone, Nd and an element (e1) described later. Also good. Therefore, when the rare earth element is only Nd, the amount of the rare earth element is only Nd. When the rare earth element is Nd and the element (e1) described later, the amount of the rare earth element is Nd and the element (e1 described below). ). Nd-Fe-B type magnetic powder (B) may be used individually by 1 type, or 2 or more types may be mixed and used for it. Within this range, the Nd—Fe—B magnet usually has a large coercive force (Hc) and can promote densification in the present embodiment.

このようなNd−Fe−B系磁石粉末(B)としては、具体的には、MQP−A(商品名)(マグネクエンチ社製)、MQP−C(商品名)(マグネクエンチ社製)が好適に用いられる。この磁石は、通常主相としてNd2Fe14B相を含み、全体の希土類量が多いため希土類元素リッチ相(Ndリッチ相)の量が多い。 Specific examples of such Nd—Fe—B magnet powder (B) include MQP-A (trade name) (manufactured by Magnequench) and MQP-C (trade name) (manufactured by Magnequench). Preferably used. This magnet usually includes an Nd 2 Fe 14 B phase as a main phase, and has a large amount of rare earth element rich phase (Nd rich phase) due to a large amount of the entire rare earth.

Nd−Fe−B系磁石粉末(B)(具体的には、上記粉末(B)を構成するNd−Fe−B系磁石)は、Nd、FeおよびBの他に、希土類元素として、Sc、Y、La、Ce、Pr、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、YbおよびLuからなる群から選択された少なくとも1種の元素(e1)をさらに含んでいてもよい。   Nd—Fe—B based magnet powder (B) (specifically, Nd—Fe—B based magnet constituting the powder (B)) includes Sc, It may further include at least one element (e1) selected from the group consisting of Y, La, Ce, Pr, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu. Good.

また、Nd−Fe−B系磁石粉末(B)(具体的には、上記粉末(B)を構成するNd−Fe−B系磁石)は、Nd、FeおよびBの他に、Ti、Co、Zr、Nb、Mo、Hf、TaおよびWからなる群から選択された少なくとも1種の元素(e2)をさらに含んでいてもよい。   Further, Nd—Fe—B based magnet powder (B) (specifically, Nd—Fe—B based magnet constituting the above powder (B)) includes Ti, Co, It may further contain at least one element (e2) selected from the group consisting of Zr, Nb, Mo, Hf, Ta and W.

なお、Nd−Fe−B系磁石粉末(B)(具体的には、上記粉末(B)を構成するNd−Fe−B系磁石)は、Si、Al等の不可避の不純物元素を含む場合がある。   The Nd—Fe—B magnet powder (B) (specifically, the Nd—Fe—B magnet constituting the powder (B)) may contain inevitable impurity elements such as Si and Al. is there.

また、上記粉末(B)を構成するNd−Fe−B系磁石(100at%)において、Bは3at%以上10at%以下の量で含まれることが好ましい。   In the Nd—Fe—B magnet (100 at%) constituting the powder (B), B is preferably contained in an amount of 3 at% or more and 10 at% or less.

元素(e1)を含む場合、上記粉末(B)を構成するNd−Fe−B系磁石(100at%)において、元素(e1)は、合計で0at%を超え7at%以下の量であり、かつNdよりも少ない量で含まれることが好ましい。また、元素(e2)および/または不可避の不純物元素を含む場合、上記粉末(B)を構成するNd−Fe−B系磁石(100at%)において、元素(e2)および/または不可避の不純物元素は、合計で0.1at%以上10at%以下の量で含まれることが好ましい。   When the element (e1) is included, in the Nd—Fe—B magnet (100 at%) constituting the powder (B), the element (e1) is in a total amount exceeding 0 at% and not more than 7 at%, and It is preferable to be contained in an amount smaller than Nd. When the element (e2) and / or inevitable impurity element is included, in the Nd—Fe—B magnet (100 at%) constituting the powder (B), the element (e2) and / or inevitable impurity element is The total amount is preferably 0.1 at% or more and 10 at% or less.

ここで、Nd−Fe−B系磁石粉末(B)(具体的には、上記粉末(B)を構成するNd−Fe−B系磁石)において、上述したいずれの場合も、残部(at%)はFeである。   Here, in the Nd—Fe—B-based magnet powder (B) (specifically, the Nd—Fe—B-based magnet constituting the powder (B)), in any of the cases described above, the balance (at%) Is Fe.

Nd−Fe−B系磁石粉末(B)の粒子の粒径は、緻密化促進の観点から、75μm以上355μm以下であることが好ましい。粒径が75μm未満となると、SPSによる焼結性が悪くなり、緻密化したときの磁気特性が低下してしまうことがある。上記平均粒径の測定については、Nd−Fe−B系磁石粉末(A)の場合と同様である。   From the viewpoint of promoting densification, the particle size of the Nd—Fe—B magnet powder (B) is preferably 75 μm or more and 355 μm or less. When the particle size is less than 75 μm, the sinterability by SPS is deteriorated, and the magnetic properties when densified may be deteriorated. About the measurement of the said average particle diameter, it is the same as that of the case of Nd-Fe-B type magnet powder (A).

混合工程において、Nd−Fe−B系磁石粉末(A)およびNd−Fe−B系磁石粉末(B)の合計100wt%に対して、Nd−Fe−B系磁石粉末(A)を、好ましくは0wt%を超え70wt%以下の量で、より好ましくは20wt%以上50wt%以下の量で、Nd−Fe−B系磁石粉末(B)を、好ましくは30wt%以上100wt%未満の量で、より好ましくは50wt%以上80wt%以下の量で混合することが望ましい。混合量が上記範囲にあると、緻密化を促進できると同時に希土類元素の使用量が減らせる。また、Nd−Fe−B系磁石粉末(A)およびNd−Fe−B系磁石粉末(B)の合計100wt%に対して、Nd−Fe−B系磁石粉末(A)を、さらに好ましくは20wt%以上30wt%以下の量で、Nd−Fe−B系磁石粉末(B)を、さらに好ましくは70wt%以上80wt%以下の量で混合することが望ましい。混合量が上記範囲にあると、残留磁束密度(Br)および実用的な保磁力(Hc)を有した等方性バルク磁石が得られる。   In the mixing step, the Nd—Fe—B magnet powder (A) is preferably used with respect to the total 100 wt% of the Nd—Fe—B magnet powder (A) and the Nd—Fe—B magnet powder (B). More than 0 wt% and less than 70 wt%, more preferably 20 wt% or more and 50 wt% or less, Nd-Fe-B magnet powder (B), preferably 30 wt% or more and less than 100 wt%, more It is desirable to mix in an amount of 50 wt% to 80 wt%. When the mixing amount is in the above range, densification can be promoted and the amount of rare earth element used can be reduced. Further, Nd—Fe—B based magnet powder (A) is more preferably 20 wt% based on 100 wt% in total of Nd—Fe—B based magnet powder (A) and Nd—Fe—B based magnet powder (B). It is desirable to mix the Nd—Fe—B magnet powder (B) in an amount of not less than 30% and not more than 30% by weight, more preferably in an amount of not less than 70% by weight and not more than 80% by weight. When the mixing amount is in the above range, an isotropic bulk magnet having a residual magnetic flux density (Br) and a practical coercive force (Hc) can be obtained.

混合工程において、Nd−Fe−B系磁石粉末(A)およびNd−Fe−B系磁石粉末(B)を混合して混合粉末を得る際、混合方法は特に限定されない。   In the mixing step, when the Nd—Fe—B magnet powder (A) and the Nd—Fe—B magnet powder (B) are mixed to obtain a mixed powder, the mixing method is not particularly limited.

(加熱工程)
本実施の形態における加熱工程においては、上記混合工程で得られた混合粉末を加圧しながら加熱して等方性バルク磁石を得る。上述のように、本実施形態では、Nd−Fe−B系磁石粉末(A)とともにNd−Fe−B系磁石粉末(B)を含む混合粉末を用いるため、Nd−Fe−B系磁石粉末(B)の希土類元素リッチ相(Ndリッチ相)によって緻密化が進み、高い相対密度を有した焼結体である等方性バルク磁石が得られる。
(Heating process)
In the heating step in the present embodiment, the mixed powder obtained in the mixing step is heated while being pressed to obtain an isotropic bulk magnet. As described above, in the present embodiment, since the mixed powder containing the Nd—Fe—B magnet powder (B) is used together with the Nd—Fe—B magnet powder (A), the Nd—Fe—B magnet powder ( Densification proceeds with the rare earth element rich phase (Nd rich phase) of B), and an isotropic bulk magnet that is a sintered body having a high relative density is obtained.

加熱には、混合粉末を加圧しながら加熱できる装置を用いればよいが、このような装置としては、ホットプレス装置、SPS装置が挙げられる。以下では、SPS装置を例に挙げて説明する。   For the heating, an apparatus capable of heating while pressing the mixed powder may be used. Examples of such an apparatus include a hot press apparatus and an SPS apparatus. Hereinafter, the SPS device will be described as an example.

まず、混合粉末が入った金型をSPS装置にセットし、混合粉末に対してON−OFF直流パルス通電を行う。電流密度は、たとえば250A/cm以上700A/cm以下に設定する。 First, a mold containing mixed powder is set in an SPS apparatus, and ON-OFF DC pulse energization is performed on the mixed powder. The current density is set to, for example, 250 A / cm 2 or more and 700 A / cm 2 or less.

加熱温度(焼結温度)は、Nd−Fe−B系磁石粉末(B)が液相を形成できる温度であればよく、たとえば600℃以上750℃以下であることが好ましい。上記加熱温度での保持時間は、結晶粒の成長を抑制するために5分以内とすることが望ましい。より好ましくは、変化率が0と成るところで保持なく焼結を終了するのが良い。なお、ここで変化率とは、焼結時の変位(パンチの動いた距離など)を時間微分したものである。   The heating temperature (sintering temperature) may be any temperature as long as the Nd—Fe—B magnet powder (B) can form a liquid phase, and is preferably 600 ° C. or higher and 750 ° C. or lower, for example. The holding time at the heating temperature is preferably within 5 minutes in order to suppress the growth of crystal grains. More preferably, the sintering should be terminated without holding when the rate of change becomes zero. Here, the rate of change is a time-differentiated displacement during sintering (distance moved by the punch, etc.).

加熱工程では、混合粉末を加圧しながら加熱するが、混合粉末が入った金型に対して30MPa以上100MPa以下の圧力を印加しながら加熱することが好ましい。また、加熱は、たとえば10-3Pa以上101Pa以下の減圧下で行うことが好ましい。 In the heating step, the mixed powder is heated while being pressurized, but it is preferable to heat the mixed powder containing the mixed powder while applying a pressure of 30 MPa to 100 MPa. The heating is preferably performed under a reduced pressure of, for example, 10 −3 Pa to 10 1 Pa.

加熱して得られた等方性バルク磁石は、通常室温か取り出し可能な温度域まで冷却する。冷却は、圧力を印加しながら行ってもよく、減圧下で行ってもよい。   The isotropic bulk magnet obtained by heating is usually cooled to room temperature or a temperature range where it can be taken out. Cooling may be performed while applying pressure, or may be performed under reduced pressure.

加熱工程で得られた等方性バルク磁石では、希土類元素の使用量が低減されており、残留磁束密度(Br)および実用的な保磁力(Hc)が確保されている。また、上記等方性バルク磁石は、相対密度が90%以上100%以下である。このように、相対密度がボンド磁石に比べて通常20%近く向上するため、比較的残留磁束密度(Br)の小さいNd−Fe−B系磁石粉末(B)を混合しても十分な残留磁束密度(Br)を確保できる。   In the isotropic bulk magnet obtained in the heating process, the amount of rare earth elements used is reduced, and a residual magnetic flux density (Br) and a practical coercive force (Hc) are secured. The isotropic bulk magnet has a relative density of 90% or more and 100% or less. Thus, since the relative density is generally improved by nearly 20% compared to the bonded magnet, a sufficient residual magnetic flux can be obtained even when an Nd—Fe—B magnet powder (B) having a relatively small residual magnetic flux density (Br) is mixed. The density (Br) can be secured.

ところで、磁気特性の異なる2種類の磁石粉末を混合してボンド磁石を製造した場合、磁化曲線は各々の磁気特性を反映した形(いわゆるヘビ型の磁化曲線)となってしまう。しかし、本実施の形態の場合(すなわち、SPS等により磁気特性の異なる2種類の磁石粉末を緻密化した場合)、静磁気相互作用が働くためヘビ型の磁化曲線にはならず、なめらかな磁化曲線となる。   By the way, when a bonded magnet is manufactured by mixing two kinds of magnet powders having different magnetic characteristics, the magnetization curve has a shape reflecting each magnetic characteristic (so-called snake-shaped magnetization curve). However, in the case of the present embodiment (that is, when two types of magnet powders having different magnetic properties are densified by SPS or the like), the magnetostatic interaction works, so that it does not become a snake-shaped magnetization curve but a smooth magnetization. It becomes a curve.

なお、加熱工程で得られた等方性バルク磁石に対して、通常後処理工程を行う。後処理工程としては、たとえば検査工程、加工工程、表面処理工程、着磁工程が挙げられる。検査工程では、加熱工程で得られた焼結体の磁気特性を振動試料型磁力計(VSM:Vibrating Sample Magnetometer)やB−Hトレーサーなどにより検出する。VSMでは、試料を振動させ、試料の磁化によって生じる磁束の時間変化を、傍らに置いたコイルに生じる誘導起電力として検出する。また、B−Hトレーサーでは、試料にコイルを巻いて、外部磁界を付与した時に生じるコイルの誘導起電力を測定する。これにより、試料の磁化曲線を得る。次に、加工工程では、焼結体を切削加工ないし研磨加工し、焼結体を製品寸法に仕上げる。表面処理工程では、ニッケル(Ni)、スズ(Sn)、亜鉛(Zn)などのめっき処理、アルミ(Al)蒸着、および樹脂塗装などの表面処理を実施する。次に、着磁工程では、焼結体に公知の方法により着磁を行う。   In addition, a post-processing process is normally performed with respect to the isotropic bulk magnet obtained by the heating process. Examples of the post-processing step include an inspection step, a processing step, a surface treatment step, and a magnetization step. In the inspection process, the magnetic properties of the sintered body obtained in the heating process are detected by a vibrating sample magnetometer (VSM: Vibrating Sample Magnetometer) or a BH tracer. In VSM, a sample is vibrated, and a time change of magnetic flux generated by the magnetization of the sample is detected as an induced electromotive force generated in a coil placed beside the sample. In the BH tracer, a coil is wound around a sample, and an induced electromotive force of the coil generated when an external magnetic field is applied is measured. Thereby, the magnetization curve of the sample is obtained. Next, in the processing step, the sintered body is cut or polished to finish the sintered body to product dimensions. In the surface treatment step, surface treatment such as plating treatment of nickel (Ni), tin (Sn), zinc (Zn), etc., aluminum (Al) deposition, and resin coating is performed. Next, in the magnetization step, the sintered body is magnetized by a known method.

<等方性バルク磁石>
本実施の形態に係る等方性バルク磁石は、希土類元素が12at%以下の量で含まれるNd−Fe−B系磁石の領域(A)と、希土類元素が12at%よりも多い量で含まれるNd−Fe−B系磁石の領域(B)とを含む。
<Isotropic bulk magnet>
The isotropic bulk magnet according to the present embodiment includes the region (A) of the Nd—Fe—B magnet in which the rare earth element is contained in an amount of 12 at% or less, and the rare earth element is contained in an amount greater than 12 at%. And a region (B) of an Nd—Fe—B magnet.

このような等方性バルク磁石は、たとえば上述した製造方法において、原料となる上記粉末(A)および粉末(B)を適宜選択して得ることができる。この場合、領域(A)は、上記Nd−Fe−B系磁石粉末(A)に概ね由来し、領域(B)は、Nd−Fe−B系磁石粉末(B)に概ね由来する。また、領域(A)における元素の種類およびその含有量については、上述したNd−Fe−B系磁石粉末(A)における元素の種類およびその含有量の説明で、上記粉末(A)を領域(A)に読み替えた説明が適用できる。同様に、領域(B)における元素の種類およびその含有量については、上述したNd−Fe−B系磁石粉末(B)における元素の種類およびその含有量の説明で、上記粉末(B)を領域(B)に読み替えた説明が適用できる。また、領域(A)および領域(B)の量比(具体的には、好ましい範囲およびその理由)については、上述したNd−Fe−B系磁石粉末(A)およびNd−Fe−B系磁石粉末(B)の混合比の説明で、上記粉末(A)、(B)を領域(A)、(B)にそれぞれ読み替えた説明が適用できる。   Such an isotropic bulk magnet can be obtained, for example, by appropriately selecting the powder (A) and the powder (B) as raw materials in the manufacturing method described above. In this case, the region (A) is generally derived from the Nd—Fe—B based magnetic powder (A), and the region (B) is generally derived from the Nd—Fe—B based magnetic powder (B). Moreover, about the kind of element in the area | region (A), and its content, the said powder (A) is made into the area | region ( The explanation read as A) can be applied. Similarly, regarding the type of element and its content in the region (B), in the explanation of the type of element and its content in the Nd-Fe-B magnet powder (B) described above, the powder (B) is classified into the region. The explanation replaced with (B) is applicable. In addition, regarding the quantitative ratio of region (A) and region (B) (specifically, the preferred range and its reason), the above-described Nd—Fe—B magnet powder (A) and Nd—Fe—B magnet In the description of the mixing ratio of the powder (B), the description in which the powders (A) and (B) are replaced with the regions (A) and (B) can be applied.

また、図1は、等方性バルク磁石の構造を説明するための図である。図1において、領域(A)および領域(B)の境界には、Nd−Fe−B系磁石粉末(B)に由来する希土類元素リッチな領域、たとえばNdリッチ相が析出していると考えられる。なお、希土類元素リッチな領域(Ndリッチ相)の量は微量であるため、上述のように、領域(B)における元素の種類およびその含有量については、上記読み替えが概ね適用できる。   Moreover, FIG. 1 is a figure for demonstrating the structure of an isotropic bulk magnet. In FIG. 1, it is considered that a rare earth element-rich region derived from the Nd—Fe—B-based magnet powder (B), for example, an Nd-rich phase is precipitated at the boundary between the region (A) and the region (B). . Since the amount of the rare earth element-rich region (Nd-rich phase) is very small, as described above, the above replacement can be generally applied to the type of element and the content thereof in the region (B).

領域(A)の大きさは、通常30μm以上500μm以下であり、領域(B)の大きさは、通常30μm以上500μm以下である。また、上記等方性バルク磁石は、相対密度が90%以上100%以下である。さらに、磁化曲線はヘビ型とはならない。   The size of the region (A) is usually 30 μm or more and 500 μm or less, and the size of the region (B) is usually 30 μm or more and 500 μm or less. The isotropic bulk magnet has a relative density of 90% or more and 100% or less. Furthermore, the magnetization curve is not snake-shaped.

領域の分析は、EPMAによる領域のスポット的な組成分析や、SEM−EDXによる面あるいは線分析による組成分析で確認することが可能である。   The analysis of the region can be confirmed by spot composition analysis of the region by EPMA or composition analysis by surface or line analysis by SEM-EDX.

また、本実施の形態に係る等方性バルク磁石は、希土類元素が12at%以下の量で含まれるNd−Fe−B系磁石粉末(A)と、希土類元素が12at%よりも多い量で含まれるNd−Fe−B系磁石粉末(B)とを混合して混合粉末を得る混合工程と、上記混合工程で得られた混合粉末を加圧しながら加熱して等方性バルク磁石を得る加熱工程とを含む製造方法によって得られる等方性バルク磁石である。上記工程および得られた等方性バルク磁石の詳細については上述のとおりである。   Further, the isotropic bulk magnet according to the present embodiment includes the Nd—Fe—B-based magnet powder (A) in which the rare earth element is contained in an amount of 12 at% or less and the rare earth element in an amount greater than 12 at%. Mixing step of mixing the Nd-Fe-B magnet powder (B) obtained to obtain a mixed powder, and a heating step of heating the mixed powder obtained in the mixing step while pressing to obtain an isotropic bulk magnet Isotropic bulk magnet obtained by a manufacturing method including The details of the above process and the obtained isotropic bulk magnet are as described above.

以下、実施例に基づいて本発明をさらに具体的に説明するが、本発明はこれらの実施例に限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated further more concretely based on an Example, this invention is not limited to these Examples.

[実施例]
<評価方法>
磁化曲線は、VSMまたはB−Hトレーサーによって測定した。領域の分析は、EPMAによる領域のスポット的な組成分析、またはSEM−EDXによる面あるいは線分析による組成分析で確認した。
[Example]
<Evaluation method>
Magnetization curves were measured with VSM or BH tracers. The analysis of the area was confirmed by spot composition analysis of the area by EPMA or composition analysis by surface or line analysis by SEM-EDX.

[実施例1]
Nd−Fe−B系磁石粉末(A)(Nd含有量:10.3at%(略10at%)、Co含有量:1.9at%(略2at%)、粒径:75μm以上、MQP−15−7(商品名)、マグネクエンチ社製)50wt%と、Nd−Fe−B系磁石粉末(B)(Nd含有量:12.8at%(略13at%)、Co含有量:20at%、粒径:75μm以上、MQP−C(商品名)、マグネクエンチ社製)50wt%とを混合し、混合粉末を調製した。次いで、上記混合粉末を金型に入れた。この金型をSPS装置にセットし、10-1Paの減圧下で、金型に対して30MPaの圧力を印加しながら加熱した。具体的には、SPS装置を用いて、混合粉末に対して、電流密度600A/cmでON−OFF直流パルス通電して昇温した。温度の上昇と共に緻密化が進行し、変化率が0になった所で焼結を終了した。この時の温度は概ね700℃であった。
[Example 1]
Nd—Fe—B magnet powder (A) (Nd content: 10.3 at% (approximately 10 at%), Co content: 1.9 at% (approximately 2 at%), particle size: 75 μm or more, MQP-15 7 (trade name), manufactured by Magnequen Co., Ltd., 50 wt%, Nd—Fe—B magnet powder (B) (Nd content: 12.8 at% (approximately 13 at%), Co content: 20 at%, particle size : 75 μm or more, MQP-C (trade name), manufactured by Magnequen Co., Ltd.) 50 wt% was mixed to prepare a mixed powder. Next, the mixed powder was put in a mold. This mold was set in an SPS apparatus and heated under a reduced pressure of 10 −1 Pa while applying a pressure of 30 MPa to the mold. Specifically, using a SPS device, the mixed powder was heated by ON-OFF DC pulse energization at a current density of 600 A / cm 2 . Densification progressed with increasing temperature, and sintering was terminated when the rate of change became zero. The temperature at this time was approximately 700 ° C.

また、得られた等方性バルク磁石は、Nd−Fe−B系磁石の領域(A)(Nd含有量:10.3at%(略10at%)、Co含有量:1.9at%(略2at%)、粒径:75μm以上)50wt%と、Nd−Fe−B系磁石の領域(B)(Nd含有量:12.8at%(略13at%)、Co含有量:20at%、粒径:75μm以上)50wt%とを含んでいた。   Further, the obtained isotropic bulk magnet has a region (A) of an Nd—Fe—B magnet (Nd content: 10.3 at% (approximately 10 at%), Co content: 1.9 at% (approximately 2 at%). %), Particle size: 75 μm or more) 50% by weight, Nd—Fe—B magnet region (B) (Nd content: 12.8 at% (approximately 13 at%), Co content: 20 at%, particle size: (75 μm or more) and 50 wt%.

[実施例2]
Nd−Fe−B系磁石粉末(A)70wt%と、Nd−Fe−B系磁石粉末(B)30wt%とを混合し、混合粉末を調製した以外は、実施例1と同様にして等方性バルク磁石を得た。また、得られた等方性バルク磁石は、Nd−Fe−B系磁石の領域(A)(Nd含有量:10.3at%(略10at%)、Co含有量:1.9at%(略2at%)、粒径:75μm以上)70wt%と、Nd−Fe−B系磁石の領域(B)(Nd含有量:12.8at%(略13at%)、Co含有量:20at%、粒径:75μm以上)30wt%とを含んでいた。
[Example 2]
Isotropic in the same manner as in Example 1 except that 70 wt% of Nd—Fe—B magnet powder (A) and 30 wt% of Nd—Fe—B magnet powder (B) were mixed to prepare a mixed powder. Bulk magnet was obtained. Further, the obtained isotropic bulk magnet has a region (A) of an Nd—Fe—B magnet (Nd content: 10.3 at% (approximately 10 at%), Co content: 1.9 at% (approximately 2 at%). %), Particle diameter: 75 μm or more) 70 wt%, Nd—Fe—B magnet region (B) (Nd content: 12.8 at% (approximately 13 at%), Co content: 20 at%, particle diameter: (75 μm or more) and 30 wt%.

[実施例3]
Nd−Fe−B系磁石粉末(A)60wt%と、Nd−Fe−B系磁石粉末(B)40wt%とを混合し、混合粉末を調製した以外は、実施例1と同様にして等方性バルク磁石を得た。また、得られた等方性バルク磁石は、Nd−Fe−B系磁石の領域(A)(Nd含有量:10.3at%(略10at%)、Co含有量:1.9at%(略2at%)、粒径:75μm以上)60wt%と、Nd−Fe−B系磁石の領域(B)(Nd含有量:12.8at%(略13at%)、Co含有量:20at%、粒径:75μm以上)40wt%とを含んでいた。
[Example 3]
Isotropic in the same manner as in Example 1 except that 60 wt% of Nd—Fe—B magnet powder (A) and 40 wt% of Nd—Fe—B magnet powder (B) were mixed to prepare a mixed powder. Bulk magnet was obtained. Further, the obtained isotropic bulk magnet has a region (A) of an Nd—Fe—B magnet (Nd content: 10.3 at% (approximately 10 at%), Co content: 1.9 at% (approximately 2 at%). %), Particle size: 75 μm or more) and Nd—Fe—B magnet region (B) (Nd content: 12.8 at% (approximately 13 at%), Co content: 20 at%, particle size: (75 μm or more) and 40 wt%.

[実施例4]
Nd−Fe−B系磁石粉末(A)40wt%と、Nd−Fe−B系磁石粉末(B)60wt%とを混合し、混合粉末を調製した以外は、実施例1と同様にして等方性バルク磁石を得た。また、得られた等方性バルク磁石は、Nd−Fe−B系磁石の領域(A)(Nd含有量:10.3at%(略10at%)、Co含有量:1.9at%(略2at%)、粒径:75μm以上)40wt%と、Nd−Fe−B系磁石の領域(B)(Nd含有量:12.8at%(略13at%)、Co含有量:20at%、粒径:75μm以上)60wt%とを含んでいた。
[Example 4]
Isotropic in the same manner as in Example 1 except that 40 wt% of Nd—Fe—B magnet powder (A) and 60 wt% of Nd—Fe—B magnet powder (B) were mixed to prepare a mixed powder. Bulk magnet was obtained. Further, the obtained isotropic bulk magnet has a region (A) of an Nd—Fe—B magnet (Nd content: 10.3 at% (approximately 10 at%), Co content: 1.9 at% (approximately 2 at%). %), Particle diameter: 75 μm or more) and 40 wt% of Nd—Fe—B magnet region (B) (Nd content: 12.8 at% (approximately 13 at%), Co content: 20 at%, particle diameter: (75 μm or more) and 60 wt%.

[実施例5]
Nd−Fe−B系磁石粉末(A)30wt%と、Nd−Fe−B系磁石粉末(B)70wt%とを混合し、混合粉末を調製した以外は、実施例1と同様にして等方性バルク磁石を得た。また、得られた等方性バルク磁石は、Nd−Fe−B系磁石の領域(A)(Nd含有量:10.3at%(略10at%)、Co含有量:1.9at%(略2at%)、粒径:75μm以上)30wt%と、Nd−Fe−B系磁石の領域(B)(Nd含有量:12.8at%(略13at%)、Co含有量:20at%、粒径:75μm以上)70wt%とを含んでいた。
[Example 5]
Isotropic in the same manner as in Example 1 except that 30 wt% of Nd—Fe—B magnet powder (A) and 70 wt% of Nd—Fe—B magnet powder (B) were mixed to prepare a mixed powder. Bulk magnet was obtained. Further, the obtained isotropic bulk magnet has a region (A) of an Nd—Fe—B magnet (Nd content: 10.3 at% (approximately 10 at%), Co content: 1.9 at% (approximately 2 at%). %), Particle diameter: 75 μm or more) 30 wt%, Nd—Fe—B magnet region (B) (Nd content: 12.8 at% (approximately 13 at%), Co content: 20 at%, particle diameter: (75 μm or more) and 70 wt%.

[実施例6]
Nd−Fe−B系磁石粉末(A)20wt%と、Nd−Fe−B系磁石粉末(B)80wt%とを混合し、混合粉末を調製した以外は、実施例1と同様にして等方性バルク磁石を得た。また、得られた等方性バルク磁石は、Nd−Fe−B系磁石の領域(A)(Nd含有量:10.3at%(略10at%)、Co含有量:1.9at%(略2at%)、粒径:75μm以上)20wt%と、Nd−Fe−B系磁石の領域(B)(Nd含有量:12.8at%(略13at%)、Co含有量:20at%、粒径:75μm以上)80wt%とを含んでいた。
[Example 6]
Isotropic in the same manner as in Example 1 except that 20 wt% of Nd—Fe—B magnet powder (A) and 80 wt% of Nd—Fe—B magnet powder (B) were mixed to prepare a mixed powder. Bulk magnet was obtained. Further, the obtained isotropic bulk magnet has a region (A) of an Nd—Fe—B magnet (Nd content: 10.3 at% (approximately 10 at%), Co content: 1.9 at% (approximately 2 at%). %), Particle size: 75 μm or more) 20 wt%, Nd—Fe—B magnet region (B) (Nd content: 12.8 at% (approximately 13 at%), Co content: 20 at%, particle size: (75 μm or more) and 80 wt%.

[比較例1]
Nd−Fe−B系磁石粉末(A)を用いず、Nd−Fe−B系磁石粉末(B)のみを用いた以外は、実施例1と同様にして等方性バルク磁石を得た。また、得られた等方性バルク磁石は、Nd−Fe−B系磁石の領域(B)(Nd含有量:12.8at%(略13at%)、Co含有量:20at%、粒径:75μm以上)のみを含んでいた。
[Comparative Example 1]
An isotropic bulk magnet was obtained in the same manner as in Example 1 except that only the Nd-Fe-B magnet powder (B) was used without using the Nd-Fe-B magnet powder (A). Further, the obtained isotropic bulk magnet is a region (B) of an Nd—Fe—B based magnet (Nd content: 12.8 at% (approximately 13 at%), Co content: 20 at%, particle size: 75 μm. Only).

[比較例2]
ボンド磁石は2wt%の熱硬化性樹脂をMEKで溶かしたのちに磁粉と混合し、60℃で30分かけてMEKを揮発させた後、プレス成形にて所定の形状(φ10mm、高さ7mm)に成形し、190℃、20分で熱硬化することで作製した。
[Comparative Example 2]
Bonded magnet is 2 wt% thermosetting resin melted with MEK, then mixed with magnetic powder, volatilized MEK for 30 minutes at 60 ° C, and then press-molded to a predetermined shape (φ10mm, height 7mm) It was fabricated by thermosetting at 190 ° C. for 20 minutes.

図1は、Nd−Fe−B系磁石粉末(B)の混合量に対する残留磁化および保磁力の変化を示す図である。図1より、Nd−Fe−B系磁石粉末(B)の混合量が増えるにしたがって、残留磁化および保磁力が向上していることがわかる。残留磁化の上昇は、焼結体の密度の上昇と関連している。保磁力の上昇は、高保磁力のNd−Fe−B系磁石粉末(B)が増えたことに起因する。   FIG. 1 is a diagram showing changes in remanent magnetization and coercive force with respect to the amount of Nd—Fe—B magnet powder (B) mixed. FIG. 1 shows that the residual magnetization and the coercive force are improved as the mixing amount of the Nd—Fe—B magnet powder (B) increases. The increase in remanent magnetization is related to the increase in the density of the sintered body. The increase in coercive force is attributed to an increase in the high coercive Nd—Fe—B magnet powder (B).

図2は、実施例1で得られた等方性バルク磁石および比較例2で得られたボンド磁石の磁化曲線を示す図である。図2より、ボンド磁石の磁化曲線がヘビ型になっていることがわかる。一方、SPSで作製した等方性バルク磁石はヘビ型が解消されていることがわかる。これは静磁気相互作用が働いているためと考えられる。このように、単体では緻密化が困難な磁石粉末も、緻密化が容易な磁石粉末と混合することにより磁気特性を保った状態で緻密化できる。   FIG. 2 is a diagram showing magnetization curves of the isotropic bulk magnet obtained in Example 1 and the bond magnet obtained in Comparative Example 2. FIG. 2 shows that the magnetization curve of the bonded magnet is snake-shaped. On the other hand, it can be seen that the isotropic bulk magnet made of SPS is free from the snake type. This is thought to be due to the magnetostatic interaction working. As described above, a magnet powder that is difficult to be densified by itself can be densified while maintaining magnetic properties by mixing with a magnet powder that is easily densified.

以上、本発明の実施の形態について説明したが、上記実施の形態により本発明が限定されるものではない。上述した各構成要素を適宜組み合わせて構成したものも本発明に含まれる。また、さらなる効果または変形例は、当業者によって容易に導き出すことができる。よって、本発明のより広範な態様は、上記実施の形態に限定されるものではなく、様々な変更が可能である。   Although the embodiment of the present invention has been described above, the present invention is not limited to the above embodiment. What was comprised combining each component mentioned above suitably is also contained in this invention. Further effects or modifications can be easily derived by those skilled in the art. Therefore, the broader aspect of the present invention is not limited to the above-described embodiment, and various modifications can be made.

Claims (9)

希土類元素が12at%以下の量で含まれるNd−Fe−B系磁石の領域(A)と、希土類元素が12at%よりも多い量で含まれるNd−Fe−B系磁石の領域(B)とを含む等方性バルク磁石。   A region (A) of an Nd—Fe—B based magnet containing a rare earth element in an amount of 12 at% or less, and a region (B) of an Nd—Fe—B based magnet containing a rare earth element in an amount of more than 12 at%. Isotropic bulk magnet containing. 前記Nd−Fe−B系磁石の領域(A)または前記Nd−Fe−B系磁石の領域(B)が、前記希土類元素として、Ndと、Sc、Y、La、Ce、Pr、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、YbおよびLuからなる群から選択された少なくとも1種の元素(e1)とを含む請求項1に記載の等方性バルク磁石。   The region (A) of the Nd—Fe—B system magnet or the region (B) of the Nd—Fe—B system magnet includes Nd, Sc, Y, La, Ce, Pr, Pm, Sm as the rare earth element. The isotropic bulk magnet according to claim 1, comprising at least one element (e1) selected from the group consisting of Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu. 前記Nd−Fe−B系磁石の領域(A)または前記Nd−Fe−B系磁石の領域(B)が、Ti、Co、Zr、Nb、Mo、Hf、TaおよびWからなる群から選択された少なくとも1種の元素(e2)を含む請求項1または2に記載の等方性バルク磁石。   The region (A) of the Nd—Fe—B magnet or the region (B) of the Nd—Fe—B magnet is selected from the group consisting of Ti, Co, Zr, Nb, Mo, Hf, Ta, and W. The isotropic bulk magnet according to claim 1, further comprising at least one element (e2). 前記Nd−Fe−B系磁石の領域(A)を20〜50wt%の量で、前記Nd−Fe−B系磁石の領域(B)を50〜80wt%の量で含む請求項1〜3のいずれか1項に記載の等方性バルク磁石。   The region (A) of the Nd-Fe-B magnet is included in an amount of 20 to 50 wt%, and the region (B) of the Nd-Fe-B magnet is included in an amount of 50 to 80 wt%. The isotropic bulk magnet according to any one of the above items. 希土類元素が12at%以下の量で含まれるNd−Fe−B系磁石粉末(A)と、希土類元素が12at%よりも多い量で含まれるNd−Fe−B系磁石粉末(B)とを混合して混合粉末を得る混合工程と、
前記混合工程で得られた混合粉末を加圧しながら加熱して等方性バルク磁石を得る加熱工程とを含む等方性バルク磁石の製造方法。
Mixing Nd-Fe-B magnet powder (A) containing rare earth elements in an amount of 12 at% or less and Nd-Fe-B magnet powder (B) containing rare earth elements in an amount of more than 12 at% Mixing step to obtain mixed powder,
And a heating step of heating the mixed powder obtained in the mixing step while applying pressure to obtain an isotropic bulk magnet.
前記Nd−Fe−B系磁石粉末(A)または前記Nd−Fe−B系磁石粉末(B)が、前記希土類元素として、Ndと、Sc、Y、La、Ce、Pr、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、YbおよびLuからなる群から選択された少なくとも1種の元素(e1)とを含む請求項5に記載の等方性バルク磁石の製造方法。   The Nd—Fe—B magnet powder (A) or the Nd—Fe—B magnet powder (B) is Nd, Sc, Y, La, Ce, Pr, Pm, Sm, Eu as the rare earth element. The method for producing an isotropic bulk magnet according to claim 5, comprising at least one element (e1) selected from the group consisting of Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu. 前記Nd−Fe−B系磁石粉末(A)または前記Nd−Fe−B系磁石粉末(B)が、Ti、Co、Zr、Nb、Mo、Hf、TaおよびWからなる群から選択された少なくとも1種の元素(e2)を含む請求項5または6に記載の等方性バルク磁石の製造方法。   The Nd-Fe-B magnet powder (A) or the Nd-Fe-B magnet powder (B) is at least selected from the group consisting of Ti, Co, Zr, Nb, Mo, Hf, Ta and W The method for producing an isotropic bulk magnet according to claim 5 or 6, comprising one kind of element (e2). 前記混合工程が、前記Nd−Fe−B系磁石粉末(A)を20〜50wt%の量で、前記Nd−Fe−B系磁石粉末(B)を50〜80wt%の量で混合して混合粉末を得る工程である請求項5〜7のいずれか1項に記載の等方性バルク磁石の製造方法。   In the mixing step, the Nd-Fe-B magnet powder (A) is mixed in an amount of 20 to 50 wt%, and the Nd-Fe-B magnet powder (B) is mixed in an amount of 50 to 80 wt% and mixed. It is a process of obtaining powder, The manufacturing method of the isotropic bulk magnet of any one of Claims 5-7. 希土類元素が12at%以下の量で含まれるNd−Fe−B系磁石粉末(A)と、希土類元素が12at%よりも多い量で含まれるNd−Fe−B系磁石粉末(B)とを混合して混合粉末を得る混合工程と、
前記混合工程で得られた混合粉末を加圧しながら加熱して等方性バルク磁石を得る加熱工程とを含む製造方法によって得られる等方性バルク磁石。
Mixing Nd-Fe-B magnet powder (A) containing rare earth elements in an amount of 12 at% or less and Nd-Fe-B magnet powder (B) containing rare earth elements in an amount of more than 12 at% Mixing step to obtain mixed powder,
An isotropic bulk magnet obtained by a manufacturing method including a heating step of heating the mixed powder obtained in the mixing step while applying pressure to obtain an isotropic bulk magnet.
JP2016212062A 2016-10-28 2016-10-28 Method of manufacturing isotropic bulk magnet Active JP6513623B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016212062A JP6513623B2 (en) 2016-10-28 2016-10-28 Method of manufacturing isotropic bulk magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016212062A JP6513623B2 (en) 2016-10-28 2016-10-28 Method of manufacturing isotropic bulk magnet

Publications (2)

Publication Number Publication Date
JP2018073988A true JP2018073988A (en) 2018-05-10
JP6513623B2 JP6513623B2 (en) 2019-05-15

Family

ID=62114435

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016212062A Active JP6513623B2 (en) 2016-10-28 2016-10-28 Method of manufacturing isotropic bulk magnet

Country Status (1)

Country Link
JP (1) JP6513623B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110440394A (en) * 2019-06-24 2019-11-12 珠海格力电器股份有限公司 A kind of air conditioner filter screen is stained with stifled detection method, device, air-conditioning and storage medium
WO2024101148A1 (en) * 2022-11-11 2024-05-16 ミネベアミツミ株式会社 Anisotropic magnet, and method for manufacturing anisotropic magnet

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6442554A (en) * 1987-08-07 1989-02-14 Tdk Corp Rare-earth element magnet material
JPH02288305A (en) * 1989-04-28 1990-11-28 Nippon Steel Corp Rare earth magnet and manufacture thereof
JPH0371601A (en) * 1989-08-10 1991-03-27 Nippon Steel Corp Manufacture of rare-earth magnet

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6442554A (en) * 1987-08-07 1989-02-14 Tdk Corp Rare-earth element magnet material
JPH02288305A (en) * 1989-04-28 1990-11-28 Nippon Steel Corp Rare earth magnet and manufacture thereof
JPH0371601A (en) * 1989-08-10 1991-03-27 Nippon Steel Corp Manufacture of rare-earth magnet

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110440394A (en) * 2019-06-24 2019-11-12 珠海格力电器股份有限公司 A kind of air conditioner filter screen is stained with stifled detection method, device, air-conditioning and storage medium
WO2024101148A1 (en) * 2022-11-11 2024-05-16 ミネベアミツミ株式会社 Anisotropic magnet, and method for manufacturing anisotropic magnet

Also Published As

Publication number Publication date
JP6513623B2 (en) 2019-05-15

Similar Documents

Publication Publication Date Title
JP6274216B2 (en) R-T-B system sintered magnet and motor
CN101401282B (en) Radial anisotropic magnet manufacturing method, permanent magnet motor using radial anisotropic magnet, iron core-equipped permanent magnet motor
CN104395971B (en) Sintered magnet
JP6330813B2 (en) R-T-B system sintered magnet and motor
JP6204434B2 (en) Anisotropic composite sintered magnet containing MnBi with improved magnetic properties and method for producing the same
JP4702542B2 (en) Manufacturing method of RTBC type sintered magnet
KR101585479B1 (en) Anisotropic Complex Sintered Magnet Comprising MnBi and Atmospheric Sintering Process for Preparing the Same
JP4371188B2 (en) High specific electric resistance rare earth magnet and method for manufacturing the same
JP6466362B2 (en) Rare earth permanent magnet and method for producing rare earth permanent magnet
JP2017523586A (en) Manganese bismuth-based sintered magnet with improved thermal stability and manufacturing method thereof
JP6447380B2 (en) SmFeN-based metal bond magnet compact with high specific resistance
JP2018041777A (en) Metal bond magnet and method for manufacturing the same
JP4702543B2 (en) R-T-B-C type rare earth sintered magnet
CN111261352A (en) Method for manufacturing R-T-B permanent magnet
JP6484994B2 (en) Sm-Fe-N magnet molded body and method for producing the same
JP2019075493A (en) Magnet junction body
CN108630367B (en) R-T-B rare earth magnet
JP6513623B2 (en) Method of manufacturing isotropic bulk magnet
JP2018186134A (en) Rare earth-transition metal-boron based magnet powder, isotropic bulk magnet and method for manufacturing isotropic bulk magnet
JPH0348645B2 (en)
JP6463293B2 (en) Rare earth permanent magnet and method for producing rare earth permanent magnet
JP2020095992A (en) Sintered magnet and rotary machine
JP2017135268A (en) Hybrid magnet
JP6513621B2 (en) Rare earth permanent magnet and method of manufacturing rare earth permanent magnet
JP6666228B2 (en) Manufacturing method of rare earth iron-based permanent magnet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180510

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190322

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190410

R150 Certificate of patent or registration of utility model

Ref document number: 6513623

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150